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PREFACE

This collection of problems is directed to students in high school, college and university. Some of the
problems are easy. needing no more than common sense and clear reasoning to solve. Others may require
some of the results and techniques which we have included in the Tool Chest. None of the problems
require calculus, so the collection could be described as “problems in pre-calculus mathematics”. How-
ever, they are definitely not the routine nor “drill” problems found in textbooks. They could be described
as challenging, interesting, thought-provoking, fascinating. Many have the “stuff” of real mathematics;
indeed quite a few are the simplest cases of research-level problems. Hence they should provide some
insight into what mathematical research is about.

The collection is dedicated to students who find pleasure in wrestling with, and finally overcoming,
a problem whose solution is not apparent at the outset. It is also dedicated to teachers who encourage
their students to rise above the security offered by prefabricated exercises and thus experience the creative
side of mathematics. Teachers will find here problems to challenge mathematically oriented students,
such as may be found in mathematics clubs or training sessions for mathematical competitions. Seeking
solutions could be a collective experience, for collaboration in research often succeeds when a lonely
effort might not.

Pay no attention to the solutions until your battle with a problem has resulted in a resounding victory
or disappointing defeat. The solutions we have given are not to be regarded as definitive, although they
may suggest possibilities for exploring similar situations. A particular problem may be resolved in
several distinct ways, embodying different approaches and revealing various facets. Some solutions may
be straightforward while others may be elegant and sophisticated. For this reason we have often included
more than one solution. Perhaps you may discover others.

While many of these problems should be new to you. we make no claim for the originality of most
of the problems. We acknowledge our debt to the unsung creators of the problems, recognizing how
hard it is to create a problem which is interesting, challenging, instructive, and solvable without being
impossible or tedious. With few exceptions, the problems appeared in a series of five booklets which
were available from the Canadian Mathematical Society. Indeed, the first of these appeared in 1973.
Since then they have received a steady distribution, and now we feel that an edited, revised version of
all five together is desirable. The problems are arranged in no particular order of difficulty or subject
matter. We welcome communications from the readers, comments, corrections, alternative solutions, and
suggested problems.

Collecting and creating the problems, and editing them, has been a rewarding learning experience
for us. We will feel fully rewarded if teachers and students find this collection useful and entertaining.

E. Barbeau, M. Klamkin, W. Moser
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PROBLEMS

Problem 1. The length of the sides of a right tri-
angle are three consecutive terms of an arithmetic
progression. Prove that the lengths are in the ratio
3:4:5.

Problem 2. Consider all line segments of length
4 with one endpoint on the line y = r and the
other endpoint on the line y = 2r. Find the equa-
tion of the locus of the midpoints of these line
segments.

Problem 3. A rectangle is dissected as shown
in Figure 1, with some of the lengths indicated. If
the pieces are rearranged to form a square, what
is the perimeter of the square?

Problem 4. Observe that
32+ 42 =52,
52 4+ 122 = 13%,
72 4 24% = 25%,
92 + 402 = 412

State a general law suggested by these examples,
and prove it.

10

FIGURE 1

Problem 5. Calculate the sum

64664666 +---+666...6
N’

n 6's

(n>1).

Problem 6. Alice, Betty, and Carol took the
same series of examinations. For each examina-
tion there was one mark of r, one mark of y, and
one mark of z, where r, y, = are distinct positive
integers. The total of the marks obtained by each
of the girls was: Alice—20; Betty—10; Carol—9.
If Betty placed first in the algebra examination,
who placed second in the geometry examination?

Problem 7. Let
folx) = § iI, and  fu(z) = folfa-1(2)),
n=12234,.... Evaluate f|976(1976).

Problem 8. Show that from any five integers,
not necessarily distinct, one can always choose
three of these integers whose sum is divisible by
3.

Problem 9, Mr. Smith commutes to the city reg-
ularly and invariably takes the same train home
which arrives at his home station at 5 PM. At this
time, his chauffeur always just arrives, promptly
picks him up, and drives him home. One fine day,
Mr. Smith takes an earlier train and arrives at his
home station at 4 PM. Instead of calling or wait-
ing for his chauffeur until 5 PM, he starts walking
home. On his way he meets the chauffeur who
picks him up promptly and returns home arriv-
inz 20 minutes earlier than usual. Some weeks

1



later, on another fine day, Mr. Smith takes an ear-
lier train and arrives at his home station at 4:30
PM. Again instead of waiting for his chauffeur,
he starts walking home. On his way he meets the
chauffeur who picks him up promptly and returns
home. How many minutes earlier than usual did
he arrive home this time?

Problem 10. Suppose that the center of gravity
of a water jug is above the inside bottom of the
jug, and that water is poured into the jug until
the center of gravity of the combination of jug
and water is as low as possible. Explain why the
center of gravity of this “extreme™ combination
must lie at the surface of the water.

Problem 11. A father, mother, and son decide
to hold a family tournament, playing a particular
two-person board game which must end with one
of the players winning (i.e., no “tie” is possible).
After each game the winner then plays the per-
son who did not play in the game just completed.
The first player to win two games (nol necessarily
consecutive) wins the tournament. It is agreed that,
because he is the oldest, the father may choose to
play in the first game or to sit out the first game.
Advise the father what to do: play or not to play
in the first game. (USAMO 1974)

Problem 12. EFGH is a square inscribed in
the quadrilateral 4BCD as in Figure 2. If EB =

A E B
H
F
D . G ¢
FIGURE 2
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FC = GD = HA, prove that ABCD is also a
square.

Problem 13. Show that among any seven dis-
tinct positive integers not greater than 126, one
can find two of them, say z and y, satisfying the
incqualities 1 < £ <2,

Problem 14. Show that if 5 points are all in, or
on, a square of side 1, then some pair of them will
be no further than 3? apart.

Problem 15. During an election campaign n dif-
ferent kinds of promises are made by the vari-
ous political parties, n > 0. No two parties have
exactly the same set of promises. While several
parties may make the same promise, every pair
of parties have at least one promise in common.
Prove that there can be as many as 2"~! parties,
but no more.

Problem 16. Given a (2m + 1) x (2n + 1)
checkerboard in which the four corners are black
squares, show that if one removes any one red
square and any two black squares, the remaining
board is coverable with dominoes (i.e., 1 x 2 rect-
angles).

Problem 17. The digital sum D(n) of a positive
integer n is defined recursively as follows:

D(n) =
n ifl<n<9,
Dao+ay+az+--- +am) ifn>9,
where a,.4q,,..., ap, are all the digits of n ex-

pressed in base 10, ie.,

n=an 10" +a,,,10" " +... +0,10 + ay.
For example D(989) = D(26) = D(8) = 8.
Prove that

D((123)n) = D(n) forn=1.2.3

LIPS P

Problem 18. Given three points .1. B.C con-
struct a square with a center A such that two ad-
joining sides (or their extensions) pass through B
e :v:-.pa:livcly.



PROBLEMS

Problem 19. Give an elementary proof that
vn " >vn+ lﬁ, n=17.809,....

Problem 20. 1If, in a circle with center O, OXY
is perpendicular to chord AB (as shown in Figure
3), prove that DX < CY (see Figure 4). (P. Erdos
and M. Klamkin)

Problem 21. Letq,,04.....a, be n positive in-
tegers. Show that for some 7 and & (1 < 1 <
i+k<n)

a, + -+ + a,4 is divisible by n.

Problem 22. Given a finite number of points in
the plane with distances (between pairs) distinct,

0
X
A B
Y
FIGURE 3
z
)
X C
A B
D Ty
FIGURE 4

join each point by a straight line segment to the
point nearest 10 it. Show that the resulting config-
uration contains no triangle.

Problem 23. Show that if mn is a positive ra-
tional number then m + L is an integer only if
m=1

Problem 24. Let P be the center of the square
constructed on the hypotenuse AC of the right-
angled triangle ABC'. Prove that BP bisects
LABC.

FIGURE 5

Problem 25. Four distinct lines L,, Ly, L3, L,
are given in the plane, with L, and L. respec-
tively parallel to Ly and L,. Find the locus of a
point moving so that the sum of its perpendicular
distances from the four lines is constant.

Problem 26. Suppose 5 points are given in the
plane, not all on a line, and no 4 on a circle. Prove
that there exists a circle through three of them
such that one of the remaining 2 points is inside
the circle while the other is outside the circle.

Problem 27. Let ABC be an arbitrary triangle,
and P any point inside. Let d,, d3, and d3 denote
the perpendicular distance from P to side BC,
CA, and AB respectively. Let by, h,, and hj de-
note respectively the length of the altitude from
A, B, C 10 the opposite side of the triangle. Prove
that

d dp d
L2421

h_|+h_2 h3



Problem 28. A boy lives in cach of n houses on
a straight line. At what point should the n boys
meet so that the sum of the distances that they
walk from their houses is as small as possible?

Problem 29. Let P be one of the two points of
intersection of two intersecting circles. Construct
the line { through P, not containing the common
chord, such that the two circles cut off equal seg-
ments on L.

Problem 30. On each side of an arbitrary trian-
gle ABC. an equilateral triangle is constructed
(outwards), as in Figure 6. Show that AP =
BQ =CR.

R
A
C
B
P
FIGURE 6
Problem 31. Show that if # is a positive integer
greater than 1, then
I+ : + : + +l
2 3 n

is not an integer.

Problem 32. Two points on a sphere of radius
1 are joined by an arc of length less than 2, lying
inside the sphere. Prove that the arc must lie in
some hemisphere of the given 5phm. (USAMO
1974)

FIVE HUNDRED MATHEMATICAL CHALLENGES
Problem 33. Prove that for any positive integer

Bl B BB

Problem 34. Prove that the sum of all the n-
digit integers (n > 2) is

494 99...95500...0.
n=3 Y's n=-20's

Problem 35. Let ABC be the right-angled
isosceles triangle whose equal sides have length
1. P is a point on the hypotenuse, and the feet
of the perpendiculars from P to the other sides
are ( and R. Consider the areas of the triangles
APQ and PBR, and the area of the rectangle
QCRP. Prove that regardless of how P is cho-
sen, the largest of these three areas is at least 2/9.

A

B R C
FIGURE 7 BC-=Ci=1

Problem 36. Prove that a triangle with sides of
lengths 5, 5, 6 has the same arca as the triangle
with sides of lengths 5, 5, . Find other pairs of
incongruent isosceles triangles, with integer sides,
having equal arcas.

Problem 37. A quadrilateral has one vertex on
cach side of a square of side-length 1. Show that
the lengths a, b, ¢, and d of the sides of the quadri-
lateral satisfy the inequalities

N R et TR}



PROBLEMS

radius r radius R

FIGURE 8

Problem 38. A circle of radius  intersects an-
other circle, of radius R (R > r). (See Figure 8.)
Find an expression for the difference in the areas
of the nonoverlapping parts.

Problem 39. The number 3 can be expressed as
an ordered sum of one or more positive integers
in four ways, namely as

3, 1+2, 2+1, 1+1+1.

Show that the positive integer n can be so ex-
pressed in 2"~ ways.

Problem 40. Teams T,T>,..., T, take part in
a tournament in which every team plays every
other team just once. One point is awarded for
each win, and it is assumed that there are no
draws. Let s;.53.....5, denote the (total) scores
of 1. Ty, ..., Ty, respectively. Show tha, for 1 <
k<n,

1
sl+32+~--+sk$nk—§k(k+l).

Problem 41. Observe that
1-2-3
12= ——
6
3-4-5
2 92 _
1°43 5
9 '6‘7
12+3'+52=5—6".

Guess a general law suggested by these examples,
and prove it.

Problem 42. In the following problem no “aids”
such as tables, calculators, etc. shiuld e txd.

(a) Prove that the values of .r for which r =

£ e between 7k and 197.99494949. ..

(b) Use the result of (a) to prove that V2 <
1.41421356421356421356. . . .

(c) Is it true that V2 < 1.41421356?

Problem 43. Prove that if 5 pins are stuck onto
a piece of cardboard in the shape of an equilateral
triangle of side length 2, then some pair of pins
must be within distance ! of each other.

Problem 44. Given an even number of points in
the plane, does there exist a straight line having
half of the points on each side of the line?

Problem 45. Two circles intersect in points A,
B. PQ is a line segment through A and termi-
nating on the two circles. Prove that BP/BQ is
constant for all allowable configurations of PQ.

FIGURE 9

Problem 46. Let f(n) be the sum of the first n
terms of the sequence

0.1,1.2.2.3.3.4.4,...,r,r,r+ Lir +1,....

(a) Deduce a formula for f(n).

(b) Prove that f(s+1)— f(s—t) = st where
s and t are positive integers and s > ¢.

Problem 47. Three noncollinear points P, Q. R
are given. Find the triangle for which P, Q, R are
‘b2 midpuints of the edges.



Problem 48. Prove that 199 4299 4 399 4 4% 4
5" is divisible by 5.

Problem 49. Show that there are no integers
a,b, ¢ for which a + b2 — 8¢ = 6.

Problem 50. If a, b, c, d are four distinct nhum-
bers then we can form six sums of two at a time,
namelya+b,a+c,a+d b+c, b+d c+d.
Split the integers 1, 2, 3, 4, 5, 6, 7, 8 into two
sets, four in each set, so that the six sums of two
at a time for one of the sets is the same as that of
the other set (not necessarily in the same order).
List all possible ways in which this can be done.

Problem 51. If 2log(r — 2y) = logz + logy,
find i

Problem 52. Let f be a function with the fol-
lowing properties:

(1) f(n) is defined for every positive integer n;
(2) f(n) is an integer,

3 f(2)=2

(4) f(mn) = f(m)f(n) for all m and n;

(5) f(m) > f(n) whenever m > n.

Prove that f(n)=nforn=1,2,3,....

Problem 53. If a line [ in space makes equal
angles with three given lines in a plane #, show
that [ is perpendicular to =.

Problem 54. Let a be the integer

a=111...1
S —

m 's

(where the number of 1's is m); let

b=100...005
SN’
m-1{'s

(where the number of 0's between digits 1 and §
is m — 1). Prove that ab + 1 is a square integer.
Express the square root of ab+ 1 in the same form
as a and b are expressed.

Problem 55. Two flag poles of heights h and k&
are situated 2a units apart on a level surface. Find
the set of all points on the surtiuce which ar 30
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situated that the angles of elevation, at each point,
of the tops of the poles are equal.

Problem 56. Prove that, forn=1,2,3,...,

1 1 1

1
1+ﬁ+ﬁ+§-!+“'+a<3.

Problem 57. Let X be any point between B
and C on the side BC of the convex quadrilat-
eral ABCD (as in Figure 10). A line is drawn
through B parallel to AX and another line is
drawn through C parallel to DX. These two lines
intersect at P. Prove that the area of the trian-
gle APD is equal to the area of the quadrilateral
ABCD.

D

FIGURE 10

Problem 58. Let

s -1+i+ ! +--+ !
i V2 V3 v
Show that 2yn+1-2< s, < 2\/n - 1.

Problem 59. Show that for any quadrilateral in-
scribed in a circle of radius 1, the length of the
shortest side is not more than /2.

Problem 60. Prove that if a convex polygon has

four of its angles equal to 90° then it must be a
rectangle.

Problem 61. You are given 6 congruent balls,
two each of colors red, white, and blue, and in-
formed that one ball of each color weighs 15
grams while the other weighs 16 grams. Using an
equal arm balance only twice, determine which
duge ore obe 16-gram balls,



PROBLEMS

Problem 62. A plane flies from A to B and back
again with a constant engine speed. Turn-around
time may be neglected. Will the travel time be
more with a wind of constant speed blowing in
the direction from A to B than in still air? {(Does
your intuition agree?)

Problem 63. Tetrahedron OABC is such that
lines O 4, OB, and OC" are mutually perpendicu-
lar. Prove that triangle 4B is not a right-angled
triangle.

Problem 64. Find all number triples (r.y,z)
such that when any one of these numbers is added
to the product of the other two, the result is 2.

Problem 65. Let nine points be given in the in-
terior of the unit square. Prove that there exists a
triangle of area at most § whose vertices are three
of the nine points. (See also problem 14 or 43.)

Problem 66. Let a, b, and ¢ be the lengths of
the sides of a triangle. Show that if a® +b? + ¢% =
be + ca + ab then the triangle is equilateral.

Problem 67. A triangle has sides of lengths a,
b, ¢ and respective altitudes of lengths h,, hy, h,.
Ifa>b>cshowthata+h, > b+hy > c+he.

Problem 68. Let n be a five-digit number
(whose first digit is nonzero) and let m be the
four-digit number formed from n by deleting its
middle digit. Determine all n such that - is an
integer.

Problem 69. Prove that for nonzero numbers r,
Yy, 2 the expressions

™4yt 42", (r+y+2)
are equal for any odd integer n provided this is so
when n = —1.

Problem 70. An army captain wishes to sta-
tion an observer equally distant from two spec-
ified points and a straight road. Can this always
be done? Locate any possible stations. In other
words, how many points are there i e Eaci'dein

planc which are equidistant from two given points
and a given line? Find them with straight-edge and
compasses if possible.

Problem 71. Prove that for n =1,2.3,...,

e

Problem 72. Given three noncollinear points A,
B, C construct a circle with center €’ such that the
tangents from A and B to the circle are parallel.

Problem 73. Let

fO=r+r+r+r 41

Find the remainder when f(r®) is divided by

f(x).

Problem 74. Let the polynomial

n-2

f(r)=r"+ayr" V4ayrt 2+ dap_ r+a,

have integral coefficients a,.a,,....q,. If there
exist four distinct integers a, b, ¢, and d such that
f(a) = f(b) = f(c) = f(d) =5, show that there
is no integer k such that f(k) = 8.

Problem 75. Given an n x n array of positive
numbers

an a2 ... Qn
an a2 ... Qzq
Qn) Qp2 Qnn,

let m, denote the smallest number in the jth col-
umn, and m the largest of the m,’s. Let M, de-
note the largest number in the ith row, and Al the
smallest of the Al,'s. Prove that m < D[,

Problem 76. What is the maximum number of
terms in a geometric progression with common ra-
tio greater than | whose entries all come from the
set of integers between 100 and 1000 inclusive?

Problem 77. Prove that for all positive integers
a it 8" 3" — 6" is divisible by 10.



FIGURE 11

Problem 78. n points are given on the circum-
ference of a circle, and the chords determined by
them are drawn. If no three chords have a common
point, how many triangles are there all of whose
vertices lie inside the circle. (Figure 11 shows 6
points and one such triangle.)

Problem 79. A sequence ,a,,...,a,,... of
integers is defined successively by a, 41 = a2 —
a, + 1 and a; = 2. The first few terms are a; =
2, a; = 3, a3 = 7, ay = 43, a5 = 1807,... .
Show that the integers a;.a2.a3. ... are pairwise
relatively prime.

Problem 80. Show that the integer N can be
taken so large that 1 + J + 4 +--- + & is larger
than 100.

Problem 81. Let a;,ay,...,a,, b.b,....b,
be 2n positive real numbers. Show that either

a; () Qan
_.+_.+...+_2n
bl bZ bn

or
by b b
_|.+_2.+...+l >n.
5] ay iy

Problem 82. Let f(r) = a, 7" +a,_ 7" ' +
-+ + @mx + ap be a polynomial of degree n >
1 with integer coefficients. Show that there are
infinitely many positive intcgers m for which

fm)y=a,m" +a,_ym" ' 4 b aym+tay

is not prime.

FIVE HUNDRED MATHEMATICAL CHALLENGES

FIGURE 12

Problem 83. Figure 12 shows three lines divid-
ing the plane into seven regions. Find the maxi-
mum number of regions into which the plane can
be divided by = lines.

Problem 84. In a certain town, the blocks are
rectangular, with the streets (of zero width) run-
ning E-W, the avenues N-S. A man wishes to go
from one corner to another m blocks east and n
blocks north. The shortest path can be achieved in
many ways. How many?

Problem 85. Given six numbers which satisfy
the relations

) P¥+yz+:2=a?

2) 224:r+22=4°

3) rP+ry+y: =22
determine the sum = + y + z in terms of a, b, c.
Give a geometric interpretation if the numbers are
all positive.

Problem 86. Six points in space are such that
no three are in a line. The fifteen line segments
joining them in pairs are drawn and then painted,
some segments red, some blue. Prove that some

triangle formed by the segments has all its edges
the same color.

Problem 87.  Represent the number | as the sum
of reciprocals of finitely many distinct integers
larger than or equal to 2. Can this be done in
more than one way? If so, how many?

Problem 88. Show how to divide a circle into

9 regions of equal area, using a straight-edge and
[N ) FHH RO



PROBLEMS

Problem 89. Given n points in the plane, any
listing (permutation) p,. pa. .. ..p, of them deter-
mines the path, along straight segments, from p;
to p,, then from p; to p3,..., ending with the
segment from p,,_; to p,. Show that the shortest
such broken-line path does not cross itself.

Problem 90. Let P(z,y) be a polynomial in =
and y such that:
i) P(z,y) is symmetric, i.e.,
P(z,y) = P(y.7);
ii) x — y is factor of P(x,y), i.e.,
P(z,y) = (z - y)Q(z.y).
Prove that (r — y)? is a factor of P(z, ).

Problem 91. Figure 13 shows a (convex) poly-
gon with nine vertices. The six diagonals which
have been drawn dissect the polygon into seven
lriangles: PoP\P3, PyP;Pg, PyPsP;, PyP;Pg,
PP, P3, PyPyPs, PyPsPs. In how many ways
can these triangles be labelled with the names A,
D, D3, Ds, Ds, Dg, D7 so that P, is a vertex of
triangle A, for i = 1,2,3,4,5,6,77 Justify your
answer.

P
P
P
P, !
Pe
P,
Ps
P
3 P4
FIGURE 13

Problem 92. In Figure 14, the point O is the
center of the circle and the line POQ is a diam-
eter. The point R is the foot of the perpendicular
from P to the tangent at T and the point S is
the foot of the perpendicular from Q to this same
tangent. Prove that OR=0S.

R
FIGURE 14

Problem 93. Let n be a positive integer and let
ay,as,...,a, be any real numbers > 1. Show
that

(1+a))-(1+a3)---(1+an)

2

i ta ezt +a).

Problem 94. If A and B are fixed points on
a given circle not collinear with center O of the
circle, and if XY is a variable diameter, find the
locus of P (the intersection of the line through A
and X and the line through B and Y').

.I B
/ A

JIBUPE 15
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Problem 95. Observe that:

LSS UE WS Y W
1 220 2 3 6
11,01 1 1.1
34712 4 5 2

State a general law suggested by these examples,
and prove it. Prove that for any integer n greater
than 1 there exist positive integers ¢ and j such
that

1 1
Gt G 0i+2)
+ 1 P
(i+2)(i+3) iGG+1)
(American Mathematical Monthly 55 (1948), 427,
problem E827)

1
n

Problem 96. Let ABCD be a rectangle with
BC = 3AB. Show that if P,Q are the points on
side BC with

BP=PQ =QC,
then
ZDBC+ £DPC = £DQC.
A D
B P Q C
FIGURE 16

Problem 97. Let n be a fixed positive integer.
For any choice of n real numbers satisfying 0 <
z, < 1,i=1,2,...,n, there corresponds the sum
across the bottom of this page. Let S(n) denote
the largest possible value of this sum. Find S(n).

FIVE HUNDRED MATHEMATICAL CHALLENGES

Problem 98. Observe that

1 1 4

Stz =z 42432 =5%,
1t3=3 +

1 1_38 2, 162 — 172
1,18 152 = 172,
3ts~ e ¥F

1 1 12 a2 aed
Lyl 120 23y
57773 +

State and prove a generalization suggested by
these examples.

Problem 99. John tosses 6 fair coins, and Mary
tosses 5 fair coins. What is the probability that
John gets more “heads” than Mary?

Problem 100. A hexagon inscribed in a circle
has three consecutive sides of length a and three
consecutive sides of length b. Determine the radius
of the circle.

Problem 101. (a) Prove that 10201 is composite
in any base.

(b) Prove that 10101 is composite in any base.
(c) Prove that 100011 is composite in any base.

Problem 102. Suppose that each of n people
knows exactly one piece of information, and all n
pieces are different. Every time person “A™ phones
person “B”, “A” tells “B" everything he knows,
while “B” tells “A” nothing. What is the mini-
mum number of phone calls between pairs of peo-
ple needed for everyone to know everything?

Problem 103. Show that, for each integer n >
6, a square can be subdivided (dissected) into n
nonoverlapping squares.

Z |1‘i—$1|=|1'1—72|+|1'|—T3|+|1'l‘-'N|+"'+ R Y I

1<i<y<n

+II2_13|+|J2_I4|+"'+ |12—J',,_|| + |J‘2—J‘n|
Hlra g4+ |ry—ran| + |13 - x

+-
+ |-Tu—2 —Iu-l|+ |-rn-2 _1'n|

+ |.'l'"_| - ‘r'll
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Problem 104. Let ABCD be a nondegener-
ate quadrilateral, not necessarily planar (vertices
named in cyclic order) and such that

AC* +BD'=AB°+BC' +CD + DA
Show that ABCD is a parallelogram.

Problem 105. Show that every simple polyhe-
dron has at least two faces with the same number
of edges.

Problem 106. ABCDEF is a regular hexagon
with center P, and PQR is an equilateral triangle,
as shown in Figure 17. If AB = 3, $B = 1,
and PQ = 6, determine the area common to both
figures.

Problem 107. Prove that, for each positive inte-
gern,
1 1 1

mgts o

1 + + 1
n4l m-1

1
==+
n

Problem 108. For every positive integer n, let

1 1 1
h(n)—l+§+§+~-+;.

For example,

1 1 1
h(1)=1, h(2)=1+§’ h(3)_1+§+§.

Q
A S
R
F C
E D
FIGURE 17

1

Prove that

n+h(1)+h(2)+h(3)+- - -+ h(n—1) = nh(n),
n=234,....

Problem 109. For which nonnegative integers n
and k is

(A+1)"+(k+2)"+ (k4+3)"+(k+4)" + (k+5)"
divisible by 57

Problem 110. Describe a method for the con-
struction (with straight-edge and compasses) of

a triangle with given angles a and 3 and given
perimeter p.

Problem 111.
the polynomial

Determine a constant k such that

P(z,y,2)=1°+y* + 2°
+k(1‘3 +y3 + 23)(2?2 +y2 + 22)
has the factor = + y + z. Show that, for this value
of k, P(z,y, z) has the factor (z + y + z)%.
Problem 112. Show that, for all positive real
numbers p, ¢, 1, S,
P*+p+ 1)@ +g+ 1) +r4+1)x
(s + s+ 1) > 8l pgrs.

Problem 113. Prove that, for any positive inte-
ger n and any real number z,

=1

Problem 114. Observe the following sets of
equations:

A.
1=1
21-é=1+%
313 s4z=ltsts
t 6344 g-g=l4z+z4y
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B
1=1
%:2.1_(”%)
%:3.1—3(1+%)+(1+%+%)

] 1 1 1
2—4'1—6(1+§)+4(1+§+§)

1424l l
2 3 4)°
State and prove a generalization for each set.

Generalize the relationship between the two sets
of equations.

Problem 115. 2n + 3 points (n > 1) are given
in the plane, no three on a line and no four on a
circle. Prove that there exists a circle through three
of them such that, of the remaining 2n points, n
are in the interior and n are in the exterior of the
circle.

Problem 116. From a fixed point P not in a
given plane, three mutually perpendicular line seg-
ments are drawn terminating in the plane. Let a, b,
¢ denote the lengths of the three segments. Show

1 1 1
that — + -5 + — has a constant value for all
allowable configurations.

Problem 117. [f @, b. ¢ denote the lengths of the
sides of a triangle show that

3(bc+ca+ab) < (a+b+c)? < 4(be+ca +ab).

Problem 118. Andy leaves at noon and drives
at constant speed back and forth from town A to
town B. Bob also leaves at noon, driving at 40
km per hour back and forth from town B to town
1 on the same highway as Andy. Andy arrives at
town I3 twenty minutes after first passing Bob,
whereas Bob arrives at town A forty-five minutes
after first passing Andy. At what time do Andy
and Bob pass each other for the nth time?

FIVE HUNDRED MATHEMATICAL CHALLENGES

FIGURE 18

Problem 119. Two unequal regular hexagons
ABCDEF and CGHJK L (shown in Figure 18)
touch each other at C and are so situated that F,
C and J are collinear. Show that:
i) the circumcircle of BCG bisects FJ (at 0
say);
ii) ABOG is equilateral.

Problem 120. Let n be a positive integer. Prove
that the binomial coefficients

(i) G)- () ()

are all even if and only if n is a power of 2.

Problem 121. Prove that, for any positive inte-
ger n,

14927 - 1770" - 1863" + 2141"
is divisible by 1946.

Problem 122. If P(x) denotes a polynomial
of degree n such that P(k) = % for k = 1.
2,...,n + 1, determine P(n + 2).

Problem 123. Prove that logr cannot be ex-

pressed in the form % where f(r) and g(x)
are polynomials in .r. .

Problem 124. A train leaves a station precisely
on the minute, and after having travelled 8 miles,
the driver consults his watch and sees the hour-
hand is directly over the minute-hand. The average
speed over the 8 miles is 33 miles per hour. At
st jave ofid the train leave the station?
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FIGURE 19. n=13

Problem 125. Describe a construction of a
quadrilateral ABCD given:

(a) the lengths of all four sides;

(b) that segments AB and C'D are parallel;

(c) that segments BC and DA do not intersect.

Problem 126. You have a large number of con-
gruent equilateral triangular tiles on a table and
you want to fit n of them together to make a con-
vex equiangular hexagon (i.e., one whose interior
angles are all 120°). Obviously, n cannot be any
positive integer. The smallest feasible n is 6, the
next smallest is 10 and the next 13 (Figure 19).
Determine conditions for a possible n.

Problem 127. Let a, b, ¢ denote three distinct in-
tegers and P(x) a polynomial with integral coef-
ficients. Show that it is impossible that P(a) = b,
P(b) = ¢ and P(c) = a. (USAMO 1974)

Problem 128. Suppose the polynomial z" +
;7" +a7""2 + - 4 a, can be factored into

(z+ )z +r)--(z+72),

where r,79,...,7, are real numbers. Prove that
(n - 1)a? > 2na,.

Problem 129. For each positive integer n, de-
termine the smallest positive number k(n) such
that

k(n) + sin é. k(n) + sin é, k(n) + sin ¢
n n n

are the sides of a triangle whenever A, B,C are
the angles of a triangle.

Problem 130. Prove that, forn =1,2,3,...,
(a) (n+1)" > 2"n!;
(b) (n+1)*(2n + 1)" > 6"(n!=.

13

Problem 131.
bers satisfying:

() sz =1,

Let z1,22.23 be complex num-

1 1 1
)z 4294 25= -._+_+_'

a0 2 I3
Show that at least one of them is 1.

Problem 132. Let m,, my, m, and wy, up, w,
denote, respectively, the lengths of the medians
and angle bisectors of a triangle. Prove that

VMg + g + e 2w, + Vg + ..

Problem 133. Let n and r be integers with 0 <
7 < n. Find a simple expression for

=()-()+) ().

Problem 134. If z, y, 2 are positive numbers,
show that

Problem 135. Prove that all chords of parabola
y? = dar which subtend a right angle at the vertex
of the parabola are concurrent. See Figure 20.

Problem 136. ABCD is an arbitrary convex
quadrilateral for which

AM
AB
as shown in Figure 21. Prove that the area of

NC
’E? ’

IGURE 20
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D

FIGURE 21

quadrilateral PM@QN equals the sum of the ar-
eas of triangles APD and BQC.

Problem 137. Show how to construct a sphere
which is equidistant from five given non-
cospherical points, no four in a plane. Is the solu-
tion unique?

Problem 138. Prove that 524! 4 11241 4
172"+! is divisible by 33 for every nonnegative
integer n.

Problem 139. A polynomial P(x) of the nth
degree satisfies P(k) = 2% for k=0,1,2,...,n.
Determine P(n + 1).

Problem 140. Suppose that 0 < z, <1 fori =
1,2,...,n. Prove that

2N 1+ 31720+ 10)
2+l +x9)---(1+1,),

with equality if and only if n — 1 of the r,’s are
equal to 1.

Problem 141. Sherwin Betlotz, the tricky gam-
bler, will bet even money that you can’t pick three
cards from a 52-card deck without getting at least
one of the twelve face cards. Would you bet with
him?

Problem 142. Givena, b, ¢, d, find all z, g, =,
w for which

) y*2uir=d’,

(2) 2utr?y = b,

(3) wiriyl: = o7,

) FPytw=d"

FIVE HUNDRED MATHEMATICAL CHALLENGES

Problem 143. Prove that if all plane cross-
sections of a bounded solid figure are circles, then
the solid is a sphere.

Problem 144. In how many ways can we stack
n different coins so that two particular coins are
not adjacent to each other?

Problem 145. Two fixed, unequal, nonintersect-
ing and non-nested circles are touched by a vari-
able circle at P and Q. Prove that there are two
fixed points, through one of which PQ must pass.

Problem 146. If S =z, 4+ 724 --- +x,,, where
r, >0(i=1,...,n), prove that

S + S
S-r S-14 S-z,
with equality ifand only if ) = 2y =--- = 1,,.

+...+

2 ,

n-1

Problem 147. Factor

aS(c-b)+b%(a-c) + (b -a)

Problem 148. In a mathematical competition, a
contestant can score 5, 4, 3, 2, 1, or 0 points for
each problem. Find the number of ways he can
score a total of 30 points for 7 problems.

Problem 149. Observe that

6% - 52=11,
562 — 452 = 1111,
556% — 4457 = 111111,
55567 — 4445% = 11111111

State a generalization suggested by these examples
and prove it.
Problem 150. Solve for », y, = (in terms of a,
r, sty

yr=aly+:)+r

w=alz+0)+s

ry=alr+y)+t.

Problem 151. Let ABC be an equilateral tri-
aczie ard it P obe a point within the triangle.
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Perpendiculars PD, PE, PF are drawn to the
three sides of the triangle. Show that, no matter
where P is chosen,

PD+PE+PF 1

AB+BC+CA 2

w

Problem 152. Solve
V3r +37- Y13z =37 = V2.

Problem 153. If A denotes the number of inte-
gers whose logarithms (to base 10) have the char-
acteristic a, and B denotes the number of integers
the logarithms of whose reciprocals have charac-
teristic —b, determine (log A — a) — (log B - b).
(The characteristic of log r is the integer [log z].)

Problem 154. Show that three solutions,
(1, 01)s (x2,42), (x3,33), of the four solutions
of the simultaneous equations

(z = h) +(y - k)? = 4(h* + *)
zy = hk
are vertices of an equilateral triangle. Give a geo-

metrical interpretation.

Problem 155. Prove that, for each positive
integer m, the smallest integer which exceeds
(V3 + 1)2™ is divisible by 2™+1.

Problem 156. Suppose that r is a nonnegative
rational taken as an approximation to v/2. Show

2 . .
that % is always a better rational approxima-

tion.

Problem 157. Find all rational numbers k such
that 0 < k < § and cos kr is rational.
Problem 158.  Solve the simultaneous equations:
r+y+:=0,
22 + 4% + 2% = 6ab,
2+ 8+ =300+ b%).
Problem 159. Prove that the sum of the areas

of any three faces of a tetrahedron is greater than
the area of the fourth face.
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Problem 160. Let a.b.c be the lengths of the
sides of a right-angled triangle, the hypotenuse
having length c. Prove that a 4+ b < v/2¢. When
does equality hold?

Problem 161. Determine all @ such that 0 <
6<% andsin®0 +cos®f = 1.

Problem 162. If the pth and gth terms of an
arithmetic progression are ¢ and p respectively,
find the (p + ¢)th term.

Problem 163, Let ABC be a triangle with sides
of lengths a, b, and c. Let the bisector of the angle
C cut AB in D. Prove that the length of CD is
2abcos %
at+bd

Problem 164. For which positive integral bases
b is 1367631, here written in base b, a perfect
cube?

Problem 165. If x is a positive real number
notequal to unity and n is a positive integer, prove

that
1- 1.2n+|

1-
Problem 166. The pth, gth and rth terms of an
arithmetic progression are g, r and p respectively.
Find the difference between the (p + ¢)th and the
(g + r)th terms.

> (2n 4+ 1)z

Problem 167. Given a circle I and two points A
and B in general position in the plane, construct
a circle through A and B which intersects T in
two points which are ends of a diameter of T

Problem 168. Find the polynomial whose roots
are the cubes of the roots of the polynomial 3 +
at? 4 bt + ¢ (where a, b, ¢ are constants).

Problem 169.
bers, prove that

If a, b, c, d are positive real num-

ad+2+cE BP+E+d A+ d +a?
a+b+c b+c+d c+d+a
& +a® +b°
CT0 T S atbtetd
d+a+b

with eqealin only ifa=b=c=d,
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Problem 170. (a) Find all positive integers with
initial digit 6 such that the integer formed by delet-
ing this 6 is _,l, of the original integer.

(b) Show that there is no integer such that
deletion of the first digit produces a result which
is % of the original integer.

Problem 171. Prove that if a convex polygon
has three of its angles equal to 60° then it must
be an equilateral triangle.

Problem 172. Prove that, for real numbers
.T,y. :’

D4+t + )+ 1Y) > 607220
When is there equality?

Problem 173. How many integers from | to

10% inclusive are not perfect squares, perfect
cubes, or perfect fifth powers?

Problem 174. What is the greatest common di-
visor of the set of numbers

{I6"+10n-1|n=1.23,...}2

Problem 175. Ifa, 21 fori=1.2...., prove

that, for each positive integer n,

n+aaa...ap, 21+a +a2+---+a,
with equality if and only if no more than one of

the a,’s is different from 1.

Problem 176. A certain polynomial p() when
divided by r — a, r — b, r — ¢ leaves remainders
a, b, ¢ respectively. What is the remainder when
plr) is divided by (x — e{{r = b)(r = -)? (a.b.c
distinct).

Problem 177. Determine the function F(r)
which satisfies the functional equation

FPEe)+ F(l=r)y=2r -1

for all real r.

Problem 178. Prove that there are no positive
integers a, b, r such that

a’ +b 4= u"'l-'f

FIVE HUNDRED MATHEMATICAL CHALLENGES

Problem 179. A sequence {a, } of real numbers
is defined by

a =1, Qpyy = 1+a@ay...a, (n 2 l).

Prove that

=1
Za—=2

n
n=1

Problem 180. Show how to construct the
straight line joining two given points A, B with
only a straight edge whose length is less than AB.

Problem 181. Show that, if two circles, not in
the same plane, either intersect in two points or
are tangent, then they are cospherical (i.e., there
is a sphere which contains the two circles).

Problem 182. Let r, y, z be the cube roots of
three distinct prime integers. Show that r, y, z are
never three terms (not necessanly consecutive) of
an arithmetic progression.

Problem 183. OBC is a triangle in space, and
A is a point not in the plane of the triangle. AQ is
perpendicular to the plane BOC and D is the foot
of the perpendicular from A to BC. (See Figure
22.) Prove that OD 1 BC.

Problem 184. Let A, B, C, D be four points
in space. Determine the locus of the centers of all

parallelograms having one vertex on each of the
four segments AB, BC, CD, DA.

et 20
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FIGURE 23

Problem 185. From the centers of two “exte-
rior” circles draw the tangents to the other circle,
as in Figure 23. Prove that

AB=CD.

Problem 186. P, Q, R, S denote points re-
spectively on the sides AB, BC, CD, DA of
a skew quadrilateral ABCD such that P, Q, R,
S are coplanar. Suppose also, that P’, Q', R',
S’ are points on the sides A'B’, B'C', ("D,
D’ A’ respectively of a second skew quadrilateral
A'B'C'D’. Assume that

AB=AB, BC=BC, CD=CT,
DA=D'A AP=7AP, BQ=B7qQ,
CR=CR, DS=D¥%

Prove that P', @', R', §’ are also coplanar.

Problem 187. Find a positive number k such
that, for some triangle ABC (with sides of length
a, b, ¢ opposite angles A, B, C respectively):
(a) a+b= ke,
(b) cot % + cot %" = kcot %

Problem 188. A, B, C, D are four points in
space such that

/ABC = £BCD = /CDA = ¢/DAB =90°.
Prove that A, B, C, D are coplanar.
Problem 189. If, in triangle ABC, £B = 18°

and ZC = 36°, show that a — b is equal to the
circumradius.

Problem 190. Let ABCD be a concyclic con-
vex quadrilateral for which AP & 7' Dencte
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by a, b, ¢, d the lengths of the edges AB, BC,
CD, DA respectively. Prove that

(ab+ cd)? + (ad + be)? = (b — d2).

Problem 191. Suppose that P, Q, R, S are
points on the sides AB, BC, CD, DA respec-
tively, of a tetrahedron ABC D, such that the lines
PS and QR intersect. Show that the lines PQ,
RS and AC are concurrent.

Problem 192. Let ABC and ABD be equilat-
eral triangles which lie in two planes making an
angle 8 with each other. Find ZC AD (in terms of
0).

Problem 193. ABC is a triangle for which
BC =4, CA =5, AB = 6. Determine the ratio
ZBCA/ZCAB.

Problem 194. Show how to construct the radius
of a given solid sphere, given a pair of compasses,
a straight-edge and a plane piece of paper.

Problem 195. Let n be positive integer not less
than 3. Find a direct combinatorial interpretation
of the identity

(2)-("7)

Problem 196. Prove that a convex polyhedron
P cannot satisfy either (a) or (b):

(a) P has exactly seven edges;

(b) P has all its faces hexagonal.

Problem 197. Determine z in the equilateral tri-
angle shown in Figure 24.

Problem 198. A, B, C, D are four points in
space such that line AC is perpendicular to line
BD. Suppose that A, B!, C', D' are any four
points such that
AB= AR,
CD=CD,

BC = B'C',
DA=TDA.
Prose thas line A'CY is perpendicular to line B' D'
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FIGURE 24

Problem 199. Let P(r), Q(r), and R(r) be
polynomials such that P(x*)+7 Q(z”)+xr?R(z”)
is divisible by 14 + r* + 2% + 1 + 1. Prove that
P(x) is divisible by r — 1. (USAMO 1976)

Problem 200. If ABCDEFGH is a cube, as
shown in Figure 25, determine the minimum
perimeter of a triangle PQR whose vertices P,
Q. R lie on the edges AB, C'G, EH respectively.

G H
FIGURE 25

Problem 201. A man drives six kilometers to
work every moming. Leaving at the same time
each day, he must average exactly 36 kph in order
to arrive on time. One moming, however, he gets
behind a street-washer for the first two kilometers
and this reduces his average speed for that distance
to 12 kph. Given that his car can travel up to 150
kph, can he get to work on time™ -

FIVE HUNDRED MATHEMATICAL CHALLENGES

Problem 202. A desk calendar consists of a reg-
ular dodecahedron with a different month on each
of its twelve pentagonal faces. How many essen-
tially different ways are there of arranging the
months on the faces?

Problem 203. (a) Show that 1 is the only posi-
tive integer equal to the sum of the squares of its
digits (in base 10).

{b) Find all the positive integers, besides 1,
which are equal to the sum of the cubes of their
digits ( in base 10).

Problem 204, Find all the essentially different
ways of placing four points in a plane so that the
six segments determined have just two different
lengths.

Problem 205. Three men play a game with the
understanding that the loser is to double the money
of the other two. After three games, each has lost
just once, and each has $24.00. How much did
each have at the start of the games?

Problem 206. (a) In a triangle ABC, AB =
2BC. Prove that BC must be the shortest side.
If the perimeter of the triangle is 24, prove that
4<BC <.

(b) If one side of a triangle is three times
another and the perimeter is 24, find bounds for
the length of the shortest side.

Problem 207. Show that, if & is a nonnegative
integer:

(a) 12¢ + 92k +32k > 2_71:.‘
(b) 12k+l +22k+l +3'.‘k+l >6k+l.

When does equality occur?

Problem 208. Solve
(r+1)(r+2)(r+3)=(r=3)(r+)(r+5).
Problem 209. What is the smallest integer,

which, when divided in wm by 2.3.4.....10
"y remenders of 1,2.3.. .., 9 respectively?
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Problem 210. Two cars leave simultaneously
from points 4 and B on the same road in op-
posite directions. Their speeds are constant, and
in the ratio 5 to 4, the car leaving A being faster.
The cars travel to and fro between 4 and B. They
meet for the second time at the 145th milestone
and for the third time at the 201st. What mile-
stones are at A and B?

Problem 211. What are the last three digits of
the number 799792

Problem 212. ABC is a trangle such that
AB = AC and ZBAC = 20°. The point X
on AB is such that ZXCB = 50°; the point
Y on AC is such that £} BC = 60°. Determine
LAXY.

Problem 213. Prove that the volume of the tetra-
hedron determined by the endpoints of two line
segments lying on two skew lines is unaltered by
sliding the segments (while leaving their lengths
unaltered) along their lines.

Problem 214. (a) A file of men marching in a
straight line one behind another is one kilometer
long. An inspecting officer starts at the rear, moves
forward at a constant speed until he reaches the
front, then tums around and travels at the same
speed until he reaches the last man in the rear.
By this time, the column, marching at a constant
speed, has moved one kilometer forward so that
the last man is now in the position the front man
was when the whole movement started. How far
did the inspecting officer travel?

(b) Answer the question (a) if, instead of a
column, we have a phalanx one kilometer square
which the inspecting officer goes right around.

Problem 21S. Let ABCD be a tetrahedron
whose faces have equal areas. Suppose O is an
interior point of ABCD and L, M, N, P are
the feet of the perpendiculars from O to the four
faces. Prove that
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Problem 216. A boat has sprung a leak. Water is
coming in at a uniform rate and some has already
accumulated when the leak is detected. At this
point, 12 men of equal skill can pump the boat
dry in 3 hours, while 5 men require 10 hours.
How many men are needed to pump it dry in 2
hours?

Problem 217. Each move of a knight on a
checkerboard takes it two squares parallel to one
side of the board, and one square in a perpen-
dicular direction. A knight's tour is a succession
of knight's moves such that each square of the
checkerboard is visited exactly once. The tour is
closed when the last square occupied is a knight's
move away from the first square. Show that if m,
n are both odd, then a closed knight’s tour is not
possible on an m x n checkerboard.

Problem 218. According to the Dominion Ob-
servatory Time Signal, the hour and minute hand
of my watch coincide every 65 minutes exactly. Is
my watch fast or slow? By how much? How long
will it take for my watch to gain or lose an hour?

Problem 219. Sketch the graph of the inequality

2% + 4| < |y* + 1.

Problem 220. Prove that the inequality

3a' —4a*b+ ' >0

holds for all real numbers a and b.

Problem 221. Find all triangles with integer
side-lengths for which one angle is twice another.

Problem 222. (a) Show that if n is a triangular
number, then so is 9n + 1. (Triangular numbers
are: 1,3.6.10,....’1!5-;—1)
B.9)

(b) Find other numbers a, b such that an 4 b
is triangular whenever n is.

.... . see Tool Chest,

Problem 223. Prove that. for any positive inte-
ger n,

[\/7_1+\/n+1] = [\/4n+2].

J:notes the greatest integer function.

Wi
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Problem 224. Prove or disprove the following
statement. Given a line ! and two points A and B
not on [, the point P on ! for which ZAPB is
largest must lie between the feet of the perpendic-
ulars from 4 and B 10 L.

Problem 225. Determine all triangles ABC for
which

cosAcosB+sinAsinBsinC = 1.

Problem 226. Let
a=22+3+6% a=3+4%+12%
a3 = 4% + 5% + 20%,

and so on. Generalize these in such a way that the
number a,, is always a perfect square.

Problem 227, Suppose that z, y, and = are non-
negative real numbers. Prove that

8(z* +4° +2%)% > 9(x® +y2)(y* + 22)(2* +2y).

Problem 228. Every person who has ever lived
has, up to this moment, made a certain number of
handshakes. Prove that the number of people who
have made an odd number of handshakes is even.
(Do not consider handshakes a person makes with
himself’)

Problem 229. Given a, b, ¢, solve the following
system of equations for z, y, 2:
72— yz = a? (1)
yr-zr="= (2)
22-zy=c’. (3)

FIVE HUNDRED MATHEMATICAL CHALLENGES

Problem 230. Show that for each positive inte-
ger n,

12— 43224 4 (=1)"(n—1)?
+ (__l)n+an
=(=1)"*"'(1+2+3+---+n).

Problem 231. If a b, ¢ are the lengths of the
sides of a triangle, prove that

abe>(a+b—c)(b+c—-a)c+a—b)

Problem 232. Prove that a longest chord of a
centrally-symmetric region must pass through the
center.

Problem 233. A disc is divided into k sectors
and a single coin is placed in each sector. In
any move, two coins (not necessarily in the same
sector) are shifted, one clockwise and the other
counter-clockwise, into neighboring sectors. De-
termine whether a sequence of moves is possible
which will make all the coins end up in the same
sector.

Problem 234. Suppose sinz + siny = a and
cos + cosy = b. Determine tan § and tan §.

Problem 235. Two fixed points A and B and a
moving point Al are taken on the circumference
of a circle. On the extension of the line segment
AM apoint N is taken, outside the circle, so that
MN = MB. Find the locus of N.

Problem 236. Find the real values of r which
satisfy the equation

(+ 1)+ 1)(2 +1) = 3023

Hither for refuge fly

A student wrote the following prescription in the fly leaf of an algebra text:
If there should be another flood

Were the whole world to be submerged
This book would still be dry.
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Problem 237. Exactly enough gas to enable a
race car to get around a circular track once is split
up into a number of portions which are distributed
at random to points around the track. Show that
there is a point on the track at which the race car,
with an empty gas tank, can be placed, so that it
will be able to complete the circuit in one direction
or the other.

Problem 238. Show that, for all real values of
z (radians), cos(sin z) > sin(cos z).

Problem 239. Prove that the equation
P+’ +2ry—mr-my-m-1=0,

m is a posilive integer, has exactly m solutions
(z,y) for which r and y are both positive integers.

Problem 240. PQRS is an arbitrary convex
quadrilateral inscribed in a convex quadrilateral
ABCD, as shown below.

P'Q'R'S’ is another quadrilateral, inscribed
in ABCD, such that P!, @', R, S’ are the “mir-
ror” images of P, Q, R, S with respect to the
midpoints of AB, BC, CD, DA respectively.
Determine the entire class of convex quadrilat-
erals ABCD such that the areas of PQRS and
P'Q'R'S' are (necessarily) equal.

FIGURE 26
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Problem 241. Given numbers a, b, ¢, d, no two
equal, solve the system

T+ay+a’z+alu=d,

T +by + b2z + bPw = b,

.r+cy+c2:. +lw=cl,

t+dy+d*: + dPw=d",

for z, y, =, w.

Problem 242, Let a, b, ¢, be integer sides of a
right-angled triangle, where a < b < c. Show that
ab(b? — a?) is divisible by 84.

Problem 243. If A, B, C denote the angles of
a triangle, determine the maximum value of

sin? A 4 sin Bsin C cos A

Problem 244. If three points are chosen at ran-
dom, uniformly with respect to arc length, on
the circumferences of a given circle, determine
the probability that the triangle determined by the
three points 1S acute.

Problem 245. Is it possible to color the points

(x,y) in the Cartesian plane for which £ and y

are integers with three colors in such a way that

(a) each color occurs infinitely often in infinitely
many lines parallel to the r-axis, and

(b) no three points, one of each color, are
collinear?

Problem 246. A man walks North at a rate of
4 kilometers per hour and notices that the wind
appears to blow from the West. He doubles his
speed, and now the wind appears to blow from
the Northwest. What is the velocity of the wind?

Problem 247. Four solid spheres lie on the top
of a table. Each sphere is tangent to the other
three. If three of the spheres have the same radius
R, what is the radius of the fourth sphere?

Problem 248. The equation a® +b? + ¢® +d2 =
abcd has the solution (a.b,c,d) = (2,2.2.2).
Find infinitely many other solutions in positive

IPICOLFS,
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Problem 249. One side of a triangle is 10 feet
longer than another and the angle between them
is 60° Two circles are drawn with these sides
as diameter. One of the points of intersection of
the two circles is the vertex common to the two
sides. How far from the third side of the triangle,
produced, is the other point of intersection?

Problem 250. Given the equal sides of an
isosceles triangle, what is the length of the third
side which will provide the maximum area of the
triangle?

Problem 251. Let ABCD be a square, F' be
the midpoint of DC, and E be any point on AB
such that AE > EB. Determine H on BC such
that DE || FH. Prove that EH is tangent to the
inscribed circle of the square.

A E B
N
D + F + C

FIGURE 27

Problem 252. Given that @ and b are two pos-
itive real numbers for which a® = b and b* = a,
showthata =b= 1.

Problem 253. What is the smallest perfect
square that ends with the four digits 9009?

Problem 254. Two right-angled triangles ABC
and /"D("* are such that their hypotenuses A3 and
F D intersect in E as shown in Figure 28.

Find .r (the distance of the point £ from the
side £'C’) in terms of a = ZBAC, B = LDFC
and the lengths of the two hypotentses

FIVE HUNDRED MATHEMATICAL CHALLENGES

FIGURE 28

Problem 255. Observe that

State and prove a general law suggested by these
examples.

Problem 256. Let n be a positive integer. Show
that (r — 1)? is a factor of 7" —n(z — 1) — 1.

Problem 257. Notice that, in the accompanying
table, each of the 36 numbers in the square array
is equal to the sum of the number at the head of
its column and the number at the left of its row.

1 9 3 2 4 8
231 5 4 6 10
7 8 16 10 9 11 15
3 412 6 5 7 1
5 6 4 8 7 9 13
8 9 17 11 10 12 16
7 8 16 10 9 11 15

For example, 17=9+4+ 8 and 13 =8 +5.

The six “bold” numbers are selected so that
there is one in each row and in each column. The
underlined numbers are selected in a similar way.
Observe that the sum of the “bold™ numbers is
3+104124+94164+9 = 59 and that the sum of the
underlined numbers is 54-16+5+1349+11 = 59.
Show that the sum of any six of the 36 numbers,
vhosen s tat there is exactly one in each of the
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six columns and exactly one in each of the six
rows, is 59,

Problem 258. Equal circles are arranged in a
regular pattern throughout the plane so that each
circle touches six others. What percentage of the
plane is covered by the circles?

Problem 259. Show that if a, b, ¢ are integers
which satisfy a + bv/2 + ¢v/3=0, thena = b=
c=0.

Problem 260. Prove that, for any distinct ratio-
nal values of a, b, c, the number
1 1 1
-0 " {c-aP " (a—bp
is the square of some rational number.

Problem 261. Let ABC be an cquilateral trian-
gle. Let E be an arbitrary point on AC produced.
Let D be chosen, as in Figure 29, so that CDE
is an equilateral triangle. If A/ is the midpoint of
segment AD, and N is the midpoint of segment
BE, show that ACM N is equilateral.

Problem 262. Suppose that

a >ap >az >ay >as>ag
and that
p=a+az+azt+ay+astag
g = a1a3 + az0s + asa; + a2a4 + 0406 + agaz

T = @)a3as + 02040¢.

A B

FIGURE 29
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Are all the roots of the cubic 203 —pr2 +qr-r
real?

Problem 263. Show that 4n% 4+ 6n% +4n + 1 is
composite forn =1,2,3,....

Problem 264. In the multiplicative “magic”
square shown below, the products of the elements
in each of the three rows, and in each of the three
columns, and in each of the two diagonals, are all
the same, i.e., abc, def, ghi, adg, beh, cf1, aei,
ceg are all equal, to k say. If all entries of the
square are integers, show that k must be a perfect
cube.

o a8
> 0 o
2 o)

Problem 265. Four suspects of a crime made the
following statements to the police:

Andy; Carl did it.

Bob: 1 did not do it.

Carl: Dave did it.

Dave: Carl lied when he said 1 did it.

(a) Given that exactly one of the four state-
ments is true, determine who did it.

(b) Given that exactly one of the four state-
ments is false, determine who did it.

Problem 266. Can you load two dice (not nec-
essarily in the same way) so that all outcomes
2,3,...,12 are equally likely?

Problem 267. (a) What is the area of the region
in the Cartesian plane whose points (r,y) satisfy

|z| + |yl + |z +y| <27

(b) What is the volume of the region in space
whose points (x, y, 2) satisfy

lz| + [yl + |zl + e+ y+ 2| <27
Problem 268. In how many essentially different

ways can three couples be seated around a circu-
tor vira 2. ble so that no husband sits next to his
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wife? (“Essentially different” means that one ar-
rangement is not a rotation of another. It is not as-
sumed in this problem that men and women must
sit in alternate seats.)

Problem 269. AB and AC are two roads with
rough ground in between. (See Figure 30.) The
distances AB and AC are both equal to p, while
the distance BC is equal to q. A man at point
B wishes to walk to C. On the road he walks
with speed v, and on the rough ground his walk-
ing speed is w. Show that, if he wishes to take
minimum time, he may do so by picking one of
two particular routes. In fact, argue that he should
go:

(a) by road through A if 2pw < quv;

(b) along the straight path BC' if 2pw > quv.

Problem 270. Show that there is no polynomial
p(z) such that, for each natural number =,

p(n)=logl +1log2 +--- +logn.

Problem 271. For positive integers n define
f(") =1" +2n—l +3n—2+4n—3

+4+m=-2+(n-172+n

What is the minimum value of f("—+l)-?

f(n)

Problem 272. Let q, b, ¢. d be natural numbers
not less than 2. Write down, using parentheses,
the various interpretations of

b

FIGURE 30
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For example, we might have a‘(#')") = ™)
or () = ¥}, In general, these interpreta-
tions will not be equal to each other.

For what pairs of interpretations does an in-
equality always hold? For pairs not necessarily
satisfying an inequality in general, give numerical
examples to illustrate particular instances of either
inequality.

Problem 273. 35 persons per thousand have
high blood pressure. 80% of those with high blood
pressure drink, and 60% of those without high
blood pressure drink. What percentage of drinkers
have high blood pressure?

Problem 274. There are n! permutations
(s1.82,...,8,) of (1,2,3,...,n). How many of
them satisfy s,. > h—-2fork=1,2,...,n?

Problem 275. Prove that, for any quadrilateral
with sides a, b, c, d, it is true that

1
a2 +b%+c%> gd"’.

Problem 276. Given 8  distinct  pos-
itive integers, a;, as,...,as from the set
{1,2,...,15,16}, prove that there is a number
k for which

a-a, =k

has at least three distinct solutions (a,,a;).

Problem 277. Is there a fixed integer k for
which the image of the mapping

(ry) — r*+kry+3y®.  r.yintegers

includes (i) all integers. (ii) all positive integers?
If so, find one. If not, give a proof.

Problem 278. Let a, b, ¢ be integers, not all 0.
Show that if ar? + b + ¢ has a rational root then
at least one of a, b, ¢ is cven.

Problem 279. Barbeau says, I am heavier than
Klamkin, and Klamkin is heavier than Moser.”
Klamkin says, “Moser is hcavier than 1 am,
md Muoser i also heavier than Barbeau.™ Moser
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says, “Klamkin is heavier than | am, and Bar-
beau weighs the same as I do.” Assuming that
a lighter man makes true statements more often
than a heavier man, arrange Barbeau, Klamkin,
and Moser in increasing order of weight.

Problem 280. Let f(x.y) be a function of two
real variables which is not identically zero. If
f(r.y) = kf(y.x) for all values of r and y, what
are the possible values of k?

Problem 281. Find the point which minimizes
the sum of its distances from the vertices of a
given convex quadrilateral.

Problem 282. At the winter solstice (usually
December 22), the earth’s axis is tilled about
23°27" away from the normal 1o the plane of its or-
bit, with the north pole pointed away from the sun,
Find, approximately, the length of time elapsing
between sunrise and sunset on the date of the win-
ter solstice at a place whose latitude is 43°45’ N.
(How long is the day in your home town?)

Problem 283. A trapezoid is divided into four
triangles by its diagonals. Let A and B denote the
areas of the triangles adjacent to the parallel sides.
(See Figure 31.) Find, in terms of A and B, the
area of the trapezoid.

FIGURE 31

Problem 284. Let n be any natural number. Find
the sum of the digits appearing in the integers

1,2,3,...,10" - 2,10" - L.
Problem 285. Find an expression in terms of a

and b for the area of the hatched region in the
right triangle in Figure 32. Co
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FIGURE 32

Problem 286. Given a point inside a regular
pentagon, find 9 other points inside the pentagon,
the sum of whose perpendicular distances from
the sides of the pentagon (produced, if necessary)
will be the same as for the given point.

Problem 287. Factor (r +y)” — (17 +97).

Problem 288. ABCDE is a regular pentagon.
BE intersects A" and .AD in H and K respec-
tively. The line through H parallel to AD meets
AB in F. The line through K parallel 10 AC
meets AE in G. Prove that AFH K G is a regular
pentagon.

Problem 289. Although the addition given be-
low might appear valid, show that, in fact, there
is no substitution of distinct digits for the vari-
ous letters which will give a numerically correct
statement:

T HRE E
+ F IV E
E I GHT

Problem 290. Let a, b, c be any three positive
integers, and let

r be the greatest common divisor of b and ¢,

y be the greatest common divisor of @ and ¢,

2 be the greatest common divisor of a and b.
Show that the greatest common divisor of a, b and
¢ is equal to the greatest common divisor of r, y

caeves
vets .
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Problem 291. A culture of bacteria doubles in
size every 12 hours. A dish which will contain
1,000,000 bacteria is full after 13 days. How
long will it take to fill a dish whose capacity is
2,000,000 bacteria?

Problem 292. Let f(r) be a nondecreasing
function of a real variable, so that the slope of the
line through any two points on the curve y = f(r)
is not negative. Let ¢ be any real number. Solve
the equation

r=c— f(x+ f(c)).

Problem 293. Let E be the midpoint of the side
BC' of triangle ABC, and let F be chosen in
segment AC' so that AC = 3FC. Determine the
ratio of the areas of the triangle FEC and the
quadrilateral ABEF.

Problem 294. Find (log,169) x (log,,243)
without use of tables.

Problem 295. A right-angled triangle ABC
with side lengths a. b, ¢ (¢? = a® +b?2) determines
a hexagon (see Figure 33) whose vertices are the
“outside™ corners of the squarcs on the sides AB,
B, C A. Find the area of this hexagon in terms
of a, b, c.

C

Ar b, 4

Az B:

FIGURE 33
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Problem 296. Show that, for any positive inte-
ger n, the triangle with side lengths

6-10"*2, 1125-10%"*! -8,
1125 102"+ + 8
is right-angled.

Problem 297. A tennis club invites 32 players
of equal ability to compete in an elimination tour-
nament (the players compete in pairs, with any-
one losing a match prohibited from further play).
What is the chance of a particular pair playing
each other during the tournament?

Problem 298. The following construction was
proposed for a straight-cdge-and-compasses tri-
section of an arbitrary acute angle POQ. (See
Figure 34.)

“From any point B on OQ, drop a perpen-
dicular to meet OP at A. Construct an equilateral
triangle ABC with C and O on opposite sides of
the line AB. Then ZPOC = }/POQ."

Find the acute angles POQ for which the
method works, and show that it is not valid for
any other angle.

(Based on an idea of John and Stuart Rosen-
thal, while pupils of Forest Hill Senior Public
School, Toronto.)

e
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Problem 299. Given the number 111 ... 11,
here expressed in base 2, find its square, also ex-
pressed in base 2.

Problem 300. Show that for k=1,2,3,...

winlsin3—”sin5—” sin | 2 ﬂ -1 r
TR T T 2 %
1
k—-1"

s
Problem 301. (a) Verify that

o1 11 1 1
——+—+—+ﬁ+%+ﬁ+m+ﬁ.

(b) Show that any representation of 1
as the sum of distinct reciprocals of num-
bers drawn from the arithmetic progression
{2.5,8,11,14,17,20,. ..}, such as is given in (a),
must have at least eight terms.

Problem 302. Three of four comners of a square
are cut off so that three isosceles right triangles
are removed, as shown in Figure 35. Draw two
straight lines in the pentagon which remains, di-
viding it into three parts which will fit together to
form a square.

Problem 303. A pollster interviewed a certain

number, N, of persons as to whether they used

radio, television and/or newspapers as a source of

news. He reported the following findings:

50 people used television as a source of news, ei-
ther alone or in conjunction with other sources;

61 did not use radio as a source of news;

13 did not use newspapers as a source of news;

74 had at least two sources of news.

Find the maximum and minimum values of
N consistent with this information.

Give examples of situations in which the
maximum and in which the minimum values of

N could occur.

FIGURE 35
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Problem 304. Let 1" and F be the vertex and
focus, respectively, of a parabola. Supposc that P
is a point on the parabola, distinct from V, and
that Q) is a point within the parabola such that:
(i) PQ is normal to the parabola, and

(i) PQ = VF.

Show that the segment PQ does not intersect
the axis of the parabola.

Problem 305. 1, y, and = are real numbers such
that

r+y+:=95 and ry+y:+:2x=3.

Determine the largest value that any one of the
three numbers can be.

Problem 306. Prove that, for all positive integer
values of n,

72 —2352n — 1 s divisible by 2304,
Problem 307. Determine the volume of a tetra-
hedron ABCD if

AB=AC=AD=5
and

BC=3 CD=4. DB=5.

|

Problem 308. Express
a4y +2 +u') - (a2 47+ 4w’ 4 8ryzw

as a product of nonconstant real polynomials.

Problem 309. (@ is a point outside of a circle
with center O. A second circle with center  and
radius OQ) is drawn. Rays from () intersecting the
two circles in R and S are drawn, as shown in
Figure 36. Show that the locus of P, the midpoint
of RS, is not a straight line segment.

Problem 310. Observe that
1=12
243+44=3
3+4+5+6+7="5
G eR+6+T7+849+10=72
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FIGURE 36

State and prove a generalization suggested by
these examples,

Problem 311. Let

f(x)=ap+ a7 +ar® + - +a 1"

be a polynomial whose coefficients satisfy the
conditions0 < a, £y (i=1,2,...,n). Let

(f(x))?
=b0+blx+"'+bn+l-7"+l +...+b2"I2"‘
Prove that

bues < SN

Problem 312. Prove that:

o |
O 3 mhEen

I R WS SIS
13 3557 2
o — 1
@ Z} Kk +1)(k+2)
- ] + l + l +...—1
T1.2-3 7 2-3-4° 3-4-5 T4

Problem 313. Given a set of (n + 1) positive
integers, none of which exceeds 2n, show that at
least one member of the set must divide another
member of the set.

Problem 314. Given a circle with diameter AB,
and a point .\, other than A or B, on the circle,
let 14, t; and ¢y be the tangents to the circle at
A, B and Y respectively. Suppese (LY prodiicusd
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Y ty
LI z
——
X S~
Ux
A B
FIGURE 37

meets {5 at Z, and B.X produced meets f4 at Y.
Show that, either the three lines Y’ Z, tx and AB
all pass through the same point, or else the three
lines are parallel.

Problem 315. Show that it is never possible to
partition a set of six consecutive integers into two
subsets in such a way that the least common mul-
tiple of the numbers in one subset is equal to the
least common multiple of the numbers in the other.

Problem 316. For any positive integer n, let
f(n) denote the nth positive nonsquare integer,
ie.,

f(1)=2, f(2) =3, f(3)=5. f(4) =6,
f(5)=1, f(6) =8, f(7)=10, ..

Prove that

fm)=n+{VA}.

where {r} denotes the integer closest to .r. (For
example {V1} = 1, {V2} =1, {V3} = 2,
{Vi}=2)

Problem 317. 1 invite you to play the following
card game: Shuffle an ordinary deck of cards, and
turn them face up in pairs. If both cards of a pair
are black, you get them. If both are red, I get them.
If one is red and one is black, the pair belongs to
neither onc of us.

You pay one dollar for the privilege of play-
-y e e, When the deck is exhausted, the
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game is over, and you pay nothing if you have no
more cards than | have. On the other hand, for
every card that you have more than I, I will pay
you 3 dollars. Would you care to play with me?

Problem 318. Let ABO and A'B'O be two
right isosceles triangles with the common vertices

at the right angles (see Figure 38). Prove that
AA’ = BB’ and that AA'LBB'.

>

FIGURE 40

FIGURE 38

Problem 319. Given an arbitrary triangle ABC,
let P and Q be the centers of squares on AB and
AC, respectively (as in Figure 39). Show that, if
Al is the midpoint of BC, then triangle A PQ is
right angled and isosceles.

. P v

N
\

FIGURE 39

FIGURE 41

(See Figure 41.)
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respectively, show that PR = QS and PR1QS5.

Problem 320. (a)Let P, Q, R be the centers of
squares on the sides BC, C A, AB, respectively,
of the triangle ABC. (See Figure 40.) Prove that
AP = QR and that APLQR.
(b) Given an arbitrary convex quadrilateral
ABCD and the centers P, Q, R, S of the ex-
ternal squares on the sides AB. BY". ("I}, D4

Problem 321. ABC is a triangle whose angles
satisfy ZA > ZB > /C. Circles are drawn such
that each circle cuts each side of the triangle in-
ternally in two distinct points (see Figure 42).

(a) Show that the lower limit to the radii of
such circles is the radius of the inscribed circle of
the triangle ABC.

{b) Show that the upper limit to the radii of
seeh sirci2e s not necessarily equal to R, the ra-
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FIGURE 42

dius of the circumscribed circle of triangle ABC.
Find this upper limit in terms of R, 4 and B.

Problem 322. (a) Let f(n) denote the number
of solutions (r. y) of r+2y = n for which r and
y are both nonnegative integers. Show that

f(0)=f(1) =1,
fn)=fn-2)+1, n=234,....

Find a simple explicit formula for f(n).

(b) Let g(n) denote the number of solutions
(r,y.z2) of r + 2y + 3= = n for which r, y, and
2 are nonnegative integers. Show that

g0) =g()=1. g(2)=2
gm)=g(n-3)+ [3] +1. n=3.45..

13- (L

Problem 323. Solve for real r, y, =:

where

for n even,
for 7 odd.

34422 =2r(y +2).

Problem 324. A pencil, eraser, and notebook
together cost one dollar. A notebook costs more
than two pencils, three pencils cost more than four
erasers, and three erasers cost more than a note-
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book. How much does each item cost (assuming
that each item costs an integral number of cents)?

Problem 325. Let A be a square array of num-
bers, and let s be any number greater than or equal
to every row sum and every column sum. Show
that it is possible to replace each entry in the array
by a number no smaller than the entry so that the
new array B has every row sum and every column
sum equal to s.

For example (we use integer entries for con-
venicnce)

3 -5 2 14 -5 2
A=1-6 4 1 B=|-4 4 1
1 0 8 1 2 8

s=11

row sums: 0,-1,9 row sums : 11, 11,11

col. sums: —=2,—-1,11  col. sums: 11,11,11.

Problem 326. Observe that
22432 4+42+142 =15,
4% +52 + 62 + 382 = 392,
6° + 7" + 8% 4 742 = 752,
82 +9° +10% +1222 = 1232

State and prove a general result suggested by these
examples.

Problem 327. Let three concentric circles be
given such that the radius of the largest is less
than the sum of the radii of the two smaller. Con-
struct an equilateral triangle whose vertices lie one
on each circle.

Problem 328.
end?

In how many zeros does 10000!

There was a young man from old Trinity
Who found the square root of infinity
While counting the digits
He was scized by the figits
So he chucked Math and took up Divinity
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Problem 329. A man is on a railway bridge join-
ing A to B, 3 of the way across from A. He hears
a train approaching A; it is travelling 80 kph. If
he runs towards A, he will meet the train at A. If
he runs towards B, the train will overtake him at
B. How fast can he run?

Problem 330. Let the sequence uj,us,us,...
be defined by

wm =1, Uy =u,+8n n=123,...).

Prove that u, = (2n — 1)2

Problem 331. Show that each of the following
polynomials is nonnegative for all real values of
the variables, but that neither can be written as a
sum of squares of real polynomials:

(a) %% + 4222 + 2222 + vt — dayzw;
(b) zhy® + 3?22 4 2422 — 327222

Problem 332. (a) For which real values of p and
g are the roots of the polynomial r* —pr2+11z—q
three successive integers? Give the roots in these
cases.

(b) For which real values of p and ¢ does
1% — pr? + 117 — g have exactly one root? What
is the root?

Problem 333. Prove that, for all natural num-
bers n, 22" 4+ 24n — 10 is divisible by 18.

Problem 334. Leta,,ay,...,a, be any distinct
integers chosen from the set {1,2,...,2n — 2,
2n — 1}. Prove that for some indices i and j (not
necessarily distinct) a, + a, = 2n.

Problem 335. Given any n + 2 integers, show
that for some pair of them either their sum or their
difference is divisible by 2n.

Problem 336. Let ABC be a triangle and D any
point distinct from A, B, C on its circumcircle.
Show that the feet of the perpendiculars dropped
from D to the three sides (produced if necessary)
of the triangle are collinear.

Problem 337. Suppose u and v are two real
numbers such that u, v and uv cre the ke rocts
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of a cubic polynomial with rational coefficients.
Show that at least one root is rational.

Problem 338. Let n be an integer. Show that
the greatest common divisor of n®+ 1 and
(n41)? +1is either | or 5.

Problem 339. Without using tables, evaluate:
(a) cos36° — cos 72°;
(b) cos36° - cos 72°.

Problem 340. Show without using a calculator
that 7'/2 4+ 7V/3 4 74 < 7 and 412 + 4'P ¢
4" > g,

Problem 341. Two players play the following
game. The first player selects any integer from 1
to 11 inclusive. The second player adds any pos-
itive integer from 1 to 11 inclusive to the num-
ber selected by the first player. They continue in
this manner alternately. The player who reaches 56
wins the game. Which player has the advantage?

Problem 342. A circle of radius r is inscribed in
a sector of a circle of radius R. The length of the
chord of the sector is equal to 2a. Find a relation
between r, R and a in which each variable occurs
once.

Problem 343. Each vertex of a parallelogram is
connected with the midpoints of its two opposite
sides by straight lines. (See Figure 43.) What por-
tion of the area of the parallelogram is the area of
the figure bounded by these lines?

N~ —7

FIGURE 43

Problem 344. Let u be an arbitrary but fixed
.nn}‘.’::r hirween O and 1, ie, 0 < u < 1. Form
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the sequence uy.u». u3, ... as follows:

i =1l4+u
1
Upy=—+u
in
1
3= —+u

i)

. 1 .
andsoon,ie.,u, =——+4uforn=2,3.4,....
HUn-)

Does it ever happen that «, < 1?7

Problem 345. (a) Show that any two positive
consecutive integers are relatively prime. (Note:
Two integers are relatively prime if their only com-
mon divisor is 1. More generally, (. b) denotes the
greatest common divisor of @ and b; thus, that a,
b are relatively prime is denoted by (a,b) = 1.)

(b) Find a positive integer relatively prime to
2.3.4,....n.

(c) Let r be a positive integer. Find a positive
integer t > r for which

(r+i, t+r+i) =1 for t=1,2,...,r.

Problem 346. Your calculator is not working
properly—it cannot perform multiplications. But
it can add (and subtract) and it can compute the
reciprocal } of any number r. Can you never-
theless use this defective calculator to multiply
numbers?

Problem 347. Is it possible for a proper
nonempty subset of the plane to have at least three
noncurrent axes of symmetry? (An axis of symme-
try is a line about which the subset reflects onto
itself’)

Problem 348. Observe that

Show that if p and ¢ are any two consecutive odd
primes, then p + ¢ is a product of at least 3 (not
necessarily distinct) primes.

FIVE HUNDRED MATHEMATICAL CHALLENGES

Problem 349. (a) Show that 2 + /3 is not
rational.

(b) Given the positive integers m and n, un-
der what conditions is \/m + \/n rational?

Problem 350. Let P, P;,.... P, be m points
on a line and Q,Q3,...,Q. be n points on a
distinct and parallel line. All segments P,Q, are
drawn. What is the maximum number of points of
intersection?

Problem 351. Factor (r+y+2)°—z°%—3°—25.

Problem 352. Without using “long” multiplica-
tion, a computer or a pocket calculator, verify that
(a) 13! = 112296 — 798962,

(b) 210" + 340" + 430° + 599" = 6514

Problem 353, For n = 1,2,3,... find a
“closed” expression for the sum

1 3 5 2n-1
ot

at@tyE iz

Problem 354. Let k, m, and n be positive inte-
gers with the property: for some number = # 1,
the numbers log, r, log,, r, log, r are consecu-
tive terms of an arithmetic progression. Show that

n? = (kn)/o®e ™,

Problem 355. Solve the following system of 100
equations in 100 unknowns:

n + rrn + 3z = 0

T2 + I3 + Ty = 0
Toy + To9 + 10 = 0
Tegg + I + Iy 0
Iyoo + 1 + ra = 0.

Problem 356. Show that for any real numbers
r, y, and any positive integer n,

(@ 0< [nr]—nlr) <0 -1,

(b) [+] 4 [y] + (n = D[x + y] < [nx] + [ny).
([=] denotes the greatest integer not exceeding :.)

Problem 357. Bisect a straight line segment
wath @ i square”™. (With a try-square one can
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draw a line through pairs of points, and erect the
perpendicular to a line from any point on the line.)

Problem 358. Let p be the perimeter and m: the
sum of the lengths of the three medians of any
triangle. Prove that 3p < m < p.

Problem 359. (a) Which is larger, 2914 +
1V15 or 124?

(b) Which is larger, 759v/7+21/254 or 2040?
(No calculators please.)

Problem 360. Observe that

1=1%
2=-12-2"-324+47
3=-12422

4=-12-224+3°
5=1% 422,
6=12-2%+3%
This suggests the conjecture: any positive integer
n can be expressed in the form
n=612 4622 + €332+ - + £,
with m a positive integer and €, =1 or -1, =

1,2,...,m. Prove this conjecture.

Problem 361. Let Af be the center of a circle
and A, B two points on the circumference not
diametrically opposed. The tangents at A and B
intersect at C. Let C'Af intersect the circle in D,
and suppose that the tangent through D intersects

FIGURE 44
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AC and BC a1 E and F respectively. See Figure
44,

(a) Show that the area of quadrilateral
ADBAM! is the geometric mean of the arcas of
triangle ABA! and quadrilateral AC'BA!,

(b) Show that the arca of pentagon
AEDFBAM is the harmonic mean of the areas
of quadrilaterals ADBA! and ACBAM.

Problem 362. Two positive numbers with dis-
tinct first digits are multiplied together. Is it pos-
sible for the first digit of the product to fall strictly
between the first digits of the two numbers?

Problem 363. A man whose clock had stopped
running wound it up, but did not have access to
the correct time to reset it. Leaving the clock at
home, he walked 10 the home of a friend whose
clock was correct, stayed for some time and then
walked home (in the same time as he took earlier).
Upon arriving at home, he set his clock to the
correct time even though he did not know how
long he had walked! Explain.

Problem 364. A gambler played the following
game with a friend. He bet half the money in his
pocket on the toss of a coin; he won on HEADS
and lost on TAILS. The coin was tossed and the
money handed over. The game was repeated. each
time for half the money held by the gambler. At
the end, the number of times the gambler lost was
equal to the number of times he won. Did he gain,
lose, or break cven?

Problem 365. Encountering a man on the porch
of his house, a census taker asked, “What are the
ages of the persons living here?" The man replied,
“All our ages are square integers. My age is the
sum of the ages of my wife, son and daughter. My
father's age is the sum of my age and the ages of
my wife and daughter. Although he has passed the
prime of his life, his age is a prime number.” What
ages did the census taker record and what obvious
remark did he make about the wife’s age?

Problem 366. (a) Find the pentagon for which
Jde given points are the midpoints of the edges.
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A M B
FIGURE 45

{b) Given the midpoints of the sides of an n-
gon, is it always possible to determine the n-gon?

Problem 367. Let A be any point on segment
AB. Construct squares AMCD and M BFFE as
in Figure 45, and let N be the second point
of intersection of the circles circumscribing the
squares. Prove that the lines BC and AE both
pass through N.

Problem 368. (a) Show that for any positive in-
teger n, the integers 21n + 4 and 14n + 3 are
relatively prime.

(b) For what integers a and b is 7an +4 rel-
atively prime to 7bn + 3 for every positive integer
n?

Problem 369. Show that among those people at
the recent concert in the Ottawa National Arts
Centre, there were two people who have the same
number of acquaintances present at the concert.

Problem 370. Let n be a positive integer. Let

a; denote the number of solutions (r,y), in non-
negative integers, of £ + 2y =,

@, the number of solutions (., y), in nonnegative
integers, of 2r + 3y =n - 1,

a3 the number of solutions (.r, y). in nonnegative
integers, of 3r + 1y =n -2,

(and so on until)

a,, the number of solutions, in nonnegative inte-
gers, of nr + (n+ )y = 1.

Show that ¢y + ay + - - - + a,, = n. For example,
inthe case n = 7:

FIVE HUNDRED MATHEMATICAL CHALLENGES

x 4+ 2y = T has 4 solutions, (1.3), (3.2), (5.1),
(7.0),

2r + 3y = 6 has 2 solutions, (3.0}, (0.2),

3z + 4y = 5 has 0 solutions,

1r + 5y = 4 has | solution, (1,0),

5z + 6y = 3 has 0 solutions,

61 4+ Ty = 2 has 0 solutions,

77 + 8y =1 has 0 solutions,

and

4424+04+14040+0=7.

Problem 371. Let a(n) denote the number of
ways of expressing the positive integer n as an
ordered sum of 1’s and 2’s, e.g., a(5) = 8 because

5=14+1+1+1+1=241+4+1+1
=1424141=14142+1
=1+14142=242+1=24+1+42
=1+2+4+2

Let b(n) denote the number of ways of expressing
n as an ordered sum of integers greater than 1,
e.g., b(7) = 8 because

7T=3+2+42=243+42=2+2+3
=3+4=443=2+5=5+2="17.

Prove that

a(n)=bn+2) for

Problem 372. Five gamblers A, B, C, D, E
play together a game which terminates with one
of them losing and then the loser pays to each
of the other four as much as each has. Thus, if
they start a game possessing a, £, 7, 8, € dollars
respectively, and say for example that B loses,
then B gives A, C, D, E respectively a, 7, 8,
¢ dollars, after which A, B, C, D, E have 2a.
B—a—7—0—¢ 2v, 26, 2¢ dollars respectively.
They play five games: .4 loses the first game, B
loses the second. € loses the third, D the fourth
and E the fifth. Afier the final payment, made by
E, they find that they are equally wealthy, i.e.,
each has the same integral number of dollars as
the others. What is the smallest amount that each
cedthd fas s varted with?
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Problem 373. Consider a square array of num-
bers consisting of m rows and m columns. Let
a,, be the number entered in the ith row and )th
column. For each 7, let r, denote the sum of the
numbers in the ith row, and ¢, the sum of the num-
bers in the ith column. Show that there are distinct
indices i and j for which (r, — ¢,)(r, — ¢,) <0.

Problem 374. The function f has the property
that

|f(a) = f(b)] < la - b?

for any real numbers a and b. Show that f is a
constant function.

Problem 375. A rocket car accelerates from 0
kph to 240 kph in a test run of one kilometer. If
the acceleration is not allowed to increase (but it
may decrease) during the run, what is the longest
time the run can take?

Problem 376.

Big fleas have little fleas

Upon their backs that bite "em,

And little ones have lesser ones,

And so ad infinitum.
If the flea on the bottom weighs /2 grams, and
every other flea weighs /2 — .r, where T repre-
sents the weight of the flea on whose back it rests
(while biting, of course), how much does the flea
on top weigh?

Problem 377. Let 7 be one of the roots of the
quadratic equation (1 — x) = 1; the other root is
1-r7.Showthatforn=1,2,3....

n w_ f2A-1)"  if3n,
r-r) ‘{(-1)"-' if 3 Jn.

Problem 378. Mr. Laimbrain makes up in per-
severance what he lacks in wit. Early this moming
he set out to sod an area of his lawn of the shape
indicated in Figure 46. He has 31 sods each 2 feet
by | foot. He made up his mind to do it without
cutting a sod. This afternoon he was still fever-
ishly arranging and rearranging the pieces of turf.
Can you help him out? :

35

Problem 379. The Fibonacci sequence fy, fa.
fs.... is defined by

fl=f2=11 fu=fn—l+fu—2-

Thus, the sequence begins

n>3.

1, 1, 2, 3. 5, 8 13, 21, 34, %.....
Let
11
2=(1 o):
Prove that

n_ 99 fa
Q _( fn fu—l

Establish the identity:

f3"=f:+l+f2_f3—1v n=1’2y31"--

), n=223.4,...

Problem 380. Prove that the function

I(I‘y)=gx_+L(:’;1+_l’+z

is a one-to-one map from the set
{(z,y) | z,y integers >0, 224 y2 > 0}

(the lattice points other than (0,0) in the first
quadrant) onto the set

{m|m integral and > 0}

of positive integers.

Problem 381. Two equal regular tetrahedra in-
tersect in such a way that each face of either passes

_ljn

-1 €
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through the midpoints of three concurrent edges of
the other. The union U of the two tetrahedra is a
three-dimensional “'star”. Describe the intersection
1" of the two tetrahedra. Determine the ratio of the
volumes of {" and V",

Problem 382. Prove that forn=1.2.3....
M+ 41

is not the square of an integer.

Problem 383. A checker club having 8 play-
ers decided 1o split them into two evenly matched
teams. The plavers had 1, 2, 3. §, 8, 10, 11 and
12 years of playing experience respectively. They
decided to split them so that the sum of the years
of experience on either side would be the same.
Curiously, they found that when this was done,
the sum of the squares of the years of experience
on either side was the same, and similarly for the
cubes. How were the teams set up?

Problem 384. A manufacturer had to ship 150
washing machines to a neighboring town, Upon
inquiring he found that two types of trucks were
" available. One type was large and would carry 18
machines, the other type was smaller and would
carry 13 machines. The cost of transporting a large
truckload was $35. that of a small one $25. What
is the most economical way of shipping the 150
machines?

Problem 385. Two ships S and T are steaming
on straight courses with constant speeds. At 10:00
hours, they are 5 kilometers apart, at 11:00, they
are 4 km apart, and at 13:00, they are 10 hm apart.
At 7:00, S was due west of T

(a) How far apart were they at 7:00?

(b) When are they 26 km apart?

(c) How near do they pass to one another? At
what time are they nearest?

(d) When is S due north of T?

{e) When is S southwest of T?

(f) Suppose S and I have the same speed and
that I’ is heading due south. What is the
speed and direction of 5?

FIVE HUNDRED MATHEMATICAL CHALLENGES

Problem 386. (a) If a regular hexagon and an
equilateral triangle have the same perimeter, de-
termine the ratio of their areas.

(b) Given a circle, determine the ratio of the
area of the circumscribed regular hexagon to the
area of the inscribed regular hexagon.

Problem 387. The point P divides side BC' of
. .. BP _1 L
triangle .1B(" into ratio Vo and ZCBA =

45° while ZAPC = 60°. (See Figure 47.) Find
Z AC B without the use of trigonometry.

A 45"\ B

FIGURE 47

Problem 388. Let £ and m be parallel lines and
P a point between them. Find the triangle AP B of
smallest area, with Aon{, Bonm, and ZAPB =
90°.

Problem 389. Sketch the graph of the curve

1352+ y2 = 12| = |2 - % + 4.

Problem 390. Let p be a prime greater than 3.
Show that the sum of the quadratic residues (of p)
which lie between | and p— 1 inclusive is divisible
by p. (See Tool Chest, B. 11 for definitions.)

Problem 391. The exterior and interior bisectors
of the angle at vertex .1 of triangle .1BC meet side
BC produced in points D and E respectively. (See
Figure 48.) If 1D = AE, find ZBCA - ZCBA.

Problem 392. (a) Observe that
9* + 15" + 177 = 18%,
20 453 + 75" = s,

WE 29 2Rt = 260°%,
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B D C E

FIGURE 48

Find a generalization.
(b) Observe that

F+ad+58 =67
123 +19° + 53% = 543,
273 + 46° + 197° = 198°.

Find a generalization.
(c) Observe that

3% +10% +18° = 19°,

12° + 31% + 102° = 103",

27% + 64° + 306° = 307°.
Find a generalization.
Problem 393. Let P be a non-self-intersecting
polygon with n sides (Figure 49a). Let m other
points Q,.Qa...., Q. interior to P be given
(Figure 49b). A triangulation is obtained by join-
ing some pairs of the n + m points creating a dis-
section of the polygon into triangles none of which

contains a P, or Q, in its interior, nor does any
side of a triangle contain a Q,. There are many

Pl
\
2.6 \
\ / P2 . Q3
. QI

P4 Q2

P3
(a) (b)

FIGURE 49
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triangulations. Figure 49c and Figure 49d show
two of the many triangulations of the polygon of
Figure 49b. Show that the number of triangles is
the same for all triangulations and find a formula
in terms of n and m.

Problem 394. Show that if A, B, (" are the an-
gles of any triangle, then

3(sin? A + sin® B +sin2 ()
— 2(cos® A + cos® B + cos® ‘) < 6.

Problem 395. Given equilateral triangle ABC,
choose D on side AB and E on side AC so
that AD = AE. Erect equilateral triangles PC D,
QAE, and RAB as in Figure 50. Show that

(a) triangle PQR is equilateral;

(b) the midpoints of PE, AQ and RD are
vertices of an equilateral triangle.

FIGURE 50

Problem 396. Let C be the circle of radius 3
centered at (3,0). For any h, 0 < h < 6, the
circle of radius h centered at O meets the positive

{(c) (d)
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y
A
B
o) O (h0) 3.0)
FIGURE 51

y-axis, in A say, and it meets the upper half of
C in B say. (See Figure 51.) Let E be the point
at which the line AB produced intersects the r-
axis. What happens to E as h is taken smaller and
smaller? Does E recede from O? If yes, how far?
Or does E come closer to O? How close?

Problem 397. For any positive rational number

u
u, let us agree to call the numbers u+1 and m
u

the children of u. Show that every positive rational
number is the descendant of 1 in a unique way.

Problem 398. Let () be a quadrilateral whose
side lengths are positive integers for which the
sum of any three is a multiple of the fourth, Show
that some pair of sides of () have the same length.

Problem 399. Consider a rectangular array of
dots with an even number of rows and an even
number of columns. Color the dots, each one red
or blue, subject to the condition that in each row
half the dots are red and half are blue, and in
each column half the dots are red and half are
blue. Now, if two points are adjacent (in a row
or in a column) and like-colored, join them by an
edge of their color. Show that the number of blue
segments is equal to the number of red segments.

Problem 400. At a party there are more than 3
people. Every four of the people have the prop-
enty that one of the four is acquainted with the
other three. Show that with the peeaible exception

of three of the people, everyone at the party is
acquainted with all of the others at the party.

Problem 401. Itis intuitive that the smallest reg-
ular n-gon which can be inscribed in a given reg-
ular n-gon will have its vertices at the midpoints
of the sides of the given n-gon. Give a proof!

Problem 402. The real numbers r, y, = are such
that

r(l-r-yP+(1-y)?
=yt +(1-y-22+(1-2)?
=224+ (l-z-2)2+(1-1)

Determine the minimum value of 22 + (1 — r —
Y2 +(1-y)

Problem 403. Determine all the roots of the
quartic cquation r¥ — 4r = 1.

Problem 404. P(r) and Q(x) are two poly-
nomials that satisfy the identity P(Q(r)) =
Q(P(r)) for all real numbers r. If the equation
P(x) = Q(r) has no real solution, show that the
equation P(P(.r)) = Q(Q(.r)) also has no real so-
lution. (1980 Canadian Mathematical Olympiad)

Problem 405. Determine the maximum value of
P (b.! + ‘.'.' - ﬂ'.‘)((,.' + n’l - b'.‘.)(a'.’ +b’.’ _ (,2)
(abc)? ’
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where a, b, ¢ are real and
P+ -d? +c"'+a2—b2 _‘_a?+l>’—(‘2
be ca ab

=2
(m

Problem 406. Can one find triplets of real num-
bers (a.b.c) such that none of the numbers is a
cube of an integer and such that

S,=a% +b% +¢3

is integral for all positive integral n?

Problem 407. If S = a, +a>+--- +a,, where
a,,0s,...,a, are sides of a polygon, prove that

n+2 1
>
S—-a _‘Z;S—a,

Problem 408. It is intuitive that if a rectangle is
inscribed in an ellipse, the sides must be parallel
to the axes of the ellipse. Give a proof.

fork=1,2,...,n.

Problem 409. Determine the maxirznum area of

a rectangle inscribed in the ellipse ﬁ_z + z-,, =1
Problem 410. If w and : are complex numbers,
prove that

2|wl |zl |w - 2| > {lw] + ||} wlz] = z|w]|.

Problem 411. If a and b are real and unequal,
prove that the equation

(a=br"+ (- 4. 4 (" - ")z
+ an+l — bu+l =0 (1)

has at most one real root.

Problem 412, Ifgg>a; > a;>--->a, >0,
prove that any root r of the polynomial

P(z)=ap2"+a;z" ' 4+ +ap,
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satisfies |r| < 1, i.e., all the roots lie inside or on
the unit circle centered at the origin in the complex
plane.

Problem 413. There are many sums for which
nice formulae are known, e.g., arithmetic and ge-
ometric sums, as well as

2 _ a(n+1)(2n +1)

P+22+... ,
+2°4+---+n 6
n=123....,
13+23+...+n3=M
4 ’
n=123,....

Establish formulae for:

S, = [1|/2] + [21/2] Fooot [(n2 _ 1)|/2]’

n=2.3,...; (1)
T, = [11/3] ¥ [21/3] +ot [(113 _ l)I/S].
n=23,.... (2)

([x] denotes the largest integer < z.)

Problem 414. The seven integers in the cir-
cular arrangement of seven disks in Figure 52
have the property that every one of the integers

1,2.3,..., 14 is either in a disk or else is the sum
of the integers in two adjacent disks. Can you re-

ON6
@@

@
©®

FIGURE 52

A. N. Whitehead once cautioned a student about a theory of logic. “You must take
it with a grain of er ... um ... ah ... .” For almost a minute, Whitehead groped
for the word, until the student suggested, “Salt, Professor?” “Ah yes,” Whitehead
beamed, “I knew it was some chemical.”
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place the numbers in the disks with integers none
of which is 5 and retain the same property?

Problem 415. Place the digits 0, 1, 2, 3, 4, 5,
6, 7. 8, 9 in the ten blank spaces in such an order

that the indicated division will have a remainder
of 1981

3168 | 71_543_2_985_2_356_8_7_836_7_39997.
(L. Moser)

Problem 416. Determine all triangles ABC for
which

tan(A — B) + tan(B — C) + tan(C — A) = 0.

Problem 417. Show that mth roots (m an inte-
ger > 1) of three distinct prime numbers cannot be
terms (not necessarily consecutive) of a geometric
progression.

Problem 418. For any simple closed curve there
may exist more than one chord of maximum
length. For example, in a circle all the diame-
ters are chords of maximum length. In contrast,
a proper ellipse has only one chord of maximum
length (the major axis). Show that no two chords
of maximum length of a given simple closed curve
can be parallel.

Problem 419. Show that two bounded figures
can have at most two centers of homotheticity.

Problem 420. A projectile in flight is observed
simultaneously from three radar stations which are
situated at vertices of an equilateral triangle of side
a. The distances of the projectile from the three
stations, taken in order around the triangle, are
found to be R, R2, and R;. Determine the height
of the projectile above the plane of the triangle.

Problem 421. In a given sphere, APB, CPD
and FPF denote three mutually perpendicular
and concurrent chords (at point P). If AP = 2aq,
PB = 2b, CP = 2¢, PD = 2d, EP = 2c and
PF = 2/, determine the radius R of the sphere.

Problem 422. We start with 7 sheets of paper

and a number of them are each :ut nue 7 sinaticy
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pieces. Then some of the smaller pieces are each
cut into 7 still smaller pieces and so on repeatedly.
Finally, the process is stopped and it turns out that
the total number of pieces of paper is some number
between 1988 and 1998. Can one determine the
exact final number of pieces of paper?

Problem 423. What is the least number of plane
cuts required to cut a block a x b x ¢ into abc unit
cubes, if piling is permitted? (L. Moser)

Problem 424. Given a non-coplanar hexagon
whose opposite sides are parallel. Prove that the
midpoints of its six edges are coplanar.

Problem 425. Given two tangent congruent cir-
cles. From the point of tangency, two particles
move on the two circles, both counter-clockwise
with the same speed (not necessarily constant) at
all times. (See Figure 53.) Prove that relative to
one of the particles, the other one will appear to
move on a circle whose radius is equal to the di-
ameter 2R of the given circles.

Problem 426. Find the locus of midpoints of all
chords of a parabola which pass through a given
interior point of the parabola.

Problem 427. Let G(n) denote the integer clos-

est to M For example,
G(1)=1, G(2)=2, G(3)=3,
Gd) =4, G(5)=5. G(6)=T1.
Prove that
G(n) = G(n - 6) +n. n=78,09,....

- I e W ~
FhaURE B3
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Problem 428. What is the largest value of n, in
terms of m, for which the following statement is
true? If from among the first m natural numbers
any n are selected, among the remaining m — n
at least one will be a divisor of another. (Student-
Faculty Colloquium, Carleton College)

Problem 429. Conjecture: If f(t), g(t), h(t) are
real-valued functions of a real variable, then there
are numbers , y, z such that 0 < z.y.z < 1 and

Jeys - (2) - 9lu) = h2)| 2 3

Prove this conjecture. Show that if the number % is
replaced by a constant ¢ > % then the conjecture
is false; i.e., the number § in the conjecture is best
possible.

Problem 430. It is known in Euclidean geom-
etry that the sum of the angles of a triangle is
constant. Prove, however, that the sum of the dihe-
dral angles of a tetrahedron is not constant. (1979
Canadian Mathematical Olympiad)

Problem 431. The digital expression
ZpIn_i...I1Tg is the representation of the num-
ber A to base a as well as that of B to base b,
while the digital expression z,,_;Tp_2...2|Tq is
the representation of C to base a and also of D
to base b. Here, a, b, n are integers greater than
one.
Show that % < —g if and only if a > b.

Problem 432. Show that 5 or more great circles
on a sphere, no 3 of which are concurrent, deter-
mine at least one spherical polygon having 5 or
more sides. (L. Moser)

Problem 433. Determine all triplets (i, y, 2) of
integers for which

L+t +l=(r+y+2)>

Problem 434. Find all z satisfying
16(sin® z + cos® z) = 11(sinz + cos z),

N ARG ¥
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Problem 435. Ifa,4 = and a) =

Qp-2

as = ay = 1, show that a, is an integer for

n=4,5,....

Problem 436. If a, b, ¢, d are positive integers
for which ab = ¢d, show that a2 + b* + & + d*
is composite. (West German Olympiad)

Problem 437. A pack of 13 distinct cards is
shuffled in some particular manner and then re-
peatedly in exactly the same manner. What is
the maximum number of shuffles required for the
cards to return to their original positions?

Problem 438, If

a + b + c
be — a2 ab-—c2 ~
prove that also

ca - b? 0.

a + b + c -0
(bc—a?)? " (ca-b2)?  (ab-c2)2

Problem 439. Ifa, a’ and b, b’ and ¢, ¢’ are the
lengths of the three pairs of opposite edges of an
arbitrary tetrahedron, prove that
(i) there exists a triangle whose sides have
lengths a + @', b+ b’ and c + ¢';
(i} the triangle in (i) is acute.

Problem 440. Determine the maximum value of

{/4-3r+\/16-24z+9x2-13

+(/4-3z—\/175—24m+9:r2-z3

in the interval —1 <z < L.

Problem 441.
sequence

Let u, be the nth term of the

1,2,4,5.7,9,10,12, 14. 16, 17, ... .

where one odd number is followed by two evens,
then three odds, and so on. Prove that

uUp =2n-— [%(l+\/8n—7)] ,

where square brackets denote the greatest integer
fuastion
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Problem 442. If e and f are the lengths of the
diagonals of a quadrilateral of area F, show that
e2+ f2 > 4F, and determine when there is equal-

ity.

Problem 443. Inside a cube of side 15 units
there are 11000 given points. Prove that there is
a sphere of unit radius within which there are at
least 6 of the given points.

Problem 444. There is on the market a three-
dimensional noughts and crosses game which is a
distinct improvement over tic-tac-toe. The 4x4 x4
board (see Figure 54) is composed of 64 cells into
which each player alternately places a counter of
his own color. The first player to place four of
his counters in a straight line wins. How many
different ways of doing this are there?

N 4
NSNS

FIGURE 54

Problem 445. Prove that if the top 26 cards of
an ordinary shuffled deck contain more red cards
than there are black cards in the bottom 26, then
there are in the deck at least three consecutive
cards of the same color. (L. Moser)

x \
45° y 45

FIGURE 55

Problem 446. The Carpenter's Problem. A car-
penter had 4 pieces of wood cut in the shape of
an isosceles trapezoid as indicated in Figure 55.
The r and y in each case are u v'iile ~crate
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of inches. Although the r and y are different in
each piece, the area is the same for all four pieces
and is indeed a whole number of square inches,
less than 40. What are the dimensions of the four
pieces.

Problem 447, [f m and = are positive integers,
show that

1 1
—F——>1
n,._+’€/ﬁ>

Problem 448. In a non-recent edition of Ripley’s
Believe It Or Noi, it was stated that the number

N = 526315789473684210

is a persistent number, that is, if multiplied by
any positive integer the resulting number always
contains the ten digits 0,1.2,...,9 in some order
with possible repetitions.
(a) Prove or disprove the above statement.
(b) Are there any persistent numbers smaller than
the above number?

Problem 449. If a,b,c.d are real, prove that

a?+b2=2,
§+f=z
ac = bd,
if and only if
a®+cf =2,
¥ +d* =2,
ab=cd

Problem 450. How many permutations a,,
a..... a, of 1,2,....n are there for which
a; # 1 and/or ay # 27

Problem 451, A man and his grandson were
born on the same day of the year. One year on
that day the man noted that his age was an inte-
gral multiple of his grandson’s age and further-
more that this phenomenon would be repeated for
the following five birthdays as well. How old was
the agie wivn he made these observations?
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Problem 452. Prove that log, 2 is irrational.

Problem 453. Seventy-five coplanar points are
given, no three collinear. Prove that, of all the
triangles which can be drawn with these points as
vertices, not more than seventy per cent are acute-
angled.

Problem 454. Let T\ and 75 be two acute-
angled triangles with respective side lengths a,,
by, c1 and ayp, by, o, areas Ay and A, circum-
radii R, and R; and inradii r; and r,. Show that,
ifay > ap, by > by, ¢; > o, then Ay > A
and R, > Ry, but it is not necessarily true that
r2>r;.

Problem 455. Given two points, one on each of
two given skew lines (lines in space not lying in
a common plane), prove that there exists a unique
sphere tangent to each of the given lines at each
of the given points. (Crux Mathematicorum)

Problem 456. {2,5,11,23,47} and {2,3,7,13}
are examples of chains {pi,p2.....pm} of
primes p; such that, for 2 < i < m, either
pi = 2p,—1 — 1 or p; = 2p,_; + 1. Show that any
such chain must have at most a finite number of
elements.

Problem 457. [ is a point on the side AB of
the triangle ABC. ry, r2, r are the radii of the in-
scribed circles of triangles AMC, BAMC, ABC,
respectively, and ¢, t2, ¢ are the radii of the es-
cribed circles of the same triangles tangent to the
sides AM, BM, AB, respectively. Prove that

r r r

t, t t
Problem 458. Four nonnegative integers are
written in a ring. A new ring of integers is formed,
whose entries are the absolute values of the differ-
ences of adjacent integers in the first ring. Show
that, if the process is repeated enough, four zeros
are obtained. For example,

(1 0)-(s1)-( 7)-( %)
”(3 3)”(3 3)*.(3 ?\
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Problem 459. It is easy to see that there exists an
infinite family of ellipses which can be inscribed
in a given square. Prove, however, that only one
ellipse can be inscribed in a given regular pen-
tagon.

Problem 460. Determine all real z, y, z such
that

za® + yb% + 22 <0

whenever a, b, ¢ are sides of a triangle.

Problem 461. If three equal cevians of a triangle
divide the sides in the same ratio and same sense,
must the triangle be equilateral?

FIGURE 56

Problem 462. Determine the maximum value of

(sin Al)(Sin Az) tee (sin An)

(tan A;)(tan Az)--- (tan A,) = 1.

Problem 463. Two triangles have sides
(a1,b1,¢1), (az,b2,c2) and respective areas A,
A,. Establish the Newberg-Pedoe inequality

af (63 +¢5 — a3) + b7 (¢} + a3 - b3)
+cf (a3 + 62 - 2) > 164,4,,

ard cetermire when there is equality.
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Problem 464. It is easy to see that if the ver-
tices of an inscribed n-gon in a given regular n-
gon divide each side of the given n-gon in the
same ratio and sense, then the inscribed n-gon
is also regular. Prove the converse result, i.e., if
B,.Bs,....B, are the vertices of an inscribed
regular n-gon in the regular n-gon of vertices
4, A,..... A,.. where the vertices are consecu-
tive, have the same sense and B, lies between A,
and A,4,, then A, B, = constant.

Problem 465. Let m and n be given positive
numbers with m > n. Call a number r “good™
(with respect to m and n) if:
m? +n? —a? - b2 > (mn - ab)zx
forall 0<a<m,0<b<n )

Determine (in terms of m and n) the largest good
number.

Problem 466. Prove that, for any quadrilateral
(simple or not, planar or not) of sides a, b, ¢, d

d

4, 14 4
b > —.
a + +c_27

Problem 467. Determine the maximum of 2y,
subject to constraints

IT+y+ Va2 +2ry+ 32 =k

(constant). x,y>0.
Problem 468. Prove
4!" 2m 4"!
— < < 1
2/m ( m ) 3m +1 (1)

for natural numbers m > 1.

Problem 469. Determine all pairs of rational
numbers (.r.y) such that

Syt =at et
Problem 470. What is the probability of an odd

number of sixes turning up in a random toss of n
fair dice? :
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Problem 471.
Ma and Pa and brother and me
The sum of our ages is eighty-three
Six times Pa’s is seven times Ma’s
And Ma’s is three times me.

Find the ages; no fractions please.

Problem 472. Let (my,ny,...,n;) and
[r1.na,...,n,] denote the greatest common
divisor and least common multiple, respectively,
of the set of positive integers n,ny,...,n,. For
example, (6,12,15) = 3 and (2, 3.4] = 12. Prove

(a,b,c)? _ [a,b.¢]?
(b.c)(c,a)(a,b) ~ [b.c][c,a]la.b]
(1972 USAMO)

Problem 473.
plication

In setting the type for the multi-

(abc)(bea)(cab) = 234235286,

with @ > b > ¢, the setter pied all the digits ex-
cept the units digit 6. Restore them to their proper
order. (Math. Mag. 1959)

Problem 474. Sketch the curve given by the
equation (21 + 3y)’(y - ) =1 + .

Problem 475. Determine A,qqgq if
A,
1+nA,"
n=012,...

An+| =

and A()= A

Problem 476. The numbers 1,2,3,...,100 are
multiplied by the numbers 1,2, 3,....100 in some
order. Show that the 100 products obtained cannot
represent all positive remainders on division by
101,

Problem 477. In this question, a real function
means a function f such that f(r) exists and is
real for all real numbers . Show that there is only
one value of the constant b for which there exists
a real function f with the property that, for all
real r and y,

s -y) = f(x) - f(y) + bay.
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Problem 478. A cute girl only eats pie cut in the
shape of acute triangles. Show how to cut a pie of
any polygonal shape so as to serve cute girls, with
no pieces left over. (J. Recreational Math. 1972)

Problem 479. In a regular (cquilateral) triangle,
the circumcenter O, the incenter /, and centroid
G all coincide. Conversely, if any two of O, 1,
G coincide, the triangle is equilateral. Also, for a
regular tetrahedron, O, I and G coincide. Prove
or disprove the converse result that if O, I and
G all coincide for the tetrahedron, the tetrahedron
must be regular.

Problem 480. Prove that there is an infinite set
of positive integers of the form 2" — 3 with the
property: no two members of the set have a com-
mon prime factor.

Problem 481. Prove that the sum of the squares
of the reciprocals of the lengths of the segments
joining one vertex of a regular polygon of n sides
n®-1

. . L. 2R
the radius of the circumscribing circle.

to the other n — 1 vertices is where R is

Problem 482. If n? coins, of which exactly n
are silver, are arranged at random in n rows, each
containing n coins, prove that the chance that at
least one row occurs in which there is no silver
coin is

(n - 1){(n® - n)n"-!
- (n? - 1)!
(Math. Gazette 1904)

1

Problem 483. Given an integer of n nonzero
digits in base b, show that it is always possible
10 replace a certain 7 (0 < r < n — 1) of these
digits by zeros in such a way that the resulting
number is divisible by n. (Leo Moser)

Problem 484. Find the rhombus of minimum
area which can be inscribed (one vertex to a
side) within a given parallelogram. (Math. Gazette
1904)

Problem 485. A chord of a right triangle, which
is parallel to the hypotenuse and pewes throvph
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the incenter /, is divided by I into two segments of
length m and n. Determine the area of the triangle
(in terms of m and n).

Problem 486. If

a+b+c+d+e+f=0
and
d+b++d' 4 =0,
prove that
(a+c)a+d)a+te)at f)

=(b+c)b+d)(b+e)b+ f).
(Math. Gazette)

Problem 487. Prove that the sum of the digits
of every multiple of 2739726 up to the 72nd is
36. (E. M. Langley, Math. Gazette 1896)

Problem 488. Determine the largest real number
k, such that

|2223 + 232, + 2|22| > k'Z] +2+ 23|

for all complex numbers 2, z2, 23 with unit ab-
solute value.

Problem 489. If the odds against a horse in a
race be a to b, then we may call ﬁ the apparent
chance of that horse winning. Prove that, if the
sum of the apparent chances of all the horses in
a race be less than unity, one can arrange bets
so as to make sure of winning the same sum of
money whatever be the outcome of the race. (R.
W. Genese, Math. Gazette 1896)

Problem 490. If the roots of the equation

n-1 n‘(" - 1) n-2
+ —1.2 asx

-4 (-1)"a, =0

agr™ — nayr

are all positive, show that a,a,_, > aga,, for all
values of r between | and n — 1 inclusive, unless
the roots are all equal. (A. Lodge, Marh. Gazette

B0
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Problem 491. Suppose u < 1 < w. Determine
all values of v for which u + vw < v+ wu <
w + uv.

Problem 492. Find the shortest distance be-
tween the plane Ar + By + Cz = 1 and the
ellipsoid

2 2 2
¥ oy oz
— 4+ 4+ —==1.
2tpta

You can assume A, B, C are all positive and that
the plane does not intersect the ellipsoid. (No cal-
culus please.)

Problem 493. One of the problems on the first
William Lowell Putnam Mathematical Competi-
tion, was to find the length of the shortest chord
that is normal to the parabola y*> = 2ax at one
end. (Assume a > 0.) A calculus solution is
straight forward. Give a completely “no calculus™
solution.

Problem 494. Alice and Bob play a fair game
repeatedly for one nickel each game. If originally
Alice has a nickels and Bob has b nickels, what
is Alice’s chance of winning all of Bob's money,
assuming the play goes on until one person has
lost all her or his money?

Problem 495. If P, Q, R are any three points
inside or on a unit square, show that the smallest
of the three distances determined by them is at

most 2v/2 — V/3, i.e., show

min(PQ, QR. RP) < 2\/2 - V3.

Also determine when there is equality.
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Problem 496. Any 5 points inside orona 2x 1
rectangle determine 10 segments (joining the pairs
of points). Show that the smallest of these 10
segments has a length at most 2v/2 — /3. (Leo
Moser)

Problem 497. Show that the Diophantine equa-
tion

1 1 1 1

— =+t —F—=1

I I In I173...%q

has at least one solution for every n. (Leo Moser)

Problem 498. If the sum of the face angles at
each vertex of a tetrahedron is 180°, prove that the
tetrahedron is isosceles, i.e., the opposite edges are
equal in pairs.

Problem 499. Prove that every positive integer
which is not a member of the infinite set below is
equal to the sum of two or more distinct members
of the set:

{3,-2,223,-2%,... 2%3, —2%+1 )
= {3,-2,12,-8,48,-32,192,...}.

Problem 500. One is given n + 1 rays emanat-
ing from a common vertex in n-dimensional Eu-
clidean space R". If all the acute angles between
pairs of the rays are congruent, determine the com-
mon angle.

E. Kummer, the German algebraist, was rather poor at arithmetic. Whenever he had occasion
to do simple arithmetic in class he would get his students to help him. Once he had occasion
to find 7 x 9. "7 x 9", he began, “7 x 9 is er— ah - ah -7 x 9 is ... ." 61, a student suggested.
Kummer wrote 61 on the board. “Sir”, said another student, “It should be 69.” “Come, come
gentlemen,” said Kummer, “it can’t be both—it must be one or the other.”
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Problem 1. The three lengths are of the form
a—d, a a+dwith (a—d)? +a® = (a +d)>%
This reduces to a(a — 4d) = 0, or a = 4d. Thus
the sides are 3d, 4d, 5d.

Problem 2. Let A(a,2a) be an arbitrary point
on the line y = 2z, and let B(b,b) be an arbi-

trary point on the line y = z. The midpoint of

segment AB is the point (z,y) with z = 0

2
and y = 2a‘+b, and the length of the segment

AB is 4. Hence (a — b)? + (2a — b)? = 42 or
502 — 6ab + 2b% = 4% with a = 2(y — z),
b=2(2z —y), so

20(y—71)%-24(y—)(2r-y)+8(2z—y)* = 4*
or
2512 — 36y + 13y% = 4.

This is an ellipse whose axes must be (by the
obvious symmetry of the locus) the bisectors of
the angles formed by the two given lines.

Problem 3. Itis easy to deduce that the rectangle
is 9 by 16. The square therefore has area 144, so
its side is of length 12 and its perimeter is 48.

Problem 4. A suggested law is
(2n+1)2 + (2n(n +1))? = (2n(n +1) + 1),

n=123....,

and this identity is easy to establish by squaring
out or by using a difference-of-squares factoriza-
tion. o

Problem 5. Call the required sum Sy, so that
forn>2

S =6+ 66+ 666+ --- + 666---6,
né's
= (0 +6) + (60 + 6) + (660 + 6)
-+ + (66660 + 6),

=10(6+ 66 + - -- + 666---6) + 6n,

n—-16's
=10S,-) + 6n,
=10(S,, — 666---6) + 6n.
nb's

Solving for S,, we obtain

95, =666---60—6n
N,

nb's
2
= 5(999---90—971),
Sn = 2(lll 10—
n=3 n).
nl's
Since
U110 = 10410244107 = 20 =1
e g
nl's
we may write
10(10" — 1
=3 (M=n )

2
3
= 2—27 (107*1 — 10 — 9n)

for n=1,2,3,....

47
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Problem 6. First solution. We may assume that
r >y >z 21 Letting .V denote the number
of examinations, we have N > 1 (implied by the
word “series” in the statement of the problem) and

(r+y+:)N=20+10+9=39.

Sincer+y+:2>3+2+1 =6, we know that
N < 6, and since N divides 39, we deduce N =
3, so that r + y + z = 13. The solutions (z,y, 2)
of the equation r + y + z = 13 with .y, 2 > 1,
and z, y, z distinct integers, are:

(r.y.2) =(10,2,1). (9.3,1), (8,4,1), (8,3,2),
(7.5.1), (7.4,2), (6.5.2), (6.4.3).

Except for (8,4.1), all these possibilities are elim-
inated by the fact that Alice’s marks sum to 20.
Now we know that Betty’s algebra mark is 8 (the
largest of 8. 4, 1) and the problem is to fill in the
table (see below) so that each row is a permuta-
tion of 8, 4, 1 and the column sums are 20, 10,
9

Alice Betty Carol

algebra 8
geonetry
other subject
20 10 9
The only solution is easily seen to be
Alice Betty Carol
algebra 4 8 1
geometry 8 1 4
other subject 8 1 4

Thus, Carol placed second in geometry.

Second solution.  As before we deduce that there
are three examinations and .« + y + = = 13. Not
all of Alice’s marks are the same, since 20 is not
divisible by 3. Suppose, if possible, Alice's high-
est mark is y. Then she must have either {y. z. z}
or {y.y.z}. But

y+:t:<ytyts<r+y+:=13<2.

Hence Alice has at least one r.

We will show that Alice cannot have pre-
ciscly one o If she had, since o+ +y+ 2 =13 and
Alice's total is 20, her marks must ™ (1.4 4}
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Thenz+2y=20andy=2+7,50xr+2:=6.
Betty therefore cannot have {z,z,z}; nor can
she have {zr.y.z} or better, which excludes all
possibilities. Hence Alice has two r's. Because
7+ y+ z = 13 and Betty has one x and a total
mark 10, Betty must have {z, z,:} and the marks
awarded must be

Algebra  » *
Alice ? T T
Betty I 2 2z
Carol ? y v

Hence Carol has y in all examinations except alge-
bra. Thus there is no ambiguity, and Carol placed
second in geometry.

Remarks. In fact, it can be deduced that Alice’s
algebra mark is y and that x = 8, y = 4, and
z =1, so that the situation is indeed feasible.

If the conditions are weakened to require
merely that r, y, = are nonnegative, then it is pos-
sible that n = 13. In this case z = 2, y = 1,
z = 0 and there are many possibilities, so that
further information would be required to solve the
problem.

Problem 7. We see that

1
Jo(x) = 1_—1.
1 -7
fl(;r) = fo(fﬂ(‘r)) = 1- 1 = —r ’
l-r
o) = Sl (2)) = —p =1,
3l2) = al o)) = T2 = fol).

Hence, in general

fars(r) = fulr), n=0,1.2.3...,

and, in particular
fm';u(lg'l'ﬁ) = f2(1976) = 1976
Problem 8. On division by 3, each of the num-

bers leaves a remainder of 0, 1, or 2. If three of
e live senainders are equal, then the sum of
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the three corresponding numbers is divisible by
3. If no three of the remainders are equal then
the remainders include 0, 1, and 2, and again the
result follows.

Commenis. The following generalization ap-
peared in the West German Olympiad, 1981 (see
Crix Mathematicorum 12 (1986) 43).

Let n be a positive power of 2. Prove that
from any set of 2n — 1 positive integers, one can
choose a subset of n integers such that their sum
is divisible by 7.

More generally, any set S of 2n — 1 integers
contains a subset of n integers whose sum is di-
visible by n. This result is due to Erdds, Ginsburg
and Ziv (Theorem in additive number theory, Bull.
Res. Council Israel 10 (1961)). Further proofs of
this are given by R. Graham (Mathematical Intel-
ligencer 1 (1979) 250 ) and also by T. Redmond
and C Ryavec (ibid 2 (1980) 106).

Problem 9. First solution. In the trip in which
Smith got home 20 minutes earlier than usual,
the chauffeur saved 10 minutes on each leg of
this trip, and consequently picked up Smith at
4:50 pM. (This part is a well-known problem in
which we are assuming that Smith and the chauf-
feur walk and ride, respectively, at constant rates.)
Also, it follows now that the chauffeur’s speed is
five times that of Smith. Suppose Smith meets
the chauffeur the second time ¢ minutes after 4:30
PM. The chauffeur is saved a journey of < min-

utes from the meeting place to the station (which
he normally reaches at 5:00 pM. Hence ¢+ £ = 30,
so t = 25 and Smith arrives at home 10 minutes
earlier than usual.

Second solution (by “world lines™; see Figure 57).
We plot the distance vs time lines for Smith and
his chauffeur (sec diagram next page). The chauf-
feur’s world line is ADE, where A and E are
not known but ZDAE = ZDFE A. Smith’s world
line after arriving at 4 pM. is IB, BG where
BG || DE. Then GE = 20 minutes. Smith’s
world line afler arriving at 4:30 pM. is HC, CF
where HC || IB and CF || DE. It then follows
that BC = CD and GF = FE. Thus FE = 10
minutes.

Problem 10. Let P be the position of the center
of gravity of the system. As long as P is above the
surface of the water, P falls as the surface rises.
Hence at some stage P must be at the surface. At
this instant P is at its lowest because the addition
of more water must raise the water level and the
level of P.

Problem 11. Advise him to play in the first
game. We show that Father wins the tournament
with greater probability when he plays in the first
game than he does by sitting out the first game.

Let F, M, and S denote father, mother, and
son respectively and let X' > Y denote that Y
¢ iny the gaime playing against Y.
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If F and Al play the first game, then F wins
the tournament in the following three sequences:
M F>M F>S;

() F>M., S>F. M>S8, F>AL
BYM>F, S>M., F>S8, F>\A.

If F and S play the first game, the winning
sequences for F are the same as those above with
M and S interchanged.

If AT and S play the first game, then F wins
the tournament in the following two sequences:
4 S>M, F>8, F>M;

(5) M>S, F>M, F>8S.

Let AD denote the probability that A > B.
Note that AB + BA = L.

If F and M play the first game, the proba-
bility Pgp; that F' wins the tournament is

Pepyy = FM-FS+ FM-SF-MS-FM
+MF-SM-FS-FM.

If F and S play the first game, the probability
Prg that F wins the tournament is

Pprs=FS-FM+FS-MF-SM-FS
+SF-MS-FM -FS.

If M and S play the first game, the probability
Pars that F wins the tournament is

Pyus=SM-FS-FM +MS-FM-FS
= (SM + MS)-(FS-FM)=FS-FM.

n

It is clear that Prp; > Pys and Peg > Pygs.

FIGURE 58 2 possible positions of € * ore Jump
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Remark. It is inwitively clear that F will be best
off playing (in the first game) against the weaker
of M and S.

Problem 12. First solution. Our solution is
based on the following simple lemma:

Let W XY Z be a quadrilateral with WZ =
XY and ZWXY = ; then ZXYZ < § and
equality holds if and only if W.XY Z is a rectan-
gle.

We apply this lemma as follows. Rotate
ADGH about point H and bring G and E into
coincidence. (Note that if D falls on D’ then
ZAHD' = 3.) Applying the lemma to the re-
sulting quadrilateral AH D'E, we obtain a < 7.
Continuing in this manner, we obtain § < 7,

y<sandd < isinceat+f+y+6=2m
we must conclude that a = f =y =6 = 7.
Then, from the second part of the lemma, we ob-
tain AE = BF = CG = DH. Hence ABCD is

a square.

Second solution. Rotate the figure counterclock-
wise (through %) about the center of the square
so that H fallson G, G falls on F, A falls on A’
and D falls on D'. Since ZFGC + £/GFD' =
LFGC + LHGD = %, FD' is perpendicular
to GC. Since FD = GD = FC, D' is on ei-
ther GC or on the side of line GC opposite to
F, and hence A’ is on the same side of GD as
F. Hence ZEHA = ZHGA' does not exceed
ZHGD. Thus, applying the argument all around
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the square,
LEHA< LHGD < LGFC
<ZFEB<L</ZEHA

with the result that all these angles are equal.
Hence

(HGD + ZDHG = ZEHA+ Z/DHG = ’5’

so £D = 3. Likewise, ZA = LB = LC =
£D = 7. The result now follows easily.

Remark.  For the similar problem with equilateral
triangles see Math. Mag. 43 (1970) 280-282; for
the general n-gonal case see ibid 44 (1971) 296.

Problem 13. If the integers 1,2,3,...,126 are
split into 6 sets, then by the Pigeonhole Principle,
one of the sets will contain two (or more) of the
seven chosen integers. Thus, the problem is to ar-
range the splitting so that in each of the 6 sets
the largest integer is at most twice the smallest.
Clearly, the following splitting does the trick:

{1,2}, {3.4,5.6}, {7.8,...,13,14},
{15,16,...,29,30}, {31,32,...,61,62},
{63.64....,125,126}.

(Find a set of 7 positive integers not greater than
127 such that no two of them satisfy the inequal-
ities 1 < £<2)

Problem 14. Divide the square into four squares
of side 3. By the Pigeonhole Principle, one of
these four squares contains at least two of the
points, whose distance apart must be no greater
than the diagonal of the square of side 1, namely

V2
2

12
~—

FIGURE 59
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Problem 15. Suppose there are N parties, and
their promises are the sets S;.5-..... Sn. We
know that no two of these sets are equal (because
no two parties make exactly the same promises).
Furthermore S, N S, # @ for i # j (because ev-
ery pair of parties makes a promise in common).
Thus, no S, is the complement of an S, and hence
there are at most 32" = 2"~' subsets (of the set

of all promises) in the list Sy, S,..... Sn, ie.
N S 2n—l'
Let p;,po.-... Pn be the n promises, and

let A, i = 1.2,...,27"1 be the subsets of
{p2.Ps,---,pn}- The 27! sets {p,} U A, show
that there can be as many as 2"~! parties.

Problem 16. We shall refer to such a (2m+1) x
(2n+1) checkerboard with one red square and two
black squares removed as a deleted checkerboard.
First, we note that the case m = n = 1 is easily
handled by exhaustion. Owing to the symmetry
there are only six cases that need to be considered,
and these are shown below.

> N

FIGURE 60
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FIGURE 61

We now proceed by induction. We are given
a(2m+1) x (2n+1) deleted checkerboard C' and
we may assume that any smaller (2k+1) x (20 +1)
deleted checkerboard which is contained in ' may
be covered with dominoes. Since at least one of the
two dimensions of C is of length at least five, C
has two oppositely placed. non-overlapping ends
E, and E; of width two (see Figure 61).

Clearly, we can choose an end containing at
most one of the deleted squares of C. Let this end
be E; and consider the following two cases.

Case 1. E, contains no deleted square of
C. Then C — E, contains all three of the deleted
squares. By the induction assumption, C - E; can
be covered with dominoes. This covering, together
with the obvious one for E;, yields the desired
covering of C.

‘—C.E’—D
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Case 2. E, contains exactly one deleted
square of C. In this case, with the deleted square
in E; we identify the associated square of the
same color in C — E) as shown in Figure 62,

Now delete the associated square in C' — E.
By the induction assumption, there is a domino
covering of C — E; with this deletion. Now C,
with its original deletions, may be covered by
making use of the covering just found, together
with the scheme shown in Figure 63.

This procedure would fail only in the case
where the only choice for the associated square in
C - E; was also deleted. This is impossible in the
case of a red square. In the case of a black square,
we infer that the one deleted red square is in E;
and proceed as before.

Problem 17. We show the more general result
that for any positive integers m and n,
D(9m +n) = D(n). If

9m +n =0a,10° + ;110" " +--- + ;10 + g
then

9m +n — {a,(10° = 1) + a,_,(10°"' - 1)
+o-+a(l0-1)} =ap+a; + -+ +a,

Since the number within the braces is divisible by

9, there is a number m; < m for which

ap+a+--+a,=9m +n.

FIGURE 62

FIGURF 63

~—CE,—

<—E—’
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Repeated application of this yields integers m >
my > mg > -++ > my = 0 such that

D(9m + n) = D(9m, 4+ n) = D(9m, +n)
= ... = D(9my 4 n) = D(n).

When m = (137)n we have 9m +n = 9(137)n+
n = (1234)n, so D((1234)n) = D(n).

Problem 18. First solution. To see how this
problem is solved, consider a square with cen-
ter A, and points B, C on two adjoining sides
(possibly extended), as in Figure 64a. A rotation
of 90° counterclockwise about center A takes B
onto B’, on the side through C. Thus, to solve
the problem, find the image B’ of B in the 90°
counterclockwise rotation with center A. Then line
B'C contains one side of the square, and the rest
is easy (see Figure 64b), i.e., B’ is located so that
B'A and BA are equal in length and perpendicu-
lar. The line B'C contains one side of the square,
which is easily constructed.

Another square is obtained by locating B” as
the image of B in the clockwise quarter turn with
center A. Then line B”"C contains one side of a
square with the desired properties.

c B
BI
A
(@
FIGURE 64
A
8 P
.
D
c

FIGURE 65
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There are special cases: if A is the midpoint
of segment BC, there is precisely one square (with
diagonal BCY; if ZBAC is right and AC = AB
there are infinitely many squares. If ZBAC is
right and AC # AB then the problem is not fea-
sible.

Second solution. The facts that the angle sub-
tended at the circumference by a diameter of a
circle is right, and that equal arcs subtend equal
angles at the circumference, permit the construc-
tion first of a vertex of the square, then of its
diagonal. With diameter BC, construct a circle.
Let D be the midpoint of either arc BC (there
are two possibilities). Let P be the intersection
of AD with the circle which is distinct from D.
Then PA is part of the diagonal of a square, with
BP and CP parts of the two sides produced. See
Figure 65. R R

Since ZBPC = 5 and BD = CD,
£BPD = LCPD = %, and the proof of the
construction is clear. Again special cases can be
delineated. If A is the midpoint of BC, then P,
D are both midpoints of the two arcs BC and
BPCD is the unique square; if ZBAC = § and
AC # AB, then A lies on the circle and the
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square degenerates to a single point (since A is
both vertex and center). However, if ZBAC =
and AC = AB, taking D opposite to A yields
the degenerate case, while if D is taken to be A,
P can be chosen arbitrarily on the arc BC' op-
posite to A and there are infinitely many possible
squares.

Problem 19. The given inequality is equivalent
(on squaring) to

Vs (n4 VR

or (raising to the power /n)

n\/n+l\/v_l > (71+ l)n
or (dividing by n")

pVRHViE-n (1 + %)

or
ENAY
n
Now
\" 1 narn-1) 1
) =14n-- L
(l+n) +n n+ 21 m
n(n-1)---1 1
n(n-1)---1 n®
s0
" 1 1
(1+1—1> <1+1+ﬂ+“'+m
<1+1+1+l+-- <3
2 22 '

Consequently, all we need satisfy is
n> 3% > 3014,

Clearly the latter is satisfied for n > 10. Finally,
it can be shown that n = 7 is the minimum al-
lowable value for n.

Remark.  Using calculus (which is not as elemen-

tary), it is easy to show that (ﬁ)*, or equiva-

log”

lently that —2— is monotonically decreasing for
;

£ > =T3%... . A similar calculus solution
appears in D. S. Mitrinovi¢, Elementary Inequal-
ities, P. Nordhoff, Groningen, 1%, p. 611
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Problem 20. First solution. Reflect Z and
C across OXY as shown in Figure 66. Since
LDYZ' = £Z'ZD = £LC'XD,C', D, X,Y
all lie on a circle. Since ZC'XY = Z, the di-
ameter of the latter circle is C'Y = CY. Thus
CY > XD with equality if and only if D coin-
cides with Y (since ZDY X is stricly less than
when D # Y). We now show more by proving
that £X- is an increasing function of XC. Let

___ bx ___ —
OY =1,0X =a,and XC =t. Then

CY = (1-a)2+1

AX'=1-a2=DX-ZX

CY-CZ=(V1-a2+t)(V1-a?-14)

=1-a?-t%.

B

CW
b 7y

FIGURE 66

By similar triangles,

— CZ N CcZ
Z =t 1 =——— A= - _
( + o ) PX =(1-a) 5

where P is the intersection of lines ZZ’ and Y X.
Then

ZX: =PZ° + PX’

1 D — e
L ey +TzR+0- 07"},
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Simplifying:

(%) (1_1 2)2{'20}’ +202CY -CZ + (12 +

1
T (1-a?p
¢ 1
BT AT
t2
BT (1-a2)2{(1'“’

o <=2
It is now easy to show that Y’ - XD and
CY —X D are also monotonic increasing functions
of t.

Second solution. (Mark Kleiman) Draw DY and
choose H on DY so that XH is perpendicu-
lar to DY. We have that ZXDH = £ZZDY =
5 — £XYZ since the intercepted arcs form a
semi-circle. Thus, right triangle XDH is similar

10 right triangle XCY and so ‘='\' = £%. Since

XH < XY, DX <CY.

FIGURE 67
Problem 21, Consider the n sums
Si=a,s82=0+ay s3=,taey+ta;s....,

Spn=a,+a+---+a,.

Let s, leave a remainder of r, on division by n,
ie.,

si=qm+ri, 0<rn<n-1, i=12.... n.
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+(1-a)CZ")

—  _{P(1-a)?+t 4221 -a? - )+ CY -CZ'}

2)2{(1 - - )1 -a® + )+ 1%}

2
= 1.
(1+a )2+

If for some i, r; = 0, then s, has the de-
sired properties. If r, # 0 for j = 1,2,...,n
then we have n integers ry,...,r, all in the set
{1,2,...,n - 1},which contains only n — 1 inte-
gers. By the Pigeonhole Principle two of the r,’s
must be equal, say ry = r,,, with m > {; in this
case

+t} =

@14+ G = 5m =51 = (Gn — @)

Problem 22. Consider any three points A, B,
C. Assume without loss of generality that AB is
the longest side of triangle ABC. Then A and B
cannot be joined.

Problem 23. First solution. Let m = ]—), where

p and ¢ are positive integers having no common
prime factors, Then

N 1 _ P+
m Pq
so that , if this is an integer, then p and ¢ both
divide p?+¢°. But then p divides ¢2 and ¢ divides
p2. Since p and g have no common prime factors,
this means that p=g¢=1and m = 1.

Second solution. It suffices to show that the
only positive integer k for which the equation
I+ % = k has a positive rational root is k = 2.
This equation, namely

k+VE=4  k-VkT-4
2 '
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If these roots are rational, then k2 — 4 must be a
square. But

(k=12 <k -4<k® when k>3,

so k% — 4 cannot be a square when k > 3, and,
when k = 1, k% — 4 is negative and so cannot be
a square. Thus the only possible value for k is 2.

Problem 24. Since ZAPC and ZABC are both
right, the circle on diameter AC passes through B
and P. Since AP and PC are equal chords of this
circle they subtend equal angles at the circumfer-
ence, so ZABP = /CBP.

FIGURE 68

Remark. Note the relation to the second solution
of problem 18.

Problem 25. Let ¢ be the distance between L,
and L3; let b be the distance between Ly and Lg.
Clearly, the sum of the distances from a point to
the 4 lines is at least a +b. Now let K be positive,
and let L denote the locus of points whose sum
of distances (from the four lines) equals K.

Case I. K <a+b. Then L is empty.

Case 2. K =a+b. Then L is the parallel-
ogram AB(C'D and its interior.

Case 3. h > a+b. Then L is a centrally
symmetric octagon, as in Figure 69,

This is an immediate consequence of the fol-
lowing: If P is any point on the side BC of the
isosceles triangle ABC (¢ = AB = AC) then
the sum of the distances from P to .AB and AC
is a constant, For il these distances are o, and o,
then the area of A ABC cquals

| | 1
§ll(l] + iud-_; = En(vh + da),

as in Figure 70,
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L]/

je— b —
FIGURE 69
C
A
P
B
FIGURE 70
Remark. It may happen that all four lines are

parallel. In this case, let ¢ be the sum of the dis-
tance between the inner two and the distance be-
tween the outer two. If K < ¢, L is empty. If
K = ¢, then L is the region between the inner
two lines with the two lines. If K > ¢, then L
consists of two parallel straight lines, one on each
side of the inner two lines.

Problem 26. Choose two of the points, say A
and B, so that the three remaining points (call
them P,, P», P;) lie on the same side of line AB.
(How would you do this?) The angles ZAP, B,
LAP,B, LAP3B are all different (in size), for
if two of them, say ZAP,B and ZAP;B were
equal, then A, B, P, P, would be on a circle.
Assume without loss of generality that

LAPB < ZAP,B < LAP:B.

The circle through A, B and P> contains P; in
its interior and P, in its exterior. (Generalize to 3

dr ez wan )
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A
¢ b
B a c
FIGURE 71
Comment. See R. Honsberger, Mathematical

Morsels, MAA, Problem 23, p. 48.

Problem 27. Let sides BC, CA, and AB have

lengths a, b, and ¢ respectively (Figure 71). Then
1 1 1 1 1 1
:—lllh| = Ebhz = 5("13 = §d|a + §d-_|b+ Ed:;(',

since all four expressions are equal to the area A
of triangle ABC'. Hence

G b g
by hy " hy
_ady  bdy  cdy
(lh| + bh'_) + Ch3
_ady by cdy
T2A T 28 2A
_ ad; + bdz + cdy _ 2A =1
- 2A T2A T
Comment  For generalizations see M. Klamkin,

Crux Mathematicorum 13 (1987) 274.

Problem 28. Observe that the meeting place
should be between the first and last houses. For,
given any point beyond either end house, the sum
of the distances would exceed the sum of the dis-
tances to the closer end house. Now note that
for all points chosen between the first and last
houses, the sum of the two distances from the
meeting place is constant, so we can remove these
houses from further consideration and minimize
the sum of the distances 1o the remaining houses.
Repeating the above argument, we deduce that the
meeting place should be between the second and
second-last house, beween the third and third-last
house, and so on. Thus, if = is even, the boys
should meet anywhere between the two middle
houses; if n is odd. at the middle kouss.
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An “analytic™ version goes as follows. On a
coordinate line, let the houses have coordinates
a;,as,...,a, with

0€<g <ap<---<a,,

and let the point P where they meet have coordi-
nate r. Then the total distance walked is

Dir)=|r—a|+|r—as]+---4|r—a,l|
If n is even , say n = 2m, then
m
D= Z(la: - all + |02m+l—| - -7'“
=1
{and by the Triangle Inequality)

D> Z |r_ax+02m+l—l _II

= Z (a2me1-: = @)
=1

= Qmyr + 0+ a2m = (a1 + -+ aw),

with equality if a,, <7 < 4.
If n is odd, say m = 2m + 1, then

m
D = E (lJ' - all + |a2m+2—| - Il)

+|I—0.,,,+||

m
2 z II = a4+ @y — I' + I‘t — Q4

m
= Z la'lm-i"l—! - all + |-E - "m+1|
1=1

m
= Z (a'2m+2—t - ﬂn) + |-'7' - "m+l|
=1

2au42t -t — (ﬂ| +-- +“u)y

with equality if & = 4.

If one plots the graph of D(x) against r,
0 £ r < a,, one gets one of the two unbounded
peliweral convex figures in Figure 72,
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FIGURE 72

Problem 29. Looking at the desired result, note
that Q, and Q; are related by a 180° rotation with
center P. Hence Q, is on 7, and on the image of
72 in this rotation, i.e., Q; is on v; and on the
circle through P equal to and tangent to 2.

9,
P
Q
12 7|
FIGURE 73
Comment  Construct a line such that the ratio of

the two chords through P have a given value.

For a set of related constructions using half-
turns see |. M. Yaglom, Geometric Transforma-
tions I, New Math. Library 8, Mathematical As-
sociation of America, pp. 2140,

Problem 30. A counterclockwise rotation of 60°
with center B carries P to C and A to R; hence
PA = CR. Sinilarly, CR = BQ.

FIGURE 74

Comment.  For other interesting properties of this
configuration see R. A. Johnson Advanced Eu-
clidean Geometry, Dover, NY, 1960, pp. 218-222,

Problem 31. Express each term of the sum as a
fraction with denominator equal to the least com-
mon multiple of 2,3,...,n. All numerators will
be even except for the single term whose original

Said a monk as he swung by his tail
To his children both male and female
“From your offsprings, my dears,
In some millions of years
May emerge a professor at Yale.”
H. E. Salzer, Scripta Mathematica 21(1956)
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denominator was the highest power of 2 not ex-
ceeding n. Thus the sum of the numerators is odd
while the common denominator is even.

Remark. 1t can be shown that, when a. d > 0,

1 1 1

vt Y areoe

(the sum of the reciprocals of an arithmetic pro-
gression) is never an integer. A proof depends on
Bertrand’s Postulate: There always exists a prime
between m and 2m.

Problem 32. Let A and B denote the endpoints
of the arc. Consider the plane m which passes
through the center O and which is normal to the
angle bisector of ZAOB. See Figure 75. We shall
show that the arc AB must lie in the hemisphere

produced by this plane which contains A and B.

FIGURE 75
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Consider the image A’ of A4 across . Note
that A'B = 2 since A’, O, and B are collinear.
Also, note that if X is any point in , then AX =
AX. It is impossible for any arc AB of length
less than 2 to contain any point belonging to 7
because if AB contains .Y, then

AX + XB > AX + XB = #X + XB,
and by the Triangle Inequality
AX+XB>AB.

Similarly, we can show more generally that if two
boundary points of a centrosymmetric body whose
minimum central diameter has length 2 are joined
by an arc of length less than 2, then the arc must
lie in some half of the body bounded by a plane
section through the center.

Problem 33. First solution. Express n in the
form 6m + r with 0 < r < 5, and compute [%],

2i2] [244] (2], and [2£2]. These are dis-
played in the table. It is easy to verify that in each
row the sum of the first three entries (in the body
of Table 1) equals the sum of the last two entries.

Second solution.  For each positive integer r and
integer £ = 0,1,...,7 -1, ["—'rL‘] is the number
of positive multiples of r not exceeding n + &,
and at the same time it is the number of positive
integers not exceeding n which are congruent to
r — k modulo r. Thus [3] + [2£2] + [2H] is

n [2] [w] [n_+4 2] [M]
3 6 6 2 6
6m 2m m m 3m m
6m+1 2m m m 3m m
6m + 2 2m m m+1 3m+1 m
6m+3 2m+1 m m+1 3m+1 m+1
6m+4 2m+1 m+1 m+1 3m+2 m+1
6m+5 2m+1 m+1 m+1 3m+2 m+1

TABLE 1
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the number of positive integers not exceeding n
which are congruent to 0, 2, 3, 4 modulo 6, while
[%] + ["—'(;Lr‘] is the number of positive integers not
exceeding n which are either even or congruent to
3 modulo 6.

Problem 34. The smallest n digit integer is
10"~" while the largest is 10" — 1. Hence we
want the sum of the arithmetic progression

10" 4 (107" +1) + (10" 4 2)
404+ (10" - 2) + (10" - 1).
The number of terms is 10" —1 - 10""' +1 =
9.10""", so the sum of the progression is
9.10""!
2
=45-10""%(10"""' - 11 - 1)

(10" +10" -1)

= 495- 10%"~3 - (100 - 55)10" 2

= (494 + 1)10**73 — 10" + 55- 10"~
=494-10*""3 + 10"3 - 10" 4+ 55- 10”2
=494-10%"73 + (10"3 - 1)10" + 55 - 10™2

=494-10>""3+99...9-10" + 55-10""2
e’

n=3
= 49499---95500---0.
et

Question.  What happens if n = 2?

Problem 35. First solution. Let £ = BR

BR =
RP =QC;then 1 —x = RC = PQ = 4Q.

Ifr> %, then
2
area ABRP = 1% > %(;) =

N =
=1l N ]
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I-x

FIGURE 76

lfzg%,thenl—zzgand
1. o 122
Ifl<z<Zthen—j<z-3<g(z-
and

2
5
) <

BN
~

L
36’

area rectangle PQCR = z(1 - z)

ey
1

Second solution. Plot the three curves y = 12—2,
y = 1(1 - 1), and y = §(1 - z)* and observe
that for any 0 < z < 1 the largest of the three y's
is at least 2.

FIGURE 77

I'm glad I'm educated

1 think its simply grand

To know so many facts and stuff
That | don’t understand.

S. O. Barkerd
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FIGURE 78 PQ || BC and PR || AC

Remark. This problem can be extended to par-
allelograms inscribed in an arbitrary triangle.

Proof. By parallel projection of previous result.

Problem 36. First solution. The first result is
apparent when a pair of 3, 4, 5 right triangles are
placed “back-to-back” in two different ways, as
in Figure 79.

The same idea applied to the right triangle
with sides 5, 12, 13 shows that the triangle with
sides 10, 13, 13 has the same area as triangle with
sides 24, 13, 13. Indeed, a right triangle with sides
a, b, ¢ (¢ = a® + b?) leads to triangles of equal
area having sides 2a, ¢, ¢, and 2b, ¢, c.

Second solution. Let the isoceles triangles have
side lengths (u, u, v) and (z, 7, y) respectively. By
Heron's formula, the condition that their areas are
equal is

v (2u+v)(2u-v) = V(22 + y)(2z - y)
or
qu? + 3t = 4r%y? + 0

Some solutions can be found by imposing the ad-
ditional condition u = z, whence 4u? = 4% =
v? + y? (assuming v — y? # 0). Thus (v,y.21)

FIGURE 79
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is a Pythagorean triple. A few solution pairs
{(u,u,v),(z,x,y)} are

{(5.5.6). (5.5.8)}
{(13,13,10), (13,13,24)}
{(25,25,14), (25,25,48)}.

Can solutions be found with u # z?

Problem 37. First note that
ad+¥++d* =2+ (1-2)°

+y' +(1-y)
+ul+(1-u)?
+v1+(1-v)?

Now consider
Iz2 1
2 2 _ 2 1
*+(1-2) 2{(1 2) + 4}.
Since 0 < r < 1, it easily follows that

%$12+(1—:r)251,

and similarly with z replaced by y,u,v. Adding
the four inequalities yields the desired result.

It is interesting to observe that also 2v/2 <
a+b+c+d< 4.

FIGURE 80

Comment. More generally, show that if the
square is replaced by a m x n rectangle then

m2+n?<a? + 02+ +d? <2(m? +n?).
Problem 38. If we let x denote the overlapping

part, then the non-overlapping parts have areas
mR? — z, 7r? — z and hence the difference is

‘2R z) - (nr* —z) = n(R? - r?).
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radius r radius R

FIGURE 81

Problem 39. An ordered sum

G tagt-ta=n a2l

is represented by n  1's in a row separated by
k — 1 “strokes” /:

ur---1/11---1/11---1/.../11---1.
N e . man et |\ et S——
ay az a3 ax
To obtain all such displays (for all 1 < k < n),
line up n I's and for each of the n spaces between
adjacent pairs, either put in a stroke or do not put
in a stroke. This can be done in 27~ ways.

Problem 40. T),T»,...,T; play %k(k -1)
games amongst themselves and k(n — k) games
againsl Tk+1, Tk+2, veeyTn. NoW S| +S9++ -+
is greatest when all the latter games are won by
Tl.Tz,. .., T} so that

1
s.+s-g+...+sk5§k(k—l)+k(n—k)

=nk - %k(k +1).

Problem 41. A general law suggested is:

12432 +5% 4 +(2n - 1)?
_(2n—-1)2r(2n +1)
= 5 ,
A proof by induction is easy, and we leave this to
the reader.
The following proof assumes the formula for
the sum of squares:

n=123,....

k(k +1)(2k+1
1’+2‘+32+---+k2=_(__)é__).
k=1,23.....

From this we have

_ 2020 +1)(4n + 1)

124224324 4(2n)? .
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and
2 +42 462+ + (2n)?

=212 +22+32+---+n?)
_dn(n+1)(2n+1)
=—

so (taking the difference)

2+8+52 4+ +(2n-1)?
_2n(2n+1)(4n +1)

6
_ dn(n+1)(2n + 1)
6
_(2n-1)(2n)(2n + 1)
= : .
2
Problem 42. Solving the equation z = z 1945-;1'

or z2 — 198z + 1 = 0, we obtain the roots

o =99+ /992 — 1=299+ 70V2,
B =99- /992 -1=099-70v2,

with
a+ =198, aff = 1.
Hence
a?+1 1 f2+1 1
= > —_— = —_—
®= g C1%8 P ies ios

a=198-p<198 - L = 197.99494949.. .,

198

1
=198-a < 198 - — = 197. ..
B 8 —a < 198 198 197.99494949. ...

and

a-99 1979919 -9 L
V2= o < FON9 =99 11101356,

70

Finally , (1.41421356)? = 1.9999999932. .. < 2,
s0 V2 > 1.11421356.

Problem 43. Partition the triangle into 4 equi-
lateral triangles of side 1 (see Figure 82). By the
Pigeon Hole Principle, one of these four triangles
must contain 2 {or more) of the 5 points, and these
2 awints are within distance | of each other.
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FIGURE 82

FIGURE 83

Problem 44. Yes. Start with a line [ not parallel
to any of the (finite number of) lines determined
by the given points and such that all the given
points lie on one side of ! (see Figure 83). Trans-
late [ in the perpendicular direction. It will pass
over the points one at a time. Stop when you have
passed over half the points.

Problem 45. First solution. ZBPA remains
constant, as does ZAQ@B, since these angles are
subtended at the circumference of the two circles
by the constant arc AB. Hence the sines of these
angles are constant. By the law of sines applied
to ABPQ

BP sinQ

=—= = —— = a constant.
BQ sinP

Second solution. This solution is motivated by
looking at the extreme case where P coincides
with A and PQ is tangent to the circle PAB.
Let C be on circle BAQ such that AC is tan-

FIGURE 84

gent to circle PAB. Then ZAPB = ZCAB and
LAQB = ZACB. Hence ABPQ is similar to

ABAC, so that _B;f = .E_-“i a constant.
BQ BC

Problem 46. (a) If n is even,

f(n)=0+1+2+3+---+(3—1)

2
n
+14243 445
1 /(n n_ 1/n\/n n?
=-(=-1)z+-(=)(= L
2(2 )2+2(2)(2+1) 4
If nis odd,
-1
f(n)=o+1+2+---+"—2-
n-1
1424+

=2(%)(n; 1)(n;l +l) _ n24—1_
Thus

if n is even,

nz
f(n)={ LI RPN
i ifnisodd

There was a mathematician named Ben
Who could only count modulo ten.

He said, “When 1 go

Past my last little toe
1 shall have to start over again.”
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(b) Note that s +t and s — ¢ differ by 2t,
which is even. Hence s + t and s — t are either
both even or both odd. In the “even” case,

(s +1)? _ (s —t)? _

fls+t)-f(s-t)= T 1 st.
In the “odd" case,
b 2 _
flo+0)- fs-n="ET =2
(s—t)2-1_
- = st.

Problem 47. Through P, @, and R draw lines
parallel to QR, RP, and QP respectively, thus
obtaining the triangle ABC with the desired prop-
erties.

FIGURE 85

Problem 48. 1In general if n is an odd positive
integer then a + b is a factor of a™ 4 b". Hence 5
divides 1*? + 4™ and also divides 2" + 3%.

Problem 49. First solution. Every integer has
one of the forms 4n, in 4+ 1, 4n + 2, 4n + 3,
so their squares leave a remainder of 0,1 or 4 on
division by 8. Hence a® + b? cannot equal 8¢ + 6,
which leaves a remainder of 6 on division by 8.

Second solution.  Since
a? + b2 = 2(4c +3)

is even, ¢ and h must have the same parity, i.e.,
both are even or hoth are odd. In the first case,
u = 2m, b = 2n and hence

® +40% = 20 ¢ 31,
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or
2(m? 4 n?) = 4c +3.

and this is absurd because the left side is even
while the right side is odd. In the second case,
a=2m+1,b=2n+1 and hence

2m +1)% + (2n +1)2 = 2(dc + 3)
or
mm+1)+n{n+1)=2c+1,

and again the left side is even while the right side
is odd.

Problem 50. Let A, B denote the two sets of
four numbers each. 1 and 2 cannot be in the same
set, for otherwise their sum could not be realized
in the other set; 1 and 3 cannot be in the same
set, for otherwise their sum could not be realized
in the other set. Hence we may assume 1 € A,
2 € B, 3 € B. Then 4 must be in A in order that
the sum 2 + 3 be realized in A. Thus we have
{1,4} C A {2.3} C B.

A similar argument shows that 5, 8, belong
to the same set, while 6, 7 belong to the other.
Hence the only possible splittings are:

(i) {1.4.5.8}. {2,3.6.7};

(i) {1,4,6,7}, {2,3,5.8}.

The first of these splittings doesn’t have like
sums, while the second one does. Hence the sec-
ond splitting is the only solution.

(Formulate and solve a similar problem for
splitting the first sixteen integers.)

Remark.  For the two sets in (ii), the sum of the
numbers in one and the sum of their squares are
equal to the corresponding sums in the other. This
too can be generalized for the first 2" integers.

Problem 51. Wehaver >0,y >0, 1r-2y >0,
and 2log(r — 2y) = log.r + logy, so

log(r - 2y)? = log ry.

(r —2y)% = ry.

(é —2)"' 111



SOLUTIONS

(‘:)2—5(5) +4=0,
G-+

r=4y or r=y.

The latter situation is impossible, for then r—2y <
0. Hence i =4,

Problem 52. First solution. First observe that
2= f(2) = f(1-2) = f()f(2) = f(1)2, so
f(1) = 1. Furthermore
f2)=f2-2) = f(2f(2) =2-2=2,
f@)=f2-2) = J@)f(?) =2-2 =2
and so on, i.e., f(2¥) = 2¥ for k = 0.1,2,... .
Now consider successive powers of 2 and the in-
tegers between:
ARV RS R AR S PPy o b
= gk+1 _ | o ok+l
Their f values satisfy
< f2F+1) < f(2F +2)
<o f(2KH — 1) < 284
Thus, between 2* and 2%+! we have 2% —1 distinct
integers f(2¥+3),7 =1,2,...,2%=1. Since there
are exactly 28+1 -2k —1 = 2¥—1 integers between
2% and 2%+ it follows that f(2% + j) = 2% + j,
i=12,....

Second solution. As before, we observe that
f(2*) = 2% for k = 1,2,... . From property
(5) we see that f(m+1) > f(m), ie,
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flm +1) > f(m) + 1; hence f(m) > m and
flm +k) > f(m) + k. It remains to show that
for no n is f(n) > n. Suppose that f(n) > n for
some n. Then 2" > n and

2"=f(2")=f(n+2"-n)> f(n)+2" -n
>n42"-n=2",

which is absurd.

Third solution (by induction). First we observe
that f{1) = 1. Now assume that f(k) = k for
k=12,...,n. Weshow that f(n+1) =n+1.
Ifn+1=2j,then1 <j<nand

Jin+1)=f(2§)=2j=n+1
Ifn+1=2j+1,thenl1 <j<nand
2= f(25) < f(2j +1) < f(2j +2)
=fRG+1)=2f(i+1)=2(j +1)
=2j+2.
Thus

2 < f(21+1) <2j+2,
0 f(2j+1)=2j+1=n+1.

Problem 53. Let BC, BD, BE be congruent
segments in m which are respectively parallel to
the three lines in 7; let A be a point in space such
that AB is parallel to { (see Figure 86). It follows
that AABC = AABD = AABE and hence
AC = AD = AE. Thus A and B are respectively
on the planes which perpendicularly bisect CD
and DE, and hence AB is perpendicular to .
Alternatively,

—

ﬁ-cﬁ:ﬁ-ﬁ:ﬁ-w,

to be taken three times a day.”

1 once picked up a copy of Casey's Sequel to Euclid on a second-hand
bookstall, and on the inside of the front cover was one of the blue-edged
labels that doctors stick on medicine bottles with the inscription “Poison—

F. Bowman, Mathematical Gazette. 19 (1935) p. 273.
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A
n
FIGURE 86
so that
0=BAe(CB-DB)=BAe«CD,
0=BAe(CB-EB)=BAeCE.

Hence BA L CD and BA 1 CE, and it follows
that ﬁ 1l

Problem 54. We have

=1410410%+---+ 10m}
10m — 1

==

b=10...05="5+10",

m=-]

l m

0
ab+l—( 5

10™ + 2)

( 10™ - l0 + 12)
m-1 _ 2
(10(10 4)

=(33.. 34),

ab+1=33...34.

"l)(5+10'")+1

TN
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Problem 55. First solution. Set up a coordinate
system so that the pole of height h is based at
(—a.0) and the pole of height k at (a,0). Then a
point (r,y) subtends equal elevations if

h k

Vir+a) +¢2 - Vi —aZ+y?

or

h?(2? - 20t +a® +y%) = k3 (2% + 2az 4+ a® +4%),
or
12(k? = h?) + 2ax(k? + h2) + y? (k2 - h?)
+a?(k? - h%) =0.
If & = h, the equation becomes = 0, so the
locus is the y-axis.
If k # h, say k > h, then

k2 + b2
k2 - h2

and the locus is a circle with a diameter joining
the two “obvious™ points on the r-axis with equal
elevations.

.r2+2ar( )+y2+az=0.

Second solution. Let A, B be respectively the

foot of the flagpoles (see Figure 87). A point P

is on the locus if ZAPA' = ZBPB' or, equiva-

lently PA_ Q i

k h

PA

PB

Now (in the plane of APB) the bisectors of

the internal angle and external angle at the vertex

P of triangle AP B meet the line AB in points C

and D with

k_A4P _AC _AD
BC  BD

k
7 (a constant).

h~ BP
(see Figure 88), and such that ZDPC = 90°.
The points C and D can be located as in
Figure 89 (drawn in the plane of the flagpoles),
and then the locus of P is seen to be the circle (in
the “level”™ plane) on diameter C'D. This circle is
known as the Circle of Appolonius.

Problem 56. For k = 3.1
K=2.3.4...k > 2k,

0
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SOLUTIONS
FIGURE 87
D A C B
INCIN
it re
FIGURE 88

FIGURE 89 4C = BC apg 4D = 8D
L k=34
k. E"'_l’ Al I TN
Hence, forn > 1,
I 1 1 1 1
+ﬁ+ﬂ+§+"'+ﬁ
PSS P
2 22 on-1
1-(1/2) 1
=1+ 172 _3_2n—l<3'

Problem 57. Because AX is parallel to BP,
triangles AX P and AX B have equal areas. Sim-
ilarly triangles DX P and DXC have equal areas.
Hence

arca APD = area AXD + area DX P + arca AX P
=areaAXD + areaDXC + arcaAXB
= arca ABCD.

D

FIGURE 90
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Problem §8. For k =1,2.3,..., we have
VFFT- vk
(VR T=-VR(VE+ 14 VE)
VE+1+VE

!
S VERL4VE

so that

1 1
—2\/m<\/k+l—\/i< TR
Adding the left inequalities fork = 1,2,...,n—1
and the right inequalities fork = 1.2...., n yields
the desired inequalities.

Exercise. In a similar fashion find bounds on
1 1 1 1
tEt Tt

Problem 59. The vertices of the quadrilateral
partition the circumference of the circle into four
arcs, whose lengths sum to 2, so the smallest of
the arcs has length at most &' = %. The corre-
sponding segment (joining the ends of this small-
est arc) has length < V2.

Problem 60. The exterior angles of any convex
polygon sum to 360°. The given polygon has 4
right angles, and hence 4 exterior right angles
summing to 360°. There is no “room™ for more
vertices!

Comment. More generally, if a convex polygon
-]

has n of its angles equal to 3—??— then the polygon
is a regular n—gon.

Problem 61. Let the two red balls R, and R,
weigh r; and r; respectively, and use analogous
notation for the other colors. First, balance R, and
“.1 againsl R;g and B|.

FIVE HUNDRED MATHEMATICAL CHALLENGES

If 7y + wy = r2 + by, then either: r; < 13
and w; > b, or 1y > rp and wy < by. These
cases can be distinguished by then balancing W)
against 1,

If 1y + uy > ry + by, then certainly 7y > 1o
and one of these possibilities occurs:

(i) w > wsand b > by;
(i) wy > wyand by < by;
(i)  w; < wq and b < by,

For the second weighing, balance R, and B,

against W% and B», and deduce:

if 1 4+ by > we + ba, then by > bz and wy > wo;
if ry + by = w2 + b2, then by < b2 and wn > wo;

if 7y + by < wa + by, then by < b2 and wy < wa.
The final case r) + wy < ro + by can be disposed
of similarly.

Problem 62. Calling the distance D, the engine
speed V' and the wind speed 1", " < V, the
time for the round trip in stll air is 2. while in
a wind the trip takes the longer time
D D 2DV
vaw tvow S vE—we
_2D v? 2D
TV vEowrT v
This agrees with intuition, for the plane “fights”
the wind for a longer time than it “rides™ the wind.

Comment.  For more general results see Crux
Mathematicorum 12 (1986) 277-279.

Problem 63. First solution. Let P be the mid-
point of AB, so that (because ZAOB is a right
angle) PO = PA = PB. Since ZPOC is a right
angle PC > PO, and hence PC > PA = PB.
Thus, ZACB cannot be a right angle. Similarly
ZBCA and ZBAC are also not right angles.
(Must triangle ABC be acute angled?)

“I only took the regular course,” said the Mock Turtle with a sigh—"Reeling and
Writhing, of course, to begin with, and then the different branches of Arithmetic—
Ambition, Distraction, Uglification and Derision.”

Lewis Carroll
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Second solution. Let lines OA, OB and OC be
the r, y, = axes of a Cartesian coordinate sys-
tem. Let A, B, and C have coordinates (a,0,0),
(0.b.0), (0,0.c) and without loss of generality
assume Z('ADB is a right angle. Then

(VE+e) = (Va+2) + (Ve + )’

B+ =a?+b+a®+¢,

2% =0,

so @ = 0, a contradiction.

Problem 64. The system to be solved is:

r+y:=12 y+:ir=2; z4xy=2
Subtracting the second (third) from the first (sec-

ond) yields

(z—yl1-2)=0. (y—=2)(1-x)=0.
Each of the four cases

r-y=0=y-z2, r-y=0=1-r,
l1-2=0=y-2, l1-2z2=0=1-1,

impliesr=y=z=lorr=y=2=-2

Problem 65. Divide the square into 4 congruent
squares of side . By the Pigeonhole Principle,
one of these will contain 3 (or more) of the points.
They determine a triangle whose area is at most
one-half of the area of the “small” square.

Problem 66. From
0=a®+b24+c®—ab—bc—ca
=%«a—w2+w-cf+@-ay)
it follows thata —b=b—-c=c—a=0.

Comment. Similarly, if Z,, Z», Z; are complex
numbers such that

2y B+ B =00+ 2+ 0 2y

then the points (in the plane) representing these
complex numbers are the vertices of an equilateral
triangle.
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Problem 67. let A denote the area of triangle
ABC. Then

A= %ah,, = %bhb = %rhp.

Thus, a + h, > b+ hy is equivalent to

2 —
a—b>hy—h,=on(t_1)_ 2800
b a ab
or (a—b){ab—2A) > 0. Since 2A = absinC <
ab it follows that ab—2A > 0; this withe—-b >0
yields the desired inequality.

B C

FIGURE 91

Problem 68. Let n = x10* + y10® + =102 +
ul0 + v, so that m = r10* + y10% + ul0 + v
and 10 —n = (u-2)10°+ (v—u)l0 - v is
a three-digit integer. Thus 122=% s an integer
which has a three-digit numerator and a four-digit
denominator, and hence 10m —n =0, i.e., u =
v = z = 0. Now we have n = 710" + y10® and
m = r10*+y10%, i.e., n is of the form n = 10*N,
where 10 < N <€ 99.

Problem 69. If

+

1 1
+3

1
y Trty+z

|-

then (an easy manipulation shows
(r+y)y+:2)z=+x)=0.
If r +y =0, then r?"+' = —27+! 50 that

2+l 4 2n = 0 and both expressions

that)

I?n+l + y'.’n+l + :2n+1' (I +y+ 2)2"+1

are equal to 22"*+!; similarly, in the cases y+z = 0

ar * - r lhthe result follows.
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Problem 70. First solution. The points, if they
exist, will be the centers of circles which pass
through the two given points A, B and are tangent
to the given line I. Clearly, if the points are on
opposite sides of the line or both on {, no such
circle exists.

For the possible cases, we have:

1. The line joining the two given points is
parallel to the given line. Here the circle is unique
and easily constructed.

FIGURE 92

2. One point, A, is on the line. The circle is
then unique. If BA is perpendicular to I, then BA
is a diameter of the circle.

FIGURE 93

3. Neither A nor B'is on [; there are two
possible circles. Since QP = QA-QB is known,
one can construct P. Then the centers of the two
circles can be easily determined.

FIGURE 94
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Second solution. The locus of points equidistant
from the points A and B is a straight line b, the
perpendicular bisector of BC; the locus of points
equidistant from A and [ is a parabola p with
focus A and directrix {. The intersection of b and
p yields the required points.

b and p will not intersect if A and B are
on the opposite sides of {. (why?) In case 1, b
is parallel to the axis of p and there is a unique
intersection point; in case 3, b intersects p in two
points.

FIGURE 95

Case 2 is interesting. If A is on [ and B off {,
then p degenerates to a line through A perpendic-
ular to I. and so has a single point of intersection
with b. However, we could take A off { and B on
[ (see Figure 95). In this case, if R is the midpoint
of AB, then ZROA = ZROB, so b is tangent
to p and there is a unique point O of intersection:
OB Lland OA = OB.

Problem 71. First solution. Express n in base
2,ie,
n=¢éo+ 62+ 2% + 2% +¢,2°
+6525+f52ﬁ+ sy

where the €’s are each 0 or 1. Then it is easy to
see that

There was an old man who said, “Do
Tell me how I add two and two.

I think more and more

That it makes about four,
But | fear that is almost too few.”
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n+1]
2

(n + 2]

L 4 r
e d
8 r
n+8]
[ 16 |

= € +€3

= €3 +¢€,

Adding up the columns we obtain the desired re-
sult.

Second solution. is the number of even

2
numbers between 1 and n + 1 inclusive, which is
the same as the number of odd numbers between

1 and n inclusive.

z : 2] is the number of multiples of 4 be-

tween 1 and n + 2 inclusive, which is the same
as the number of multiples of 2 not divisible by 4

between 1 and = inclusive.
n+ 2k—|

In general, for each k, 2_*] is the

number of multiples of 2 between 1 and n+ 2!
inclusive, which is the same as the number of mul-
tiples of 2¥=1 not divisible by 2% between 1 and
n inclusive.

Since, for each number m between 1 and n
inclusive, there is exactly one value of & for which
m s divisible by 2¥~! but not by 2¥, the left-hand
side of the equation counts each number from 1
to n exactly once.

Problem 72. First solution. Let M be the mid-
point of the segment AB. Draw lines through A
and B parallel to line M C. Draw a line through

}‘/

B Y

FIGURE 96
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€o+€|+622+€322+€423+6524+f625+"'
€ +€ +€32 +E422+€523+€524+“-
+€42 +€522+6523+"'

+es2 e+

C perpendicular to line MC. Suppose it meets
the lines through A and B in points X, Y. Then
CX = CY, so the circle with center C and radius
CA has the desired properties.

Second solution.  This problem is related to prob-
lem 29. Draw the circles with diameters AC and
BC respectively. As in problem 29, construct seg-
ment PCQ so that

PC=CQ.

The circle with center C passing through P and
Q is the required circle. AP and BQ, being per-
pendicular to the diameter PQ, are the parallel
tangents.

Comment. A more difficult problem is: Given
three noncollinear points A, B, C and an angle
a, construct the circle with center C so that the
tangents to it passing through A and B make the
angle a. If r is the radius of the circle, one obtains
an equation of the form

r((8” = @®) + 4k?a®b? — 2r*K%a’b%(a® + b?)

4+ k%%* =0, a.b.k constants.

1stnE 97
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Problem 73. Clearly

(r=1)flr)y=r"~1.

Hence
FP) =™ ¥ 4 r
-1+ -+ (-1

Wir4l

+ (" =1) 45,
where each of the quantities in parentheses is seen
to have the factor r* — 1 and hence also the factor
f(.r). Thus
f(#*) = ( a multiple of f(z))+ 5.

Remark. A direct verification by long division
is not difficult as the pattern of coeflicients in the
quotient is fairly evident.

Problem 74. The polynomial f(xr) — 5 has the
§ integral roots a, b, ¢, d, and hence

fr)=5=(r—a)(r = b)(r-c)(z - d)g(r).

where g(r) = r™ + byr™~' 4 ... +b,, and the
by ha..... b,., are integers. Thus, if r is an integer,
the equation f(.r) =8, or

(r—a)le =b)(r —c)(r - d)glx) =3,

implies that at Icast 3 of the 4 integers .r—a, r—b,

r—c¢, r—dareequal to 1 or —1, so that two of

them would be equal. a contradiction.

Problem 75. For all i and j

a,, <max{ay.ap,....a,} = M,
SO
m, = minfay,.az,....,a,,}
<mn{My. AL, ALY = M
and hence

m — max{n m,, ... m,} <M.

Problem 76. [ et us try to construct the longest
possible geometric progression. Suppose it has »
terms, that its common ratio (necessarily rational )
is " in its lowest terms and its smallest term is a.
The common ratio should be as » matl o pors sl
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5o p should be ¢ + 1. In addition, the last term
ap™!
n-—1
is divisible by a large power. Since 3° = 729 we
see that a sequence with at least 7 terms must start
with 729 or a multiple of 2 = 64. A little thought
suggests that the best that can be done is to start
with 128, take a common ratio § and be content
with 6 terms {128.192. 285, 432.648.972}.
A more “formal™ proof follows. The geomet-

tic progression

is an integer, so ¢"~! divides a. Thus a

128, 192, 288, 432, 648, 972

with common ratio g shows that the longest se-
quence is at least of length 6. Consider now the
geometric progression

W<a<ar<ar’® <---<ar""! < 1000.

where the n terms are all integers and r > 1.
Clearly r must be rational, say r = £ with p >
q > 1, (p.q) = 1. Because ar"~! = n(s)""' is
an integer, ¢"~! divides . We may take p = g+1,
for the progression

1005a<a("+l) <
q

< 1000

has length n and the entries are all integers (since
q"~" divides a) in the required range. If ¢ > 3,
then

n-1
100020(%1) Z(q+l)"" qul-l.

ie,n <5.Ifg=1, then

q+1
q
ie,n<4.Ifqg=2 then

n 1 gy H-1
1000 > o (_"“) =a(:‘)
q 2
gy -1
> nm(j.f) ,

i.e.. m < 6. Hence the longest sequence has length
0.

n-1
10002 a ( ) = (12"_l 2 100'2"-I.

Mablesy 77 First solunon. The identity
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- yn
= (r-y)@" 4"y 42y )
shows that " — y" is divisible by x — y. Hence
8" — 6" is divisible by 2, 3" — 1" is divisible by
2, and 1" 4 8" — 3" — 6" is divisible by 2.
Similarly, 8" — 3" is divisible by 8 — 3 = 5,
6" — 1" is divisibleby 6 — 1 = 5, and 1™ + 8" —
3" — 6" is also divisible by S.
Thus, 1" +8" —3" — 6" is divisible by 2 and
5, and hence by 10.

Second solution.
Also, mod 5,

The number is obviously even.

1" +8" - 3" - 6"
=1 (543" -3 - (5+1)"
=1"+3"-3"-1"=0.

Thus, the number is divisible by 2 and 5 and hence
by 10.

Problem 78. The three sides of each“interior”
triangle determine 6 points on the circle. Con-
versely, every set of 6 points on the circle de-
termines a triangle. Hence the number of tnangles
is 2) = &(nni—ﬁ)g' (Generalize to points on a
sphere and tetrahedron.)

Problem 79. Since

1 — 1= ﬂn(an -1)= anﬂn—l(an—l - 1)

S = QnpQp-) ...al(al - 1)
= QpQp-) - 0Q),

the result follows easily.

FIGURE 98
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Problem 80. Note that

1 1 1 1 1
3ti717172
1+1+1+1 4(l)=l
5 6 7 8 8) 2
l+i+.._+i>8(i)=l
9 10 16 16) 2

and so on. Hence

1 11
I+ -+-+->142
tytztg> +(

23 8

1

)
11 1 1
1+-+-+---+—>1+3(§)

1
2" 3 16 ﬂ

11 1
l+-+-+- +—>1+4(

and so on. For example 1+ 3 +  +--
14198 (1) = 100.

Comment. More generally, show that if a and d
are positive then /N can be taken so large that

11
- —— 4

atazrd > 100.

1
e+ (N-1)d

Problem 81. First solution. By the Arithmetic-
Geometric Mean Inequality
aay--ra, 1 ap Qn
f 172 TR (DA p 2442
biba b -n( ot )

and

biboy--- n
n/msz(b_um...w_).
aaz - Q, n\a a2 a,

Since the expressions on the left are reciprocals of
each other, one of them must be at least as great
as 1, and the result follows.

Second solution.
Chest, D.4)

() G2

Consequently one of the factors on the left hand
side must be > n. There is equality if and only if
a, = b, for all i.

By Cauchy’s inequality (Tool

Problem 82. If jag| # 1, a solution is obvi-
ovs For it is any multiple of ao then f(m)
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is divisible by ao. In fact, infinitely often f(m) is
a proper multiple of ag, since f(m) can assume
the values ap and —ap only a finite number of
times. To find a solution when |ag| = 1, proceed
as follows. Choose any integer & for which f(k)
is not equal to 1 or —1. (This is always possible.
Why?) Let p be any prime divisor of f(k). Then
f(k + rp) = f(k) (mod p). Furthermore, since
a polynomial can assume any value only a finite
number of times, f(k +rp) is a multiple of p dis-
tinct from +p for all but finitely many values of
7.

Problem 83. Let f(n) denote the maximal num-
ber of regions determined by n lines. A new line
[—the n + 1th—is intersected by the n lines, cre-
ating n + 1 segments on [, each of which divides
a region into two, for an increase of n + 1 in the
number of regions i.e., f(n+1) = f(n)+n +1,
n > 1. Repeated use of this, and the obvious
f(1) = 2, shows that

fn+1)
=n+1+ f(n)
=(n+l)+n+f(n-1)

=(n+l)+n+(n-1)+f(n-2)

=(n+l)+n+n-1)}+---+2+ f(1)

=(n+l)+n+(n-1)+---+2+1+1
_ (n+2)(n+1)+l

2
or, equivalently
1
fln) = ("J'T)" +1, n=12,....

(Consider the situation in space with n planes di-
viding space into solid regions.)

Problem 84. First solution. If f(m,n) denotes
the number of paths from (0,0) to (m,n), it fol-
lows (see Figure 99) that

f(m.n) = f(m-1,n) + f(m,n-1),
m>1, n>1, (%)

f(m,0)= f(U,n) = 1.
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(n, o) {m n)
1
3
! 3| o
I ED
fo.o)r 1 1 1 (m_o)
FIGURE 99
[
RRUUUURRURRU
FIGURE 100

Using this recurrence, we can compute
J(m.n) for small values of m. n. These are indi-
cated in the diagram. Along the diagonal joining
(1,0) to (0, 1) the numbers are: 1 = (}). 1 = (g).
Along the diagonal joining (2,0) to (0,2) they are
1=(35), 2= (3. 1= (?). Along the next diag-
onal they are: 1 = (3). 3= (3). 1= (3). These
suggest that f(m.n) = (™*"), and it is easy to
verify that (™*") does indeed satisfy the system
(*)-

Second solution. Every path from (0.0) to
(m.n) is described by a sequence of m symbols
R and n symbols U arranged in a straight line—
the R corresponding to a step “right” and the U to
a step "up”. For example, the path in Figure 100
corresponds to RRUUUURRURRU.

The number of sequences (of m R's and n
L,’S) is (m'-:-n)’

Problem 85. Subtracting the second equation
from the first yields

a.’._b2

y—ur-— . where p=r+y+3;



SOLUTIONS
hence
; 2
. . (a2 -0
2(12 +.ry+y‘!) -(y-r=2"- (———2——)
and similarly
2(y2 +yz+2%) - (- y)?
2
oz #=E)
=2 .
2(22 4z 41%) —(r-2z)?
212
P Gl )
P

The sum of the last three equations reduces to

2% = 2a* + 0 + &)

(a® - 82)% + (2 - @)* + (2 - a?)”
pz

and the solutions of this quadratic equation in p?
are

2% = a® + b + I £ {6 (a®V? + b*? + c*a?)
-3 (o +b4+c4)}%. (x)
In a triangle ABC, with sides a, b, ¢, let
P be any point inside and let r, y, z denote the
distances from P to the vertices (Figure 101). It is
well known, but not easy to prove, that if all the
angles of triangle ABC are less than 120°, then

the point P for which r + y + 2 is a minimum is
located such that

ZAPB = /BPC = ZCPA =120°.

In this case (1), (2), and (3) clearly hold—they
are just statements of the cosine law for triangles,

FIGURE 101
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and («) simplifies to

1
pe {a"’+b"’+c"’+4A\,/:§}z

2

where A denotes the area of triangle ABC.
Comment. See Comment, solution to Problem
30.

Problem 86. Let v,, v2,...,v be the six
points. Of the 5 edges joining v, to the other ver-
tices, at least 3 are of the same color, say v; is
joined to vy, v3, vy by red edges. If the triangle
vpv,14 has all edges blue we are done. If one (or
more) of the edges of triangle v,u3v, is red, say
V203, then triangle vy vous has red edges only.

Remarks. In fact, there must be at least two tri-
angles which are monochromatic! It can be proved
that if 16 points in space are such that no three
are in a line, and the 120 edges joining them in
pairs are painted using 3 colors, then there is a
monochromatic triangle.

Problem 87. Repeated use of the identity

1 1 1

P J— + ——

ko k41 kik+1)
will lead to infinitely many representations, such
as

1—1+1+1—1+1+1+1

236 2 3 7 42
_1+1+1+1+1
T2 37 43 1806
_Lror 1
T2 46 12
. r.1.1
25 6 12 2

and so on. It is possible to start with any repre-
sentation of | as the reciprocal of finitely many
integers and to use the above identity to obtain a
representation with distinct reciprocals.

Problem 88. The circle can be divided into any
integral number of pieces of equal areas with
straight edge and compasses. For simplicity, we
ulivare the method for n = 4. Divide a diameter
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FIGURE 102

into 4 equal parts and draw semicircles as indi-
cated in Figure 102.

Problem 89. Suppose the path determined by
the listing py.pa.....pn crosses itself (see Fig-
ure 103). We show that there is a shorter path.
Assume that forsome iand j, 1 <i<j<n—-1,
the segments p,pi41. P, P,+1. cross, at the point 7
say. Then

PiP) + PPy <PT +Tp; + Popi7 + Thm
=D + D30 n
so the path

Pip2---pipPyPy-1 - *Pi42Pi41P) 410342 Pn
is shorter than the path

P2 PP PP+ P
Problem 90. We have P(z,y) = (r—y)Q(x,y)
and P(z.y) = (y — r)Q(y. 1), so that

0= P(r,y) - P(y.1)

= (7 - Y} Q. y) + Q(y. 1)),

ie.,
Qlr.y)+ Qy.r) =0,
pn \\\ / pl
\\\.r .
RN
p"l \\ plﬂ
FIGURE 103
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and hence Q(z,r) = 0. Thus, the polynomial
equation Q(x,y) = 0 has a solution z = y, so
x -y is a factor of Q(z,y).

Comment. For extensions of this result see Crux
Mathematicorum 14 (1988) 139, # 4.

Problem 91. Because Ay and Ag are not used
as labels, triangle FpFsP; must be labelled A,
Triangle PyP;FPs must therefore be labelled Ag,
triangle Py P3P must therefore be labelled Aj,
triangle Po P, P3 must therefore be labelled A;,
triangle P, P, P; must then be labelled A, tri-
angle P3PyP; must be labelled A4, and triangle
Py Ps P; must be labelled As. This is the only la-
belling which satisfies the given conditions. See
Figure 104.

Try to generalize this to an n-gon dissected
into n — 2 triangles.

Problem 92. Since OT is perpendicular to TS,
lines PR, OT and QS are parallel. Hence
P ) o«RT=TS
TS 0Q
Thus, in triﬂgles ROT and SOT, OT is a com-
mon side, RT = ST and ZRTO = £STO (both
are right angles). Therefore these triangles are con-
gruent, and OR = OS. See Figure 105.

Problem 93. First solution. The proof is by
mathematical induction. The result is valid for

e 13y
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P

i

R T N

FIGURE 105

n=1 Assume it is valid for n = k. Then

(1 +¢1|)(1 +ﬂg)"'(l +ak)(1 +ak+|)
k
> %(l +ap+---+ak)(1 +apsr)

We now show that
ok k+1

2 2
i >
k+1(l+s)(l+a)‘ k+2(1+s+a).

where a = a4y, § = a; + -+ + ax. Multiplying
out (and rearranging terms) we obtain

2(as— k) +k(e-1)}(s-1) >0,

and this is valid because a > 1 for all . Thus the
result is valid for n = k 4 1 and by induction for
all n. There is equality only if a, = 1 for all <.

Second solution. The given inequality is equiv-
alent to

1+a 14+ay l1+a,
2 2 2
N l4+a+a;+---+a,
- n+l

or, with z, = (a, — 1}/2 > 0,
(1+z)(1+22)--- (1 + z,)

2
214+ — -+ Tp);
2 +n+1(11+ +z,)
‘B
A

FIGURE 106
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but
L+ )(t+22)---(L+r,)

>2l+n+---+ 0,

.

>1+

— ()

Problem 94. It is apparent that angle X' B} is
a right angle and angle A.X'B is constant. Hence
angle APB is constant, so the locus is a circle
through A and B. Sec Figure 106.

Problem 95. The given examples suggest the
general law

1 1
-_—= — +
n n+l

1
n{n+1)"
which is easily established. After putting this in
the equivalent form

11 1
nn+l) n n+l

n=123,...,

n=1223...,

we evaluate , for 1 <i < j,

1 1 )
Gy T Gena+n TN G

(1 1 . 1 1

T\ i+l i+l 142

o ()G 7i)
j-1 3 J oj+l

N
i J+1
Thus we must solve
1 1 1
noi g+l
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Comparing this with
1 1 1

n n-1 (n-1)n

(which is the first equality with n replaced by
n — 1) we have the solution

i=n-1, j+l=(n-1)n

Problem 96. First solution. Clearly

1 1
tana =1, tanB=§, tan'y::—;,
s0
tanf + tanvy
t -
an(B+7) 1 -tanftany
141
= 2+l3|=1=tana
1-1.1
273

and hence 8 + ¥ = a. See Figure 107.

B P Q C

FIGURE 107

Second solution. Let CD = 1. Triangles DBQ
and PDQ are similar because in triangle DBQ,
BD = V10, BQ = 2, QD = /2, and in triangle
PDQ, PD = /5, DQ = V2, PQ = 1, so the
sides of the former are v/2 times the sides of the
latter triangle. Therefore ZPDQ = £DBQ =
9, and the result follows by applying the exterior
angle theorem to triangle PDQ.

Problem 97. First, we make some comments.
The presence of the absolute value signs makes
the sum “indigestible.” However, it is symmet-
rical with respect to the {r,}, so that changing
their order does not alter it. Thus we can ar-
range that the largest possible value of this sum
can be obtained with a choice of {x,} for which
0<r €rp<-+-<r, <1 Then |r,—r,| can
be written without an absolute value sign.

The sum should be rearranged to put all the
r, terms together for cach o, Thaw ilare .o, i
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positive coefficients can be made as large as pos-
sible and those with negative coefficients as small
as possible (in keeping with0 < z; L2 < --- <
r, < 1). To get a feeling for what is happening,
considern=4,0<z) <19 <3<y <.

S = |oy = | + |71 — z3| + |71 — 24
+ |22 — 23] + X2 — 24| + |23 — 74|
=(r o)+ (3 —-x)+ (x4 —11)
+ (75— 22) + (x4 — 22) + (24 — 73)
= -3z, - T2+ z3+ 324.
Clearly S is maximized by taking ) = 12 = 0
and I3 =Ty = 1.
Now we proceed to the proof.
Assume without loss of generality that 0 <

) €12 <-+- <z, <1 Let S denote the sum.
Of course

ifi>j,
ifi <j.

_ Il_:r]
|-":l_1'.1|—{1."_1.l

Hence, forj = 1,2,...,i-1,|z,—1,| = 1;—1;5,
while for j=i+1,...,n, |1, — 25| =1; - x;.
Thus

S=Zn:x.(i-1-(n-i))
=1

= zn:(Zi -n-1)z,.
=1

If n is even, say n = 2m, we have

2m m
S= Y @-2m-1)r,-Y @m+1-2)s,
=1

r=m+1

2m
< Z (20 -2m-1)

1=m+1

(corresponding to .ry = --- = r,, =0,

ITmyp1 = - =T = 1)

=14+3+45+--+(2m-1)

m @m)* n?
?(.hn) == =7

i.e

.q':(fj)’_
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If nis odd, say n = 2m + 1,

2in41

S= Y (2i-2m-2,

1=m42

m+1

=Y @em+2-2i)

=1
2m+1

< Y @i-2m-2)

i=m42

=24+446+---4+2m

=2(1424---4+m)

o= () (:2)

Thus S(n) = [%2] .

Problem 98. The suggested generalizations are

1 + 1 _ 4n
Mm-1 2n+41 4n2-1'

n=1223,...,

(4n)*+(4n?-1) = (4n2+1)%, n=1,2.3....,

and these are easily established.

Problem 99. More generally, suppose John
tosses n+ 1 coins and Mary tosses n coins. Then,
either John tosses more heads than Mary does or
John tosses more tails than Mary does—but not
both. (Check this out!) Since these two outcomes
are symmetric, each occurs with probability 3.
Exercise. From this result obtain a binomial sum
identity.

Problem 100. One can rearrange the sides of the
hexagon so each pair of consecutive sides are of
length a and b. Since all the angles of ABCDEF
are congruent, each is 120°. By the law of cosines

AC = 2R2(l—cos 1200) = a*+4 -"1. Db 120

79

FIGURE 108

or

3R? = a® + ab+b%.

Problem 101. Let z be the base.

(a) 10201 = 2% + 272 4+ 1 = (22 4+ 1)%

(b) 10101 = z%+2%41 = (24 2+1)(x%-2+1),
and (since r > 2) both factors exceed 1.

(c) 100011 = z° 4+ 2+ 1 = (22 + x4 1)x
(23 — 22 + 1), and again both factors exceed 1.

Problem 102. Denote the n people by p,
P2,...,pn and a call from p, to p, by p, — p,.
Let f(n) denote the minimum number of calls
which can leave everybody fully informed. The
particular sequence

Pt = Pny P22 Pra---Pn-1 — Pn.
Pn = Pn-1y Pn = Pn-2y---,Pn — D1

contains 2n — 2 calls and leaves everybody in-
formed, showing that f(n) < 2n - 2,

Suppose we have a sequence of calls which
leaves everybody fully informed. Consider the
“crucial” call at the end of which the receiver (call
him p) is the first to be fully informed. Clearly,
each of the n — 1 people other than p must have
placed at least one call no later than the crucial
call (how else could p be fully informed?) Also,
each of these n — 1 people (being not fully in-
formed) must receive at least one call after the
crucial one. Hence the given sequence contains at
least 2(n — 1) calls.

Yhus fin) =2n -2,
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...........

L eaceetccncan

FIGURE 109

Problem 103. Let k > 2 be an integer. The
square can be subdivided into 2k nonoverlapping
squares as indicated by the “solid” lines in Figure
109 (which shows the case k = 4). Subdivid-
ing one of these squares into four nonoverlapping
squares yields a subdivision into 2k + 3 squares.
Thus the square can be subdivided into n squares
for each integer n > 6. (Can a square be subdi-
vided into 2, 3, or 5 squares? Why?)

Problem 104. First solution. Let @ = AB,
T=AC. 7 = AD. Then, the given condition
is
— — —,2 —02 —_ —2
v +(W-T) =7 +(v 1)
— — 2 —v2
+(W-7)+uw.
Hence

T VAT W2 TW+T- T
-

This leads to

(T+T-7)P=7 - W+7 -7
— g —
+w-w-—2~Lw-v
27 -W+2w- T =0

Y
[y

or ¥ = uw+w. Thus ABC'D is a parallelogram.
Second solution. Let A, B. C, D have the re-
spective rectangular coordinates in space (r.(.0),
{0,0,0), (s,7,0), (n.v,w). (There is no loss of
generality in taking 13 at the origin and the plane
determined by 1B(° as the .r, y planc.) We have
to show that w =r + 5, v =1 sadd w

FIVE HUNDRED MATHEMATICAL CHALLENGES

FIGURE 110

The given relation among the lengths of the
sides is equivalent to

(s—1)2 + 2+ u? + v? + u?
=48+ + (u—s)2+(v-t)?
+uwl+ (u-r)?+v*+ ol
or

“ors=(w—1)+ul+r’ +5°
+ u? = 2us — 2ur

or
0=@w-t+w+(r+s—u)

Hence v —t = w=r+ s —u =0, as required.

Problem 105. Our proof is indirect. Assume that
there are F faces and that no two faces have the
same number of edges. The face with the fewest
edges has at least three, the next face at least four,
and so on. The face with the most edges has at
least F' + 2 of them. Since there is a bordering
face for each edge of this “greatest™ face, there
are at least F' + 3 faces, a contradiction.

In a similar way one can show that there are
at least two pairs of faces such that the faces of
cach pair have the same number of edges. Addi-
tionally, one can obtain a dual result by replacing
face and number of edges by vertex and valence
(= number of edges incident with a vertex) respec-

wiehy



SOLUTIONS

Problem 106. Let BC intersect PR in T. We
have

area quadrilateral PSBT

= area APSB + arca APBT

=M(SB+BT)

Since a clockwise rotation of 60° about P carries

A onto B and S onto T, we have that BT =

AS = 2. Hence SB + BT = 3 and the required
sf

area is —

Problem 107. First proof (by induction). The
result is valid for n = 1 Assuming its validity for
n= k, 1.e..

RIS SIS
2 3 2k -1
ko k+1 2k -1
we deduce that
S RN S S U
2 3 2k-1 2k  2k+1
=(1+;+ ;)
ko ok+1 2k—-1
l 1
2k 2% +1
= 1 +...+ l
k+1 2k-1
1 1 1
+(z~“zz)+5m
1 1 1 1
Sttt taa
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Second proof.
S
2 3 4 2n -1

Problem 108. First solution (by mathematical
induction). Since

2+h(1)=2+1=2(1+%) = 2h(2),
the statement holds when n = 2. If
n+h(l)+ -+ h{n—-1) =nh(n)

holds for some n > 2, then, adding 1 + h(n) to
both sides, we deduce

n+1+h(1)+h(2)+-- +h(n—1)+ h(n)

=nh(n) + 1+ h(n) = (n + 1}h(n) + 1

=(n+1){h(n+l)—ﬁ—l}+l

=(n+1Dh(n+1),

i.e., the statement holds for n + 1.

bothering the players.
any other branch of knowledge.
mathematics for many years,” he replied .

”» e

replied,

When Leo Moser was playing in the chess tournament in Toronto in 1946, a heckler was
“Chess is a complete waste of time,” he said.
How about mathematics?” Moser asked.
“and know that chess has no relation to any of the
four branches of mathematics.” “What branches do you mean?" Moser asked. *“You know,” he
“addition, subtraction, multiplication and division.”

“ It has no relation to
*I have studied
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Second solution

n 4+ h(1) +h(2) + -

=n+l

1
1_
+1+3

1
14 -+
143

+h(n-1)

[ A

1 1 1
+1+§+§+‘“+ 5

1 1 1 1
+1+§+§+“‘+T_—2+

=n+(n—1)1«1—(11—2)%+(n—3):l—3

n—1

More generally, if s, = a; + a2 + -+ + an for
n=123..., then
n—-1 r n—-1ln-1
Zsr YD a=) > o
r=1 t=1 t=1 r=t

=nz::(n-')ﬂt
S-S

-1
n—1
=ns,- — Z tﬂ;.
=1

In the present situation, #; = 1 and we obtain the
desired result.

Problem 109. For any k > 0, the five integers
E+ 1, k+2...,k+5 leave, on division by 5,
remainders of 0, 1, 2, 3, 4 in seme order. Tha,
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modulo §, the given sum is congruent to
0" +1"+2"+3" +4" =1+2"+3" +4"

Next, observe the following congruences modulo
5, all easily established for a nonnegative integer
m:

2im =, ot =9, pimtl =y, 2 =3,
34m =1 34m+l = 3, 34m+2 =4, 34m+3 = 2’

44m =1, 44m+l =4, 44m+2 = 1’ 44m+3 =4,

Hence, the given sum is congruent modulo 5 to

1+141+1=4 if n=4m

1+243+4=0 if n=4m+1
1+4+4+1=0 if n=4m+2
1+34+2+4=0 if n=4m+3.

Thus the given sum is divisible by 5 forany k& > 0
and any n not a multiple of 4, and not divisible
by 5 for any k > 0 and any n a multiple of 4.

More compactly, the solution may be pre-
sented as follows. Modulo S. we have

1I"+2"+3" + 1"

=1"+ 2"+ (5-2)"+(5-1)"
=14+ (-1)"+2" +(-2)".
If nis odd, (-1)" = —1 and (-2)" = 2", s0
I"+2" +3"+4" =0.

If n is even, then n = 2m. and (-1)" =1,
(-2)™ = 2", so that

17 +2" 43" +4" = 217" 4 2°7)
=2[1+47]
=2{1+(-1)"],

which is 0 when m is odd and nonzero when m
is even.

Hence 1™ +2" 4+ 3" + 1" is divisible by § if
and only if 1 is not a multiple of 4.

Problem 110.  Construct any triangle ABC with
LA =0, 4B = J and aline DE whose length
is equal to the perimeter of ABC. Construct UV
such that 'L = £ and triangle ['V11" with

AR DE
AT = 1. This is the required triangle.
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Problem 111. Ifwe think of y and : as fixed and
. as the variable, so that P(.r. y, ) is a polynomial
in @, we see that: r — (—y = 3) is a factor of
Plr.y.z) if and only if P(-y - z.y.2) = 0.
Thus, we seck values of & for which P(-y -
2.y.2) = 0. This identity is

(-y-2P+yt+
+h((~y-2r'+¢* + ) x
(- w=-:2P+y+:%) =0
Simplifying, we obtain
—(5+6k)yx(y+ ) (K +y:+27) =0,
so that k = - 2.

For the second part, let .r. y. = be roots of the
cubic

P —at* +bl—c=0. (n
wherea =r+y+:. b=ry+yz+zr. ¢ =ry:.

Let S, =" +y" +:2".
Then

Sy =aand S = a*> - 2b. (2)

Sy is obtained by summing (1) over the roots,
which yields

Sy —aSa 4+ bS), — 3c=0.

From (2),
Sz =a* - 3ab + 3c. (3)

Multiplying (1) by  and ¢? respectively, and sum-
ming over the roots produces

S| —(lS:; +b52 —CS| =0,
S; —aS) + bS-; — ¢Sy =0,
which, together with (2) and (3) yield

S, = a* — 4a%b + dac + 2%,

S.'; = 05 - 5a3b + 502(’ + 5;!"" - oY
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Finally,
6+ +2") =+ + )+ 2 429
= 685 ~ 5545 = o*(a* — 5ab + 15¢)
=(r+y+){(r+y+:)
=5 by 4 )y 4y 4 or) + 150y}
=(r+y+ 27t + 8+ 2+ Grye
APyt Pyt e+ =)}
Problem 112. From (1-p)? > 0, it follows that
1+ p+p* > 3p >0, and similarly for g.r and s.

The product of the inequalities yields the desired
result.

Problem 113. Write £ = [r] + ¢ where 0 < ¢ <
1. Then

[nr] = n[r] + [ne]

e ]

since [ne] < ne < n.

so that

Problem 114, A generalization for set A is:

i(—n'“ (’:)} =Y % n=124.....
=1

=1
This can be proved by induction. The equality is
valid when n = 1. Assume that it holds for n = k:

i k
M\ 1 1
(=15
; 1) ; J
Then

k+1 , E+1)1
2 l)“( i )7

Fom (1))

k41 2
— —1yt!

4
¢\_‘l-|\'+‘("_') .
= ;

—

~ ] —



84

_ 'i’( 1y (k +1

+{n+

k+1 1 1
—{1-(1-D** }+{l+§+"'+l-}

SN——
+|-
—

DO b

L+1

—1+1+1+...+1+L
B 23 kT k+1

A generalization for set B is:

Z( 1)'“(){1+ 4 +1} le

n=1223,....

We give a direct proof. Interchanging the order of
summation, we obtain, for the left side,

()3
- ¥ Y ()

=};}?§<-l)‘*‘(?)

S S [z )
+(-1)"“}

=;;{( e (2D + (7))
-("7 -G e

—Z« (0 )=—>:( (%)

=-(l—u—l)}=1,-

The relationship between the sets of equations A
and B can be generalized. Suppose a sequence
() of real numbers is given and that the se-
quence (y,,) is defined by

= i(—])"LI (':)1, n=123,....
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Then
= - —_1yptl n
o= 20 ;)
We need to show that, for each n,
n n 1 i
I, = Z(_l):H (2) Z(—I)JH (]‘)m-’
=1 =1

Reversing the order of summation, the right-hand
side becomes

g(—l)’z,- g(_l)‘(z) (;)
=1, + 2::(-1)’% g(-l)' (1:) C)

Bu, whenl1 <j<n—1,

S ()

n=123.....

il
‘Z‘ ) T TR

! | )
= 2"” -3
=(?)§""’(?3)

n-) s
()R )

r=0

—(=1v{™\ 1 - 1" =
=(=1) (j)(l )" =0.
The result follows.
This gives an alternative way of obtaining
either set of equations A and B, given that the
other set is valid.

Problem 115. By considering the convex hull
of all the points it follows that we can always
choose two of the points, say A and B, so that
the remaining 2n + 1 points lie on the same side

of line AB. Label these Py, P, ..., P34 insuch
a way that
LAPB< LAP,B< --- < LAPy,\B.

In fact, these angles are all different; for, if
. AR = ZAP,B, then the four points
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A.B. P,. P, would all lie on a circle. Hence, the
circle through AB and P4, has P,. B...., P,
in its exterior and Py 4. Puy3.---. P4y inits
interior.

This is a generalization of Problem 26. (Ex-
tend the result to points in space and a sphere.)

Problem 116.  First solution. A limiting case oc-
curs when two of the segments are parallel to the
plane, e.g., @ = b = co and ¢ = d, the perpendic-
ular distance from P to the plane. Consequently,
we have to show that

1,11 1
a2 B2 2 g
Let A, B, C be the points, in the plane, at which

the segments terminate. The volume of the tetra-
hedron PABC is @ = E where A is the area

of the triangle ABC'. The square of the area of any
plane figure is equal to the sum of the squares of
the projections of the area on three mutually per-
pendicular planes. Thus

A= lil(a"’b2 + b2 + *a?)
so that
b’ = 4d’A? = d*(a®8? + b3c? + *a?)

and

Lyl 1

a2 b2 2 4
Second solution (by analytic geometry). With P
as the origin and the three line segments as axes

b 1 —ope— fp—>}
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of coordinates, the equation of the plane is

roy oz
; + B + z =1
Thus, the distance from P to the plane is given
by
1

Vaitbh 24 c2

Problem 117. The left inequality holds for any
three positive numbers, since

(a+b+c)2 = 3(br +ca + ab)
= Slla=b7 + (b= ) + = o] 20

To prove the second inequality, we use the condi-
tionsc+a>b a+b>c b+c > a(satisfied by
the side-lengths of a triangle) to deduce that

la—bl<ec. |b—c/<a, |c—a|<b,

and hence
4(bc 4 ca + ab) - (a + b+ ¢)?
=c—(a-b’+a’-(b-c)?
4+ 62— (c-a)?
>0.

An alternative approach to the right-hand inequal-
ity is to observe that {(bc +ca +ab) — (a+b +¢)?
corresponds to 16 times the square of the area of
a triangle of sides /a, Vb, /c. (Observe that if
a, b, c are the sides of a triangle then so are a'/",
b/ /" whenever n > 1.)

OSSR ™Y
—>l-<—°:—>|
S

FIGURE 111
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Problem 118. First solution. More generally, let
U, Uy denote the speeds of Andy and Bob respec-
tively, and let 1, 5 denote the times it takes Andy
and Bob to first reach towns B and A, respec-
tively, after they first pass each other. The progress
of the two drivers can be illustrated by the “world-
line” diagram of Figure I11.

If t is the time elapsing between noon and
their first passing, it follows from the diagram that

vt vgt
Vg = —, B = —
ta t,

and hence

v, t
t= Vi, ==,/2

Up ta
For the data of the problem, ¢ = 30 minutes and
v, = 60 kph.

To find the subsequent times of meeting,
just keep on extending the world lines of Andy
and Bob as indicated. One then obtains a peri-
odic pattern after five passings which is centro-
symmetric about the third passing, which occurs
at town B. It follows that the nth time of passing
is 30 + 60(n — 1) minutes past noon.

Second solution.
yield the equations

The conditions of the problem

(t + 20)v, = (t + 45)40 = (v, + 40)t = 60d,

where d is the distance in kilometers between A
and B, v, is Andy’s speed in kph, ¢ is the time
to first passing in minutes and the factor 60 re-
lates the units of time. This gives 20v, = 40f and
vyt = 45- 40, whence v, = 2t and 2% = 45- 10.
Thus t = 30 minutes, v, = 60 kph and d = 50
kilometers.

Afier the first meeting, the cars are separating
at a relative velocity of 100 kph for 20 minutes
until Andy arrives at B, and then approaching at
a relative velocity of 20 kph for 25 minutes un-
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til Bob arrives at A. During this time they have
separated 1o a distance of 3% kilometers, then
approached to a distance of 25 kilometers. When
Bob leaves A, he is approaching Andy travelling
from B, with a relative velocity of 100 kph. Thus
they will meet 15 minutes later. The total time
between first and second meetings is 60 minutes.

A similar argument establishes that the third
meeting takes place at B 60 minutes later, and,
now by symmetry, subsequent meetings occur at
60 minute intervals. Thus the two pass for the nth
time at 30 + 60(n — 1) minutes past noon.

Problem 119. Since £BCG = £GCO = 60°
and B.C,0,G are concyclic, it follows that
ZBOG = /GBO = 60° and hence triangle
BGO is equilateral. Let X be the center of the
larger hexagon . A counterclockwise rotation of
60° about G maps B and C onto O and X re-
spectively. Hence BC = OX, and

FO=FC+CO=2BC+CO
=20X+C0=0X+CX=0J.

Problem 120. First solution. The given condi-
tion is equivalent to

(1+z)"=142" (mod2). (¥)
Now observe that
(1+z=1+7> (mod2),

(M+z)=(14222=14+2" (mod 2),

and, using mathematical induction, we can prove
that

k -

(1407 =1+27  (mod2),

i.e., () holds if n is a power of 2. If n is not a
power of 2, then

n=2"l +2k'-‘+...

conciseness, logic and surprise.

An elegant solution is generally considered 10 be one characterized by clarity,

Charles W. Trigg, Mathematical Quickies (Dover, 1985), p. vii
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with at least two distinct k,’s. Then
(+z)" =1+ (1 +2)27
= (1 +1"’*') (1 +2%%) -+ (mod 2)

and (+) is not satisfied. Hence (7),...,(,",) are
all even integers if and only if n is a power of 2.

Second solution. To motivate the approach, con-
sider why 495 = (') has to be odd. We can write

12y 12-11-10-9
4/ 4-3-2-1 °

Look at how often 2 occurs as a factor in both
the numerator and the denominator. The highest
power of 2 dividing 12 is 4, the same as the highest
power dividing 4 in the denominator. Therefore,
necessarily, 2 is the highest power of 2 dividing
the next even number 10 or 2 in the two products
respectively. Thus every factor 2 in the numerator
will cancel out every factor 2 in the denominator.
An extension of this argument can be applied to
n = 2*p, where p is odd, to show that () is
odd.

Consider
n\ nn-1)---(n-2F+1)
2k ] 2k(2k —1)---1
2%—1 .
— H n-—1t
pairs 2k — 4

For each i with 0 < i < 2¥ — 1, write i = 27¢
where g isodd and r < k. Then 2 —i = n -
i = —i modulo 2" and modulo 27*!. Hence 2
divides n.—i and 2% — i to exactly the same power.
Thus (i) is odd. If n is not a power of 2, then
p>1land 1< 2 <n—1, sothat not all (7).
1 <j<n-—1,are evenlf n is a power of 2, a
similar argument shows that the numerator of (7).
1 < j < n-1,is divisible by a higher power of
2 than the denominator.

Problem 121. z — y is a divisor of =" — y",
n=1,2,....Since 2141-1863 = 1770-1492 =
278, the given expression is divisible by 278. Sim-
ilarly, 2141-1770 = 1863—1492 = 371, which is
relatively prime to 278, and also drvides the yivep
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expression. Hence (278)(371) = (53)(1946) is a
divisor.

Problem 122. Consider the polynomial
Q(r) = rP(r} — 1. Using the properties of
P(x), we have that Q(r) is a polynomial of

Since also Q) = —1, it follows that

_r=D)r-2)...(x-n-1)
Q=) = —)"(m +1)!

Hence Q(n + 2) = (—1)" and so

1+ (=" (0 n odd,
P(n+2)—n—+2—{$ n even.
Problem 123. Suppose that logr = % and
let n be any positive integer. Then
J(z") nf(r)
=logz™ =nlogx = .
o) = ® = )

Hence f(x™)g(x) = nf(r)g(x™) for each n.

If f(x) = aprP+---+aqy and g(z) = byr7+
*+-+bp, then f(x")g(r) = apbyx"P+9+-- - +ayby
while nf(r)g(x™) = naybyxP*™ + - - + nagby.
Comparison of leading coefficients gives apb, =
nagb, for each n, which is impossible.

Remark. More generally , it can be shown that
logz is not algebraic, ie, y = logr does not
satisfy any equation of the form

Pu(z)y" + Paci(z)y" ' +--- + Pi(7)y
+P(z)=0

where each P,(z) is a polynomial. This can be
!
deduced from the fact that lim % =0. Or,
L—Xx
one may assume that the above is the equation of
least degree; obtain a contradiction by replacing
I by ™ and deriving an equation of degree one

lower.

Problem 124. Let the time that the driver looked
at his watch be m minutes past h (0 < h < 11).
Since the minute hand makes 12 revolutions for |
revolution of the hour hand, we have

5h + %5:m
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so that
60

m= —h.

11

But the journey took 145 minutes, and the train
left the station at a whole number of minutes past
6

the hour. Hence m — {7 must be an integer, i.e.,

(l]—(l)h— lﬁl is an integer or 60h — 6 = 0 (mod 11)
or

10k =1 (mod 11) or h = 10 (since 0 < h < 11).

Thus m = 54 % and the train left the station at

10:40 (AM. or PM.).

Problem 125. Suppose the sides have the given
lengths a. b, ¢,d with AB parallel 1o CD, and ¢ >
a, as in Figure 112, If X is on DC with DX =aq,
the triangle XBC has sides of length d, b and
¢ — a. Thus, we construct first a triangle X BC
with these sides, then produce C.X 10 D so that
CD = c, then draw the line through B parallel 10
CD, and finally locate A so that BA = a.

FIGURE 112

Problem 126. Assume that the sides of the tiles
are of unit length. Observe that the number of
them required 10 form an equilateral triangular ar-
ray of sidelength r is

143+ +(2r=1) =1~

The circumscribing triangle for any hexagonal ar-
ray of the desired type must be an equilateral
triangle, whose side-length is I, say (see Figure
113). The hexagon is formed by removing equilat-
cral triangular corners of sidelengths a, b, ¢ where
a>hb>c>0and ! >a+b

Hence » is possible if and only if

vl ] 9
n=0F-a"-b"- .
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FIGURE 113

where a>b>¢>0 and [>a+b.

Rider. If L=2l-(a+b+c),A=1-(b+c),
B=1l-(a+c), C =1-(a+b), deduce the
identity L2 - A2 B - C? =2 - > -2 - .

Problem 127. Because the polynomial P(z} has
integral coefficients and a, b, ¢ are distinct inte-
gers, it follows from the Factor Theorem that
P(a) - P(b)  P(b) — P(c) P(c) - P(a)
a-b ' b-¢ c-a
are integers. Suppose that P{a) = b, P(b) = ¢
and P(c) = a. Then
b—c c¢c-a
a-b" b-¢’
are integers whose product is obviously 1. Hence
the absolute value of each of them is I, so, con-
sequently,

a-b
c—a

la-b=b-¢c =|c-al

But this is impossible. because a. b, ¢ are distinct.

By similar arguments, it can be shown that
if ay.ay,... 0, are distinct integers, then not all
of the following can hold:

P(ﬂ|) =ay,
P(llz) =a3...., P((Iu_|) =a,.
P(ﬂ,,) =a.

Problem 128. Since ¢, = Z;;l r, and a2 =
Y icicjca Tl it follows that

n

(I.i, = Z I';" + 2a,.

=1
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Thus, the given inequality is equivalent to

(n-1) {z": 2 +2a2} > 2nay

or

>

1<i<y legn

n
(n— I)Zr? >2
1=1
or

Z (r.- 1‘])2 > 0.

1<i<;<n

The last inequality is obvious, and shows that
equality occurs exactly whenr; =rp =+ =r,.

Problem 129. For any positive value of n (not
necessarily integral), the degenerate (or limiting)
case A=, B = C =0 shows that

(k(n) +sin0) + (k(n) + sin0) > k(n) + sin%
SO
.o
k(n) > sin -

When n = 1, we have in particular that k(1) > 0.
On the other hand it is well known that (by the
Law of Sines) sin A, sin B and sin C are the sides
of a triangle similar to AABC. Hence k(1) = 0.

Suppose n > 2. Since sin 6 is a positive in-
creasing function of 6 for 0 < 6 < 3 and since
4 <1 < 2t follows that sin(4) < sin(Z).

Hence

(. T B) ( T C’)
sin—+sin— | + |sin— +sin—
n n n n

B . . A
> 2sin— 2> sin — + sin —.
n n n

Similar inequalities hold for any permutation of
A, B, C. Hence k(n) = sin Z.

Remark. This result can be extended to any real
n>1lIfu +sin%, n+sin€, u+sinf—; are
sides of a triangle, then the fact that the sum of
the lengths of two sides exceeds the length of the
third implies that

u > sin — — sin — — sin —

n n n

with symmetric inequalities for A, B, C permuted
in any order k(n) being the smalizst sek o, we
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must have
k(n)= max {sin A_ sin 5_ sin g}
A+B4C=r n n n
{ . A . B+C B - C}
= max {sin — — 2sin COS ——— 3.
n 2n 2n

For each fixed A, B + C is fixed and the
maximum is attained when
B-C__ (n-A)-2B
m > 2n

is minimum; this occurs either when B = 0 or
B=n-A, e, C=0.Then

{ . A-B A+B}
2sin €os

2n 2n

Cos

L(n) = ATE‘-—)&#

4 g 4
= 2sin — cos — = sin —.
2n 2n n

Similarly, it can be shown that

. . A B C
min sin — — sin — — sin —
A+B+C=n n n n

= —-2sin -11-.
2n

The situation for 0 < n < 1 is apparently not so
easily analyzed.

Problem 130. Repeated use of the inequality
2
(“;") > ab, fora > 0, b > 0, yields

2

2 2
(n;—l) =(2+12T—1) >2.-(n—1)

2 2
n+1 1+n
(2)=(2)21'"'

Multiplying all these inequalities shows that

2n
("_'*'_1) > (% or (n+1)" > 2"nl (i)
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From this we deduce

=(n+1)"(2n+1)" (ii)

This last inequality follows from the obvious 3n +
3<4n+2forn=1.23,...

Equality occurs in both (i) and (ii) only if
n=1.

Inequality (i) can also be proved by in-
duction. Assuming its truth for n, then, since
(1 + n+,)"+I > 2 (from the Binomial Theo-
rem), we have

n+2"' > 2n+ )" 2 2n+1)2" n!

=2 (n+ 1)L

Problem 131. First solution. Leta = 2 + 22 +
23, b= 2120+ 2223+ 2321, € = 212223 So that 2y,
22, 23 are the roots of the cubic 23 —az2 +bz —c.
The given conditions imply that ¢ =1 and a = b.
Thus the cubic reduces to 23 —az% +az -1, and
this obviously has I as a root.

Because of (1), (2) becomes

1 1
D+t —=—+—+222,

2233 2 3
so that (1-2)(1-z) = (1- 1) (1-1).
Upon multiplying by =225, we get (223 — 1)(1 -
2)(1-25) =0.Thusza =1, z3=1lorzz =1,
in which case z; = 1.

Second solution.
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Problem 132. It suffices to prove that the me-
dian from each vertex is at least as long as the
angle bisector from the same vertex. Accordingly,
let A be a vertex of AABC, AM be the median
and AT an angle bisector. Assume without loss of
generality that AB < AC.

FIGURE 114

—Since -% = —"}%. it follows that BT <
M.
Consequently AT < AM.
(To see this, note that if AP is an ahi-
tude then ZPAB < ZPAC, so that ZPAB <
LTAB = /TAC < ZPAC. Thus T lies be-

tween P and ML)

Problem 133. In the special case n = 5, the
values of S corresponding to r = 0.1,...,5 are,
respectively, 1, —4, 6, —4, 1, 0. Consequently, we
guess that S = (—1)7("").

To prove this, note that for any function f,

Y (k) = £k = D)} = f(r) - £(0).
k=1

Taking f(k) = (—I)k(";') yields
. _kn—l__k_ n—-1
{ev (") - (o)
- (-1)’(" - ') -1

what nobody has thought.

Discovery consists in seeing what everybody has seen and thinking

Albert Szent-Gydgyi
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Thus

(")
= 1+§(—1)"{(n; l) + (f: i)}
-2 ()

Problem 134. An easy manipulation shows that
the given inequality is equivalent to

I y2 y z\?2 z 1\2
G-y e
y 2 : oz Ty

This obviously holds; equality occurs only when
T=y=2z

It also follows from

1 1.2 y2 22

“\==+=+=]2

3(y2+22+12)“
1
3

vy 2
> +=4+-1}, *
23(E++E). @
that
2 2
A AP L0 SR S
T TR y 2z 'z y 2

(Justify the steps in (x).)

Problem 135. First solution. If all the chords
are concurrent, then, by symmetry, we would ex-
pect the common point to lie on the axis of
the parabola, the z-axis. Thus we should check
whether the z-intercept of the chords is indepen-
dent of their endpoints.

Suppose that the endpoints of a chord sub-
tending a right angle at the vertex (0,0) are

(xyy)
00K Jixg0
(XZ .yz )
FIGURE 115

9

(z1,1) and (2,92), and that its z-intercept is
(70,0). Of course

a3+ = (3 - 1) + (3 - w)
and hence

1T + iy = 0. (1)

Because the endpoints lie on the parabola,

v =daz), 3} =daz,. (2)

From (1) and (2) we have
(11%2)® = 16a%z,12 = —16a%y 1,
and hence

da(ray — 213) = yiya(y2 — 1)

= —16a®(y2 — ).
From — ¥ = 21 7 %0 e obtain
B — 2 I — X2
— 4 -
2= T2 T _ aly — o) _ ta.
NDi—Y% i — 42

Hence all chords contain the point (4a,0).

Second solution. Let (z;,y;) and (x2, ) be the
endpoint of the chord, as above. Since the slopes
of the lines from the origin to these points are
negative reciprocals,

nir2+ 1y =0. (3)

If the equation of the chord is y = mz + b then
z; and rp are the roots of the quadratic
equation (mr +b)? = 4az, i.e., of m2r2+ (2bm—
4a)z + b? = 0. Thus

b2

niyz = (mx, + b)(mz2 + b)

b
=m?r 1o + mb(z, + 2) + b = 41.
2
Hence, from (3), b—2 + dab =0, or b = —dam.
m m

Thus every chord which subtends a right angle
at the vertex has an equation of the form y =
mr — 4am = m(r — 4a), and this line clearly
rasaes thrigh the point (4a. 0).
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Problem 136. Let a, m, b be the lengths of the
altitudes to DC of the triangles ADN, Af DC and
BNC. Suppose that AAT = rAB. Then NC =
rDC and m = (1 —r)a+ rb. (If AB || DC, the
latter equation is obvious. Otherwise, it may be
obtained by considering three similar right-angled
triangles each with hypotenuse along .1B and an
adjacent side along DC.) Then (with [ABC] de-
noting the area of triangle ABC)

|ADN) = 3o DN = za(1 -r)- IC
[MDC| = %m-D_C

[BNC] = %b-?\l—@= %br-z“)?.
Hence [A DC] = |[ADN] + [BNC]. Subtracting
the sum of the areas of triangles PDN and QNC
from both sides yields the desired result.

Problem 137. Choose any four of the points. In
the given situation, there is a uniquely determined
sphere containing them; let its center be C and
its radius be r. If d is the distance between ('
and the fifth point, then the sphere with center
C and radius §(r + d) (if, say, the fifth point is
outside of the sphere) is equidistant from the five
points. Thus there are at least five spheres with
the desired property.

Depending on the configuration of the points,
there may be finitely or infinitely many other so-
lutions. The locus of the center of a sphere con-
taining three of the points is a line; the locus of
the center of a sphere containing the other two is
a plane. This line may be parallel to the plane,
intersect the plane in one point or lie in the plane.
If O is a point of intersection of line and plane,
then, in a manner similar to that described in the
first paragraph, a sphere with center O equidistant
from the five points (having three of them on one
side and two on the other) can be found.
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Problem 138. We have
52R+| + ll2n+| + l72n+l

= 22n+| + 22ﬂ+l + 22n+l
=0 (mod 3)
and
52ﬁ+l + 112n+l + 17'2ﬁ+l
- (ll _ 6)2n+l + 112n+1 + (ll +6)2n+1
= (_6)2n+l + 62n+l
=62 (-1 +1)
=0 (mod 11).
Thus, the given sum is divisible by the product of
3and 11.

Problem 139. First solution. Setting £ = 1 in
(x+1)" =3 o (7)x" yields

r-3(0)

Q= (5) + () +-+ ()

Since, for0<r<n,

(:r) =.r(:c—l)-~-(:r—r+l)‘

r r!

Let

Q(x) is a polynomial of degree n. Furthermore
P(z) = Q(z) for r = 0,1,2,...,n. Hence the
polynomials P(r) and Q(x) must be identical,
and

P(n+1)
=Q(n+1)
_(n+l)+(n+l n+1l
“\o 1 )" "( n )

=2n+l_(n+l =2n+l_].
n+1

A high school student wrote (in an essay on famous musicians): Bach
was the most famous composer in the world, and so was Handel.
Handel was half German, half Italian and half English.




SOLUTIONS

Second solution. For each fixed n, the poly-
nomial is uniquely determined by its values at
0,1,....n. Write P, for the polynomial, to show
its dependence on n. For n > | and r =
0,1,2,...,n—1, we have

Puoi(x) = Py(x + 1) — P,(x). (1)
Since both sides of (1) are of degree n — 1, the
equation (1) must hold for all values of r . In
particular, for n > 1,

Pn—l(n) = Pn(n + l) - Pn(")-
Hence

P.(n+1)= P,_i(n) + P,(n)
= I'n- (n) + 2”

=Poa(n-1)+2""' 42"

=PR(1)+2+22+.-- 42"
=142+224+...42"

=2

Rider. Redo the problem with 2¥ replaced by 3*.

Problem 140 (by induction). The result is
clearly true for n = 1. For n = 2, we have to
prove 2(1 + 7125) > (1 + 11)(1 + x2).

This is equivalent to (1 - ry)(1 — x2) 2 0,
which is valid (with equality if and only if either
of ) and x5 equals 1).

Suppose the result holds for all values of n
up to k > 2, with equality occurring under the
stated condition. Then, given 0 < 7, < I, i =
1,2,....k+1,

(1 4+ 1122+ Tr i)
=2"Yo(l + Tiag - Tr Tea1)}
227V 1+ iz 1) (1 + Tay1)
2 (L+m)(1+22) - (L4 2)(1 + Zenr)s

using the result for n = 2 and n = k. If
equality occurs, at least k — 1 of the quantities
21.%9,....7y are 1. If only k& — 1 of these quan-
tities are 1, then x4, must equai ! ax weil.
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Problem 141. If you did you would losec more
often than you won. The number of combinations
of three cards possible is '—'='|“:'~,'—;;’" = 22100.
The number of combinations of spot cards is only
k-8 = 9880. Therefore the chance of pick-
ing 3 spot cards is b = 2.

Problem 142. Multiplying the four equations
yields

ryzw = abed),

where A is a root of the polynomial 7 — 1.
Hence

(abed))? (abed))?

=T YT T
o (abed))? _ (abedr)?
v ! ' - d't' )

Problem 143. Let ¢ be the longest chord of the
solid. Every cross-section of the solid which con-
tains ¢ must be a circle with diameter c. Hence
the solid is a solid of revolution about ¢, and thus
it is a sphere.

Problem 144. The number of ways of stacking
the coins without restriction is n!. The number of
ways of stacking the coins when the particular two
are kept together is 2- (n—1)!. (The factor 2 arises
since the order of the two coins can be reversed.)
Hence the number of permutations in which the
two coins are kept apart is

n=2n-1)=(n-2)(n-1)

If we wish to distinguish stackings obtained by
turning over some of the coins, the count would
be 2"(n — 2)(n - 1)L

Problem 145. To get some understanding of the
situation, consider the degenerate case when the
variable circle is a straight line. This line would
be a common tangent to the circles, having both
circles either on the same side or on opposite sides.
Thus, one might expect the fixed points to show
up as intersections of common tangents. In addi-
tion. by symmetry considerations, one might ex-
pect the points to lie on the line of centers of the

e cirgles,
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FIGURE 116

FIGURE 117

Case la: Both circles are touched externally.

Let B, C be the centers of the two fixed
disjoint circles (as in Figure 116), and let the circle
of center A touch these circles externally at @ and
P, respectively. Then AQB and APC are each
collinear and AQ = AP.

Let QP meet BC in R and the circle with
center (" again in S. Then

/BQR = ZAQP = ZAPQ
= /CPS = /CSP,

so that triangles QB and RSC are similar, and

g = —Q=_1i a constant ratio. Hence R is inde-

RC  SC _

pendent of the touching circle.

Case 1b: Both circles are touched internally.
With A, B, (" as centers of the three circles

(as in Figure 117), we again have AQ = AP and
triangles RQ B, RSC are similar, so that % i
a constant ratio.

Case 2. One circle is touched internally, one ex-
ternally.

Let A, I3, (" be the centers of the three cir-
cles, such that the variable circle of center A
touches the circle of center I3 extar—ally wad e

circle of center C internally (as in Figure 118).
Since AP = AQ.

LAPQ = ZAQP = £BQS = /BSQ.

aﬂ trianiles RBS, RCP are similar. Hence

RB BS . .
_— = ==, C . .
= = a constant ratio. Thus R is fixed

Riders. (a) Verify that the point R in Cases la
and 1b is the intersection of the common tangents
having both circles on the same side, while in Case

2, R is the intersection of the other two common
tangents.

Lidd iid
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00 (Q

(b )

FIGURE 119

(b) What happens if the two circles are con-
gruent?

(c) What happens if the two circles are
nested?

(d) What happens if the two circles are in-
tersecting?

Remark. The same result can be obtained from
the converse of Menclaus’ Theorem. Referring to
Figure 116 (Case la), we have: if three points
R, Q, P are taken in the sides CB, BA, AC
respectively of a triangle such that

AQ BR CP

a_f.__R__(:._P_‘Z__
then R, P, Q are collinear. Here

r ﬁ T2_

n RC r

where 7, ry, 12 are the radn of circles with centers
A, B, C respectively. Thus, if R is taken on BC
such that r;BR = —7,RC, then R is the fixed
point. The other cases can be similarly analyzed.

Problem 146. First solution. By the Cauchy In-
equality (Tool Chest, D. 4),

#<(%5%) (£°5)

(d

with equality if and only if \,Sfr is a con-
. S-=rx . s .
stant multiple of ‘/—3,—, i.e., when ST is

constant.

Second solunon. When a,,aa....,a, are pos-
itive, the Harmonic-Arithmetic Means Inequality
asserts that

n
ey +a;' + -+ an’

fai'+ai 4t
- n

< atart---+a,

n
with equality if and only if all the a, are equal.
g so that Yo ,a,=n—1 Then

1
the result is immediate.

Seta, =

Problem 147. Let P(a.b.c) denote the expres-
sion. Since P(a.a.c) =0, a - b is a factor. Simi-
larly, b— ¢ and ¢ —a are factors. Dividing through,
we obtain

P(a.b.c)
= (b-c)(c—a)(a—b)x
{abe + (a® + 8% + )

+ (a®b + a’c + ba + b’c + c*a + %)}
or, more briefly,

P(a.b.c) = (b - r)(c—-a){a-b)x

{nbc+ EDY a‘-’b}

symm symm
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Number of ways 7
Score | 5 4 3 2 | 0 | problems can be scored
Numberof | 6 0 0 0 0 | 7= 7
problems [ 5 I 0 0 1 0 7-6= 42
givenscore [ 5 0 1 1 0 0 7-6= 42
(3
4 20100 (4)(2) 05
YL
= 10¢
4 12000 (4)(1) 05
7\ f4
0 =140
33100 (3)(3)
7
250000 (2)= 21
Total number of possibilities: 462

TABLE 2

Problem 148. Table 2 lists all the possibilities.

Problem 149. A generalization is

(55...56)% — (44...450 = 11...1
Ve N e’ Nt

n n 2n+42

(n=0.1,2....). Indeed, since a?2 — ¥ = (a-
b)(a + b), the left side becomes

(11...1)(100...01)
N e+ N e
n+l n

which, upon multiplication, yields the right side.
Problem 150. The given equations are equiva-
lent to the following;
(y—a)z—a)=a’+r
(z—a){r—a)=a’+s
(r-a)(y—a)=a*>+t
from which
(r—a)y—a)(z-a)
= +\/(a? + r)(a® + s)(a® + 1).

Hence

L -ay-a)z-a)

x_
a2 +r

(a2 + s)(a2 +1)
ac+r

from which .r can be found. Similarly, y and z can
be found. (The signs before the radical must be
chosen to be compatible with the given equation.)

Problem 151. Let @ = AB = BC = CA; then
the area of AABC is ({,@)ag. This area is also
the sum of the areas of triangles PAB, PBC, and

B E c

il 120
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PCA. Hence
V3e2 PD PE PF

g oty teptey
_ o(PD + PE + PF)
= 5 .
and the desired equality follows.

Rider. Show, more generally, that for any trian-
gle and any interior point P,

min (hy. ha,h3) <ry+ro+ 13
s max (h|. h-z. h-;)
where hy, hy, h; are the altitudes to, and ry, 15, 13
are the distances from P to, the three sides whose
lengths are a, b, c, respectively.
Problem 152. Cubing both sides yields
(13z + 37) —3V/13z + 37- 13z — 37x
(V131 + 37 - ¥13r = 37) — (137 - 37)
=2

Hence 24 = ¥/2/132x2 — 372, and cubing again
yields 4 - 123 = 13272 — 372, so that r = 4T.
Both values satisfy the given equation.

Problem 153. Since A = 10°+! —10° = 9-10°
and B = 10°—10*' = 9-10*!, log A—log B =
a—(b—1). Hence (log A—a) — (log B-b) = 1.

Problem 154. Let h = rcos8, k = rsiné,
r— h = 2ru, y— k = 2rv. Then the two equa-
tions become
+o?=1,
(2u + cos8)(2v + sinf) = sinf cosb.
Letz =

2U=—‘
1

u+iv,sothatz=u—iv,2u=2+73,
-z
’

23=1 (1)
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and (with cis@ = cos8 + isin 8)

2(z + cis 0) = (T + cis (—6)). (2)
Multiplying (2) by 2 and using (1) yields

23(: + cisf) = 1 + 2 cis(-8),
which can be manipulated to give

(=% = cis(—0))(z + cis#) = 0.
The root z = —cisf corresponds to = = h +
2ru = h—2rcosf = —hand y = k + 2rv =
k — 2rsin@ = —k, the coordinates of the point

(=h, —k). The other factor, z3—cis(—), has three
roots:

z=cis—3—. i.e..u:t'osi. v=—sin§:
z=cis—0+2n
3
i.e.u=('ose_21r v=—sin i
’ 3 ’ 3 1
z=cis_0_21r,
3
. +2r . 6+ 2n
ie,u=cos , v=-—sin 7

These roots give the points of intersection

(h +2rcos§. k- 2rsmg) .

8-2 8-
<h+2rcos 3".k—‘2rsin 327r)'

2

which are the vertices of an equilateral triangle.

&

6
. k—=2rsin t

(h + 2r('ose

A recently published picture encyclopedia is advertised with the phrase 24,000 illustrations in
special groups for ready reference. The largest and only book of its kind in the world.”

—— eere tere e mee = e
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(h+2rcos 9*—33".&-3r sin&228)

3

the2rcos 5 .k-2r sin$)

(h+2rcos°—'32—",k-2r sin 93—"'“)

(-h.-k )

FIGURE 121

For a geometrical interpretation, take any
point (h, k) on an equilateral hyperbola ry = a2,
Construct a circle with center (h.k) and passing
through (—h, —k). This circle will intersect the
hyperbola in three other points which are the ver-
tices of an equilateral triangle.

Problem 155. Let

]rn = (\/§+ 1)2m + (‘/i_ 1)2m.

1f we expand I,,, we find that all surd terms cancel,
so that I, is an integer. Since (V3 — 1) < 1,
(V3 - 1)*™ < 1. Hence I,, must be the smallest
integer exceeding (V3 + 1)*".

Note that I, = (4 + 2v/3)™ + (4 — 2V/3)™;
also 4 + 2v/3 and 4 — 2V/3 are the roots of the
quadratic equation 2 = 87 — 4. Hence 4 + 2v/3
and 4 — 2V/3 satisfy all the equations

2 =g 4™ m=0.1,... .

and we have

Im+2 = 81m+| - 4’111-

Since I; = 8 and I> = 56, 2™*! divides 1,
for m = 1,2. Suppose 2"*! divides I, for
Jk. Thently | and &1, are each
multiples of 25+, Hence 2¥*2 divides Ij. The
result follows by induction,

Problem 156. We have that

r+2 _\/5‘ _ (r+2)-V2(r+1)
r+1 r+1
_(V2-)ir-v2|
1+r
<(V2-1)r - V2 < |r- V2.
Rider. If T denotes a nonnegative rational ap-

proximation to (a) /3, (b) V/2, find an always-
better rational approximation.
Problem 157. Since cos0 =1, cos§ = 1 and
cos 5 = 0, three values of k for which coskr is
rational are 0, § and }. Suppose cosf = 2 with
g >3, p<qand pand g coprime. Then
9 -¢°

¢
Any common divisor of numerator and denomina-
tor of this latter fraction must divide both 2p* and
q*: since the only common divisor of p and q is 1.
the greatest common divisor of 2p* —q® and ¢° is
either | or 2. Thus, when 2= is written in its

c0s20 = 2cos? 6 — 1 =

lowest terms, the denominator is at least 3,: >q,

and hence cos28 # cos#b. )
Continuing on, we prove that if cos 8 is ratio-

el 11 oo tterms, with denominator exceeding
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2), cos 8, cos 20, cos 40, cos 86, cos 1686, . . . are all
rational and the denominators form an increasing
sequence. Hence cos 6, cos 28, cos 46, cos &6, ...
are all distinct.

Suppose 6 = 2'(%)r where u and v are odd
and coprime. Since v is odd, there is a positive
integer w > ¢ such that 2" — 1 is divisible by v.
(Tool Chest, B 8.) Hence

QRu-itlg _ ouw-itlg _ 2 - 12'”u(21r)
v
is an  integral  multiple of  2nr,
so that cos(22¥~'+16) = cos(2¥~'*+!4). By what
was shown earlier, cos cannot be rational with
denominator exceeding 2 when 6 = 2/(%)m.

Hence coskr is rational only if k = 0,3, 1.
Problem 158. We form a cubic polynomial
whose roots are r, ¥, = and then find its roots
by an alternative method; this approach is sug-
gested by the symmetric role played by the three
variables in the given system and by the fact that
the coefficients of any polynomial are symmetric
functions of the roots.

The cubic polynomial with roots z, ¥, z is

(t—z)t-y)t—2z)=8—pt* + gt — 1,

wherep=z+y+2,qg=zy+yz+zz,1v = 2Y2.
Sincep=0,6ab=22+y?+22=(z+y+
z)? — 2q = —2q and (using the fact that z, y, z
are each roots of the cubic),

(2 +4* +2%) - p(z? + 4% + 22)
+glz+y+2)-3r=0,

we have that ¢ = —3ab and r = a® + b°.
Thus, x, y, z are the roots of the cubic

£ — 3abt — (a3 +b%).

By inspection we find that one root is a +b. Hence
the cubic is divisible by ¢ — (a + b):

£ — 3abt — (a® + b°)
=[t—(a +b)t* + (@ + b)t + (a® — ab + b))

Hence the remaining roots are {—(a + b)

iv3(a - b)}.
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Problem 159. Let ABCD be the tetrahedron,
and let P be the foot of the perpendicular dropped
from A to the face BC'D. Then, comparing areas

and using [ABC) to denote the area of triangle
ABC,

{ABC| > |PBC),
[ACD| > |PCD],
{ADB| > [PDB].
If P falls within triangle BCD,
[BCD| = |PBC] + [PCD| + |PDB].

On the other hand, if P falls outside of BCD,
then

[BCD) < [PBC| + [PCD] + |PDB].

In either case,

{ABC} + |[ACD] + [ADB] > [BCD).

The other choices of three faces can be han-
dled similarly.

Altemnatively, the result is equivalent to
showing that

|BA x CA| + |CA x DA| + |DA x BA|
2|ﬂx5{+6{xﬂ+1ﬂxﬁ|,

and this inequality follows from the triangle in-
equality.

FIGURE 122

Problem 160. The desired inequality is equiva-
lent to

a+b<V2Va?+ 2,
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which is equivalent to
a’ + 2ab+ b* < 2(a® + b°)

or {a—b)? >0.

Remark. More generally, for any triangle with
sides a, b, ¢, a + b < cese % where C is the
angle opposite side ¢, with equality if and only if

a=b

Problem 161. Let 0 < 6 < % Then 0 <
sin*@ < sin®8, 0 < cos* @ < cos®6, so that
sin® @ + cos® @ < sin® @ + cos? 0 = 1, with equal-
ity if and only if 8 is equal to 0 or 3.

Problem 162. If a is the first term and d the
common difference of the arithmetic progression
thenp=a+(qg—1)dand g = a + (p - 1)d.
hence, d = —1 and @ = p + ¢ — 1. Therefore the
nth term is

(P+g-1)-(n-1)=p+qg-m,
so that the p + qth term is 0.

Problem 163. First solution. With [ABCY) de-
noting the area of triangle ABC and r = CD,

(BCD] = gazsin ¢

2
1 . C
|ACD| = Ebrbm 7
1. . C C
[ABC| = EabsmC = gbsin 5 055
Hence

-l—a:rsing+1br"nc— bsi 5
2 2 t5 sl 2—abm2(‘052,

and the result follows.
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FIGURE 123
Second solution.  Using the fact that g =2, we
obtain

b2 v2 b4+ z2—2brcos$

v 2
u?  a®+1?2-2azx cos%

al

If @ # b, cross multiplying and cancelling a2b?
leads to (b2 — a®)2? = 2ab(b— a)z cos &, which
yields the result upon division by (b—a)z. If a =
b, then it can be seen directly from the diagram
for an isosceles triangle that

C 2abcos§

I=acos— =
2 a+b

Third solution. Through B draw the line parallel
to DC, and let it meet AC produced in a point
E. Then

FIGURE 124

Setting the questions is not a simple matter. They must not be too easy but also not so difficult
as to induce a feeling of frustration. It is sometimes rather hard to decide whether a question is
easy. It may appear simple enough when the solution is known,

1.. J. Mordell, “The Putnam Competition.” Amer. Math. Monthly 70 (1963) p. 483.
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CE=CB=aq. _E=2acos-2—
D AC
and _— = =
BE AF
Thus
CD b

2acos§  a+b

Problem 164. (1367631), = 1 + 3b + 6b% +
6% + 6b* + 36> + 8 = (1 + b + b%)*. Thus the
given number is perfect cube in all bases greater
than 7

Problem 165. The inequality is equivalent to

14z+22+--+27 > (2n +1)z"
which is the same as
(T"+z7"=2)+ ("' 42" -2)
+o+(r+27'-2)2>0
The latter inequality holds since

1 1\?2
—_—9= - —
t+5 -2 (\/E \ﬁ) >0 fort>0.

Rider. Show that the given inequality is valid for
aln>0and x>0, 7 # 1,

Problem 166. First solution. If a is the initial
term and d is the common difference, ¢ = a +
p-Ndr=a+(g-1)d,p=a+(r-1)d
Elimimation of a and d yields

qglg—r)+r(r-p)y+plp—q) =0.

Hence (p— )2 + (g — )2 + (r — p) = 0 so that
P =¢q = and the required difference is zero.

Second solution.  An arithmetic progression, un-
less constant, is either continually increasing or
continually decreasing. In the former case, if p <
g<r theng<r<p sop=gq=r. There-
maining possibilities also lead to p = ¢ = 1, so
that inevitably, the required difference is 0.

Problem 167. That the required construction ex-
ists can be seen from the followiry argument 'n

101

FIGURE 125

Figure 125 the circle 1o be constructed is PQBA:
PQ is a diameter and O is the center of the given
circle I'. The center T of the required circle is at
the intersection of the right bisectors OT and ST
of PQ and AB respectively.

LetOP=d, AS=¢,05 =k, ZOST =a
and let 7 be the radius AT = BT = PT = QT
of the required circle. Then ¢, d, k, « are known
while 7 is unknown. Since ST = V72 -¢2,
OT = V¥ - &, the Law of Cosines applied to
AOST yields

= -+ -2%Vr? - 2cosa,
or

2, g2 _ 2
,/rz_c'z=u;c__

2kcosa
A rectangle whose area is k2 +d2 — ¢2 can be
constructed with one side having length 2k cos a.
An adjacent side has length /72 —¢Z = ST.
Hence the position of T is determined.

Comment. For a generalization, see Crux Math-
ematicorum 7 (1981) 207, Problem #562.

Problem 168. First solution. Let x = t*. Then,
from the given polynomial equation, we have

—(z+¢)= Vz(b+a 7).
Cubing both sides yields
—(x+¢)* = x(b® + ®x + 3ab Yz (b + a Y7))
or

-(r = oV = 2(b% + o®z - 3ab(z + c)).



102

Second solution. 1If m, n, p are the roots of the
given polynomial equation, we have m+n+p =
—a, mn+mp+np = band mnp = —c. The roots
of the required equation are m3, n®, p®. Therefore
md +nd 4P
=(m+n+p)°
- 3(m + n + p)(mn + mp + np) + 3mnp

= —a® + 3ab— 3¢,

m3n3 + m3p3 + n3p3

2

= 3m2n?p? + (mn + mp + np)®

— 3(m + n + p)(mn + mp + np)mnp
= 3c? + b* - 3akb,

mindp® = .

The equation sought is

134 (a®—3ab+3c)r2+(3c2 +b* -3abe)r+c® = 0.

Problem 169. The inequality
a2+b02+c2 _a+b+c
a+b+c — 3
is seen to be equivalent to (a — b)% + (b — ¢)? +
(c —a)? > 0, which is clearly true. Applying this
to each term of the lefi side gives the result.

Rider.

So=a?+ai+---+a2,

Show more generally that if

S =a,+a2+ - +ay,, a, >0,

then

Problem 170. A positive integer with initial

digit 6 is of the form 6 - 10™ + m, where 0 <

m< 10" - 1.

(a) Here the condition is 25m = 6 - 10" + m,
which simplifies to m = 2" ~2. 5" Thus the
numbers are of the form

6-10"+2""2.5" =625 10"2,
namely, 625, 6250, 62500,

FIVE HUNDRED MATHEMATICAL CHALLENGES

(b) Suppose that the first digit is d, so that
35m=d-10"+mor17Tm=d-2""1-5".
Since 1 < d €9, this is impossible.

Problem 171. Let the angles of the polygon be
a;,Q9,...,0a, and the corresponding exterior an-
gles be 1,02, - .., 8, Then o, + B, = 180° for
i=12....nn1fn >3 and a, = ap-1 =
ay—2 = 60° then ﬁn = ﬁn—l = ﬂn-? = 120° so
Br + Bu-1 + Bn—2 = 360°. But, it is known that
the sum of all exterior angles of a convex polygon
add up to 360°. It follows that n = 3.

If a convex polygon has four of its angles as
right angles, then the polygon must be a rectangle.
More generally, if a convex polygon has r of its
angles adding up to (r —2)180°, then the polygon
must be an 7-gon with the given angles.

Problem 172. Since 1 + 3% > 2%, 1+ 2 >
222, 1 + 1* > 2x? (with equality if and only if
2% = y? = z2 = 1), it is enough to show that

I4y2 + y422 + 241.2 > 31.2y222.

But this is an immediate consequence of the
arithmetic—geometric mean inequality. There is
equality if and only if 2 = y = z = 0 or
2=y =:2=1

Problem 173. The number of kth powers be-
tween | and 10" inclusive is equal to the num-
ber of integers between | and 10¥ inclusive, for
k =1,2,... . By the Principle of Inclusion and
Exclusion the answer is

10" —10% - 10¥ - 10¥ 4+ 10%%
+10%3 4+ 103% — 107%s
=10 - 10" - 10'° - 10°
+10° +10% + 102 - 10.

Problem 174. The first few values of 16" +
10n — 1 are 25, 275, 4125.... . Suspecting that
dhe evier 15 25, we try to isolate a factor 25 by



SOLUTIONS

manipulation. For each positive integer n,
16" +10n-1=(1+15)"+10n -1
=1+15n+15%k +10n — 1
= 25(n + 9%)

where k is some integer (because each term from
the third on in the binomial expansion of (1 +15)"
contains the factor 157). It follows that the greatest
common divisor is 25.

Problem 175.  First solution (by induction). The
result is valid for n = 1 and for n = 2. Assume
it holds for n = k > 2. Then

aqay-rar21—k+ay+a+--- +a.
Multiplying by a4 yields
Q102" Qb4
Sap(l-k+a +az+--+a)
>amt(l-k+a+ar+--+ax)-1
(from the n = 2 case)
=a +a+--tap+apy —k

Equality occurs if and only if either a;,; = 1 and
all but at most one of a;,as,...,ax equals unity
orl—k+a; +ax+---+a, = 1. In either case,
the condition is that all the q, are unity with at
most one exception.

Second solution. Let o, = 1 +t, (i =
1,2,...,n). Then t, > 0 and the inequality to
be established is

n+(1+6)(1+8)---(1+1¢,)
Zl+n+t| +"'+tn-
But

(I+t)(1+82)---(1 +¢,)
=1+t +to+--+t, +p,

wherep = [ (1+¢,)—1-3, t, is a nonnegative
quantity which vanishes if and only if at least n—1
of the t;’s are 0.

Problem 176. By the Remainder Theorem, we
have p(a) = a, p(b) = b, p(c) = «. Asuming; that
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a, b, ¢ are distinct, we can write

p(r) = (r —a)(r - b)(x — c)q(7) + r(z).

where 7(x) is a polynomial of degree at most 2.
We must have r(a) = q, r(b) = b, r{c) = ¢
Hence the polynomial r(r) — r has degree at most
2 and roots a, b, ¢, and must therefore be the zero
polynomial. Thus, . is the remainder.

Rider. Show thatifa,,a»,...,a, areall distinct
and a, is the remainder when p(r) is divided by
r—a,(i=12..., n), then p(x) = () [1(x -
a;) + z for some polynomial ¢(x).

Problem 177. Replacing £ by 1 — x gives
(1-2F(l-r)+ F(x)=2(1-2)- (1-x2)*.

Solving this and the given equation simultaneously
for F(r) gives F(r) =1 — 22

Problem 178. Considering the equation modulo
4, we can see that it is impossible for there to be
exactly one, two or three odd numbers in the set
{a,b,c}. Hence all three must be even, and for
some integers a,,b;,c), we have a = 2a;,b =
2b,,¢ = 2c; whence a? + b + ¢ = 4adbl =
0 (mod 4). But we can see that a,, b; . ¢y also have
to be all even, so a; = 2a3.b; = 2bs,¢; = 2¢9
for some integers as.b,.co. We can continue the
argument to show that these are even, and so
on. But this cannot continue indefinitely. Conse-
quently, there are no positive solutions.

Comment. For extensions, see M.S. Klamkin,
USA Mathematical Olympiads 1972-1986, Math.
Assoc. Amer., Washington, D.C. 1988, pp. 32-33.

Problem 179. First solution. Since a,,,2—1 =

102 Ay it follows that a4 = Z::T : i
Hence
1 _ 1
Gny2 — 1 - (@ns1 — 1)@nyy
_ 1 1
Tt =1 oy

a2 b 23,0, . Therefore
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= 1 ad 1 1
l+z: =1+Z{an+l_l_an+2_]}

1
az—l—z'

3
n
-

=1+

Second solution. By induction, it can be shown
that, for each positive integer n,

PN

n
1
1 a, 0102 - Ay

from which the result follows.

Problem 180. Draw and extend lines ;, > from
B, which aresclose to A. Draw arbitrary lines
PA, PC, PD as shown in Figure 126. G and
F are then determined by the intersections of AE
and AD with PC. Consider triangles GHF and
FID. By Desargue’s Theorem (see Tool Chest, E.
37), HG and IF will intersect in a point on AB
close to A. Step by step. AB can now be drawn.

Problem 181. The plane determined by the two
centers and the midpoint of the common chord (or,
as appropriate, the point of tangency), also con-
tains the two lines perpendicular to the planes of
the two circles and passing through the two cen-
ters. However, a line perpendicular to the plane
of a circle which passes through its center is the
locus of points equidistant from points on its cir-
cumference. Hence, the two lines must intersect
in a point equidistant from the points on both cir-
cumferences, including in particular the endpoints
of the common chord (or the point of tangency).

FIGURE 126
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This point is the center of a sphere containing both
circles.

Problem 182. Assume that there are distinct
primes p, g, 7 whose cube roots are in arithmetic
progression, i.e., for real numbers a and d and
integers b and c,

p=a .Yg=a+bd. Yr=a+cd
d= \3/6‘\/1-7_\?/;"\3/1_’
T b ¢

, we obtain

Since

uyp=vyq+wir,

where u = ¢ — b, v = ¢, w = —b are integers.
Cubing this equation gives

2’p = v*q + w’r + Bvw Ygr(vyg + wir)
= v3q + w’r + Juvw Ypgr.

But this would imply that ¥/pgr is a rational num-

3, .3, .3
ber, viz., w. which is not true.
. Juvw
Hence primes p, ¢, r with the stated property do

not exist.

Rider. Show that the result is still valid if “cube
roots” is changed to “nth roots™ (n > 2), or if
geomelric progressions, instead of arithmetic pro-
gressions, are considered.

Problem 183. Let ED be a line perpendicular
to plane BOC'. Then ED is parallel to AOQ, and
hence lies in the plane AOD. Now, BC is per-
pendicular to both AD and FE D, and is therefore
perpendicular to the plane AOD and to every line
in that plane. In particular, B(" is perpendicular
to OD.

Problem 184. First solution. Let A be at the
origin of a 3-dimensional space, and let T = AB.

—_—

¥ = 4C. T = AD. Note that a quadrilateral is
a parallelogram if and only if its diagonals bisect
each other.

Case I: {7.7%. T} is a linearly indepen-
dent set. Suppose that the four vertices P, Q, R.
Saret 7 (1= +uy . (1-0) T +e 7T 0T,

eaectively where each of ¢, u, v, w lies between
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X8

FIGURE 127

0 and 1 inclusive. Then PQRS is a parallelogram
if and only if

%{l?+(l -0)y 407}
= %{(1 — 0T +uT +uT).

Since T, I, = are linearly independent, u =
1 -t v=t, w=1and the locus of the center is

{%(f?+(1—t)7+t?):05t51}

T+7Z v
= —t)=—: < y
{l( 2 )+(l t)z 05[_]}

i.e.. a line segment joining the midpoints of the
diagonals.

Case 2: {T, Y, =} is a linearly dependent
set (i.e., A, B, C, D are coplanar). In this case,
for some real numbers rand s, ¥’ = 7T + 5.
Then P, Q, R. S are, respectively

tT,

(1-w)T+uy =(1-utur)T +usT,
(I-v)T+vZ =(1-v)rT+[(1-v)s+v] 7,
w?.

The condition that the diagonals bisect each
other gives
(I—utur)? +(us+w)=

=[t+1-)T +[1-v)s+0|T,
which leads to

I-utur =t4r—vr and us+w —s-evb-
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Ifr=1.wehavel =t+1—-v,0ort =%, and
the midpoint is

%[? +(us + w) 7

=%[T+(s—ls+t)?]

T+sz2 T+7
w25 (757)

where 0 <1 < 1.
If s = 1, we have 4w = 1 and the midpoint

is

%[(1 —u+tur)T + 7]

T+ rvT 47
=(1—u)( 5 )+u( 7 )

In general, the midpoint is

%{[(1 —u)+ur T 4 [ -v)s 49T
0<u, v<l

The locus is shaded in Figure 128. It consists
of a parallelogram with sides parallel to the vec-
tors = and 2" and with its four vertices located
at

- —
d -~
- £

—
I

0

T+s
2

— — - —
TIr s r.r <

o+ |+

+
2

Second solution. (when A, B, C, D are non-
coplanar). First, observe that PQRS is coplanar
and that its planar extension is either parallel to
AC or meets AC produced in a single point, say
T. In the latter case, T would have to lie on both
PQ and RS produced, which would contradict the

>
sz >

[(1- vs+v] 7

\

(- w+urdy

AGURE 128
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D
S . R
A/ c
AW
B
FIGURE 129

fact that they are parallel. Hence AC is parallel
to PQRS. Since PQ lies in the plane ABC, PQ
and AC cannot be skew. Hence AC || PQ || RS.
Similarly BD || PS || QR. See Figure 129.

Let AP = kAB. Then AS = kAD, AQ =
AB +(1-k)BC and AR = AD + (1 - k)DC.
The center A of PQRS is given by
AN = %{A_P’+,4_Q'+A—l'?+,4_.'9}
=i{(1+k)ﬂ3’+(1+k)A‘5

+(1-k)BC + (1- k)DC}

=(l_k){AB+BC+AD+DC}

4 )
{A_é+ﬂ)'}
+R{EETAT
2

AC AB + AD
—(l—L)ZTH.{ - }

AC  AB+AD
= (1B

The value k ranges between 0 and 1 inclusive,

so that AN ranges over the segment joining the
midpoints of the diagonals AC and BD.

Problem 185. Firit .\'nlun_oiz. From AOK M ~

APEM follows 28 = PE Gince OF = 01
STV OM T PM
and PE = PC we have
OA PC

FIVE HUNDRED MATHEMATICAL CHALLENGES

FIGURE 130

From AOAB ~ AOMN and APCD ~
APAMN we have respectively

OA_A ., FC_TD
OM MN PM  MN
. . AB _CD
Now_(l) Td_(Z) combine to give A
so AB=CD.

Second solution. Let O = (0.0), P = (d,0)

and let the radii of the circles with centers O and

P be r and R respectively. Let y = mr be the

equation of OE. The distance of P from OF is

Rt This, ™ - B e tine y=
VI+m? "1+m?2 42

mr intersects the circle 72 + y2 = r2 in the point
whose ordinate is given by y*(1 + m?) = m%r?,
. 2 R¥ . 2Rr

e,y =5 Hence, the length of AB is -
Since the expression for AB is symmetrical in the
radii of the circles, C'D must be given by the same

quantity. Hence 4B = CD.

Problem 186. Suppose to begin with, that PQ ||
AC. Since A, C, R, Sand A, P, @, C determine
two planes intersecting along AC, and since PQ
and RS could therefore intersect in a point on
AC, it follows that PQ || SR. Hence SR || AC.

ok 131
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It is then clear that P'Q’ || A'C' and S'R’ ||
A'C',sothat P'Q' || S'R'and P', Q'. R, S’ are
coplanar. We now assume that neither PQ nor
SR is parallel to AC. Then PQ and SR both
intersect AC in T, the point of intersection of
the line AC produced and the plane PQRS. By
Menelaus® Theorem (Tool Chest, E. 20),
AT QB PA RD SA

TC ¢€Q BP CR DS
Since the figure APBQC is congruent to
AP'BQC', PPQ must meet A'C’ in a point
T' such that

AT QB PA QB E
TC CQ BP CQ BP
Similarly, S'R’ meets A'C” in a point T”, such

that

AT" RD SA __RD SA
T°C' CR DS CR DS
_ QB PA_AT
~TQ BP TC

Hence T = T”, so P'Q’' and S'R’ intersect in
T’'. Hence P', ', R, S’ are coplanar.

Problem 187. By the Law of Sines,
a b _
sinAd _ sinB  sinC’

so that (a) reduces to

sin A+ sin B = ksinC = ksin(r— A- B)
= ksin(A + B)

or

A+B A+B
2hsin 12 = cos 212
sin —— cos —
A-B
7

Since 0 < A8 < X we can cancel 2sin 432

to get

= 2sin cos

A+B___A-B

kcos 7 = cos —5—- (1)
By (b),

cosd cosd ksin ALB

sind " sing cus ALE
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so that
cos'~‘+B{cosdsin§+rosgsinj}
2 2 2 2 2
= ksinA——- sin = sin —.
2 2 2
Hence
cos +Bsin A+B
2 2
— lksinA+B {cosA_B—cosA+B}
2 2 2 2
Thus
2cosA+B
=k{cosA_B—cosA+B}. @)
2 2

Now (1) and (2) together yield K=24+kor

(k-2)(k+1) =0.

Since Ak = —1 is inadmissible, k = 2. For exam-
ple, when & = 2, (a) and (b) hold for equilateral
triangles.

Problem 188. First solution. Assume A, B,
C, D are not coplanar. Consider the tetrahedron
ABCD. Since the sum of any two face angles
of a trihedral angle is greater than the third face
angle, we have

LCAB + £CAD > /DAB = 90°,
£(DBC + £DBA > LABC = 90°,
ZACD + LACB > £BCD = 90°,

£ZBDA+ £(BDC > ZCDA = 90°.

Adding the four inequalities to the equality
£ZDAB + ZABC + /BCD + ZCDA = 360°
gives that the sum of all the face angles of the

I5LRE 132
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four triangular faces of the tetrahedron exceeds
720° = 4(180°). Since this is false, A, B, C, D
must be coplanar.

Second solution. The point D lies both on a
plane through A perpendicular to AB and on a
plane through C perpendicular to BC'. Hence D
lies on the line [ of intersecton of these two planes.
Since the normals AB and BC of the two planes
are perpendicular, the planes themselves are per-
pendicular and the line [ is perpendicular to the
plane ABC.

Suppose ! intersects ABC in D’; then
ABCD' is a planar rectangle. Thus AC subtends
right angles at D and D', so that both D and D'
lie on the intersection of ! and a sphere with diam-
eter AC. But [ is perpendicular to a radius of the
sphere (joining D to the midpoint of AC’) and so
is tangent to the sphere. Thus D and D’ coincide,
and A, B, C, D are coplanar.

Third solution. Determine the point D' as in the
second solution. We have

AD’ + DC’

=AC =AD" + D¢’

={AD +DD") + (DD + DT

=4D’ + D +2DD"

(by Pythagoras’ Theorem).

Hence DD’ =0, and D = D'.
Use 3-dimensional coordinate
geometry. Let B lie at the origin, A on the r-axis
and C on the y-axis, so that, for some nonzero a

and ¢, A = (a,0,0), B =(0.0.0}, C" = (0.¢,0).
Suppose D = (r,y.z).

LZBAD = %°

Fourth solution.

= 0=(a.0,0)-(r—a.y.z) = a(r—a)

= r=aq
£ZBCD =90°

= 0=(0.¢.0)-(ry—c.z2)=c(y—r)

= y=gc

FIVE HUNDRED MATHEMATICAL CHALLENGES

LADC =90
= 0=(r-ayz) (z.y-cz)
=z(r-a)+yly-c)+:22=2%

Hence D = (a,c.0) and the result follows.

Problem 189. Since —— = b

snA _ smB 2R, we

have to show that
2(sin A -sinB) =1,

ie., that 2(cos36° — cos72°) = 2(sin126° —
sin18°) = 1.

Set § = T72°. Then cos36 = cos(360° —
26) = cos 26. Because cos 36 = 4 cos® 6 — 3cos
and cos20 = 2cos2 6 — 1, we find that r = cosf
is a positive number satisfying the equation

43 -2 -3r+1=0
or

(r-1)4rf+2r-1)=0.
Sincer#1,4r2+2r-1=0and

—\/5 —1 cos36° = ;
4 4
thus 2(cos 36° — cos 72°) = 1, as required.

cosT2° =z =

Problem 190. Let P be the point of intersection
of AB produced and DC produced. Noting that
ABCD is concyclic, we have that

ZPDA =180° - ZABC = £PBC,
£PAD = 180° - ZBCD = ZPCB.
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Hence APAD ~ APCB. Thus, if y = PC.
r=PB,

Solving for .r and y we obtain

(d® - b%)y = blad + bc)
and
(d® = b%)r = b(ab + cd).
Since 22 + y? = 1, the desired equality follows.

Problem 191. Since PS and QR intersect, P,
S, Q. R are coplanar. Either PQ and RS intersect
or PQ || RS. Suppose PQ and RS intersect in
a point T. Since T lies on PQ produced, T lies
in the plane ABC. Similarly T lies in the plane
ACD. Hence, T lies on the intersection of these
two planes, namely AC produced. Thus, in this
case, PQ, RS and AC are concurrent.

Suppose PQ and RS do not intersect when
produced. Then PQ || RS. We show that AC
produced does not meet the plane of PQRS.
Suppose, on the contrary, they meet at a point
V. V lies on both planes, PQRS and ABC,
hence on their line of intersection PQ pro-
duced. Similarly, V lies on RS produced, and
we get a contradiction. Thus AC is parallel to

FIGURE 134
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PQRS. Hence AC and PQ do not meet. Since
AC and PQ are coplanar, they must be parallel.
Thus PQ || RS || AC.

Problem 192. Let P be the foot of the perpen-
diculars from C and D to AB. See Figure 135.
Then ZCPD = 6. Take the length of AC to be
. Then CP = ¥2. Let ZCAD = a. By the Law
of Cosines,

2‘752=1+1—2msa

and
—2 3 3 9
CcD —Z+E—§(’Obo.
Hence 2cosa = 4 + 2 cos#, or
a—arccos(w
= arcce o .

Problem 193. The Law of Cosines easily leads
tocos A= § and cosC = §. Hence

1 3\?
cosC—-8-—2(Z) -1
=2cos’ A—1=cos2A.

Since both 24 and C lie between 0 and 7, 24 =
C.

FIGURE 135

are not easy to come by.

My preferences are for problems that are not technical and that can be easily understood by the
general reader There should be a certain elegance about the problems; the best problems are
elegant in statement (short and sweet), elegant in result, and elegant in solution. Such problems

Murray S. Klamkin, Problem Comner, Math. Intelligencer. vol. S, #1, (1983), p. 59.
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FIGURE 136

Problem 194. Draw an arbitrary circle on the
sphere; let its center be P. From two arbitrary
points A, B on the circle, construct equal arcs in-
tersecting at A and N. The circle through PAIN
is a great circle. (P, A, N are equidistant from
A and B; hence they lie on a plane right-bisecting
AB. This plane passes through the center of the
sphere and intersects the surface of the sphere in
a great circle.) With the compasses, transfer the
chordal distances PAI, AN and N P to the plane
and construct the circumcircle of triangle PA/N
(as transferred to the plane). The radius of this
circumcircle will equal the radius of the sphere.

Problem 195. If we have n points, A. B,C,...,
then the left side can be interpreted as the number
of pairs of segments formed by the n points. Now
add an extra point ( and consider each combina-
tion of four points. The combination Q, 4, B, C
gives rise to three pairs of segments of the original
set, i.e., AB, A("; AB, BC; BC, AC. The com-
bination A, B, C, D also gives rise to three pairs
of segments, i.e., AB, CD; AC, BD, AD, BC.
Hence the number of pairs of segments is equal
10 three times the number of ways of choosing 4

of the n + 1 points, i.e., 3(": l).

Problem 196. By Euler’s Formula, £ + 2 =
F + V, where E, F, V denote the number of
edges, faces and vertices, respectively. Also, since
each face has at least three edges and each edge
belongs to two faces, 2F > 3F. Similarly, since
cach vertex has at lcast three edges emanating
from it and since each edge emanates from two
vertices 21" > 3V.

FIVE HUNDRED MATHEMATICAL CHALLENGES

FIGURE 137

(a) In this case, 14 > 3F and 14 > 3V so that
F <4,V < 4. But then E + 2 < 8, which
contradicts £ = 7.

(b) Here, 2F = 6F, so that, by Euler's Formula
3V = 3E +6 - 3F = 2F + 6. But this
contradicts 2E > 3V.

Problem 197. First solution. (See Figure 137.)
By the Law of Cosines, 1 = 7+ 7 — l4cosf3,

whence cos 8 = {3, sinf§ = -‘{27_7 and

2. = Yy — 3 E_
2cos*a =1 4 cos2a l+co>(3 ﬁ)

1 13 V3 V27
=+ ut3T
=1+E=2—5.

14 14

Thusrosn:i
27

Again, by the Law of Cosines, 4 = 7 + 1% —
2rv7cosa = T+12=5r, s0 that r* —5r+3 = 0.
Since 1 > 1, we must have r = §(5 + V13).

Second solution. Referring to the diagram and
using Heron’s rule (Tool Chest, E. 44) for cal-
culating triangular areas, we find that triangle T

has area 5T\/:§ and height &Tﬁ The height of
the trapezoid B is # so that its area is

(r* - 2r-3)V3
4

2(arca 1)

. Now

= (area of large triangle) - arca T — area B

VAT .3\/3 \/i(.r: -2r-13) _ Var
1 T~ 9

| 1 2
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But Heron’s rule yields

111

2

2 2

2(area I1° —‘7\/I+2+\/7.I+2_‘ﬁ,‘/7+(1'2)_\/'7—(3‘—2)
o 2

= SVIE+ 2P =TT~ 7= 27

= %\/{41 + (2 - 3)Hdr - (12 -3)}

1
= V2o o,
2 T T
Hence V3r = V22:2— 199, so that 7! —
1972 + 9 = 0. The relevant root satisfies
. 1945/13 5+ V13
r=— =T 2

Problem 198. Let ABCD be any quadrilateral.
Since AB + BC+CD + DA= 0,

—02 — — -—= 9
DA =(AB+ BC +CD)".

Using the notation a, b, c, d for the lengths of the
sides as in Figure 138, we have

& =a® +b* + 2 +24B - BC
+2AB-CD +2BC-CD.
This is equivalent to
b + d?
=a’+c +2(AB + BC) - (BC + CD)
=a2+c2+2.7~1—(.'-53.

From this. we deduce that a necessary and suffi-
cient condition that the diagonals of a quadrilateral
ABCD are orthogonal is that b? + d* = a® + 2.

FIGURE 138

In the situation of the problem, if a, b, c, d
are the side lengths of ABCD and @', V', ¢/, d' are
the side lengths of A'B'C’'D’, we have a = d/,
b="V,c=c,d=d" Hence,

ACLBD = b +d* = a® + ¢* = b? + d?
=a?+c?= AC'LB'D.

Problem 199. More generally, we show that if
Po(z), Pi(7),...,Pu2(r) (n > 2) and S(x) are
polynomials such that

Po(z") + 7Pi(z") + -+ + 2" 2Py a(a")
= (@ "+ 2+ 47+ 1)S(7),

then r — 1 is a factor of P,(x) for all 2.
Letw, 1 = 1,2,...,n—1denote the complex
nth roots of unity other than 1. Since

M-l=(r-1)(1+x+---4z""),

it follows that

14w, 4?44+ =0

for all 1. If we now substitute w, in the given
identity above, we find that

Po(1) +w, P (1) + -+ 2P, (1) =0

for all i. Since the (n — 2)th degree polynomial
2,=(;’ Pi.(1).r* has 11— 1 distinct roots w,, it must
vanish identically. Thus,

B(l)= A(l)=...= P,s(1) = 0.

Finally. by the Factor Theorem, r — 1 is a factor
ef each of F.(r), Py(x)...., Paoa(x).
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TR ; .10
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Problem 200. Set up a rectangular coordinate
system, as in Figure 139, with the origin at F and
the r-, y-, z-axes along FG, FE, FB respec-
tively. Take AB = 1, so that the coordinates of
P, Q, R are given by

P=(0,c.1) Q=(1.0,a) R=(b10).

where 0 < a,b,c < 1. The problem is to deter-
mine a, b, ¢ with 0 < a,b,c < 1, so that

a2+ (1-b)2+1
+Vb2+(1-c)l+1+ Ve +(1-a)2+1

is 2 minimum.
By Minkowski’s Inequality

Vit i 4+ 42

+y 2R +22+:2

(+n+a)P+(r2+p+2)?
+H(rs + ys + 24)?

2
With (.r...rz..r;;) = (l.a,1- b), (yl.y-g,y;;) =
(1.b.1=¢). (21, 22.23) = (1,c. 1 — a), this yields

wheres=a+b+r.
Since 2(s — 3)? + ¥ attains its minimum
value when s = 3, we have L? > 2. However,

:'-,. s = 2 and it tumns

out that L = .'i\/g = "’_77 Thus the minimum

perimeter is 3 \/E .

Minkowski’s Inequality has equality if

whena = b=¢c =

Remark.
and only if (rporac ) (roye.ast Ve o0
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are proportional. In the present situation this leads
to L2 > 9+ s + (3 — 5)2, with equality if and
onlyifa=b=c= -'2-

Problem 201. He cannot get to work on time!
Since the time required to travel 2 km. at 12 kph
equals the time required to travel 6 km. at 36 kph,
he has used up all his time covering the first two
kilometers.

Problem 202. First solution. Pick any face for
January. There are ('5') ways of choosing the
months to go into the ring of five faces adjacent
to January, and 4! essentially different ways of ar-
ranging them. There is a second ring of five faces,
each adjacent to two of January's neighbors; the
months for these can be chosen in (Z) ways, and
there are 5! essentially different ways of arranging
them relative to the first ring. Finally, the month
for the face antipodal to January's face is now
determined. Hence the number of essentially dif-
ferent ways of making the calendar is

(el

Second solution. If the faces were distinguish-
able, there would be 12! ways of placing the
months. However, one of these arrangements can
be carried onto various other ones by means of
a rigid transformation in space of the dodeca-
hedron onto itself. Such a rigid transformation
must carry vertices to vertices, and is uniquely
determined by specifying the images of two ad-
jacent faces (reflections, not realizable in three-
dimensional space, are not counted). The first face
has twelve possible images; once this is specified,
its neighbor has five possible images. Thus there
are 60) = 12 x 5 symmetries of the dodecahedron.
so each of the 12! arrangements is essentially the
same as G0 arrangements (including itself). Hence
the number of essentially different arrangements
is % = '—:'

Problem 203. (a) Let » be a number equal 1o the
sum of the squares of its digits. If n has k digits.
we must have 10* ~! < n < 9%k = S1k. Now, for
» + * the gisumption that 81p < 10P~!" implies
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that 81{p+1) < 10*~1+81 < 10. Since 81x4 <
10, it follows by induction that 81p < 107~! for
p>4 Thus k < 3 and n = a210% + ;10 + ag
for digits ag.a).a2. Since a;10% + a,10 + ap =
a2 +a? +ad, it follows that

(102 — a3)as + (10 — ay)a; = a — aq.

Both sides of this equality are nonnegative, and
1 € ap € 9 implies that a — ag is at most 72.
Since 10% —a; > 91, we must have a; = 0, Hence
(10 — a))a; = af - ay.

Since the possible values of (10 — a;)a, are
0, 9, 16, 21, 24, 25 and the possible values of
a2 — ap are 0, 2, 6, 12, 20, 30, 12, 56, 72, the
result follows.

(b) Let n be equal to the sum of the cubes of
its digits. If n has k digits, then 10! < 729k,
As in (a), it can be argued that & < 4.

Ifk=4dand n= 0‘5103 + a2102 +a;10 +
ap = a3 + a3 + a} + af it follows that

a3(919) = a3(10? - 92) < a3(10* - 0?)
= 0310° - o}
= ay(a2 - 10%) + ay(a? - 10)
+ag(aj - 1)
<0+9-71+9-80 = 1359.

Hence a3 < 1. It is not hard to see that a3 # 1,
so that k < 3.
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Since 28, 35, 65, 72 and 91 are the only num-
bers of two digits which are the sum of two cubes,
it is clear that k # 2. The only possibility for
k=1lisn=1

Hence we may suppose that k = 3 and

n=a;10> + ;10 + ay = a3 + a} + o}

with as # 0. This implies that

a2(100 - a3) + a; (10 — a?) — ag(a) - 1) = 0.

The possible choices of as, a,, ¢¢ can be found
from the following table:

r r(100-2%) z(10-2%) -—x(z2-1)
0 0 0 0

1 99 9 0

2 192 12 -6
3 273 3 -24
4 336 -24 —60
5 375 -75 -120
6 384 -156 -210
7 357 -273 -336
8 288 -432 -504
9 171 -639 -720

Clearly, a) and a, cannot be either 8 or 9. By look-
ing at the last digits, the possibilities are quickly
narrowed down to 153, 370, 371 and 107.

Problem 204. There are 6 essentially different
ways as shown in Figure 140.

A Y

(5-h

FIGURE 140

(3-3) (3-3)
4-2) 4-2)
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Problem 205. Tt is best to work backwards. At
each stage, there is essentially only one way in
which the money can be distributed. Observe that
the total amount held by all three men is always
$72.

After 3 games, amounts are $24, $24, $24.
After 2 games, amounts are $12, $12, $48.
After | game, amounts are $6, $42. $24.

Originally, the amounts were $39, $21, $12.

Problem 206. (a) By the triangle inequality,
9BC = AB < AC + BC, so that BC < AC.
Hence BC is the shortest side.

Since 21 = AB+BC+AC = 3BC+AC >
4BC, we have BC < 6.

Since 24 = AB+ BC+ AC < AB+BC +
(AB + BC) = 6BC, we have BC > 4.

(b) Suppose the triangle is ABC and 3BC =
AB. Then, as in (a), it can be argued that 2BC <
"4C, and BC is the shortest side.

Thus 24 = 4BC + AC > 6BC, so that
BC <.

Also 24 < 2(AB + BC) = 8BC. so that
BC > 3.

Problem 207. Equality holds in (a) for k = 1. 2.
Strict inequality occurs for k = 0. When k > 3,

12k 4 9%k £ 3% 5 32k — gk 5 9. 78,
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As for (b), we have equality for k£ = 0,1. When
k>2,
12k+| + 22k+1 + 32k+l > 32k+l

= gk3tH!

> 2.2k gk+l

=6+

Problem 208. Muliiplying out, we have

2 +6x2+11r +6=7° + 62° — Tz — 60,

which leads to r = —131.

Problem 209. If Al is the number, A/ + 1 must
be the least common multiple of 2,3,...,10,
namely 23 - 32-5- 7. Hence M = 2519.

Problem 210. The situation can be illustrated
graphically as in Figure 141. Suppose units of time
are chosen so that the faster car covers the distance
from A 10 B in 4 units of time, and the slower
car in 5 units of time. Let A be at milestone a
and B at milestone b. The polygonal lines in the
graph illustrate the progress of the cars; x is the
time of the second passing and u the time of the
third. From similar triangles, we find that

b-145 10-r r-4

145-a¢ 1-5 8-1'

whence T = 3 and 2a + b = 435. Similarly,

b-201 12-u _u-10
201-a u-8 15-u

milestonc
glo-b_te b 0.0 U2.B)
(u, 201)
(x.45)
A 0.a) S.a) (8,a) Us.a)

FIGURE 141

» lime
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whence u = 12 and 2a + 7b = 1809. It is now
determined that ¢ = 103 and b = 229. Hence A
is at the 103rd milestone and B is at the 229th
milestone.

Problem 211. Observe that 7°> = 19, 7* = 343
and 7' = 2401 = 24- 100 + 1. This suggests that
we isolate factor 7* as far as possible. Thus
-‘-‘J"‘J‘J = 73 . 799‘!(5 =343 (74)219‘,
= (313)(2401)%4*°
= (343)(1 + 2400)21"
= (343)(1 + 2499 - 2400) (mod 1000)
(by the Binomial Theorem)
= (343)(1 + (2500 — 1)(2100))
= (343)(1 — 2400) (mod 1000)
= (343)(601) (mod 1000)
= 143 (mod 1000).
Hence the last three digits are 143.
Problem 212. First solution. Draw a line
through Y parallel to BC to meet AB at Z. Let
CZ and BY intersect at D; let CZ and XY in-
tersect at E. Join D, X. See Figure 142.
Since ZZCB = /LY BC = 60°, ADBC

is equilateral. Hence ZZDY = G0°, so that the
isosceles triangle ZDY is in fact equilateral.

FIGURE 142
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Consider ABXC'. Since ZBX(' = 50° =
ZBCX, BX = BC = BD. Hence ZBXD =
ZBDX = 80° so that ZZX D = 100°.

Now

LXZD =180° - LAZY - LY ZD = A0°,
Z\NDZ =180° - £BDC - £BDX = 40°.

Hence XZ = XD. Since also YZ = YD,
AXZY = AXDY. Thus

LZXY =/(YXD = %ZZ.\'D = 50°.

Second solution. 'We may consider A as the cen-
ter of a regular 18-gon and BC as one edge. Let
D, B.C. E, F, G, H be seven vertices of this
18-gon in order and join D, H. Let DH intersect
AB, AC and AE in X, Y and 11" respectively.
We show that the points X, }" obtained in this
way are exactly the two points specified in the
problem.

Consider the heptagon DBCEFGH. The
sum of its angles is 900°. Since ZHDB =
£ZDHG and each of the other five angles is
160° we must have that ZHDB = 50°. Since
ADXB=ACXB, LXCB=/XDB =50°.

Since ZDAE = 60° and AD = AE,
ANADE is equilateral. Similarly AAH E is equi-
lateral. Therefore

AD = AE = DE = All = HE,

o,

so ADEH is a thombus and segments DH an
AF right-bisect each other. Hence AY = YE =
YB. so that ZABY = /B.1Y = 20°. Since

ZABC = 80°, it follows that £Y BC = 60°.

finuee 143
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Having thus identified .\ and }", we observe
that, in AXDB, ZXBD =80° and ZADB =
50 so ZDX B =50° Hence ZAXY = 50°.

Remark. This problem is treated in the book
Mathematical Gems II, pp. 16-18, by Ross Hons-
berger, published by the Mathematical Association
of America, 1976.

Problem 213. The volume of a tetrahedron is
proportional to the area of the base (one of its tri-
angular faces) and the height (perpendicular dis-
tance from the remaining vertex to the face pro-
duced). Therefore, we can solve the problem by
showing that each of those ingredients remains un-
changed. Clearly, it is enough to show the result
when one of the segments is held fixed and the
other is permitted to move.

FIGURE 144

Let AB be the fixed segment and let CD
vary along the line . Let w be the plane con-
taining A and the line [. Then the area of AACD
remains constant for all positions of C'D. The dis-
tance from B to the face ACD produced is the
distance from B to m, which is constant. The re-
sult follows.

Remark. It can also be shown that the volume of
a tetrahedron is cqual to one-sixth the product of:
the lengths of a pair of opposite edges, the shortest
distance between these edges and the sine of the
angle between these edges. (See Tool Chest, E 41,
42)

Problem 214. (a) Let u be the speed of the men
and .r the distance travelled by the inspecting of-
ficer. The ofticer’s speed is u.c. While he is mov-
ing forward, the speed of the officr reliative 1. the
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column is u(z — 1), so the time it takes him to
reach the front of the column is u(;_l-li On return
to the rear, his relative speed is u(z + 1), so the
time required is ;L. Since the time required
for the column to travel the kilometer is i we
obtain (after multiplying by u),

1 1
— =1
r+1

-1
Thus r2 —27r—1 = 0. The negative root is not ap-

plicable, so = = 1+ v/2. Hence the officer travels
14 V2 kilometers.

Second solution. Let v and u denote the speeds
of the officer and men respectively. Also, let t and
s denote the time taken for the officer to get to the
front and back again respectively. Then (v—u)t =
1, (v+u)s=1and u(t + s) = 1. Hence

1 1
u + =1,
v—-u v+u

v = 2w —u? =0,

so that v = u(1 + V/2). The distance travelled by
the ofTicer is therefore

or

v(f+s)=u(l+\/?-.)%=l+\/§

kilometers.

(b) As in (a), the speed of the officer rela-
tive to the phalanx on the forward and backward
journeys are u(r — 1) and u(r + 1) respectively.
While crossing the front or rear of the phalanx,
his velocity has a component u in the direction of
march and v in the perpendicular direction, where
u? + v = w212, Hence v = u/x% — 1. Hence
the total time for the circuit is

1 1 2 1
+ + =
ulr=1) wulr+1) uw/rP-1 u
This yields

or
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y

FIGURE 145

The conditions of the problem require that
7 > 1. (Indeed, he travels at least one kilometer
to reach the front, and two more kilometers as he
rides across the front and the rear, so z > 3.)

A graphical solution for z is given in Figure
145: The root sought satisfies 4 < z < 5. Remov-
ing the surd leads to % — 413 - 272 4+47+5 = 0.
An approximate solution is £ = 4.18.

Problem 215. Let v be the volume of the tetra-
hedron and ¢ the common area of the four faces.
Then the lengths of the four perpendiculars from
the vertices to their opposite faces are each h,
where 3v = th. Since OA + OL > h,

(OA+OL) > 3v = t(OL + OM + ON + OP),

so that OA > OM + ON + OP. Adding this
inequality to similar inequalities involving OB,
OC and OD yields the result.

Rider.  Does the same inequality hold when the
faces are not necessarily of equal area?

Problem 216. Let z be the amount of water
present when the pumping begins, y the amount
leaking in per hour and z the amount each man
can remove per hour. Suppose h(n) is the amount
of time in hours needed by n men to pump the
boat dry. Then

T + h(n)y = nh(nj.. . ‘e
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In particular,
r+3y=12-3.: =362,
and
r+10y=5-10-z = 50z,
whence y = 2z and & = 30:. Thus (x) becomes

30+ 2h(n) =nh(n) or h(n)(n-2)=230.

When h(n) = 2, n = 17 and 17 men are needed
to do the job in 2 hours.

Problem 217. Color the squares of the
checkerboard “alternately” black and white so
that any pair of adjacent squares are colored dif-
ferently. Any pair of squares a knight's move apart
have different colors. Since any knight's tour visits
mn squares, and mn is odd, the last square oc-
cupied has the same color as the first, and hence
cannot be a knight’s move apart.

Rider.
tour?

Is there necessarily a non-closed knight’s

Problem 218. Suppose, by the watch,  minutes
elapse between successive eclipses of the hands.
While the minute hand covers z units, the hour
hand covers ;5 units. Hence r — 60 = 5, so that
T =60(Z) =60+% =65+ 2. Thus my
watch gains 2 minutes every 65 minutes.

In order for my watch to gain an hour, the

amount of time that must elapse is

1 60

50 m -65 = 143  hours.

Little Jack Horner

Sits in a comer

Extracting square roots to infinity

An occupation for boys

That will minimize noise

And produce a more peaceful vicinity

H. Winson

- meras
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FIGURE 146

Problem 219. If 22 +y > 0and > + 7 > 0,
the inequality is (y —r)(z +y-1) 2 0.

If 2+ y < 0 and y? + 7 < 0, the inequality
is{r—y)r+y-1)>0.

If 2 +y < 0and y? + x > 0, the inequality
is—(2+y)<y¥+zor 2+ +T4y20,
or(z+3P+(@y+4)?2 >4

If 72+ y > 0 and y? + r < 0, the inequality
is(z+3)+(@y+3?<

As a check, observe that if y = 0, the in-
equality reduces to |x%| < |r| or |7} < 1, while
if z = 0, the inequality reduces to y = 0 or
ly] > 1. Every point for which r = y and for
which x2 4 y = 0 lies in the locus, while the only
points on the parabola y? + .r = 0 on the locus
are (-1, —1) and (0.0), i.e., those for which also
Lf4y=0.

There was a mathematician named Moser!,
Well-known as a problem proposer.

He gave some that were silly

To his brother named Willy.

Did that stump him; the answer is No Sir.

! | eo Moser

Problem 220. The idea is to get an expression
for the left side involving sums and products of
squares, which are positive. By the Factor Theo-
rem, a — b divides 3a? — 4a®b + b*. Thus
304 - 4(13’)1- bd

=3a" - 3a®b -+ b*

= (a - b)3a® - b(a® - b°)

= (a — b)3a® — b(a — b)(a® + ab + b?)

= (a — b)(3a® - a®b - ab? - b?)

= (a-b)(a® - t® + a® — a?b + ¢® — ab?)

= (a - b)*(a® + ab+ b% + a® + a® + ab)

= (a - b)*(2¢* + (a + b)*) 2 0.

Alternative solution
Geometric Mean Inequality,

SIS RS BT
%ﬂ > Vai2pt = o',
Problem 221. [ ct the side lengths be a. b, ¢ with

angles of magnitudes «v and 2o opposite sides of
length b and « respectively. By the Sine Law,

By the Arithmetic-

. sin2a ¢
2c080 = — =-.
sina b
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By the Cosine Law,
2
b =a®+ ¢ - 2accosa = a* + ¢* - %,
so that
b(b? - a?) = *(b - a).

If b = a, then the angles are a, @, 2¢, which leads
to @ = 45°, in which case a, b, ¢ cannot all be
integers. Hence b — a # 0 so that b(b + a) = %

By dividing out a common factor if necessary,
we may assume that the greatest common divisor
of a, b, and ¢ is 1. Then b and b + a must be
perfect squares. Hence, for some coprime pair 7,
s, wehave a = s2 — %, b = 12, ¢ = rs. Since
b<c<2b wehaver <s<2r.

In general the sides of the triangle must be

(k(s2 - 72),kr?, krs),

where k, r, s are natural numbers with 7 < s < 2r
and greatest common divisor of 7 and s equal to
1.

We now show that, in fact, every set (k,r, s)
satisfying the above conditions gives rise to a tri-
angle of the type specified. For, if a = s% — 2,
b=172 ¢ =rs, then

(a+¢)-b=s{s+r)—2r2>0,

(a+b)—c=s(s—r)>0,

(b+c)-a=2r"+rs—s*
=(2r-s)(r+s)>0,

so that a, b, ¢ are sides of a triangle. If ZB and
ZC are the angles opposite b and c respectively,
then, using b(b + a) = c2, we have

—+a’+b? a®-ab_a-b

cosC = T

2ab ~ 2ab

FIGURE 147
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-2 +e*+*  ala+b) ¢

cos B =

2uac 2ac 2b
and
2 —b
cos2B =2 (:ﬁ) -1= E'Z—b_ = cos C;

hence 2B = £C.

Problem 222. (a) A number is triangular if and
only if it is of the form Jk(k+1). If n=
Sk(k + 1), then 9n + 1 = L(3k + 1)(3k + 2),
which is triangular,

(b) Suppose, for each n, n is triangular im-
plies that an + b is triangular. If n = 1k(k + 1)
and an + b= 1r(r + 1), then

ak(k +1) r(r+1)

— +b= —5
so that

r2 41— ak(k+1)+2b =0.

For each value of k, this quadratic equation must
have an integer solution r. This will happen if
and only if @ and b are such that, for each £, the
discriminant is a perfect square. If 14+4ak({k+1)+
8b = (ku + v)? for some v and v independent of
k then, by comparison of coefficients, 4a = u? =
2uv, 50 20 = u. Hence b = 2=! and a = 2. If

8
v is odd then b will be an integer.

Thus, if v is any odd number, a = v? and

2 _ (ke
b= 2 landn=ﬂk2+—” is a triangular num-
ber, then
2001 2 _
an+b=vk(k+1)+u 1

2 8
11, v-1 v+1
—2[vk+ ][vk+T

2
is also triangular.

Problem 223. By squaring, it is easy to verify
that

Vin+l<vn+vn+1
(n=1.23,..)).

Neither 4n + 2 nor 4n + 3 are squares, so

[Vin+1] = [Vin+2] = [Van +3]

and the result follows.
Problem 224. First, we should characterize the
oot of - which maximizes ZAP B, Draw the

<vVvin+3
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circle through A and B which is tangent to [, at
K say (Figure 148). Then, for any point P on [
other than A,

ZAKB = LALB > ZAPB.

Knowing this, we can easily construct a con-
figuration (e.g.. Figure 149) for which the state-
ment is false.

FIGURE 149

Problem 225. Since

sinC<1 and sinAsinB2>0,

1>cos(A- D)
=cuosAcos B +sinAsinB
=14sinAsinB(1 -sin(') > 1.

Hence cos(A-B) =1, sin(C =1,s0 ZC = 90",
LA = /4B = 15 . Thus \BC is a right-angled
isosceles triangle.

Problem 226. One obvious generalization is
P

aw,=(n+ l)" +(n+ .’)'-' +((n + D)0 +2))°
= (0% 4 3u 4 3)%
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Problem 227. First solution. If ryz = 0, say
2=0, r >0,y >0, the inequality to be proved
is

8(r% + )2 > 9r%y2ry.

and this is equivalent to the obvious inequality
825 + 7 + 8° > 0.

Ifxyz #0,ie,x >0,y >0,z >0 then, taking

2 2 2

I 2
a= —_ b: y_’ c= —,
yz 2z Ty

the inequality to be proved is equivalent to

8(a+ b+ c)?

a(1e2) () ()

a.b.c > 0, abe = 1. Now the left side is seen to
be equal to

8(a? + b% + ¢2) + 16(ab + bc + ca) - 18
111 1 11
'g(a’fs*;)'g(;s*bz*a;)

1 1
=8(a2+b2+c2)+7(-+—+1)
a b ¢

—9a+b+c)-18
= é(Sa"’ -9a2 - 6a+7)

Los oo
+ E(Sb" - 9b° - 6b+7)

1, .
+ ;(&:-‘ -9 -6c+7)
(a=1)*8a+7) (b-1)>%8b+7)
= +
a b
4l 1)*(8c + 0
- .
and this expression is certainly not negative.

Second solution. By the Arithmetic-Geometric
Mean Inequality

( +y)” + 2r)(z2 + ry)

< (.r'2 +yP 4+ byt :r+ry)3
— 3 N

Since
0<(r =9+ -2l +(z-x)?

Dt P oy - —ay)
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it follows that yz + 2r + ry < x2 + 3% + 2% and
hence

2 2 2 8 2. .2, 23
(z*+y2)y" +2x)(z* +xy) < E(I +y +2°)".

Since
™+ ym +4 2™ 1/m
(=)

is an increasing function of m (see Tool Chest
D7),

(:rz+y’+z2)% < (13+3j’+z3)§
3 - 3

so that (o2 + y2 + 22)% < 3(z* + y* + 23)2. Use
of this now gives the result.

Remark. Prove the generalization: for
rh-r%---n-rn > 0’

on {r’,‘+r{,"+---+:rﬁ}"‘l

n
2 ryTo- -+ 7T
> Iu-—l+ 142 'l).
[1(= 2%

Problem 228. Let S be the set of people who
have made an even number of handshakes and T
the set of those who have made an odd number
of handshakes. For any person k, let h; be the
number of handshakes he made.

Since each handshake involves exactly two
people, 3°, e hy + 3 7 hy is double the total
number of handshakes and is therefore even. Since
for r € S, h, is even, it follows that 3 ¢ h,
is even. Hence }° - b, is also even. But hy is
odd for each y € T. Therefore T must contain an
even number of people.

Problem 229. Define p = x+y+ 2. Subtracting
(2) from (1) yields

plx —y) =a® - b*. (4)
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Similarly,

ply-2)=b* =%, (5)
pz—-r)=c? -a% (6)

Consider first the case that a® = b* = ¢2. Then
either £ = y = z, which can occur only when
a=b=c=0,0orelsep=z+y+z=0.
In the latter situation, each of the three equations
(1), (2), (3) yields

12+1'y+y2=a2.

Thus z, say, can be chosen arbitrarily and the re-
maining variables then determined.

Now suppose a2, b2, c? are not all equal. In
particular, a* 4 b + c2 # 0. It follows from (4),
(5), (6) that p # 0. Since py = pr — (a2 - b?)
and pz = pr + (2 - a?),

PP=plz+y+2)=3pr+(b®+c%-2d%)
or
3pr =p* + (222 - b? - ¢?). M
Similarly,
3py=p*+ (20* —a® - ¢?), (8)
3pz = p? + (2% - a® - H7). (9)

If we can separately determine p, the equations
will be solved. Adding (1), (2), (3) gives

(-9 +(y—2)* +(2-12)* = 2(a’ +b* + ).
Using (4), (5), (6) with this gives

2 _ (@2 —01)? + (¥ - 2)? + (2 —a?)?
P= 2(a2 + b2 + 2)
_at 4+ b0 4 ¢! - a?? — %P - B2
- a2+ + ¢
_a% 405 4% - 3*HPA
T (@24 + e

Leo Moser had signed a contract with a publisher to write a book (a collection of problems).
Every year the publisher’s representative asked Leo, “When will you have the manuscript
completed?” On the seventh such request, Leo replied, “ I'll publish the book posthumously,”
to which the representative replied, “Well, O K. but make it soon!™
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From (7)

|-
r= 5{1}' + (282 - ¥ - A)}

FIVE HUNDRED MATHEMATICAL CHALLENGES

(@407 +A)(a' +b* + ¢ - a%b? - ac? - BBc?) + (a? + b + ¢?)(2a% - b? — c?)}

3Va8 + b5 + b = 3a2b3c (a2 + B + c?)

_ 3a¥ — 3b%c
3va® + b5 + ¢ — 3a2b3¢?

Thus, we eventually obtain

T y z

-8 b —c2a® T o -a?h?
_ 1
T VS + 15+ 3%
(Note that a® 4 b° + c® — 3a®b2c? does not vanish,
since p # 0, and therefore it has two square roots.
The vanishing of a' — b°¢? is equivalent to the
vanishing of x, with a similar comment for y and

)

Problem 230. When n is even , we have
(12-2) 4 (3 -4+ +((n-1)> - n?))
=(1-2)(1+2)+(3-4)(3+4)
+-+(m=-1-n)(n-1+n)
=—(142)—(3+4)—---—(n=-1+n)
=—(14+243+4+---+n)
=(-1)"*""(14+243+---+n).
When 7 is odd, we have
12_(22_32)_(42_52)
—-~-—((n—l)"'—112)
=1-(2-3)(2+3) - (4-5)(145)
— = -1-n){n-1+n)
=142+43+--+n—-1+n

=(-1)"M1+2+4 3+ +0).

Remarks.  This result may also be proved by in-
duction or by writing the left side as

2

(P4+248% 4 P4 ) =227+ 274374 )

and using the formula for the sum ol i

FIGURE 150

The equation can also be seen diagrammati-
cally, as Figure 150 for the case n = 6 shows

Add 62 dots, remove 52 dots, add 42 dots, re-
move 3? dots, etc., as indicated; the dots remaining
lie below the “dotted™ line.

Problem 231. Since (e +b—-c)la—b+c) =
a® — (b-¢)? < a* we have
(a+b-c)a-b+c)<a’
(b+c—a)b—c+a) < b, (%)
(ct+a—b)c—a+b) <3
Sincea+b—c>0,b+c-a>0,andc+a-b>
0, we may multiply the three inequalities in (*)

and then take the square root to obtain the desired
inequality.

Comment.  For other proofs and generalizations
see Crux Mathematicorum 10 (1984) 46-48.

Problem 232. Let O be the center of the region
and AB be any chord. Let A’B’ be the centrosym-
metric image of .1B. Sec Figure 151. Then
AB < A0 + OB < 2max (10. OB)
= max (240, 20B) = max (1.1, BB).

Ve cesall Sotlows.,
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FIGURE 151

Problem 233. It is possible to find a succession
of moves whereby all coins end up in the same
sector if and only if k is odd.

Suppose & = 2m + 1. Number the sectors
consecutively

-m,-m+1,...,-2,-1,0,1,2,....m—1,m.

A sequence of moves of the type (—i — —i+
1,7 — i—1) will eventually move all coins to the
sector numbered 0.

On the other hand, suppose & = 2m. Number
the sectors consecutively 1.2,3,...,2m. For each
ranging of the coins, let n, be the number in ith
sector and form the sum

s=m +2o+3nz+--- + kny.

The sum s is not changed (modulo k) by each
move.
For the initial position of the coins,

s =142+---42m = m(2m+1) £ 0 (mod 2m).

For all coins in sector 1, s = 2mi = 0 (mod 2m).
Hence, it is not possible for a sequence of moves
to put all coins in the same sector.

Problem 234. The given equations are equiva-
lent to

. Ity -y
2sin 5 s =a, (1)
2cosm;yc051;y=b. (2)
Dividing (1) by (2) yields
tan I;y = % _ (3
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Squaring both equations (1) and (2) and adding
gives

4('0521;3/ =a’+ b 4)
From (3) and (4) we have
cas ty _ b
2 Ver+ 2
and
cos & ; y_ \/a22+ b2'

(We might also have taken a minus sign in front
of both expressions; the final result will be the

same.)
Hence
2cos$cosy— b + o+t
2 2 Ja2+b? 2
_d2+b 42
NEY
T,y Val4b? b
2sin-sin= = -
272 2 Va? + b?
_a?+br-2b
N2 +82
so that
2, 32
T oy a*+4b°-2b
tan—tan 2 = —————.
N T 2 2+ 2 )
Therefore

tan;+tan%=tanr-;y(l—tangtan%)

i (7v7m)
“t\a@+ 40

_ 4a
a2+ 4 2b
(6)
From (5) and (6), we can identify tan § and tan ¥
as roots of the quadratic
(a? +b% + 2b)t* — dat + (a® + b2 — 2b).

Problem 235. Referring to Figure 152, we see
that, since ABMN is isosceles, ZBNM =
$£BM A, which is a constant angle. Hence N
must lie on a circle passing through points 4, B.
The center of this circle will be at that point O
Ry .1-.;»'..-'\ Aj=B0 = WQ However, the locus
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FIGURE 152

will include only part of the circle, namely the arc
from B to the point P such that AP = AB and
AP is tangent to the circle AOB. For if N lies
on the arc, then ZBNA = 1/A0B =} ZAMB
whence ZBNM = ZMBN and BM = BN.

Taking into account the possibility that A is
on either side of AB, we see that the locus of
N consists of two circular arcs, both emanating
from B, both part of circles through A and B
with centers at the ends of the diameter bisecting
AB and both lying on the same side of the tangent
to the given circle through A.

Question. How would you interpret the remain-
der of the circles?

Problem 236. The equation is
Srdert-8r4r24r41=0.
Obviously z = 0 is not a solution, so the equation

is cquivalent to
1

1 1
13+I2+I—28+—+—2+—3=0.
xr x I

Let z=r+1 Then 22 =22+2+ % and
B=r3+3(r+ 1)+ L hence 12+ 5 =2 -2

and 2 + & = % — 3z Thus, we obtain the
equation

2 422-2:-30=0.

By trial we find that = = 3 is a root. Then, by the
Factor Theorem,

(z=3)(z% + 1z 4+ 10) = 0,

whence z = 3 is the only real scivtsm,

FIVE HUNDRED MATHEMATICAL CHALLENGES

Since r real implies z real, real solutions x
must satisfy 3=z + L or 22 —3r +1 =0, iie,,

_ 3 V5 or = 3= V5 V5

2 2
Remark. By Descartes’ Rule of Signs, one can
see at the outset that the equation has at most two
positive solutions.

T

Problem 237. First solution. Let n portions,
by by...,b,, of gas be placed at positions
P, P,,..., P, listed clockwise in order around
the track. Suppose the amount of gas required
to get from position P, to position Py is aq,
(i=1,2,...,n— 1) and the amount to get from
position P, to P, is ap.

Letr;=b;—a;ands, =z, +22+...+T;
(i=1,2,...,n). Note that s, = 0. Choose r such
that s, < s, for each i. Then, for each i,

Lr4l = Srpl — S¢ 2 0»

Trpl + Trp2 2 Srp2 — Sr 20,

Tep) +Tpp2+- 41, =5 -5 20

Hence, if we start the car at position r + 1, since
bey1 2 @ry1y begr + bry2 > argy +ar40, and
so on, the car will always have enough gas to get
from each position to the next.

Second solution (by induction). We show that a
clockwise circuit is always possible. The result
clearly holds when all the gas is placed at one
spot.

Suppose it holds for any division of the
gas into n — 1 portions. Now, let amounts
by, ba,....by, be placed at positions Py, P,...,
P, (listed clockwise). For at least one position,
there must be enough gas to move clockwise
around to the next position; without loss of gener-
ality, we may assume that b, is enough gas to go
from P, to P,.

Put the gas at P, with that at P,. By the
induction hypothesis, the circuit can be completed,
starting at some point r with gas pickups of b, +b,
at Pyand b, at P, (i = 3,4....,n). Since b, is
cramph o at Py for the car to get to Py, the
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same circuit can be completed if the amount bs is
restored to Ps.

Problem 238. Because of periodicity, we need
consider only values of x belonging to some in-
terval of length 2. Thus, assume that —in <
r<in

Suppose that 37 < r < 3m. Then -1 <
cosx < 0 so that sin(cos.r) < 0, while —%n <
-1 < sinr <1< 4 insures that cos (sin.r) >
0. Hence cos(sinx) > sin (cosx) for 7 < 7 <
in.

Consider the case that —ir < z < im

Clearly, the inequality holds for =+ = 0, while
forr <0,

cos (sin(—z)) = cos (—sinz) = cos (sin r)

and sin(cos(—x)) = sin{cos ). Therefore it suf-
fices to show the result for 0 < = < im. Now
0 < sinz < r and since cosx is decreasing for

1
0<z< 3™

cos(sin ) > cosx > sin(cos z).
Rider. Investigate the relationship between

sin(sinr) and cos(cos ).

Problem 239. The given equation is equivalent
to

(z+y+D(z+y—-m-1)=0.

Since  + y + 1 > 0 for each applicable (z,y),
Z+y = m+ 1 which clearly has the m solutions
(r,y)=({,m+1-d)(i=12....,m).

Problem 240. Choose P, ), S to be the
midpoints of AB, BC, DA respectively. Since
the areas of PQRS and PQR'S are equal,

FIGURE 153

FIGURE 154

Area SQR = Area SQR', whence SQ || DC.
So must SQ || AB; hence AB || C'D. Similarly,
AD || BC. Thus ABCD must be a parallelo-

gram.

We now show that the area equality result
holds for an arbitrary convex quadrilateral PQRS
inscribed in any parallelogram ABC D. Referring
to Figure 154 for notation, we see that

2(Area ABCD — Area PQRS)
= (sin 8){r(b—w) + yla — x)
+z(b-y)+ wla - 2)}
= (sin 8){(a — r)w+ (b- y)x
+(a—-z)y+ (b—w):}
= 2(Area ABCD - AreaP'Q'R'S").
Hence Area PQRS = Area P'Q'R'S’.

Problem 241. By the given equations, the fourth
degree polynomial in ¢,
th—wt - 2 - yt—=x

has roots a, b, ¢, d. Hence it is equal to (t —a) x
(t = b)(t — c)(t — d). Expanding and comparing
coefficients gives

w=a+b+c+d,
2 =—(ab+ bc+ cd + da + ac + bd),
y = abc + abd + acd + bed,

= —abcd.
Rider. What can be said if a, b, ¢, d are not all
distinct?

Problem 242. First solution. Since a and b must
he of (e il 2mn and m2 — n? (not necessarily
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respectively), we have to show that
P =mn(m = n)(m + n)x
(m* = 2mn - n®)(m* + 2mn — n?)

is divisible by 2- 3 - 7. It suffices to consider the
case that » and n are relatively prime.

By congruences, modulo 2 and 3, we see that
mn(m —n)(m + n) is divisible by 6.

Take congruences, modulo 7. If m =0, n =
0,m=0,m=norm= —n (mod 7), then
P = 0. The remaining cases are

(m,n) = (1,2), (1.3), (1,4), (1,5).
(2.3), (2.4), (2.6), (3.5),
(3.6). (4,5), (4,6). (5.6).

For each of these,
(m? = 2mn — n?)(m? + 2mn - n?)
=0 (mod 7).

Second solution. Tt suffices to prove the result
when the greatest common divisor of @, b, ¢ is 1.
Since - and one of a, b, say a, is odd, b* = ¢?—a?
is divisible by 8. Hence b = 0 (inod4), so ab =
0 (mod 4).

Since a? 4 b% = ¢* # 2 (mod 3), one of a,
b is divisible by 3, so that ab = 0 (mod 3).

Since, modulo 7, any square is congruent to
0, 1, 2 or 4, one can check that a® 4 b% is con-
gruent to a square only if either a = b (mod 7),
a = -b(mod 7) or ab =0 (mod 7). The result
follows from these assertions.

Problem 243. First solution. Fix a value of A <
3+ Then cos A > 0 and cos(B+C) is fixed. Since
sin Bsin(" = %(('os(B =)= cos(B + C)), the
maximum value of sin® A + sin Bsin Ccus 4 is
assumed when 3 = C. In this case A = 7 - 2B,
sin A =sin2B, cos A = — cos 2B and

sin? A 4 sin Bsin C'cos A
=sin? 2B —sin® Beos 28
=sin’ B(leos’ B - 2cos° B + 1)
=sin’ B(2cos* B + 1)

Al

=sm® B(3 - 2sm’

i
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The function u(3—2u) = %—2(1:— %)2 attains its

maximum value when v = %. Hence sin? B(3 —

2sin® B) assumes its maximum when B = 3
Thus when A < %

sin® A + sin Bsin C cos A

assumes its maximum of 3 when A= B=C=
L4

If A> 7, then cos A is negative while sin B
and sin C are positive. The expression sin® A +

sin Bsin C cos A then cannot exceed 1.

Second solution. Let R be the circumference and

a, b, ¢ the lengths of the sides opposite A, B, C

of the triangle. Using the formulae 2bccosA =

b + c2 — a? and a = 2Rsin A, elc., we convert

02 + b2 + CQ
8R?

An equivalent problem is to maximize the
sum of squares of the sides for any inscribed tri-
angle in a circle of radius R. Accordingly, let
(z1.91), (T2.92), (T3.y3) be the coordinates of
the vertices of a triangle inscribed in the circle of
equation z? 4 y2 = R?. Then

the expression to be maximized to

a2+ 4t
= (21— 22)? + (22— 13 + (73 — 1 )?
+ (1 -1l + (- 1) + (1 —n)’
=3(z} + 23 + 23) — (11 + 72 + 13)°
+3(y7 + 93+ 13) — (11 + 12 + a)°
=9R? — (1) + 13 + 13)?
—(y +y2 + )

since 72 + y? = R% (i = 1,2,3).

Thus a2 4+ b® + ¢ < 9R?, with equality if
andonly ifry + 12+ 73 =0=y, + yo +ys. or
if the centroid of the triangle coincides with the
circumeenter (i.e., the triangle is equilateral).

Therctore
max LYV HE 9
8R? 8
Rider 1. Prove more generally that

y:u." 4 bt + .ry¢‘2 <(r+y+ :)2R2’

whest e g, are arbitrary real numbers,
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Rider 2. Prove even more generally that
(z+y+2) (2R +yR: + 2R3
> yza® + zrb? + xyc,
where , y, 2 are arbitrary real numbers and R),
R, Rj are the distances from an arbitrary point

P to the vertices A, B, C, respectively, of the
triangle.

Problem 244. First solution. Without loss of
generality, we can take one of the three points, 4,
B, C, say A, to be fixed on the r-axis, as shown
in Figure 155. Let ZAOB = 8 and ZAOC = ¢,
measured counterclockwise from AQ. Then both
6 and ¢ fall in the interval [0,2n]. 6 = ¢ with
probability zero, and the cases § > ¢ and ¢ > 0
are equiprobable. Consequently, we shall assume
that ¢ > #. This gives rise to the uniform proba-
bility space {(¢.6)[0 < ¢ < 27,8 < ¢}.

For AABC to be acute, 8 < 7, and C must
lie on arc DB’, where B’ is the centrosymmetric
image of B,sothat r < ¢ < 8+ 7. (If C is
between B and D, then ZC B A would be obtuse;
if C is between B’ and A, ZBAC would be ob-
tuse.) These restrictions require the point (¢, 8) to

B
D 0 A
“
C
FIGURE 155
0 N
=0 .
%///
M
0 (2r,0) ¢
FIGURE 156
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lie on the triangle whose vertices are the midpoints
of ON. NAl, and MO, a triangle with area one-
quarter that of AOMN. See Figure 156. Hence
the required probability is 1.

Second solution (by calculus). Let the circum-
ference of the circle be 1. Let f be the shorter arc
length between points A and B; t is chosen uni-
formly in the interval {0.3]. If AABC is to be
acute, C must fall in an arc of length ¢ as indi-
cated in Figure 157. This occurs with probability
t. Thus the probability that ZABC is acute is

3

() L=

FIGURE 157

Problem 245. Such a coloring is possible. Paint
(x.y) red if T+ y is even, white if x is odd and y
is even, and blue if x is even and y is odd. Clearly,
condition (a) is satisfied. Now suppose (z,.3) is
red, (T2,y2) is white and (z3,y3) is blue. Then
15— 1) and y2 —y; have opposite parity; x3 — zo
and y3 — v, are both odd. Hence

(v2 = n)(x3 — 12) # (13 — ¥2)(z2 — 1),
By # 2—-4n

(i.e., the three points
I2—I

I3 - X2
are not collinear).

Problem 246. Look at the situation from the
point of view of the walker. Suppose the wind is
blowing at a velocity v in a direction § measured
from the easterly direction. The relative velocity
of the air has two components, a component ow
due to the wind and a component OP initially and
af) finally (acting southwards) due to his walk-
i1e. Referving to Figure 158 and using the fact that
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FIGURE 158

WV=0Q=800=0"=0V-TWU=4,
we see that § = ¥ and v = 4v/2. Thus the wind
is blowing to the northeast at 4v/2 kph.

Problem 247. The configuration consists of
three spheres, those of radius R, each touching the
other two, along with a fourth smaller sphere, of
radius 7, nestling among the first three and the ta-
ble. Since the point of contact of the fourth sphere
with the table is the circumcenter of the equilat-
eral triangle of sidelength 2R formed by the points
of contact of the larger spheres and the table, it is
at a distance "’/—’% from cach of the latter contact
points.

First solution. R +r is the hypotenuse of a right
triangle of base "7': and height R — r (see Figure

FIGURE 159
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159). Hence
4
(R+1)*=(R-r)"+ 3R,

whereupon r = f—f.

Second solution.  In Figure 160 P and Q are cen-
ters of a large and the small spheres, and the
points of contact are T and U. VI L PQ,
PV LVQ and VIt =TV =Vl = % Since
— R?
3

R —
VW =PW.QW, — = Rr,sothatr = §.

FIGURE 160

Problem 248. Suppose (a.b,c,d) is a solution
to the equation, with 1 <a<b<c<d. Thena
is a root of the quadratic .r* —bedr + (b2 +c2 +d?).
By the Factor Theorem, it is divisible by r — a.
Indeed

r2—bedr+ (¥ + 2 +d%)
= (r — a)(r — (bcd - a)).

Hence (bcd — a.b.c.d) is a second solution.
f2<a<b<c<d then bed —a >
2% —a > a, so that (bed — ) + b + ¢ +
d > a+ b+ ¢+ d Applying this procedure
repeatedly, taking a as the minimum of o, b,
e, d. gives a chain of distinct solutions. Start-
ing with (2.2,2,2) gives (2.2.2.6), (2.2.6,22),
(2.6.22,262), (6.22.262, 34582), and so on.

Problem 249. Let ZBAC = 60° and B4 be
ten feet longer than ('A. Let D be the second
infersection point of the two circles. See Figure
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FIGURE 161

161. Since AC is a diameter of circle ADC,
CD 1 AD. Since AB is a diameter of circle
ADB, BD L AD. Hence B and C lie on the
same perpendicular to AD, so that the distance
from D to BC produced is 0.

Problem 250. First solution. Picture one of the
equal sides as the base and let the other side swing
in a semi-circle. Since the base is fixed, the area is
largest when the altitude is longest, i.e., when the
equal sides are perpendicular. Hence the length of
the third side will be \/2 times that of each equal
side for the maximum area.

Second solution. Let 0 be the angle between the
equal sides, both of length a. The area of the tri-
angle is 3a? sin . This is maximum when 6 = }
and the third side has length av/2.

Problem 251. First solution. Our first solution
is motivated by the theorem that the tangents
drawn from an external point to a circle are of
equal length. In Figure 162, UP = UR and

A P_U B
R
v
0 0
D S c
FIGURE 162
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VR = VQ. Thus, UV = PU + VQ. We now
establish the converse theorem.

Proposition. Let ABC'D be a square and let P
and Q be the midpoints of AB and BC respec-
tively Suppose U and V' are points in the seg-
ments PB and BQ such that UV = PU + VQ.
Then UV is tangent to the inscribed circle of the
square.

Proof  The three possibilities for the chord UV
are:

(1) not 1o intersect the circle;

(2) 1o be tangent to the circle;

(3) to intersect the circle in two points.

We rule out cases (1) and (3). If either of these
two cases be valid, consider a parallel chord U'V’
which is tangent to the circle. Then, as pointed out
above, U'V' = PU’ + V'Q. In the case of (1),
UV < U'V', PU > PU', QV > QV, which
contradicts the hypothesis. Similarly, in the case
of 3), UV > U'V', PU < PU', QV < QV’,
which again contradicts the hypothesis. Hence
case (2) must be correct.

(A direct proof can be obtained by choos-
ing R on UV so that PU = UR.RV = VQ, by
then showing that ZBUV = 2ZURP, £BVU =
2/V RQ. and hence that ZPRQ = 135° and
PQRS is a concyclic quadrilateral, S being the
midpoint of CD.)

Returning to the problem, we let DF =g,
AE =a+p, CH =a+qand EH = r (see
Figure 163). Since AEAD is similar to AFCH,

AD CH
—— = —— so that
AE
20 g+a
a+p a '
whence
_a®-ap
T a+p

By Pythagoras’ Theorem applied to ABEH,
r?=(a-p)+(a-g)
o 2ap 2
=la=prs (n +p)
a (02 _p'..’)2 +402p2 a (02 +p2)2
(a+p)? (a+p)?’
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a
D a
FIGURE 163
whence
2, .2 2
a° + a—a
r= d =p+ p=p+q.
a+p a+p

Now apply the proposition.

Second solution. The inscribed circle will be
tangent to EH if and only if the distance from
O (the center of the square) to EH is equal to
a, the radius of the circle. This can be found by
dividing twice the area of triangle OF H by the
length of EH 10 get the altitude of the triangle
from O. Introduce Cartesian coordinates with the
origin at O and the axes parallel to the sides of
the square. Then E = (p.a), H = (a.q) and the

2 _
area of AOEH is =—H.
As in the first solution, the length of EH is
p+q.and pg =a%—a(p +q). Thus a® — pg =

a(p + q). Hence the distance from O to EH is

02—m

ptq

= a, as required.

Third solution. Introduce Cartesian coordinates
with the origin at O as in the second solution.
The line through E and H has equation

(a—q)z + (a-ply=a® —py.
and the distance from the origin to this line is

a® - pq _alp+q)
Ja—oFt@—pp  pta
where the computations are as in the first solution.
Thus the distance from O to EH is equal to the
radius of the inscribed circle.

L)

Fourth solution. (E. Michael Thirian) Let the
length of a sidc of the square be ? et FR
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Ey B
Klv
T
ol
d M -
D F c

FIGURE 164

and BH = vsothat AE =2—-uand CH =
2 — v. Let OK and OM be the perpendiculars
from the center O of the square to EH and
BC respectively. EH and OM produced meet
in L. See Figure 164. Since AAED ~ ACFH,
AE-CH = AD-FC, (2-u)(2-v) =2 or
ur — 2u — 2v + 2 = 0. From the similar triangles
EBH and LKO, EH - KO = BH - LO. Since
wl—v) u+v-—uv

I0=1+ .
v [

e—ur 1 2
AR
T4t T u24e?

_u?+ 07 +uv(ur — 2u - 20 + 2)
- u? + 2

=1.

Thus, the distance from O to EH is equal to the
distance from O to a side of the square and the
result follows.

Remark. By considering an orthogonal projec-
tion of the entire figure, we also have the following
equivalent result. Suppose ABCD is a parallelo-
gram circumscribing an ellipse which touches the
parallelogram at the midpoints of the sides. If F
is the midpoint of DC, H is on BC and E is on
AB with FH || DE, then EH is tangent to the
conic.

Problem 252. First solution. Since aloga =
logb and blogb = loga,
ab-logb = aloga = logb.

Hence
({logb)(ab—1) = 0.
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Either logb = 0, in which case b= 1 and a =
b =1' =1, orelse a®*! = 1. In the latter case,
a must be equal to 1. (For, if a is positive and
unequal to 1, taking logarithms to base a leads
10 @ + 1 = 0 which is false.) Thus in both cases
a=b=1

Second solution.  Since a® = b® = q, eithera =
LLb=1lorab=11fa # 1, b # 1, then, say
a<l,b>lnowb=a%<1whileb>1,a
contradiction.

Problem 253. Let 7 be the required number, so
that, for some integer y, x2 = 10000y + 9009.
Then r must have the form 10a £ 3. Therefore
100a® £ 60a + 9 = 10000y + 9009, whence
2a(5a £ 3) = 100(10y + 9) = 0 (mod 25). Since
5a+ 3 is not a multiple of 5, a must be a multiple
of 25, say a = 25b; then

b(1256 + 3) = 20y + 18.

In the case b(125b+ 3) = 20y + 18, b is a solution
only if the left side has 8 as its last digit. The
smallest possible value of b for which y is an
integer is 6:

6-753 =20-225 +18.

In the case b(125b — 3) = 20y + 18, we see that b
must have either 4 or 9 as its last digit. But b =4
does not lead to an integer value of y, whileb=9
leads to y = 504.

Hence b = 6, £ = 250b + 3 = 1503 and
22 = 2259009.

Remarks. A more systematic approach uses con-
gruences. With  as above,

72 = 259 (mod 625).

In particular,
7% =259 = 4 (mod 5)

sothat £ = 2 or = = 3 (mod 5). In the first case,
set T = 5a+2 to get 25a%+20a = 255 (mod 625)
or 5% + 4a = 51 (mod 125). Solving 5a2 +
{a = 51 (mod 5) tells us that a = 5b — 1 for
some b. Continuing on in this way, Wi find that
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T = £253 (mod 625). Since /2 = 1 (mod 16),
we must have r = £1 (mod 8). Thus

T=625u+p=8v+r
= 5000w — 621p + 625

where p = £253, r = £1. Since this implies that
z = £2247 or £1503 (mod 5000}, we can pick
out the proper answer.

(Show that the smallest square ending in
009009 is 1265032 = 16003009009.)

Problem 254. Let AB =a, FD = b. It is easy
to see that

AE=-—, FEF=-—
sina sin 8
and hence
ﬁ=asuta—r’ E=bsm./3—:r.
sina sin 3

From EBcosa = ED cos 83, it follows that

asina—r bsinff—-1
sinacosf3  sinfBcosa’

Solving for r yields

_acosa—beosf3
cota—cotf

Problem 255. One general law would be: for
n=23.4,...

n l—l 2
H_ﬁi=§(1+;)_
k=21+;5 n{n+1)

First proof (by induction). This evidently holds
“\hen = 2 Assume it holds for n = m. Then,
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whenn=m+1,

m+l 1 _

BY_2(, ! )
,[[(1+fz) 3( m(m + 1)

( m+1) )
1+I)

2(m +m+l)

=z | ———]x

3 m? +m
2
3
2
3

m? +3m? 4 3m )
(m+2)m*+m+1)

m-+3m+3 )
((m F1m+2)

The result then follows by induction.

Second proof (direct). We see that

_(ﬁk—l)(" k2+k+1)
- T+1 2 _r+1
k1 [y

= n(n+ (H(L2 +k+ 1))

k=2

Since

- 1

1
=J[=I,(.i+1)‘~’—(.i+l)+l

i
o i

( (1n+1)(m+2))'
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the given product is equal to

n(n+l) (H(A2+k+l))
n—1 1
(kl;[l (k2+k+1))

_2(n?+n+l)_g(1+ 1 )
T nn413 3 nn+1))"
(If the products above offer difficulty, write

them out in full for some small n, say 4 or §, in
order to understand what the notation is convey-

ing.)

Problem 256. Clearly
M-n(r—1)-1
=z"-1-n(z-1)
=(r=1)@E" T+ 44 1)
—n(z-1)
=(x-1)(="""+r" 24+ 41-n).

The second factor is 0 when x = 1, so it has r —1
as a factor, and we are done.

Indeed, carrying out a “long division™ of the
second factor by x — 1 leads to

™-n(r-1)-1=(z-1)*x

(" 24234 p (n=2r4n-1).

Problem 257. Since every entry in the body of
the table is the sum of the integers heading the
row and column containing it. the sum of the six
entries (no two in the same row or column) is
just the sum of the top “headings™ and the side
“headings,” namely

(14+9+3+2+1+8)
+(2+7+34+54+8+7)=59.

Problem 258. The pattern of circles and
hexagons is uniform throughout the plane (see Fig-
dre FaS), Hence the percentage desired is simply
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FIGURE 165

the ratio of the area of a circle to its regular cir-

n 1l‘\/§

cumscribed hexagon: Vi 6 or about 91%.
Problem 259. a + b2 = —¢V/3 implies that
a? +2abv/2 4 2b% = 3¢, so that 2v/2ab = 3¢% -
a? — 282, Since /2 is irrational, we must have
ab=0and 3r* = a2 - 262 = 0. If a = 0, then
3¢? = 2b2, from which, by the irrationality of \/%‘
follows that b= ¢ = 0. If b = 0, then 3% = a2,
from which follows that a = ¢ = 0.

Riders. (a) Show that the only integers a, b, c,
d for whicha + bv2 + cvV3+dvV5 =0area =
b=c=d=0.

(b) Does a similar result follow from a +

bv2 + cv3 + dv6 = 0?

Problem 260. Observe that when ryz # 0 then

2+ 32+ 2% = (z 4y + 2)? is equivalent to

y2+ 2247y = 0, which is equivalentto 1 4 1 +

% = 0. Since the last condition is satisfied when

N S

b-c’ !

it follows that

1 1 1
b—cF | c—a?  (a-bF

_ 1+1+1)2
“\b-¢c c-a a-b}"’

and the number within the brackets is of course
rational.

Il
o~
n

Problem 261. A 60° counterclockwise rotation
of the plane about C carries A o I and D 10
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A B

FIGURE 166

E, hence AD to BE. Thus, M is carried to N.
Hence, ZMNC = 60° and CAf = CN, from
which the result follows. See Figure 166.

Problem 262. Denoting the given polynomial by
P(x), we have

P(z) = (r — a))(7 — a3)(z - a5)

+ (x — az)(z — ay)(x — ag).
Hence,

P(x)>0 for
P(z) <0 for
P(r) >0 for
P(z) <0 for

r>a,
a > I > as,
ay > .r > as,

ag > T.

By the continuity of P(r), there are three real
distinct roots.

y = Pix),

fGURE 167
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Problem 263.
13 461 +dn 1
=(+1) —ut
={(n+1)° -2’ H(n +1)* + n’}
= (2n 4+ 1){(n + 1)’ 4+ n2}.

Problem 264. The product of the elements of
any row. column, or diagonal equals k; in partic-
ular

aci = beh = ceg =k,
sothata=£ b=% ¢= %. Therefore

ke k a k-’l _ k3
ci ch eg e3ghi ek’

i.e.. k =€ a perfect cube.

Problem 265.

If the Then the statements of
criminal Andy Bob  Carl Dave
is are are are are
Andy  False True False True
Bob False False False True
Carl True  True False True
Dave False True True False

Thus, in case (a) Bob did it; in case (b) Carl did
it,

Problem 266. Suppose there were such a load-
ing of dice. Each of the 11 outcomes would occur
with probability p = ;5. A 2 can be obtained
only if both dice show 1; similarly, for 12 both
dice must show 6.

Suppose the probabilities of rolling 1 on the
two dice are # and », and of rolling 6 are .r and
y respectively. Then p = ur = ry. A 7 can be
obtained rolling a | and G, as well as in other ways.
Therefore the probability of rolling a 7 would be

p2uy+rr= "(E) + (l—,)r
£ u
u o
=p(-+ -
J U
(The last incquality because o + 1 > 2 when e >
")
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This contradiction shows that it is impossible
1o load the dice so that all outcomes are equally
likely.

Rider. Can you load the dice so that all outcomes
but one are equally likely?

Problem 267. (a) Recall that |u| = uifu >0
and |u| = —u if u € 0, and hence | — u| = |u|. It
follows that the region R determined by

] + [yl + |z + y] <2 (1)

is symmetrical with respect to the origin, i.e., if
(a.b) is in R then so is (—a,—b); it suffices to
investigate (1) when y > 0.
In the quadrantr > 0,y > 0 we have 4y >
0 and (1) becomes z + y + (7 + y) < 2; the part
of R in this quadrant is given by
0<z,

0<y, r+y<l,

the triangle AOB in Figure 168.

In the quadrant r < 0, y > 0 either (i) = +
y2>0or (i) r+y <0 If (i) we have —xr + y +
r+y<2ie,y<1 s0

<0,

0<y<l, x+4y20,

(and parenthetically, —1 < ) determining triangle

BOC. If (ii), we have —r+y—(z +y) < 2, i.e.,

-1<uz1, 50
-1<r<,

0<y, =z+y<0,

(and parenthetically, y < 1) determining triangle
COD.
(Indeed. taking the parenthetical inequalities
into account shows that
r<0.

0<y. o+l +ir+yl<2

is equivalent to

-1<r<0, 0<y<l,

determining the square OBCD.)
The “lower™ half of R is picked up by re-
Ocstine e upper half (Figure 168) in the origin
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D o A

FIGURE 168

FIGURE 169

(i.e., rotating the region in Figure 168 about O).
R is the hexagon in Figure 169, of area 3.

(b) The analysis is similar, but there are more
cases to consider. As before, the region R deter-
mined by

[zl + |yl + [zl + e +y+21 <2 (2)

is symmetrical with respect to O i.e., if (a,b,c) is
in R so is (—a, —b, —c), and we can focus on the
four upper octants, where z > 0.

A brief look at the four upper octants follows;
the details are left to the reader.

£20,y>0 2z2>0 Theseand (2) are
equivalent to

120, y>20. 220, r+y+z<1,

An illusion.
Which of the two “central” circles appears 10 be larger?

=
O

O

Oc

135

A(L.0.0)

.
X

FIGURE 170

the tetrahedron OABC (Figure 170), with volume
1

g
T2>20,y<0,z>20. These and (2) are
equivalent to

the “wedge™ (half of the cube which has AD as
one long diagonal) with volume %

r<£0,y>0,22>0. These and (2) are
equivalent to

the wedge (half of the cube which has BF as one
long diagonal) with volume .

7<0,y<0,z2>0. These and (2) are
equivalent to

-1<r+y,

the wedge (half the cube which has EF as one
diagonal) with volume j.

The lower half of R is obtained by reflecting
the upper half in O. The solid region R is seen in
Figure 171; it has volume

1 1 1 1\ 10
21 = -4 - ==
'(6+2+2+2) 3
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FIGURE 171

Problem 268. First solution. (Using the Princi-
ple of Inclusion and Exclusion.) Assuming that all
seats at the table are identical, and using one per-
son as a “marker,” there are 5! = 120 ways of
seating the other 5 people without restriction. If a
particular couple is to be kept together, the remain-
ing 1 people can be seated in 4! ways. However,
for cach of these ways, we can switch the posi-
tions of the members of the couple. Hence, the
total number of ways of seating the people with a
particular couple kept together is 2 - 4! = Jb.

There are 2° - 3! = 24 ways of keeping 2
particular couples together, for, using one couple
as marker, there are 3! ways of arranging the three
units consisting of the remaining couple and the
other two individuals.(The factor 22 results from
switching positions of husband and wife of the
two couples.)

Finally , there are 23-2! = 16 ways of seating
the G people so that all three couples are kept
together.

By the Principle of Inclusion and Exclusion,
the number of seating arrangements for which no
couple is hept together is

120-3- 1843-21-16=32.
Second solution. et the couples be (A.a),

(B.b), (C.c). Use A as a marker. The follow-
ing diagrams show the diflerent tvpes of arrange-
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g X XD &
(a) (b)
X
x A * 4
X
a x a
P 4 x ‘X
(c) (d)
FIGURE 172

ments; the double arrows join the two members of
the same couple.

There are 4 ways for which either B or b sits
on the left of A, and 4 ways for which either B
or b sits on the right of A. This arrangement type
can be realized in 8 ways. See Figure 172(a).

There are 4 ways for which A is flanked
by (B.b) and 4 ways for which A is flanked by
(C.¢). Again, this arrangement is realizable in 8
ways. See Figure 172(b).

Similarly, each of Figure 172(c) and Figure
172(d) can be realized in 8 ways. Hence, all told,
there are 32 arrangements for which the couples
are kept apart.

Rider:
by n.

Solve the same problem for 3 replaced

Problem 269. For any route, there is a second
route which is symmetrical about the bisector of
£BAC and can be travelled in at least as short a
time. (This is because any path ;2 must cross this
bisector at least once, say at a point G. Suppose
the part of ¢ from B to G can be traversed in at
least as short a time as the part of i from G to
C. Then we can get a better path i by replacing
that part of 4 from G to C" by the mirror image of
that part of s from B to G. A similar procedure
can be used if the latter part of ;s takes the shorter
time.)

Hence we need only consider paths sym-
metrical about the bisector of ZBAC. Since the
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FIGURE 173

shortest distance between two points lies along
a straight line, an optimum path is of the type
pictured in Figure 173, where AD = AFE and
BD = CE. Let BD = r. Since AB = p and
BC = g, consideration of the similar triangles
ADE and ABC leads to

DE = (p-1)q
p

The time ¢(z) taken to traverse the path BDEC
is given by

2 - 2
t(1)=_f+(f’__fﬁ=(__i),+i,
v pw v pw w

When % - i‘ >0, t is an increasing func-
tion of x, 502mt the time is smallest when z = 0.
q

When Pl <0, t is a decreasing function

of z, so that the time is smallest when r = p.

Problem 270. First solution. Suppose there
were such a polynomial p(z). Noting that log z
is an increasing function (i.e., log u < log v when
0 < u < v) and that logz < z (from the defini-
tion of the log function) we have

p(n) < nlogn < n?,
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It follows that the degree of the polynomial p(.r)
is at most 2. (A justification of this last assertion
is given at the end, within the brackets | ].)

Evidently p(n) is neither constant nor linear.
There remains the case to consider that p(x) is a
quadratic function. In this case we deduce from
p(1) =logl = 0 that

p(r) = (r = D{ar + b).

Evaluating at r = 2 and . = { we have
log2=p(2)=2a+b
log24 = p(4) = 3(da + b).

and solving yields

a= élog& b=log2—%log3.

Thus
p(x) = (r=1) (2183 4 1og2— 1logs)
6 3
and hence

log2 + log 3 = p(3)

_of 3log3 6 _1
—2( 6 +log2 3lo}{:‘l)

which reduces to 3log2 = 2log3ie., 2> = 3% a
contradiction.
[We indicate here why a polvnomial

plz) =apr” + iz + -+ ap,

of degree m > 1 has the property
[p(z)] > ™! for sufficiently large x

First write p(x) in the form

b b bm
p(r)=auf'"(l+—l+—;-+---+ )
T T

m

There once was a hairy baboon

Who always breathed down a bassoon
For he said "It appears

That in millions of years

I shall certainly hit on a tune.”

A. Eddington
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By taking r sufficiently large we can insure that
the expression within the brackets is greater than
-;-. so that then

1 m
b2l > 5lagle™.

Now choose r so large that I_|;g| > 1, and then

m-1

[p(x)] > x

It follows that if p(x) < r? for large r then m <
2]

Second solution. Suppose

m
logn! = p(n) = Z a.n"

r=0

(where a,, #0) for n =1.2.3..... Then

log(n+1)! = E a.(n+1)".
r=0

It follows that

log(n+1) = ia,(n +1)" - Zarn',

r=0 r=0
which is a polynomial of degree < (m — 1). By
Problem 123, log x cannot be expressed as f(r)
for some polynomial f(r). Thus we are led to a
contradiction, and the result follows.

Remark. An altemative argument for showing
that logn is not a polynomial in n is sketched.
From logn = b.n" 4+ b yn" ' 4 --- 4 byn + by
and n = eP we have

p="be" 4 b 1P 4o by,
whence

L =br+br—le_p+“'-

epr
n 1 2 3
f(n) 1 3 8
fin+1) 8 . 0 22 _ 65
o) 3 3 = 2.66 5 =2.75 %

TABLE 3
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As p — oo, the left side tends to 0, the right to
b, yielding a contradiction.

Problem 271. Let us see if the values of f(n)

for small n will reveal something useful (Table 3).

f(3) 8 . ..
=— = - is the minimum
a3
and one way of proving this is to show that
flnt1) 5.6.7,.... Indeed, for

f(n)
n>6,

fln+1)=17*" 42" 437!

It seems that

>3 for n =

+-- 40?4 (n+1)
>4 2n 30 g2 450
+6" 4t (n 1) +n?
> 1l pon  geml | gn-2 | gu-3
436" +7" 4. p (n-1)24n)
= "+l on 4 gnml gn-2 4 g3
#3(f(n) = 17— 2V1_ 302 4n=3_504)
=3f(n)+2(" 1 - 1)+ 2771275 - 1)
> 3f(n).

Problem 272. There are five ways of interpret-

(d - .
ing a*" , each of which expresses a raised to some
power:

4
a(b( ));

(ab)(cd) = g,

a((b.-)a) - a(brd);
((ab)r)d = ﬂbcd;
(a“’r))d =o',

Since a* < a¥ ifand only if r < y when a, 1, y
all exceed 1, we have to compare the sizes of bed,
bd, bet, b, i),
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Observe that, for every natural number n >
2,7 < 2"~ < 6"~ This can be applied to show
that

bed < bd < bt < B, bed < bet.

Only the pairs (b"d.be?), (bet.b™!) and
(b, b«™)) remain to be considered. b°d and be!
satisly no general inequality, as exemplified by
32.2>3.22and 2%-3 < 2- 2% As before, we
have be! < b

It remains to show that b < b4, Use in-
duction on d. For d = 1, the inequality is clear. If
be! < b, then

b(.'d+l - Cb('d S cbl'd S brbrll - br(d+|)‘

Rider.  When can there be equality for the various
pairs?

Problem 273. The information is nicely dis-
plaved in a Venn diagram. Assume a total pop-
ulation of 1000 inside the rectangle (Figure 174).

FIGURE 174

The left circle H BP contains those with high
blood pressure and the right circle contains those
who drink. Of the 35 people with high blood pres-
sure, 0.8 x 35 = 28 drink and 35— 28 = 7 do not.
We therefore place a 28 and 7 indicated in Figure
175.

FIGURE 175
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The remaining 1000 — 35 = 965 with normal
blood pressure fall into two classes: those who
drink—0.6 % 965 = 579 of these, and 965-579 =
386 who do not. The complete picture is in Figure
176. Now we compute the percentage of drinkers
who have high blood pressure:

D14

00
* 8+ 579

=46...%.

FIGURE 176

Problem 274. Choose the last number s, first.
There are three possibilities: n, n — 1, n — 2. Hav-
ing chosen s, there are three ways of choosing
Snp—1 from those of n, n—1, n—2, n—3 not taken
for s,,. Likewise, with s, and s,_, chosen, there
are three ways of choosing s, . We can continue
on, choosing each s, from three available possibil-
ities until we have chosen s3; now only s» and s,
remain to be determined. Only 2 possibilities are
left for so and, with s, chosen, s, is determined.
Hence the number of arrangements satisfying the
conditions are

3x3x3x---x3x2x1=3""2.2
N——  p—
n-23's
Rider. 'What is the solution if the condition is:

sk > k — m, where m is some fixed number be-
tween 1 and n, for all k = 1,2,...,n?

Problem 275. First solution. Since (b - c)? +
(c-a)?+(a-b)2>0anda+b+c>d,
3(a® + 6% + %)
= (® + b +c%) + 2(a® + b + &)
> (a? +b% + ) + 2(bc + ca + ab)

(a+b+c)’ > L
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Second solution. Consider any (n + 1)-gon,
not necessarily coplanar nor non-self-intersecting,
with sides a),as,....a,;;. By the Holder in-
equality, given any m > 1,

(a" + a3’ +---+a::')%(l+l+~~+l)"#

2a+a2+-+an

with equality if and only if ) = a2 = --- = a,.
Since, by an exiended triangle inequality,
a +a+-+ay, Zan-Hv
Nl
a' +a7 +---+a; 2 nr::_—l"
with equality only when @) = a2 =--- = a, =

Qny)

, in which case the polygon is degenerate.
For m = 2, n = 3, we have the situation of
the problem. (See also Problem 466.)

Problem 276. Let the chosen numbers be named
in ascending order of magnitude: a) < az < a3 <
.-+ < ag. If no three of the seven integers

as —ap, a3 —az, a4 —as...., g —ay

are equal, then at most two are equal to 1, at most
two are equal to 2 and so on. Hence

ag —ay = (02 — @) + (03 — a2)
+(a4—a:1)+~-+(ag—a7)

must be not less than 1 +1+24+2+3+43+4 = 16.
On the other hand, since 1 < a; < ag < 16,

ay — a; < 185,

which contradicts the earlier statement.

Thus, in fact, the following stronger result
holds: there is a k& for which a, — a,_; = k has
three solutions when the a, are chosen in ascend-
ing order of magnitude.

Problem 277. The answer to both questions (i)
and (ii) is NO. It is enough to prove this in case
(ii). The explanation depends in part on the fact
that perfect squares leave remainders 0 or 1 upon
division by 4. Thus, we examine the possibilities
modulo 4. This has the advantage that therc are
only 3 cases to consider:

(@ k=0 (mod4);
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(b) k=2 (modd4);
(c) K is odd.

In the case (a), for any integers z and y,

2 +kry+y =22+ (mod 4).

This means that x? + kzy + y? differs from the
sum of two squares by a multiple of 4. But the
sum of two squares can never leave a remainder
3 when divided by 4. Hence 7% + kzy + 37 can
never assume any of the values {3,7,11...}.

In the case (b), for any integers z and y,

2rkry+yi =24 2ry+ 9
=(r+y)? (mod4).

Hence z2 + kzy + y® must leave a remainder 0
or 1 upon division by 4, and so it never assumes
one of the values {2.3,6,7,10,11,...}.

Now suppose case (c) holds and k is odd.
Then k = £1 (mod 4), so that for any integers r
and y

P4kry+yf=rlty+y’
=r(rty)+y? (mod 4).

When y is odd, then 32 is odd and r(r + y) must
be even, so that 1% 4 kry + y? is odd. On the
other hand, when y is even, either r(r £y} is odd
or is divisible by 4, while y? is divisible by 4, so
that 2° + kry + y? is odd or divisible by 4.

Thus, whether y is odd or even, 2 + kxy +
y® can never leave remainder 2 when divided
by 4, and so can never be one of the values
{2.6.10.14,.. .}.

Therefore, whatever particular value of & is
chosen, there is some positive integer n for which

2ikry+ P #n

Problem 278. The rational root can be written
in the form 5’ where p and g are integers whose
greatest common divisor is 1. Thus, p and ¢ cannot
both be even, and

ap® + bpq + cg* = 0.

Suppose, if possible, that a, b, c are all odd inte-
gurs Nince the left-hand side of the equation is an
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even integer, either none or else exactly two of its
terms must be odd.

If p and g were both odd, then every term on
the lefi-hand side would be odd, which is impos-
sible.

If one of p and g, say p, were even, then ap?
and bpq would both be even while cg? would be
odd, which is impossible.

Hence a, b, ¢ cannot all be odd.

Problem 279. Suppose all three men have dif-
ferent weights, B, K, A (given by their respective
initials). Then their statements can be written

Barbeau: B> K, K > AL
Klamkin: M > K, M > B.
Moser: K > M, M =B.

Since each makes two statements, the lightest
must make two correct statements, the heaviest
none and the other exactly one.

One of Moser's statements (M = B) is in-
correct, hence he is not the lightest. Barbeau also
cannot be the lightest, for then his statement that
B > K would be wrong. Nor can Barbeau be the
heaviest, for then B > K" would be correct. Hence
Barbeau is in the middle, weightwise. This gives
the ordering Af > B > K.

Now, it may happen that at least two have the
same weight, as we are given no information about
the relative veracity of two who weigh the same. In
this case, of the seven possibilities K = M = B,
K>M=B,M=B>K,B>K=AM,
K=M>B,M>K=B,K=B>M,the
firsttwo (K = Al = Band K > M = B) are
possible orderings.

Problem 280. For each r and y, f(r.y) =
kf(y,x) = k-k- f(x,y) = k2f(x,y)-. Since there
are values of  and y for which f(r,y) # 0. k2
must equal 1. Hence k=1 or k= -1.

An example with k =1is f(z.y) =z +y;
an example with k = -1 is f(z.y) =z —y.

Rider. Solve the same problem for a polynomial
f(z.y,2) of three variables for which the condi-
tion is f(x,y,2) = kf(y,2,z).

Problem 281. The key to the solution is to be-
gin by minimizing the distances to two opposite
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FIGURE 177

vertices. If A and C are two vertices, and P is
any point on the segment AC and Q is any point
not on the segment (Figure 177), we have that
AP + PC = AC < AQ + QC, by the Triangle
Inequality. This suggests that the required point
is the intersection of the two diagonals. Indeed, if
the four vertices are A, B, C, D and AC and BD
intersect in P, then for any point Q,

AP+BP+CP+DP=4C+BD
<AQ+CQ+BQ+DQ
with equality only if P = Q.
Rider. Solve the same problem when the quadri-

lateral (say ABCD as in Figure 178) is not con-
vex.

B C

FIGURE 178

Problem 282. More generally, let the latitude of
the place be A, and the latitude of the Arctic Circle
be a. Let A < a. (a is 66° 33".) In Figure 179,
O is the center of the earth. If 7 is the radius of
the earth, we have that

= rsin A, AE = rcos )

04
OC - rsina, CD =rcosa.
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FIGURE 179

Hence

rsin A

rsin A

AB=

TCoOSax =

rsina tana

What proportion of the time is a point on the
surface at latitude A in the sunlight? It will be
in the sunlight from the time it is at position F
until it is at position G (in Figure 180). Assuming
uniform rotation, this will be the ratio of the short
arc FG to the whole circumference of the cross-

section, or the ratio of ZGAF to 2.

rcosi

FIGURE 180

Since ZGAF = 2arccos -oD-, the number of
hours of sunlight at a point of north latitude ) is

24 AB 21 tan A
—24receus ——= = — arccos .
2 / n taha

When n = 66° 33’, A = 13° 15, this is about 8
hours and 45 minutes.
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FIGURE 181

Problem 283. Denote the areas of the four tri-
angles (into which the trapezoid is divided by the
diagonals) by A, B, C. D as in Figure 181. If
one diagonal divides the other in the ratio ¥ (as
indicated), then

so A- B = C-D. Since triangles with the same
base and between the same parallels have equal
area, A+ C = A+ D, whence C = D = VAB.
Thus, the area of the trapezoid is

A+B+C+D = A+B+2VAB = (VA+VB)~.

Rider. Given a quadrilateral, with triangular di-
visions lettered as in the diagram, for which the
area is (VA + v/B)?, must the figure be a trape-
zoid?

Problem 284. To get an idea how to pro-
ceed, look at the case n = 2. Then we have
to find the sum of the digits in the numbers
1,2,3,...,96,97,98.99. Look at the numbers
from the top down. 99 has the digital sum 18;
98 has the digital sum 17, which with 1 added
gives 18: 97 has the digital sum 16, which is 2
short of 18. When we get into the 80's, we note
that the digital sum of 87, for example, is 1 4+ 2
short of I8, and 1 + 2 is, of course, the digital
sum of 12 = 99 — 87. This suggests that we aug-
ment the sct of integers by 0 and pair them off:
(0.99).(1.98).(2.97).....(12.87)....,(32.67).
..., (48,51).(19.50), the sum of each pair being
99. There are 50 pairs and the digital sums of the
two members of each pair add up to 9 + 9 = 18.
The answer, for n = 2, is therefore

9-2-50 = 900.

In general, pair off & and 10" -1-k%k
4ot 005-10"" = 1). Then the units
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digits of the two numbers of each pair add up to
9, as do the tens digits, and so on. Since there
are up to n digits in the numbers of each pair, the
sum of the digits in each pair is 9n. Since there are
110" pairs, the total digital sum of all integers

9n - 10"

5 n-10""1.

=5-9-

Problem 28S. First solution. The matter hinges
on finding the altitude of the shaded isosceles tri-
angle AGC. This can be found by bisecting the
right angle ZABC: the bisector passes through G
and is perpendicular to AC. Hence, we seek GD

A

b

Y|

R lx o

[
IL

FIGURE 182

I 1

Let GH 1 BC, as in Figure 182, and denote

GH EB
GH by z. Since e = To"
r _a
b—z b’
and hence
_ab
I= pawe
Then

— = — b
GD=BD-BG=— -V,
7 z

so that the area of triangle AGC is
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Second solution.  Using the notation and diagram
of the first solution, we have that

Arca AGC = Arca ABC -2 - Area GBC

b? b2 2a
= —7b= e
2 757 (l a+b)

Problem 286. Any 9 points inside the pentagon
will do! (Make a diagram.)

Problem 287. First solution. The expression
vanishes if weset r = 0, y = 0 orz = —y.
By the Factor Theorem, r, y and r + y are all
factors. This can also be seen directly, since z+y
divides 77 + y:
(@ +y')
= (z+yf(z +y)°

— (1 - Sy + 1y

(r+y) -
- By + 7%y -1y’ +4%)
=(z+y)x

{128y + 147y + 2153 + 1407y + Ty}
= Try(r + y)(z* + 2% + 327 + 203° + ¢)
= Try(z +y)(® + 7y + ¥°)%.

Second solution. As above z, y and T + y are
factors. Let # = wy where w is “the imaginary
cube root of unity” (w = %(—l +iV3), Wi =1,
w? +w+1=0). Then

(x+y)" - (a7 +y")
=y (w+1) -y’ (W +1)
=y (-?) -y (w+1)

==y (W +w+1)
=y (W +w+1)=0.
Hence xr—wy is a factor. In fact, we can say more.
Let
glz) = (z+y)" 1" -y".
Then
g'(z) = 7{(x +y)° - %}
and
g'lwy) = Ty {(w +1)° -}
- Tyﬁ{(_w'.’)ﬁ _ wﬁ} = 0’
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s0 r —wy is a factor of g(.r). Therefore (r —wy)?
divides (.r+y)” — (x4 y"). Since the coefficients
are real, (r + y)7 — (r' + y7) is also divided by
the complex conjugate (x — w?y)>. Therefore

(r- wy)z(:r - wzy)2 =(r’+ ry+ yz)z
is a factor. The result follows.

Rider. Investigate the factorization of (z 4 y)"
—(a™ + y") for other integer values of n.

Problem 288. First solution. Since

BC || FH. CD| HK. DE| KG.

it follows that

AB _AC _AD _AE

AF  AH AK AG
so that AFHKG is a “reduction” of ABCDE
under a homothetic transformation with fixed
point A. Hence AFHKG and AB('DE are sim-

ilar, so that the pentagon AFH KG is regular.

Second solution. Since ZBAE = 108° and
AB = AE, we have /ABE = /AEB = 36°.
Similarly, ZBAC = ZEAD = 3t° so ihat
ZCAD = 36°.

Since FH | AD,ZFHA = LCAD = 36°.
Since ZABE = /ZBAC = 36°, /ZBHA = 108°.
Thus, ZFHB = /ZHFB = 72°, s0 ZAHK =
72°,

Similarly ZAK H = 72°. By isosceles trian-
gles, BF = BH = Al = AK,so ABFH =

FIGURE 183
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AAHK . Hence FH = HK. Clearly AF = FH.
Similarly AG = GK = HK.

Thus, the pentagon AF H K'G has all its sides
and all its angles equal: it is regular.

Problem 289. Suppose that there were a solu-
tion to
T HREE
+ F I V FE
E I GHT

Since T and E are distinct, there must be a carry
of 1 into the leftmost column. Thus, E =T + 1.
Now look at the right column. Since E > T, E+
E must exceed 10, so that

E+E=10+T=9+E.

Thus E = 9 and T = 8. Now using the 1 car-
ried from the right column we find, from the next
column,

1+49+V =10+ H.

This yields V = H, contradicting the given V #
H.

Problem 290. Let d be the greatest common di-
visor of a, b, ¢; let g be the greatest common
divisor of x, y, 2. Since d divides both b and c, d
must divide r. Similarly d must divide y and also
z. Hence d. being a common divisor of x, y and
2, does not exceed g. On the other hand, since ¢
divides r, g must divide each of b and c. Since g
divides y, g must divide a and ¢. Hence g must
divide a, b and . Therefore g < d. Thus g = d.

Problem 291. 13% days.

Rider. In such a situation, it is more natural
that there be some limiting factor on the growth
which takes drastic effect for larger populations.
We might suppose, for example, that if N is the
population at a given time. then 12 hours later,
the population is N (2 - %) where K is some
constant.

Are there values of A" which would prevent
a population of 1.000.000 from ever increasing to
2.000.0007 If so, what is the largest such value?
ter 2hae bowill the growth law permit a culture
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of 1.000.000 bacteria to increase to 2,000.000
bacteria in 2. hours?

Problem 292. The condition on f can be for-
mulated as follows: if a # b, then

J) - fla)
b—-a
First, let us try to find a solution. Looking al the
form of the equation, we might trv r = ¢ — f(u),
where u is to be found. This leads o f(u) =
f(c— f(u) + f(c)). from which it is clear that
u = ¢ will work. Thus

r=c-flc)

is a solution.

Is there another solution? Suppose that £ =
v # c— f(c) is a second solution. Taking account
of the condition on f and the fact that » + f(c) #
¢, we have

fle + f(e)) - fle)
BT CE

However, since v is a solution, f(v+ f(c)) = c—n,

so f(v+ f(c))- f(c) = =(v+ f(c)—¢). Thus (1)
implies that —1 > 0. Therefore there is no second
solution!

Problem 293. Fist solution. Join AE. Since
AF = 2CF, |AEF] = 2[FEC). (|ABC}. .. de-
notes the area of polygon ABC'... ) Also

[ABE] = |AEC] = (AEF|+|FEC)] = 3|FEC).
Hence

[ABEF) = |ABE| + [AEF| = 5|[FEC].

FIGURE 184
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Second solution. Let X and V' be the respec-
tive fteet of the perpendiculars from F and A 1o
BC. Sec Figure 184. Since A4Y (' is similar to
AFXC, AY = 3FX. Hence

[ABC] =2[AEC) = 2-3|FEC] = 6|FFC).
so that LABEF] = 5|FEC.

Problem 294,
{logs 169) x (log, 243)
= (2log; 13) x (Slogyy 3)
= 10log, 13log4 3 = 10.

Rider. Analyze the following “proot™ if a =
log, 169 and b = log,;, 243, then 3" = 169 and
13" = 243, whence 169 — 13" + 243 — 3* = 0.
Thus, 132 - 13" + 3° = 3" =0,s0b=2,a=5
and ab = 10.

Problem 295. First solution. Extend BA to D
so that .1D = ¢ Clearlly AAA, A2 2 AACD
and we have

[4.4142] = [ACD] = [ACB] = Sab.

Similarly,  [BBaBy] = %ab.  Of course
[C°C1C2] = Jab. The area of the hexagon is

N 1 Y
a4+ b8+ 241 (;ab) = 2(a® + ab + b%).

Fleeia Q4
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Second solution.  The area of AAA; A, can also
be obtained by trigonometry. Since

LA AN + ZCAB = 100°,

the area is

AL - AdsinZA 44, = %bcsin LCAB

tO | —

Similarly, the area of triangle BB, B: is {ab. We
complete the result as in the first solution.

Rider. Would the area of the three triangles
AA, A, BBy Bs and CC) Cy necessarily be equal
when triangle ABC does not have a right angle?

Problem 296. If the three numbers are a, b, ¢
with a < b < ¢, it suffices to show that ¢* = a* +
b%. Taking a = 6-10"+2, b = 1125. 10*"+! —§,
and ¢ = 1125 - 10*"*! + 8, we have

a® + b2 =36- 10"+ 4 (1125 10°"*1)2
— 18000 - 10*"*! + 64
= (36000 — 18000)10%"*+!
4+ (1125-10°"*1)% 4 64

= (1125 10°7*")% + 15000 - 10*"*+' + 64

= CZ.

as desired.

Problem 297. How can two players, call them
A and B, get to play together? Either (a): they
can be chosen as a competing pair in the first
round, or (b): both can play and win over separate
opponents in the first round and be among the half
of the players who continue in the tournament.
These cases are mutually exclusive.

Consider case (a) from A’s point of view. If
the choice of competing pairs is unbiased, .\ has
as much chance of plaving with B as with anyone
else in the tournament. Thus, if there are i players
in all, 1 has probability —t of playing against
13 in the first round.

If case (b) occurs, the problem is reduced to
consideration of the same situariat vith lf
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many players. Thus, we can reduce the problem
with 32 players to the same problem with 16, then
8. then 4, then 2 players.

With this in mind, for & = 1.2.3.4.5, let
i be the probability that, if 4 and B are among
2¥ players in the tournament, then they will play
together.

If & = 1, there are only two players, A and
B, who must therefore compete. Hence p; = 1.

Suppose & = 2. Then there are 4 players and
there is one chance in three that A and B play
together in the first round. Otherwise, they play
against separate opponents (of equal skill to them-
selves) with an even chance of winning. They both
survive the first round with probability (3)* = 1.
In the second round, being the only players re-
maining, they compete. Hence

(where £ is the probability they do not play each
other in the first round).

Now let & > 2. There are 2" plavers and
A plays B in the first round with probability
st - Hence, with probability f;::—;’ = "‘—ﬂ":,%
A and B have separate opponents. vanquishing
them with probability (1)* = {. Given that both
are among the 2%~ to survive the first round,
they will later play together with probability py.—,.
Thus

1 221 —) 1
O e R

50 2(2F = D)pe =24 (2* ' = I)py_,. Hence
2K(2F — 1)y
=k pak-tb 1 gy,
R 1/
(and by recursion on &)
E AR AL S L SR I S
=20 Vg4

22k - 1),

so that

1
M= Sy
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FIGURE 186

In particular, the required chance that A and B
among 32 players get to play together is one in
sixteen.

Problem 298. First solution. (John Im) Suppose
we have a configuration in which the angle is tri-
sected. Let ZPOC = z° so that ZCOQ = 2z°.
Let D be the image of C under the reflection in
line OP, and let M be the point on OQ for which
OM = OC. It is straightforward to establish

ANACD = AABC and AOCD = AOMC,
so that

CB=AC=CD=CM

ZCBM = LCMB.
Also,
ZCBM =27 +(30° + z) = 30° + 3z,

ZCMB = £0CM = %(180° -2r)=90° - z.

Hence 30° + 3z = 90° — z so that z = 15.
Hence we must have ZPOQ = 45°. (See Crux
Mathematicorum 7 (1981) 100-101.)

Second solution. let « = ZAOC and § =
ZLCOB.Then0 < a, < 90° and a + B < 90°.
We can label other angles as in Figure 187. Let
AC=AB=BC =¢, OB=>band OC = c.
Applying the Law of Sines respectively to trian-
gles OBC and AOB, we have
sin 3 _a
sin(30° +a) ¥
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FIGURE 187

and

sin(fa + ) =

[~ 4~

so that
sin B = sin(a + B) sin(30° + a)

= %{cos(30° - B) - cos(30° + 2a + B)} (1)
Applying the Law of Sines respectively to trian-

gles OBC and OAC, we have
sin 8 a sina a
Sn(150°—a—-F) ¢ T Snlsc ¢
Hence
sina sina sin 3
sin30°  sin150° sin(150° — a — )

_ sin 8
" sin(30° + a + B)’

so that, using sin 30° = 3,
sin 3 = 2simasin(30° + a + B)

= c0s(30° + 3) — cos(30° + 2a + B).
(2)
From (1) and (2) , we get

2¢05(30° + B) — 2c0s(30° + 22 + B)
= ¢0s(30° = ) - cos(30° + 2a + )
or
cos(30° + 2a + B)
: 208(30° + 3) — cos(30° — ).
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Now suppose the method actually gives a trisec-
tion of the angle ZPOQ. Then 2a = 3 and equa-
tion (3) becomes

c0s(30° + 23) = 2c0s(30° + B) — cos(30° - 3).

or
c0s(30° + 2/3) — cos(30° + )
= ¢0s(30° + ) - cos(30° - B),

or

-2sin (30° + %’) sing = -25in30°sin B

= —2sin 3 cos 7
Either 8 = 0 or sin(30° + %) = cos¥ =
sin(90° + £). Hence 8 =0,30° + ¥ = 90° - &
or 30°+ ¥ = 90°+ £, yielding three possibilities:

a=p=0°,
a=15, f[=30°
a=30°, B=60°

Conversely, it can be shown that equation (3) is
satisfied in each of these cases. Thus the only
acute angle ZPOQ (= a + ) trisected by the
method is 45°.

Third solution. In Figure 188, let D be the foot
of the perpendicular from C to O A produced, and
M the foot of the perpendicular from C to ABc.
Let OA = 2, ZAOC = @, ZBOA = 7. Then
AB = 2ctan7, so

CD = Al = %m - ctanm.

B
mH c
1
8 ]
0 A D
FIGURE 188
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Thus,
¢ CD ctanvy
ang = — = ————————
0 2¢ + cV/3tany
_ tany
2+ \/ﬁtan”y'

Suppose the configuration is such that OC actu-
ally trisects the angle ZBOA, i.e., ¥ = 3a. Then,
since

3tana - tanda

tan3a = 1 -3tan’a
we would have
tana = tan3a
2+ V3tan3a

_ 3tana - tan’ o

" 2-6tanZa +3v3tana - V3tanla
Setting £ = tana and cancelling out x, we obtain
the equation

14572 = V3(3r - ).
We can clear out the surd by substituting r =
V3y. This gives
1 +15y% = 9y - 9y°
or
3y(3y® +5y-3) + 1 =0.

If there is a rational solution, it is certainly
the case in lowest terms that 3 must divide the
denominator. Accordingly, if y = 3. then

P 45:2-9:43=0.

Since 23 4+5:2-9: 43 = (:-1)(z2+62-3), we
obtain that z = 1, -3 + 2v/3, -3 - 2/3. whence
r= -‘/,——’ 2—/3, =2 = /3. The third value for r,
being negative, is extraneous. Hence we find the
method works only for
tana = 0°, 1

. 2-3,
V3

which corresponds 1o a = 0°, 30°, 15° or y = 0°,
90°, 15°.

Problem 299. Suppose there are k 1's. Then the
number represented is

a2ty | gok-look_
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Its square is

(2k - 1)2 = 22k _2k+l +1

=kt o) +1
=MH(2* 2 26 1)+
=22k‘—|+22k—2+ +2k+l +l

In base 2, this square is expressed
111...11000...00 1L
N, o — —
k-1 k

Problem 300. Before tackling the problem in
general, get a feel for it by looking at the first
few cases. For k = 1, 2 and 3, the respective
equations are

sin T 1, sin z ! i 3
== sin= = —, s —=
2 4 2 6 6 2
as can be readily verified.
Now try to prove the k = 4 case. The left

side is sin g T sin 3%, We note that
sin S cos(’r 37y = cos =
"8 g’ =%

1 7rco ”—lsinﬂ-—

Sng®g TNy T
and the equation holds for k = 4.
When k = 5, the left side is

T, om
sin E stn — T sin 10

In this case trying to substitute cos 5 for sin 15

and cos 2 for snn o does not seem pamcularly

helpful. However, we mxght try to get in a position

to use the sin 28 = 2sin # cos 4 identity by looking

al

Slnlsln2—"5l 3‘”8] 4_"3"15—
10 "0 0
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Then (noting that sm

(sm" ”) 9m2—7rcos2—1r x
10 10 10 10

3r 3 4 Arm
stn — cos — | [ sin — cos —
10 10 10 10

1l .m 2n  3m . 4w
—;blllgblﬂ?Slll?SIn?

.. 2r . 2n . W
sin — sin — sin — sin —

I R R T

2 n 23n
Cancelling gives sin® {5 sin” 35

which the k& = 5 case follows.
Look at the general case. Let

. 2r . 3n . (k-1)rm
A =sin Lam%sn 5% sin o

Since sin 5 = 1 and

sin— = cos ((k - r)%)

2k
21r "
2k

forr=1,2,...,k—1,
(k=17 (k-D)n
x(sm o cos o

A? = (bm 7;: 2L) (sm 2

=1 sin — |n2—"5m:E . 'in(k—l)w
= g S SIS s T
_ 1 o . o2m L |k|m
= k-1 7 sin ksm - sin 7| %
(since sin (k_s)ﬂ—sins—”
kT k
k
=12,...,1=1},
for s [2])
. sm"’2 sin? [ ]
Tok-TTT 9p T 9k

Cancelling out the [51 factors sin® ZX (r =
1,2,...,[%]) from the two expressxons for A2
yields, for k even,

2 2 37T .2 (k - l)ﬂ'

S| ——Q «++81
in in Py n

T 2k

_ 1
T ok-1
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311127’;«1112%1—[ x'inz%=§kfl_—l- for k odd. l-%+:—2‘+i+%+—s
Since with 2 < 7y < 22 < I3 < 14 < Ts. Then it
k41 k=1 fork even, must be that 1y > 2, 12 > 5, 23 > 8, 14 2 11,
2[ > ]- {k for k odd 5 > 14, so that
. ' 1 1 1 1 1
the required result follows, —+—+—+—+—
Iy Iz I3 T4 Is
Problem 30[ (a) Since i +15 = 56 =15 < 1 + 1 +l 1 + 1
and ' + m = ‘:—'m = 40. the right-hand side 25 8 11 M
xsequalto =(l+l)+(£+i)+l
1 1,1 2 8 5 11 14
( ) (8 2wt ) 5 (1 1 3
4 4 1_, <§+(5+E)+5
5 4( ) 5+5 ' <§+_3_+_3_=1‘
as required. 8 10 40
(b) Suppose that the representation uses  a contradiction.
the reciprocals of & distinct positive integers Hence we need more than § numbers for the
I1,%2,...,T, Where r, = 2 (mod 3) for i =  representation. The next possibility is 8, and (a)
1,2,....k (e, z, is one of 2,5,8,11,...). shows that there is indeed a representation with 8
Since terms.
1 1 1
1= o + 72 teeet " Problem 302. Let the length of a side of the

given square be 1. The pentagon ACDFE (Figure
189) then has area , so that the side length of the
k

T1ITy .. Ty = ZX“ (+) fitted square should be \/g.

=1

multiplication by z,x2x3. .. zx yields

where X, = (173 xx) is the product of k—
1 of the numbers r,.

We obtain, from (*), 2 = k2¢~! (mod 3),
from which £ = 2 (mod 3).

Hence & must be one of 2,5,8,11,.... c
1

1 1
Since —+ — < -+ 1 = 1 for distinct in-
Iy T 2 2

tegers .ry and rp exccedmg 1, there is no repre-
sentation of the required type with only 2 terms.

Is it possible to find 5 numbers from
{2.5.8, ...} whose reciprocals add up to 1? Sup-
pose yes, say

FIGURE 189

A. De Morgan was explaining to an actuary what was the chance that a certain proportion of
some group of people would, at the end of a given time, be alive, and quoted the actuarial
formula, involving x, which, in answer to a question, he explained stood for the ratio of the
circumference of a circle to its diameter. His acquaintance who had so far listened to the
explanation with interest, interrupted him and exclaimed, “My dear friend. that must be a
delusion. What can a circle have to do with the number of people alive at a given time?”
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We try to determine B on CD so that AB is
. N v | 5
a snde_of the square. Since AC = 75 < \/; <
1 = AD this is certainly possible.

Since AB = \/‘g: by Pythagoras® Theo-
rem CB = ‘/§= ;% = 4CD. Hence a =
LCAB = 30°.

Cut along the line AB and move triangle
ACB so that AC falls along AFE, and the trian-
gle occupies AC” B’ (Figure 190), where ¢’ = E.
We have that ZFC'B’' = 360° — 90° — 135° =
/BDF, BD = B'C’, DF = EF = CF.
Hence, make a second cut along BF and fit tri-
angle BDF so that B, D and F fall on B', C'
and F respectively. Then ABF B’ is the required
fitted square.

We check that ABFB' is a square. Clearly

/BAB = £CAE = 90°
and

/BFB' = /DFE = 90°,

(%)

=AB"%.

and by the Cosine Law

BF*=BF’=_+-+

| —
3¢}
<’\| —
(X

w

ol 0ol
Il
|

Problem 303. In the Venn diagram (Figure 191),
the three circles labelled 7, R, N “contain” re-
spectively those people who used Television, Ra-

dio, Newspapers, while a, b, ¢. o, ¢. ¢ «. ' ix
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FIGURE 191

the number of people in the subsets: a is the num-
ber who used none of the news sources; b used
Television but not Radio nor Newspapers; e used
Television and Radio but not Newspapers; and so
on.

From the Venn diagram we see that the in-
formation can be put in the following form:

bt+e+ f+h=50 (1)
a+b+d+ f=61 (2)
at+btct+e=13 (3)
e+f+g+h=T4 (4)

and

N=a+b+c+d+e+f+g+h,
where a, b, ¢, d, e, f, g, h are all nonnegative
integers.

Upper bound for N. By (2), d < 61, and by
(3) and (4),
at+b+ct+e+ f+g+h<13+74=87.

Hence N < 61 + 87 = 14%. This value of N is
realized fora =b= f=¢=0,d =61, h =50,
c=13,¢9=24.

Lower bound for N. Since

f<b+e+f+h=50

we have
a+b+d=061-f2>11
Hence
N=(a+b+d)+(e+f+g+h)+c

Vi +744+0=85.
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Is N = 85 possible? If so, then all the in-
equalities in the above estimates must be equali-
ties so that

a+b+d=11, c=0, f=50.

But then b = ¢ = h = 0 (from(1)), so that

a+b+cte=a<l1l],

which contradicts (3). Hence N cannot be 85.

Suppose NV = 86. Then either a+b+d =11
ande=1,ora+b+d=12and c=0.

In the former case, a + b+d=11,c =1
which, in tum, imply: f =50, b=e=h =0
a+b+ c+ e <12, contradicting (3).

In the latter case, a+b+d=12and c =0
which imply f =49 and b+ e + h = 1. Since
a+b+d=12anda+b+e = 13 (by (3),
e=d+1,sothatd=0,e=1,b6=h=0.
Hence « = 12, and, by (4), g = 24. Thus, N = 86
occurs when

a=12,
g=24,

f=49,
b=c=d=h=0.

c=1,

Rider.  Are there any impossible values for NV
between 86 and 1487

Problem 304. Let I be a point on the parabola
such that IV F is perpendicular to the axis. Let d
be the directrix, a be the axis, and let dist(X,{)
denote the perpendicular distance from the point
X to the line L.

Case l. P lies between | and W .
By the reflection property of parabolas, PQ
bisects the angle formed by PF and the line

df----

FIGURE 192

FIVE HUNDRED MATHEMATICAL CHALLENGES

FIGURE 193

through P parallel to the axis. If PQ crosses the
axis we would have

PQ > PF = dist(P.d) > dist(V.d) = VF,
a contradiction. Hence PQ cannot cross the axis.
Case 2. W lies between V and P. See Figure
193. If PQ crosses the axis, then
PQ > dist(P,a) > WF = dist(1V',d)
= 2dis((V,d) = 2VF,

again a contradiction.

Problem 305. First solution. Since (r + y)? =

(5-2P2andry=3-z(r+y)=3-2(5-2),
we have that

0<(z—y)? =(z+y)* -4y
=25—10z + 22 - 12 4+ 20z — 422
= -3 410z + 13 = —(z 4+ 1)(3z - 13).

Hence, -1 < 2 < 113 Thus, the maximum pos-
sible value of z is 42. This value can actually be
achieved when r —y =0, r+y=5- 3 = ‘.—i
ie,whenr=y=1.

Second solution.  Since r+y=5—zand ry=
3+ 22 -5z, 1 and y are the two roots of the
quadratic

(=5t + (22 =52 +3).

The condition that this quadratic have real roots
is that

1 B (P -5:43)20
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or

322-10:-13<0.

This is the condition on > obtained in the first

solution, so that, as above, 1,3 is the maximum
value of z.
Rider. If xy,xs,...,x, are real numbers such

that

+r+---+r, =a,
Z I,'IJ = bz,
1< y<n
determine the largest value that any one of the z,’s
can be.

Problem 306.  First solution. In these divisibility
problems, it is generally useful to factor the divi-
sor. Here we find that 2304 = 2¥.32 = (24.3)2 =
482. Consequently, we manipulate the expression
in n to yield terms involving 48. Thus (using the
Binomial Theorem)

72" — 23520 — 1 = (7°)" — 2304n — 48n — 1
= (14 48)" — 48n — 1 — 2304n

_ (1;)482 + (3)483 4 - 448" — 2304n

= 2304 {(;’) + (3)48 4o 448" n}.

Second solution (by induction). When n = 1,
the expression becomes 72 — 2352 — 1 = —2304,
and the result holds. Assume it holds for n = k.
Then

TR _2352(k 4+ 1) — 1
= {72 - 2852k — 1} + {7242 _ 7%}
— {72 -1+ 2304}
= {72 — 2352k — 1}
+ (72 = 1)(7% - 1) - 2301
= {72 — 2352k — 1} + (72 — 1)’ x
(72(k—l) + 72 4oy 1) — 2304.

Since 72k — 2352k — 1 is divisible by 2304 and
(7% — 1) = 2304, the left side is divisible by
2304. .o
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FIGURE 194

Problem 307. First solution. Let BCD be the
base of the tetrahedron; this is a right-angled tri-
angle with hypotenuse D B. Since triangles ABC,
ABD and ACD are isosceles, point A must lie
on the intersection of the right-bisecting planes of
BC, BD and CD. Since these three planes meet
BD at its midpoint P, we have AP 1 ABCD.
Hence the height of the tetrahedron is AP =
%(Sﬁ). Thus the volume of the tetrahedron is

%.(%.3-4)-(%-5\/5):5\/5.

Second solution.  Since A is equidistant from B,
C and D, the orthogonal projection P of A onto
the plane of B, C, D is also equidistant from B, C
and D. Hence P is the circumcenter of ABCD.
Let R=BP = CP = DP and h = AP. Then
R? + h? = 5%, The volume V" of the tetrahedron
is given by V = 1h - area(ABCD). But 4R -
area (ABCD) = BC-BD-CD, ie, 6-4R = 3-
4-5. Therefore R= 3,s0h = /25— % = %
Thus V = 5V3.

el 135
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Rider. ABCD and 4'B'C'D’ are tetrahedra
such that AB = AC = AD = a, BC = b,
CD =c¢, BD = d, AB = b, AC = ¢,
A'D'=d, BC' =C'D' = D'B' = a. For what
values of a, b, ¢, d does the volume of ABCD
exceed the volume of A’B'C'D"?

Rider. More generally, establish that the volume
of a tetrahedron ABCD is given by

V2o (E-F-E)"’x
36
{1 = cos®a — cos® B — cos® y
+ 2cosa cos  cosv},
where

a=/BAC, B=/CAD, +=/DAB.

Problem 308. First solution. Since the given
polynomial is homogenous, any polynomial fac-
tor must also be homogeneous. If we set
(r.y.z.w) = (1,1,1,1), we find that the poly-
nomial vanishes. This suggest that we try linear
factors of the form r + y — = — w with an equal
number of positive and negative terms. For this
we need the Factor Theorem.

If we set r = 2 4+ w— y we find that the
polynomial, as a polynomial in y, (or = or w) has
all its coefTicients zero, so it vanishes identically.
Hence r 4+ y—:—w is a factor. By symmetry, two
other factors must be r+w—z—yand x4+ z—y—w.
There can be but one remaining factor of the first
degree, and this must be symmetrical. Hence it is
r+y+:+w

Second solution.  If there are four real linear fac-
tors, then by the symmetry and homogeneity, the
factorization must be of either of the following
forms:
(@ a(r+y+z—bu)y+:z+w—br)x
(z+uwt+r—bylw+r+y-10>2)
(b) clz+y+z4+w)(r+y+kz+ke)x
(74+z+kw+ky)(r+w+ky+h:).
If there were a lincar factor with at least three
distinct coeflicients, then, by the symmetry of the
variables, there must be at least six such, which
is too many (because of the deg eei. -

FIVE HUNDRED MATHEMATICAL CHALLENGES

Try a factorization of the form (a). Compar-
ing coefficients of z*, we have —ab = 1. Set
r=y=z=w=1togetaB-5)* =0, s0
b=3and a = —}. But then, setting z = w = 0
leads to

. 1
Pyt = ~zlz+ ) (y —3x)(x — 3y),

which is false when £ = y = 1. Hence (a) is
impossible.

Now try (b). From the coefficient of 24, ¢ =
l.Puttingr =y =z = w = 1 yields 0 =
4-23(1+ k) whence k = —1. Expanding out, we
verify that (b) works.

Here is a proof of the assertion at the begin-
ning of this solution. (It holds for any number of
variables.) If, for example, P(x,y, *) is a polyno-
mial of three variables, then P is homogeneous of
degree n if and only if, for any t,

Ptz ty,t2) = t"P(x,y.2). (*)

Suppose P(x,y.z) = Q(a.y,z) R(r,y,2). Re-
place z, y, z respectively by tr, ty, tz and use
(#) to obtain

t"P(r,y,2) = Qtr.ty.tz) R(tr ty, t2).

Consider r, y, z to be fixed. Then both sides are
polynomials in ¢ and the equation gives a factor-
ization of a constant times t". Since every fac-
torization of t" is of the form t™"~™_ we must
have

QUr.ty.t:) =t"H(r.y.2)
and
R(trty.t2) =t"""K(r.y.z)

for some polynomials H and K. Now set t = 1
and argue that Q and R have to be homogeneous.

Rider.  Show that the given polynomial equals
roy : w
. £z
determinant | ¥
T w ooy
w < y £

b (v i 1o obtain the factorization.
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FIGURE 196

Problem 309. Suppose that the locus were a
straight line segment.

Consider the extreme case that R and S both
coincide with U; then P must coincide with U.
Hence U is on the locus. Similarly, V is on the lo-
cus. Thus, the locus must be the line segment UV.
Suppose UV intersects OQ in W. Since W’ is on
the locus, W must be the midpoint of OT. Also,
by symmetry (or by consideration of the congru-
ent triangles UWQ and VIWQ with correspond-
ing sides equal) UV 1 OT.

Since UV is the right-bisector of OT,

so that O, U and V lie on a circle with center T.
Thus, circles with centers () and T have the three
points O, U and V in common, and must therefore
coincide. But this contradicts the fact that Q, lying
outside the circle with center O must be distinct
from T, Hence UV is not the required locus.

Problem 310. For n = 1,2,3.4 we see in the
nth row the square of the nth odd integer on the
right (i.e., (2n—1)?), and on the left 2n—1 consec-
utive integers beginning with » and hence ending
withn 4 (2n — 1 - 1)1 = 3n — 2. The suggested
generalization is:

n+(n+1)+(n+2)+---+(3n—-2) = (2n-1)*

forn=1.2,3,.... This is easy to prove by sum-
ming the left side as an arithmetic pra2rassion
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Problem 311.
by+bir 4+ by 4o 4 by

Since

= (a0 +air +aprt +-- 4 apz")?,

comparison of the coefficients of "*! shows that

boy1 =@, +azay_ + -+ + a2 + epay,

so that

buyr L ayap + azap + -+ 4 an—yap + anap.
Hence,
2by, 41
< ai(ag + an) + az(ao + an- ;)
+ -+ a,-{a2 + ag) + au(ap +ay)
Sailep+ - +ap)+axag+ - +ayp)
4+ apfap + -0 + @)
={ay+az+---+an)ag+a +--- +ap)
<(ao+a +---+a,) = (f(1))*
Problem 312. In effecting these summations,
one employs the technique of “summing by dif-
ferences,” that is, expressing each term as a dif-

ference of two quantities so as to obtain a cancel-
lation. Thus, in (i), one might write

1 1 1 1 1
-é(“s"a‘g*g‘f*“')-a-

This computation is correct but needs some justi-
fication. On the face of it, one might just as easily
write
1+1+1414---
=R2-1)+3-2)+(4-3)+(5-4)+--
=-142-243-3+4-4+5+---

-1,

which seems strange. Consequently, we have to
analyze what we mean by the sum of an infinite
series. The definition adopted is that the sum of
ap inkinite series is equal to the limit of the partial
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sum of the first n terms as n increases. This is

illustrated in the present example.
The partial sums are:

1 .1 1_1)

1-.37 2 3
REDE U WA AU VU
1-3° 3-5 2 3/ 2\3 5

1 1

_5(1—5)
1 1 1 1 1 1/1 1
st 3—+5.—7-§(“3)+§(3‘5)

and in general, forn =1,2,3,...,

LIS
3

1
@2n-1){2n+1)

1 ! 1
T2 2n+1)
(This illustrates the fundamental law of summa-
n

tion: Y _{F(k)— F(k—1)} = F(n) - F(0).)

bpm et
5

|

k=1
If n = 100, the value of the partial sum is

1 1 100 .
§(l_§ﬁ) 2—, if n = 1,000,000, it is
1000000

2000001°
larger, the partial sum becomes arbitrarily close

to 1. It is on this basis that we can give 1 as the
sum of the given series
In (ii), we have

Thus we can see that as n becomes

1 1 1(1 1
1-2.3°6 2\2 6/
1 11 1

2-3.472\6 12/)°7

and generally

1
a(n+1)(n +2)

1 1 1
T2 (n(n+l) IRTEETTE '2:)

FIVE HUNDRED MATHEMATICAL CHALLENGES

The partial sum of the first n terms is

1 + 1 + 1
1-2-3  2-3-4 3-4-5
1

n(n+1)(n+2)
1_')+1(1_L)+1(L_L)
(56 2\6 12/ 72\12 2

+1( 1 1 )
+ At mrDnT2

+ - 4

1/1 1
- 5(5 Tt l)(n+2))
1 1
T4 dn+N)nt2)
As n increases, this number gets ever closer to %.
Hence the sum of the series in (ii), according to
our definition, is 1

Problem 313, First solution. Any positive inte-
ger b can be factored as follows:

b=2*.a k€{0,1.2,...}, a€{1,3,5,...},

i.e., a product of a power of 2 and an odd integer.
Factor the n + 1 given integers in this way:

b =2%aq,, i=1,23,....n

Now the n + 1 odd integers a, are all in
{1L3.5,...,2n — 1} (because 1 < b, < 2n),
which has only n elements. Hence (by the Pi-
geonhole Principle) two of the a,’s are equal, say
a; = am = a. Then

b= okig, bn = Pkmg,

If0 < k < K, then b divides by,; if km < Ky
then b,,, divides b;.

Second solution (by induction). [f n = 1, then
the set must be {1,2}. Hence the result holds for
n=1

Suppose the result holds for n = k (k > 1).
Let S be a subset of {1.2.3,...,2k + 2} with
(k+1)+1=F+2 members,

If 2k +2 ¢ S, then at least k + 1 members
of S must be chosen from {1,2,....2k}. By the
induction hypothesis, one of the numbers must di-
vide the other,
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On the other hand, suppose 2k+2 € S. If k+
1 € S, then since 2k+2 = 2(k+1), we have found
two numbers in S one of which divides the other.
Ifk+1¢ S, form the set T by removing 2k 4 2
from S and replacing it by k4 1. Then T has k+2
members, k+1 of which are in {1.2,...,2k}. By
the induction hypothesis, there are two numbers u,
v in T for which v is a multiple of u. If « and v
are both distinct from k+ 1, then v,v € S. If one
of u and v is k + 1, it must be the larger v, and
u must divide v. But then u divides 21 = 2k 4 2,
so that u and 2k + 2 are two members of S one
of which divides the other.

Hence in every case S contains two numbers
one of which divides the other.

Thus the result holds for n = k + 1.

Problem 314. If X is situated so that AX =
BX, then clearly tx is parallel to AB. Also
(since AX = BX, LYXA = LZXB = 90°,
LYAX = LXBZ = 45°) AAXY 2 ABX Z,
so AY = BZ and Y Z is parallel to AB.

On the other hand, suppose that AX # XB.
Then tx meets AB, BZ and AY at points V,
U and W respectively. Since ZAXB = 90°,
ZAXY =90° and

LAYX + LY AX =90° = ZWXY + LWXA.
(1)

However, since tx and t, are tangents from
the same point W, WA = WX, and hence
LYAX = /WAX = ZWXA. Now from (1),

Y
4
ip
W iy
Y4
X U\
A B V
FIGURE 197
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ZAYX = /WXY,sothat WY =Y =11"4
and IV is the midpoint of AY'.

Similarly U is the midpoint of ZB.

Now join VY and let it meet t5 at Z'. Since
VI bisects AY and since AY || BZ', V11" must
bisect BZ'. Hence BZ' = 2BU = BZ so that
Z=2"Thus YZ, WU and AB intersect at V.,

Remark. The same result can be obtained using
analytic geometry. Let A = (—r,0), B = (r,0)
and X = (u,v) where u? 4 v2 = r2. Then

Y = (—r, 2rv ), Z= (r, ﬂ)
rT—1u T+u

and, except when u = 0, then lines Y Z, WU and
AB intersect at (%, 0).

Problem 315. Suppose, if possible, that a set of
T of six consecutive integers be partitioned into
disjoint subsets U/ and V whose least common
multiples are both equal to m.

Suppose a prime p divides one of the num-
bers in T, say a number in U. Then p divides m,
the least common multiple of V, so p must di-
vide a number in V. Hence any prime p dividing
a number in T must divide at least two numbers
in T. Thus p < 6, so that p can be only 2, 3, or
5.

Now, distinct numbers divisible by 5 have
a minimum difference of 5. Therefore there are
four consecutive numbers in T none of which is
divisible by 5. Among these are two odd numbers
which can be divisible only by 3. But then we
would have two consecutive odd numbers of the
form £3* (k > 1), which is impossible.

Therefore T cannot be partitioned as de-
scribed above.

Problem 316. Consider the sequence 1,2,
3,.... f(n). In this sequence, the non-squares are
F(1). f(2), f(3).--.. f(n), while the squares are
12,22,3%,..., k2, where

K < f(n) < (k+1)%
Thus

fln" =L, where k2 < f(n) < (k+ 1)2.
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Now we show that k = {{/n }. We have

B<ntk<(k+1),

+l<n+k<(k+17-1

Hence

(-3

Therefore

f—:=k2—k+15n

2

1 1
<K +k={(k+z]) --.
<@eik=(k+g) -3

1 1
k—§<ﬁ<k+§,
so that {\/n} = k.

Problem 317. You should not. Since the cards
neither of us gets are paired according to color, the
number of cards in your pile at the conclusion of
the game must equal the number of cards in mine.
Thus you will lose one dollar every time you play.

Problem 318. First solution. The counterclock-
wise rotation about O through 90° takes A onto
B and A’ onto B'.

Since such a rotation preserves length,
AA" = BB'. Since it takes any direction to a
perpendicular direction, AA’ 1L BB'.

Second solution. If A'OA and B'OB are
straight line segments, the result is clearly valid.
Suppose otherwise. Since A0 = B'O, OA =
OB, LA'OA = /B'OB = %0° + LA'OB, the
triangles A'OA and B'OD are congruent. Hence
AA = BB’ and ZOAA' = ZOBD'. From the
latter, it follows that, if KA is the point of in-
tersection of AA’ and BB’ (produced, if nec-
essary), then ZOAK = LOAA' = ZOBDB' =
ZOBK. Thus, O, K, A, B are concyclic, so that
LAKB = LAOB =90°, as desired.

Problem 319. To motivate the solution, observe
that if M PQ) is a right isosceles triangle, then P,
M, Q are three vertices of a square with diagonal

PQ.

FIVE HUNDRED MATHEMATICAL CHALLENGES

FIGURE 198

Draw the square PRQS with diagonal PQ
(see Figure 198). We show S = M. Since tri-
angles RPS and APB are both right isosceles,
by Problem 318 BS = RA and BS L RA. Simi-
larly, triangles RQS and AQC are right isosceles,
so RA = SC and RA L SC. Hence BS = SC
and BS || SC. Thus, S must be M, the midpoint
of BC.

Problem 320. (a) Let M be the midpoint of AC.
By Problem 319, triangle PM R is isosceles and
right-angled at M. Of course, triangle AAQ is
isosceles and right-angled at Af. By Problem 318
segments AP and QR are equal in length and lie
on perpendicular lines.

(b) First solution. Let M be the midpoint of
BD. By Problem 319 (applied to ABD) triangle
PMS is isosceles and right-angled at M. Simi-
larly, triangle QAR is isosceles and right-angled

TLURE 100
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FIGURE 200

at M. By Problem 318, segments PR and QS are
equal in length and lie on perpendicular lines.

Second solution. Let the vertices of A, B, C,
D, correspond to the complex numbers 2Z,, 22,
2Z3, 2Z, respectively, i.e., if, in Cartesian coor-
dinates, A is (27, 2y, ), we have Z, = 7, + iy,.
Then we have

P=2,4+2,4+i(Z, - 2,),
Q=22+ 23+ (2, - Z3),
R=234+ 24 +i(Z5 - Z4),
S=Z4+Z|+i(Z4—Z|).
Hence,
PR=0OR-0P= (234 Zs— 2, - Z5)
+i(Z2 +Z,'; - Z| — Zq)
and
Q8=05-0Q = (2, + 24~ Z2 - Zs)
+i(Z3+ Zy — Z) — Z3),
and we sce that i PR = (3, i.c., the segment QS
is the image of segment PR when the plane is

rotated about O through angle 90° counterclock-
wise.

Remark. Problems 319 and 320(a) are special
cases of 320(b)!

Problem 321. (a) In Figure 201, we show the
inscribed circle of AABC. If we keep the same
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A
3/6\ c
M
FIGURE 201

center, but increase the radius by any sufficiently
small amount, we will obtain a circle which cuts
each side in two distinct points. Thus the lower
limit does not exceed the inradius. On the other
hand, consider any circle whose radius is smaller
than the inradius. If it intersects BC in two points
straddling Af (or coinciding with Af), it cannot
meet AB or AC. If it intersects BC in two points
between Al and C, it cannot meet AB. Thus, it
cannot meet all three sides in two distinct points.

Hence, the lower limit must be the inradius.

(b) It is easy to see that the upper limit must
be at least R. To see how big a circle is possi-
ble, start with any circle PQRSTU satisfying the
condition (Figure 202). We can perform three pro-
cesses which will continue to give us admissible
circles of this size or larger:

(1) keeping PQ fixed, pull P and Q down to-
wards B until the points R and S almost
come together;

(2) rotate clockwise about P until the points R
and S almost come together;

(3) keeping P and (Q fixed, increase the size of
the circle until S and T almost come together
atC.

FIGURE 202
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FIGURE 203

By these processes, we can find a bigger cir-
cle than the one we started with for which P and
Q are as close as we like to B, and S and T are
very close to C. Thus, every admissible circle is
smaller than the circle tangent to AB at B passing
through C, and we can find admissible circles as
close to this in size as we like.

If a is the length of BC, the radius of this
circle (OB in Figure 203) has length 5 csc B. But
a = 2Rsin A, where R is the radius of the cir-
cumcircle. Hence the upper limit of the radii of

admissible circles is R,S in A which, except when
sin
A = B, exceeds R (since A > Band 7— A > B).

Problem 322. (a) (0,0) is the only solution of
r+2y =0, so0 f(0) = 1. (1,0) is the only solution
ofr+2y=1,s0 f(l)=1

Now let n > 2. (n,0) is obviously a solution
of 742y = u. Corresponding to any other solution
{(a,b), b > 1, there is a solution of T +2y = n -2,
namely (a,b — 1). Hence

fm) =1+ f(n-2),
Repeated use of this recurrence yields
fn) =1+ f(n=2) =2+ f(n - 4)

=3+ f(n-6)=...

12—'+f(n—2(g

n>1

5

))=5+10=3

n-—1 n-—1 n-—1
2 +f(n—‘2( 3 )): 5
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This can also be deduced from the observation
that there is a solution (a.b) of r + 2y = n for
every nonnegative integer b, 0 < b < 3.

(b) It is easy to verify that g(0) = g(1) =1,
g(2) = 2. When n > 3, the solutions (a.b.c) of
7+2y+3:2 = n with ¢ = 0 satisfy z+2y = n and
there are f(n) = [3] + 1 of these. Any solution
{(a,b.c) of 42y+3= = n with ¢ > 1 corresponds
to a solution (a,b.c—1) of r+2y+3:=n-3.
Hence

g(n)=g(n—3)+[g]+l, n>3.

Problem 323. The equation is equivalent to
(z—y) +(x-2)2+2% =0,

so r =y =z =0 is the only solution.

Problem 324. Let P, E, N denote the cost, in

cents, of each pencil, eraser, notebook, respec-
tively. P, E, N are positive integers such that

P+ E+ N =100,

N > 2P,

3P > 4E,

3E > N.
WehaV&P(%l—(%'ESO

l()O=P+E+N<%+E+3E=%E.

ie.,
200
E>— .
> T > 18
AlsoN>2P>§E.so
100=P+E+N>4—3€+E+8—3€=5E.
+1 if n is even

-1
+J(1)= "= 41 ifnisodd
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ie., E<20and thus 18 < E < 20, so F = 19.
Now we have

81=N+P>2P+P=3P>4E
= 4(19) = 76,
ie, 81 > 3P > 76, so P = 26. Finally,

N=100-P-FE =100-19 — 26 = 55.

Problem 325. |If all row sums are equal to s,
then all column sums must equal s as well (justify
this). and no change is necessary. If some row sum
is less than s, then some column sum is less than s
as well; increase the entry in this row and column
until the larger of the row and column sums equals
s. Continue on.

In the example, if s = 11, the process yields

3 -5 2 4 -5 2
-6 4 1|]—-1-6 4 1
1 0 8 I 0 8

14 -5 2
-|-4 4 1
1 0 8
14 -5 2
-] -4 14 1
1 0 8
4 -5 2
—-|-4 14 1
1 2 8

Problem 326. The problem is to deter-
mine a pattern for a sequence starting with
14,38,74,122,. ... Letting g(n) denote the nth
term of this sequence, we observe that successive
differences are

9(2) —g(1) =24,
9(3) — g(2) = 36,
g(4) — g(3) = 48,

and hence it seems that

gn)—g(n—1)=12n, n=23.4.....

Summing these equalities yields

Q(n)—g(l)=l2(2+3+..._..n): n>2

161

or

gn)=14+122+3+---+n)
n(n +1) _1}
2

=l4+12{

=2+6n(n+1)=6n’+6n+2

This suggests a general law, that is,

(2n)2 + (20 +1)2 + (20 +2)2 + (6n2 +6n 4+ 2)2
= (6n? + 6n + 3)7,

which is easily verified.

Problem 327. To get an idea of how to proceed,
suppose the construction is completed. Let the cir-
cles, in decreasing order of radius, be a, 3, v and
let ABC be the required triangle with A on a, B
on 3, C on 7. A rotation of the plane through 60°
with center A in a suitable direction must carry B
to C. Hence C must lie on the intersection of v
and the image of 3 under the rotation.

Construction. Let O be the common center of o,
B, 7 and let A be any point on a. Construct an
equilateral triangle AOP, and let 6 be the circle
with center P whose radius is equal to that of £.
Since OP equals the radius of a, by the condition
imposed on the radii, the circles 4 and § must
intersect. Let C' be one of the intersection points.
With center A and radius AC, draw an arc cutting
circle 8 in B such that triangles AOP and ABC
are similarly directed. Then ABC is the required
triangle.

FIGURE 204
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B c

FIGURE 205

Proof. Consider the rotation with center A which
takes P to O. This rotation through 60° takes cir-
cle 6 onto circle 8, and so takes the point C to a
point B' on 3. Hence AB’ = AC = AB and
AB'C and AOP are similarly directed. Hence
B = B’ so ZBAC = 60°. It follows that triangle
ABC is equilateral,

Rider. Given equilateral triangle ABC such that
PA =3, PB =4, PC =5 for an interior point
P, find AB.

Hint. Rotate the figure about A through 60° so
that C falls on B, B falls on B, P falls on P'.
Show that ZBPP' = 90°, ZAPB = 150°.

Problem 328. The problem is to find the high-
est power of 10 which divides 10000!. Since 2
divides 10000! more often than 5 does, the high-
est power of 10 dividing 10000! is equal to the
highest power of 5 dividing 10000!. There is a
factor 5 for every multiple of 5 not exceeding
10000 (there are 2000 such multiples), an addi-
tional 5 for every multiple of 25 (400 of them),
yet another 5 for every multiple of 125 (80 of
them), yet another 5 for every multiple of 625 (16
of them) and another 5 for every multiple of 3125
(3 of them). Therefore, the number of zeros is
2000 + 100 + 80 + 16 + 3 = 2499.

In general, the number of zeros in which n!
ends with is given by

EREREES ]

Problem 329. He can run 2 of the length of the
bridge in the time taken for the hain fo reacls |

FIVE HUNDRED MATHEMATICAL CHALLENGES

If he runs towards B, he will be 3 of the way
towards B when the train arrives at A. Thus, he
can run the remaining quarter of the distance from
A to B in the time the train requires for the whole
distance. Therefore his speed is a quarter that of
the train, namely 20 kph.

Problem 330. First solution. Evidently, for n >
2,
up =8(n—1)+u,_,
=8(n—1)+8n—2)+ un_,

=8(n-1)+(n-2)+--+1+u
=4dn(n—1)+1=(2n-1)

Second solution (by induction). The result holds
for n = 1. Assume u,, = (2n — 1)2 Then

Unp1 =Up +8n=(2n—1)2 4 8n
=(@2n+172=(2n+1)-1)%

Third solution (by Figure 206). The bottom cor-
ner square has (2n — 1)2 dots. The gnomon has
2(2n — 1) 4 2 pairs of dots, i.e., 8n dots. Thus we
can start with «; = 1 dot and build up squares
of an odd number of dots by adding gnomons as
indicated.

FIGURE 206

Problem 331. (a) By the Arithmetic-

Geometric Mean inequality,

l -y 9 9 93 2
ryze < Z(.r“y‘ + y"’:“ +2507 o)
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for all z, y, 2, w. Suppose

2 + 22422 u - Lyt

= gz, y. 2, w)? + go(x. y. 2. w)?
+o 4 gr(r.y, 2, w)?,

where ¢,92,...,gr are polynomials. Since the
left side is homogencous of degree 4, each g, must
be homogeneous of degree 2 (see the comment
after the solution for an argument of this).

No polynomial g, can contain a term of the
type ax?, for then g2 would contain the term a%.r*,
which would not be cancelled by a similar term
from any other g7 or from the left side. Similarly,
no g, contains nontrivial terms in y2 nor z2.

Can any g, contain a term of the form buwz?
If o, g2 would contain b2r2w?. Since such terms
do not appear on the left side, this term would
have to be cancelled by similar terms with nega-
tive coefficients.

These could only arise from the product of
terms 2 and w? appearing in some g,, which we
have excluded. Thus, no g, contains terms in rw,
nor likewise in yw or zw. But then each g, would
be of the form

azy + brz + cyz + du?,

so that no g2 would contain a term in ryzw. But
this contradicts the appearance of —4zyzw in the
lefi side.

(b) Again, the inequality is a consequence of
the arithmetic-geometric mean inequality. Suppose

m
4yt 420 -3k = Z h(x,y.2)%

=1
Each h, must be homogeneous of degree 3, and
none can contain terms in r?, %, z3. In fact,
the term ry? cannot appear. Otherwise, some h?
would have a term ax?y® with a > 0. This could
only be cancelled by a term arising from a product
(z2y)y®, which is impossible. Similarly, yz and
zz? do not appear in any h,.

The left side contains the term —3r°y%:z2,
which means that at least one h, contains terms
in 22y, yz2, or in 2z, 222, or in 22z, ry’. But
this gives a contradiction.

163

Hence, neither of the polynomials (a) nor (b)
is the sum of squares of polynomials.

Remark.  Pant of the argument of both (a) and (b)
depends on the following proposition:

Let f(r;,xa,...,7,) be a homogeneous
polynomial of degree 2r which can be written as a
sum of squares of polynomials f,(.ry,.r2,..., ).
Then each f, must be homogeneous of degree r.

In other words, we have to show that, if f =
S24+ f24---+ f2, then each term of each f, is a
monomial of degree r of the form cr{'ry? ... x4
witha; +axs +---+a, =r.

Let p be the lowest degree of any of the terms
in any f,. Suppose u(x,....,r,) is a monomial
product of powers of r, of degree p which appears
in at least one f, with nonzero coefficient. Then,
for each 1,

fi=cu+v,

where ¢, is a constant, not zero for at least one i,
and v, is a sum of terms of degree at least p (with
no term in u). Then

k k k
Z[,z = (Z c,g) vl + Z(?l‘,uv, +22).
=1 =1 =1

Since none of the polynomials uv, and v, contain

terms in u>, the coefficient of u in f = ¥ f2

must be positive. Hence u? must be of degree 2r

and u of degree r.

The same type of argument shows that no f;

can contain terms of degree exceeding 7.

Problem 332. (a)Lettherootsben—1,n, n+1.
Then the sum of the roots is 3n = p, the product
isnP—n=qgand3n?-1=(n-1)n+(n-
1)(n + 1) + n(n + 1) = 11. Thus, either n = 2,
p=6,g=6o0orn=-2 p=-6,¢=-6.

(b) If the roots are all equal to r, the polyno-
mial equals (x — r)3, whence p = 3r, ¢ = r? and
11 =32 Thus r = :t\/—%T and p and ¢ can be
found.

Problem 333. First solution (by induction). If
»  1.2*"+24n—10 = 18. Suppose the assertion
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holds for some n > 1: then
) u(n+ 1) - 10

= 4(2°" 4 24n - 10) - 18(4n - 3),
i.e., it holds for n + 1.

Second solution (direct). The quantity is obvi-
ously divisible by 2. Computing modulo 9 we have

2" 4+ 24n—-10=(3-1)*" +6n -1
=(-2n-34+41)+6n-1=0.

and hence

22" 4 2%4n — 10

0 (mod 18).

Problem 334. Let A = {q),02....,0,} and
B={2n-a,.2n - a,.....2n - a,}. Since all
the elements of A are distinct, so are the elements
of B. Furthermore,

1<a, <2n-1
implies

1<2n—-a,<2n-1 for i=12....n

Since

AUBC{L2,...,2n-1},

we have that #A = #B = n while #(AUB) <
2n — 1 < 2n. Therefore AN B # 0, that is, for
some ¢ and j,

a,=2n—a,.

Problem 335. For each of the given integers,
compute the absolute value of the difference be-
tween it and the nearest multiple of 2n. The resuit
is one of the i + 1 numbers 0. 1.2....,n. Since
n + 2 integers are given, one of the results, say
r, is obtained at least twice (by the Pigeonhole
Principle). Consequently., there are integers u, v
in the set such that onc of the following holds

(for integers p and g):
(1)y: u=2up+r, v=2ng+r;
(2): w=2nptr, v=2ng-r;

3): w=2np-r, o twyoor
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FIGURE 207

In cases (1) and (3), u — v is divisible by 2n; in
case (2), u + v is divisible by 2n.

Problem 336. Let the perpendiculars meet BC,
AC and AB produced in E, F, and G respec-
tively, as in Figure 207.

Join GE, EF, BD, CD. Since AGDF
is concyclic, ZGDF + LGAF = 180°. Since
ABCD is concyclic, ZBDC + £BAC = 180°.
Therefore ZGDF = £BDC, whence ZBDG =
ZCDF. Since BGDE is concyclic, ZBDG =
£BEG. Since DEFC is concyclic, ZCDF =
ZCEF. Hence /BEG = LCEF.s0G,E, F
lie in a straight line. The line is called the Sim-
son line but actually it was discovered in 1927 by
William Wallace.

Problem 337. Without loss of generality we may
take the leading coefficient of the cubic polyno-
mial to be 1. We therefore have
3 2
I"=pr-4+qr—-r
= (r—u)(r — v)(r — uv),
with p, ¢, r rational. Expanding the right side and
equating coefficients leads to:
p=u+rv+uv,
qg=ur+ o+ wed, r=urv’.
It is an easy evercise to deduce from these equa-
tions that, when p # -1,
q+r
1+p’

ur =
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which is rational. If p = —1. then (1+u)(1+¢) =
0 so that either u or v is equal —1.

Problem 338. The cases forn =1 and n =2
show that either greatest common divisor is pos-
sible. Any common divisor d of n® + 1 and
(n+1)2+1 divides their difference, 21+ 1. Hence
d divides

2 +1)-@n+1)(2n-1) =

Rider. Show that the greatest common divisor is
5 if and only if n = 2 (mod 5).

Problem 339.
272 — 1. Since

If r = cos36°, then cos72° =

€05 36° — cos 72° = 2sin 54°sin 18°
= 2c0s 36° cos 72
we have x — 2r2 + 1 = 4r% — 21, and hence
¥ +2r2 - 3r-1=0.
Observing that —1 is a root permits us to factor:
(dr? -2z -1)x+1)=0.
Since r = cos36° # —1, we have
47’ -2z -1=0.
Therefore,
0s36° — c0s72° =z — (2r2 - 1)

= —%(4;2—21- 1)+%

-1
T2
and
300 [+ 1 (] o l
c0s 36° cos 72° = 5((:0536 —cos72%) = T
Problem 340.
7473 478 <ot 183 4160
=3+2+2=7
and

LI UL N W R
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Rider. Can you find a simple way of deciding
which is larger, nt 403 +nior n, for n = 5,
n =67

Problem 341. A plaver will be in a position to
win if his opponent leaves him with any number
from 45 to 55 inclusive. Thus the person who can
attain 44 can win the game if he plays properly.

By a similar argument, the person who can
attain 32 is in a position to win. Likewise for 20
and for 8.

Therefore, the first player has the advantage.
If he plays 8 to begin with, and responds to his
opponent by making the totals up to 20, 32, 44,
56 respectively in turn, he will win.

Riders. (a) Can 56 be replaced by a number
which will give the second player an advantage?
What are all the possibilities?

(b) Two players play the following game. The
first player selects any integer from 1 to 55 in-
clusive. The second adds any positive integer not
exceeding twice the integer chosen by the first.
They continue, playing alternately, each adding an
integer no more than twice that used by his pre-
decessor. The player who reaches 56 wins. Which
player has the advantage?

(c) The game is the same as (b), except that
each player cannot add more than his predecessor.
Who has the advantage now?

Problem 342. In Figure 208

AB=2, AC=BC-=

F?B

TGUFE 204
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DE=DF=r, CD=R-v
By similar triangles GCB and DCE,
Th _CB
DE  BG
whence
R_T—E 1.e l—.l_.'_.l.
r a ¢ R a

Problem 343. Divide the parallelogram into four
parallelograms by joining the midpoints of oppo-
site sides, as indicated in Figure 209. We concen-
trate on the upper left parallelogram, AEPH. The
quadrilateral PQRS is that portion of the area of
the figure lying inside AEPH.

First, observe that A, R, P are collinear and
that AP = 3RP. This follows from the fact that
R is the intersection of two medians BH and DE
of AADB, and must therefore lie on the third
median AP. Therefore, with |...] denoting area,

[APS|=3[RPS]  and
Hence
[PQRS| = %[PQAS] - %[AEPH].

The same reasoning applies to the other three
subparallelograms, with the result that the figure
bounded by AG, AF, BH, BG, CE, CH, DF,
and DE has area

1

—-[ABCD).

slaBco
Problem 344. No. Indeed, we show by induction
that

for n=1,2.3.....

1
l<u, <
l1-u

A E 8

FIGURE 209

[AQP| = 3{RQP}.
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1
First note that 1 + u < 1 Clearly

1
U|=l+‘u<lTu.

I1<l+u=1u,
Now assume that for ann > 2
1
1<y, < —.
1-u
Then

1
l=1-ut+u< —+u=1un4,
Un

1 1
un+|—a+u<l+u<l—_—u.
Thus
1
l<uppy < —
1-u

and the proof is complete.

Rider. Verify the result by determining u, ex-

plicitly. One way of doing this is to define a se-
Un4i

quence v, for which u, = . Accordingly,

v
take v; = 1, v =1 + u and, ge';aerally,

Un41 = UnpUn, n=1223,....
Then v, must satisfy
Uny2 Y
=t
Untl Un4l
or
Un42 = UUnyy + ¥p, {(n= 1.2.3,...).

The general solution of this has the form

v, = ar” + bs",

where a, b are constants and r and s are roots of
the polynomial {2 — ut — 1.

Problem 345. (a) Any divisor of a and b divides
a-b.1lb=a+1, any common divisor divides
1.

(byn!'+1.
(c) Any prime p which divides any of the
numbers r+1.7+2,..., 2r is obviously < 2r, and

hence does not divide (2r)'+1. Thus f = (2r)1+1

does it arica,
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Problem 346. First Solution. Yes. To multiply
x by a negative number —n?:

-n’r=n4 ——;
1 1
__+_
n 1
n+ -
I
to multiply z by a positive number n?:
1
nr=n+
n+l 1
- +
n 1
1+
( +1)+l
— n —
T

Second Solution. If u # 1, we can find u?

2 S A |
from u =u—(—+ ) and -u from
u l—u 2

1\ !
(l + Z) . Then we can find any product vw

u

from

w v+w 2 v—w 2

VW= - .

2 2

Problem 347. It should be realized that the set
has to have infinite extent, but need not be con-
nected. A natural candidate to try is {(m, n) |
m,n integers } which has, as axis of symmetry,

each of the linesz =0,y =0,z +y =1, and
many more.

Rider. Suppose we asked for exactly three non-
concurrent axes? exactly n non-concurrent axes?

Problem 348. p + g is even, so 3(p +¢) is an
integer between p and ¢. Since p, q are consecutive
primes, the integer (p + g) is not a prime, i,
it is a product of two or more primes, and now

p+q=2(p—;q).

Problem 349. (a) will follow from a solution to
(b).
Suppose /m + \/n is rational. Then
m-n
m-Vhs eV

is rational.
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Hence /7 = 3(v+ VA) + 3 (V7 - V)
is rational. Therefore m is a perfect square. Sim-
ilarly, n is a perfect square. Conversely, if m and
n are squares then \/m + \/n is an integer, hence
rational.

Riders. (1) Show that if my,m,....,my are
positive integers, then 3°*_ \/m, is irrational if
at least one m, is not a square of a rational.

(2) Show that v/3 + V/9 is not rational.

(3) Let m and n be integers. When is
Jm + Yn rational? (Let this number be r; then
n=(r- ym)p®=r*—m-3rymn)

See Gregg N. Petruno, Sums of irrational
square roots are irrational, Math. Mag. 61 (1988)
44-4S.

Problem 350. Each choice of a pair of points P,
and a pair of points Q, gives rise to one intersec-
tion point. By appropriately choosing the points on
each line in turn, it can be arranged that the inter-
section points are all distinct. Hence the number
of intersection points is

(3)6)

Rider. How many points of intersection are there
of the diagonals of a regular n-gon?

Problem 351. Let
Flz,y.2)=(z+y+2)° -5 -° - 25
Since
F(x,—z,2) = F(z,y,-z) = F(z.y.—-y) = 0,
F(z,y,z) has (by the Factor Theorem) the factors
T4y, r+zand y+ 2. Let
F(z,y,2) = (z+y)(r+2)(y+2)C(z, 3. 2). (1)

Then G(zx.y,z) must be a symmetric, homoge-
neous polynomial of degree 2 and hence has the
form

G(z.y.2) = a(x? + y? + 2%) + b{zy + 72 + y2).

Settingrt =y =2 = 1in(l) yields 3 - 3 =
R 2 3ht ora+b=10. Settingz =y =1
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and = = 0 in (1) yields 2% — 2 = 2(2a + b), or
2a + b= 15. We conclude that a = b =5 and
Glr.y.2) =5 + ¥ + 22+ ry + 72 4 y2).
Problem 352. (a)
1122967 — 79896
= (112296 — 79896)(112296 + 79896)
= (32400)(192192) = 182102(192)(1001)
=(2-9-3-6)(2-5-10)(2-8-12)(7-11-13)
=13!

(b) The equation suggests that we should try
to pull a factor 10* out of 651% — 591¢, so we
calculate

6511 - 599
= (6512 — 599%)(651% + 599°)
= (651 — 599)(651 + 599)(651% + 599°)
=52 1250((625 + 26)* + (625 — 26)?)
=2%2.13.2-5% . 2(625% + 26%)
=10"-13(25 + 26%),
deducing,
651" — 599* — 430% — 340° — 240" = 10°A,
where
A =13(25" + 26°) — (43" 4+ 34" + 249
=12-25" +4-13* — (349 + 24%)
- (43" - 25")
=12-25" +4.13° - 16(17' +12%)
- 18-68 - 2(34° + 9¢)
=1B
with
B=3-25" 413" - 417" + 12)
—17-36(31% + 9%).
We have to show that A = B = 0. This can

be done using the following lemma, the proof of
which is left to the reader.

Lemma. Let N be an integer which s divisible

by positive integers my mac. .oy I the Last
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common multiple of ny,n3, ..., n; exceeds N,
then N = (.

This suggests that we show that A =
0 (mnod m) for sufficiently many moduli m whose
least common multiple exceeds A. Try various
prime powers for m

B=3-9"-3"-4(140)-1-4-(4+81)
=3-812-11-4-4-1
=3-11-4-4=-16=0 (mod 16)

so A =0 (mod 64).

A=13(2' +1%) - (16° + 7' +0)

= 13- 17 - (256% + 49%)

= 13(-10) - ((—14) + 49%)

= -130 - 72(2* + 7?)
=-130-19(-1)=-81=0 (mod 27)
13004+ 13) = ((-7)* +9* +1)

13— (49% + 812 + 1)
=13-(1+624+1)=-25=0 (mod 25)
A= 1442 - (141449
=-1(22+2Y) - (1+1+42%)
=-14=0 (mod7)
A=23"+45) - (141429
=2(22+2')-18=40-18=122

=0 (mod 11)

=
1]

As0- (1 +8' +2Y) = 22" +4' +1)
=2+ 4+0=-2'3+9+1)
=0 (mod 13)

B=3-8"+(-4)*-40+12") -0
=345 -P -3l

PR -1-3"-43

F(3(=4) - 1-3'(-1))

P(-12-14381)

1PNy =0

(mod 17)
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so A = 0 (mod 7). Hence, A is divisible by
64-27-25-7-11-13-17, a number which exceeds
1600-27-1001-17 > 10%(3)-27-17 > 10°-40-17 >
6 10%.

However,

|A] < max(13(25* + 267). 43" + 34* + 24%)
< max(13- 26%(26% + 1), 3-50")
< max(13-30%,3-50%) < 13- 50°
=13-625-10° < 13- 107 < 6- 10%.

Since A is divisible by a number exceeding itself,
A must be zero.

Problem 353. Let

1 3 5

2n-1
S,,—§+¥+

o oo TR

Multiply by § to obtain

lS _ 1 +3+. +2n—5 7n-3 2n-1
27" T2 on-1 0 g T ogndl
and now subtract the second equality from the
first:

1
Sn_in
_l+2+3+..+2 2 -1
T2 2R on-1 7 gn gl
Hence
1
2S"
L U S PR T
T 99792793 on—1 on+l
_1+1 1-(1/2"! 2n-1
272 1-1/2 2n+
and

2
S.=3-nt3

Qn

Problem 354. By taking logarithms to base n
we have to show that

2 = (log, m)(1 + log,, k) )

or 2 =log, m+log, m

169

(using the logarithm property (log, b)(log, a) =
log,. a). Now from the arithmetic progression con-
dition, we have

2log,, r = log,, =+ log, r.

Multiplying both sides by log, m and using
(log, b)(log, @) = 1 in addition to the previous
“log property,” we obtain (I).

Problem 355. Add the 100 equations to obtain

3xy + 24+ +1100) = 0.
Therefore
0=(r +z2+23) + (T4 + 15 + 7g)
4o 4 (297 + Tan + Tay) + Tioo
=0+04+0+---+0+ 1,00,
ie, roo = 0, and similarly 7, = 73 = --- =

TIgg = U.

Rider. 'What happens if we replace 100 by other
positive integers?

Problem 356. Both (a) and (b) are obviously
valid for n = 1, so we assume n > 1. x can be
expressed in the form

_ oo, %2
z—a0+n+n2+ (1)

where ag,a;,ay, ... are integers and

0<e, <n-1 for i=123,....
Then
[z] = a0
az as
111?=1la0+a|+—+_2+...
n o n
[nz] = nao + ay,
and
[nz] - nla] = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>