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Preface

The first time China participated in IMO was in 1985, when
two students were sent to the 26th IMO. Since 1986, China has
a team of six students at every IMO except in 1998 when it was
held in Taiwan. So far, up to 2014, China has achieved the
number one ranking for 20 times in team effort. A great
majority of students received gold medals. The fact that China
obtained such encouraging result is due to, on the one hand.
Chinese students’ hard work and perseverance, and on the other
hand. the effort of teachers in schools and the training offered
by national coaches. We believe it is also a result of the
education system in China, in particular, the emphasis on
training of basic skills in science education.

The materials of this book come from a series of four books
(in Chinese) on Forward to IMO . A Collection of Mathematical
Olympiad Problems (2011 —2014). It is a collection of problems
and solutions of the major mathematical competitions in China.
It provides a glimpse of how the China national team is selected
and formed. First, there 1is the China Mathematical
Competition, a national event. It is held on the second Sunday
of October every year. Through the competition, about 300
students are selected to join the China Mathematical Olympiad

(commonly known as the winter camp), or in short CMO, in
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the following January. CMO lasts for five days. Both the type
and the difficulty of the problems match those of IMO.
Similarly, students are given three problems to solve in 4.5
hours each day. From CMO, about 50 to 60 students are
selected to form a national training team. The training takes
place for two weeks in the month of March. After four to six
tests, plus two qualifying examinations, six students are finally
selected to form the national team, taking part in IMO in July
of that year.

In view of the differences in education, culture and
economy of western part of China in comparison with the
coastal part in East China. mathematical competitions in West
China did not develop as fast as in the rest of the country. In
order to promote the activity of mathematical competition and
to enhance the level of mathematical competition, starting from
2001, China Mathematical Olympiad Committee organizes the
China Western Mathematical Olympiad. The top two winners
will be admitted to the national training team. Through the
CWMO. there have been two students entering the national
team and receiving Gold Medals for their performance at IMO.

Since 1995, for a quite long period there was no female
student in the Chinese national team. In order to encourage
more female students participating in the mathematical
competition, starting from 2002, China Mathematical
Olympiad Committee conducted the China Girls’ Mathematical
Olympiad. Again, the top two winners will be admitted directly
into the national training team.

The authors of this book are coaches of the China national
team. They are Xiong Bin, Li Shenghong, Leng Gangsong, Wu
Jianping, Chen Yonggao, Li Weigu, Yu Hongbing, Zhu
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Huawei, Feng Zhigang, Liu Shixiong, Qu Zhenhua, Wang
Weiye, and Zhang Sihui. Those who took part in the
translation work are Xiong Bin, Wang Shanping. Liu
Yongming. We are grateful to Qiu Zonghu, Wang Jie, Wu
Jianping, and Pan Chengbiao for their guidance and assistance
to authors. We are grateful to Ni Ming of East China Normal
University Press. Their effort has helped make our job easier.
We are also grateful to Zhang Ji of World Scientific Publishing
for her hard work leading to the final publication of the book.

Xiong Bin
October 2017
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Introduction

Early days

The International Mathematical Olympiad ¢ IMO ),
founded in 1959, is one of the most competitive and highly
intellectual activities in the world for high school students.

Even before IMO, there were already many countries
which had mathematics competition. They were mainly the
countries in Eastern Europe and in Asia. In addition to the
popularization of mathematics and the convergence in
educational systems among different countries, the success of
mathematical competitions at the national level provided a
foundation for the setting-up of IMO. The countries that
asserted great influence are Hungary, the former Soviet Union
and the United States. Here is a brief review of the IMO and
mathematical competition in China.

In 1894, the Department of Education in Hungary passed a
motion and decided to conduct a mathematical competition for
the secondary schools. The well-known scientist, J. von
Et6vés s was the Minister of Education at that time. His support
in the event had made it a success and thus it was well
publicized. In addition, the success of his son, R. von Et6vds ,
who was also a physicist, in proving the principle of equivalence

of the general theory of relativity by A. FLinstein through
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experiment, had brought Hungary to the world stage in science.
Thereafter, the prize for mathematics competition in Hungary
was named “ Etovés prize”. This was the first formally
organized mathematical competition in the world. In what
follows, Hungary had indeed produced a lot of well-known
scientists including L. Fejér, G. Szegé6, T. Rado, A. Haar
and M. Riesz (in real analysis), D. Kénig (in combinatorics) s
T. von Karman (in aerodynamics), and J. C. Harsanyi (in
game theory), who had also won the Nobel Prize for Economics
in 1994. They all were the winners of Hungary mathematical
competition. The top scientific genius of Hungary, J. von
Neumann , was one of the leading mathematicians in the 20th
century. Neumann was overseas while the competition took
place. Later he did it himself and it took him half an hour to
complete. Another mathematician worth mentioning is the
highly productive number theorist P. Erdés. He was a pupil of
Fejér and also a winner of the Wolf Prize. Erdds was very
passionate about mathematical competition and setting
competition questions. His contribution to discrete mathematics
was unique and greatly significant. The rapid progress and
development of discrete mathematics over the subsequent
decades had indirectly influenced the types of questions set in
IMO. An internationally recognized prize named after Erdos
was to honour those who had contributed to the education of
mathematical competition. Professor Qiu Zonghu from China
had won the prize in 1993.

In 1934, a famous mathematician B. Delone conducted a
mathematical competition for high school students in Leningrad
(now St. Petersburg). In 1935, Moscow also started organizing

such event. Other than being interrupted during the World War
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IT, these events had been carried on until today. As for the
Russian Mathematical Competition (later renamed as the Soviet
Mathematical Competition), it was not started until 1961.
Thus, the former Soviet Union and Russia became the leading
powers of Mathematical Olympiad. A lot of grandmasters in
mathematics including the great A. N. Kolmogorov were all
very enthusiastic about the mathematical competition. They
would personally involve in setting the questions for the
competition. The former Soviet Union even called it the
Mathematical Olympiad, believing that mathematics is the
“gymnastics of thinking”. These points of view gave a great
impact on the educational community. The winner of the Fields
Medal in 1998, M. Kontsevich , was once the first runner-up of
the Russian Mathematical Competition. G. Kasparov, the
international chess grandmaster, was once the second runner-
up. Grigori Perelman , the winner of the Fields Medal in 2006
(but he declined) , who solved the Poincaré’s Conjecture, was a
gold medalist of IMO in 1982.

In the United States of America, due to the active
promotion by the renowned mathematician G. D. Birkhoff and
his son, together with G. Pédlya, the Putnam mathematics
competition was organized in 1938 for junior undergraduates.
Many of the questions were within the scope of high school
students. The top five contestants of the Putnam mathematical
competition would be entitled to the membership of Putnam.
Many of these were eventually outstanding mathematicians.
There were the famous R. Feynman (winner of the Nobel Prize
for Physics, 1965), K. Wilson (winner of the Nobel Prize for
Physics, 1982), J. Milnor (winner of the Fields Medal, 1962),
D. Mumford (winner of the Fields Medal, 1974), and D.

xi
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Quillen (winner of the Fields Medal, 1978).

Since 1972, in order to prepare for the IMO, the United
States of America Mathematical Olympiad ( USAMO) was
organized. The standard of questions posed was very high.
parallel to that of the Winter Camp in China. Prior to this, the
United States had organized American High School
Mathematics Examination ( AHSME) for the high school
students since 1950. This was at the junior level yet the most
popular mathematics competition in America. Originally, it was
planned to select about 100 contestants from AHSME to
participate in USAMO. However, due to the discrepancy in the
level of difficulty between the two competitions and other
restrictions, from 1983 onwards, an intermediate level of
competition, namely, American Invitational Mathematics
Examination ( AIME ), was introduced. Henceforth both
AHSME and AIME became internationally well-known. A few
cities in China had participated in the competition and the
results were encouraging.

Similarly as in the former Soviet Union, the Mathematical
Olympiad education was widely recognized in America. The
book “How to Solve it” written by George Polya along with
many other titles had been translated into many different
languages. George Polya provided a whole series of general
heuristics for solving problems of all kinds. His influence in the

educational community in China should not be underestimated.

International Mathematical Olympiad

In 1956, the East European countries and the Soviet Union
took the initiative to organize the IMO formally. The first
International Mathematical Olympiad (IMO) was held in
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Brasov, Romania, in 1959. At the time, there were only seven
participating countries, namely, Romania, Bulgaria, Poland.
Hungary, Czechoslovakia, East Germany and the Soviet
Union. Subsequently, the United States of America, United
Kingdom, France, Germany and also other countries including
those from Asia joined. Today, the IMO had managed to reach
almost all the developed and developing countries. Except in
the year 1980 due to financial difficulties faced by the host
country, Mongolia, there were already 49 Olympiads held and
97 countries participating.

The mathematical topics in the IMO include Algebra,
Combinatorics, Geometry, Number theory. These areas had
provided guidance for setting questions for the competitions.
Other than the first few Olympiads, each IMO is normally held
in mid-July every year and the test paper consists of 6 questions
in all. The actual competition lasts for 2 days for a total of 9
hours where participants are required to complete 3 questions
each day. Each question is 7 points with total up to 42 points.
The full score for a team is 252 marks. About half of the
participants will be awarded a medal, where 1/12 will be
awarded a gold medal. The numbers of gold, silver and bronze
medals awarded are in the ratio of 1:2:3 approximately. In the
case when a participant provides a better solution than the
official answer, a special award is given.

Each participating country will take turn to host the IMO.
The cost is borne by the host country. China had successfully
hosted the 31st IMO in Beijing. The event had made a great
impact on the mathematical community in China. According to
the rules and regulations of the IMO, all participating countries

are required to send a delegation consisting of a leader, a
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deputy leader and 6 contestants. The problems are contributed
by the participating countries and are later selected carefully by
the host country for submission to the international jury set up
by the host country. Eventually, only 6 problems will be
accepted for use in the competition. The host country does not
provide any question. The short-listed problems are
subsequently translated, if necessary, in English, French.
German, Russian and other working languages. After that, the
team leaders will translate the problems into their own
languages.

The answer scripts of each participating team will be
marked by the team leader and the deputy leader. The team
leader will later present the scripts of their contestants to the
coordinators for assessment. If there is any dispute, the matter
will be settled by the jury. The jury is formed by the various
team leaders and an appointed chairman by the host country.
The jury is responsible for deciding the final 6 problems for the
competition. Their duties also include finalizing the grading
standard, ensuring the accuracy of the translation of the
problems, standardizing replies to written queries raised by
participants during the competition, synchronizing differences
in grading between the team leaders and the coordinators and
also deciding on the cut-off points for the medals depending on
the contestants’ results as the difficulties of problems each year
are different.

China had participated informally in the 26th IMO in 1985.
Only two students were sent. Starting from 1986, except in
1998 when the IMO was held in Taiwan, China had always sent
6 official contestants to the IMO. Today, the Chinese

contestants not only performed outstandingly in the IMO, but

Xiv
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also in the International Physics, Chemistry, Informatics, and
Biology Olympiads. This can be regarded as an indication that
China pays great attention to the training of basic skills in

mathematics and science education.

Winners of the IMO

Among all the IMO medalists, there were many of them
who eventually became great mathematicians. They were also
awarded the Fields Medal, Wolf Prize and Nevanlinna Prize (a
prominent mathematics prize for computing and informatics) .
In what follows, we name some of the winners.

G. Margulis, a silver medalist of IMO in 1959, was
awarded the Fields Medal in 1978. L. Lovasz, who won the
Wolf Prize in 1999, was awarded the Special Award in IMO
consecutively in 1965 and 1966. V. Drinfeld s a gold medalist of
IMO in 1969, was awarded the Fields Medal in 1990. J. -C.
Yoccoz and T. Gowers, who were both awarded the Fields
Medal in 1998, were gold medalists in IMO in 1974 and 1981
respectively. A silver medalist of IMO in 1985, L. Lafforgue,
won the Fields Medal in 2002. A gold medalist of IMO in 1982,
Grigori Perelman from Russia, was awarded the Fields Medal in
2006 for solving the final step of the Poincaré conjecture. In
1986, 1987, and 1988, Terence Tao won a bronze, silver, and
gold medal respectively. He was the youngest participant to
date in the IMO, first competing at the age of ten. He was also
awarded the Fields Medal in 2006. Gold medalist of IMO 1988
and 1989, Ngo Bau Chao, won the Fields Medal in 2010,
together with the bronze medalist of IMO 1988, E.
Lindenstrauss . Gold medalist of IMO 1994 and 1995, Maryam
Mirzakhani won the Fields Medal in 2014. A gold medalist of

XV
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IMO in 1995, Artur Avila won the Fields Medal in 2014.

A silver medalist of IMO in 1977, P. Shor, was awarded
the Nevanlinna Prize. A gold medalist of IMO in 1979, A.
Razborov, was awarded the Nevanlinna Prize. Another gold
medalist of IMO in 1986, S. Smirnov, was awarded the Clay
Research Award. V. Lafforgue, a gold medalist of IMO in
1990, was awarded the European Mathematical Society prize.
He is L. Lafforgue’s younger brother.

Also, a famous mathematician in number theory, N.
Elkies, who 1is also a professor at Harvard University, was
awarded a gold medal of IMO in 1982. Other winners include
P. Kronheimer awarded a silver medal in 1981 and R. Taylor a

contestant of IMO in 1980.

Mathematical competition in China

Due to various reasons, mathematical competition in China
started relatively late but is progressing vigorously.

“We are going to have our own mathematical competition

‘”

too!” said Hua Luogeng. Hua is a house-hold name in China.
The first mathematical competition was held concurrently in
Beijing, Tianjin, Shanghai and Wuhan in 1956. Due to the
political situation at the time, this event was interrupted a few
times. Until 1962, when the political environment started to
improve, Beijing and other cities started organizing the
competition though not regularly. In the era of Cultural
Revolution, the whole educational system in China was in
chaos. The mathematical competition came to a complete halt.
In contrast, the mathematical competition in the former Soviet

Union was still on-going during the war and at a time under the

difficult political situation. The competitions in Moscow were
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interrupted only 3 times between 1942 and 1944. It was indeed
commendable.

In 1978, it was the spring of science. Hua Luogeng
conducted the Middle School Mathematical Competition for 8
provinces in China. The mathematical competition in China
was then making a fresh start and embarked on a road of rapid
development. Hua passed away in 1985. In commemorating
him, a competition named Hua Luogeng Gold Cup was set up in
1986 for students in Grade 6 and 7 and it has a great impact.

The mathematical competitions in China before 1980 can
be considered as the initial period. The problems were set
within the scope of middle school textbooks. After 1980, the
competitions were gradually moving towards the senior middle
school level. In 1981, the Chinese Mathematical Society
decided to conduct the China Mathematical Competition, a
national event for high schools.

In 1981, the United States of America, the host country of
IMO, issued an invitation to China to participate in the event.
Only in 1985, China sent two contestants to participate
informally in the IMO. The results were not encouraging. In
view of this, another activity called the Winter Camp was
conducted after the China Mathematical Competition. The
Winter Camp was later renamed as the China Mathematical
Olympiad or CMO. The winning team would be awarded the
Chern Shiing-Shen Cup. Based on the outcome at the Winter
Camp, a selection would be made to form the 6-member
national team for IMO. From 1986 onwards, other than the
year when IMO was organized in Taiwan, China had been
sending a 6-member team to IMO. Up to 2011, China had been

awarded the overall team champion for 17 times.
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In 1990, China had successfully hosted the 31st IMO. It
showed that the standard of mathematical competition in China
has leveled that of other leading countries. First, the fact that
China achieves the highest marks at the 31st IMO for the team
is an evidence of the effectiveness of the pyramid approach in
selecting the contestants in China. Secondly, the Chinese
mathematicians had simplified and modified over 100 problems
and submitted them to the team leaders of the 35 countries for
their perusal. Eventually, 28 problems were recommended. At
the end, 5 problems were chosen (IMO requires 6 problems).
This is another evidence to show that China has achieved the
highest quality in setting problems. Thirdly, the answer scripts
of the participants were marked by the various team leaders and
assessed by the coordinators who were nominated by the host
countries. China had formed a group 50 mathematicians to
serve as coordinators who would ensure the high accuracy and
fairness in marking. The marking process was completed half a
day earlier than it was scheduled. Fourthly, that was the first
ever IMO organized in Asia. The outstanding performance by
China had encouraged the other developing countries, especially
those in Asia. The organizing and coordinating work of the
IMO by the host country was also reasonably good.

In China, the outstanding performance in mathematical
competition is a result of many contributions from the all
quarters of mathematical community. There are the older
generation of mathematicians, middle-aged mathematicians and
also the middle and elementary school teachers. There is one
person who deserves a special mention and he is Hua Luogeng.
He initiated and promoted the mathematical competition. He is

also the author of the following books: Beyond Yang hui’s
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Triangle, Beyond the pi of Zu Chongzhi, Beyond the Magic
Computation of Sun-zi, Mathematical Induction, and
Mathematical Problems of Bee Hive. These were his books
derived from mathematics competitions. When China resumed
mathematical competition in 1978, he participated in setting
problems and giving critique to solutions of the problems. Other
outstanding books derived from the Chinese mathematics
competitions are: Symmetry by Duan Xuefu , Lattice and Area
by Min Sihe, One Stroke Drawing and Postman Problem by
Jiang Boju .

After 1980, the younger mathematicians in China had
taken over from the older generation of mathematicians in
running the mathematical competition. They worked and
strived hard to bring the level of mathematical competition in
China to a new height. Qiu Zonghu is one such outstanding
representative. From the training of contestants and leading the
team 3 times to IMO to the organizing of the 31th IMO in
China, he had contributed prominently and was awarded the P.

Erdos prize.

Preparation for IMO

Currently, the selection process of participants for IMO in
China is as follows.

First, the China Mathematical Competition, a national
competition for high Schools, is organized on the second Sunday
in October every year. The objectives are: to increase the
interest of students in learning mathematics, to promote the
development of co-curricular activities in mathematics, to help
improve the teaching of mathematics in high schools, to

discover and cultivate the talents and also to prepare for the
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IMO. This happens since 1981. Currently there are about
200,000 participants taking part.

Through the China Mathematical Competition, around 350
of students are selected to take part in the China Mathematical
Olympiad or CMO, that is, the Winter Camp. The CMO lasts
for 5 days and is held in January every year. The types and
difficulties of the problems in CMO are similar to the IMO.
There are also 3 problems to be completed within 4.5 hours each
day. However, the score for each problem is 21 marks which
add up to 126 marks in total. Starting from 1990, the Winter
Camp instituted the Chern Shiing-Shen Cup for team
championship. In 1991, the Winter Camp was officially
renamed as the China Mathematical Olympiad (CMO). It is
similar to the highest national mathematical competition in the
former Soviet Union and the United States.

The CMO awards the first, second and third prizes.
Among the participants of CMO, about 60 students are selected
to participate in the training for IMO. The training takes place
in March every year. After 6 to 8 tests and another 2 rounds of
qualifying examinations. only 6 contestants are short-listed to
form the China IMO national team to take part in the IMO in
July.

Besides the China Mathematical Competition (for high
schools), the Junior Middle School Mathematical Competition
is also developing well. Starting from 1984, the competition is
organized in April every year by the Popularization Committee
of the Chinese Mathematical Society. The various provinces,
cities and autonomous regions would rotate to host the event.
Another mathematical competition for the junior middle schools

is also conducted in April every year by the Middle School
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Mathematics Education Society of the Chinese Educational
Society since 1998 till now.

The Hua Luogeng Gold Cup, a competition by invitation,
had also been successfully conducted since 1986. The
participating students comprise elementary six and junior middle
one students. The format of the competition consists of a
preliminary round, semi-finals in various provinces, cities and
autonomous regions, then the finals.

Mathematical competition in China provides a platform for
students to showcase their talents in mathematics. It encourages
learning of mathematics among students. It helps identify
talented students and to provide them with differentiated
learning opportunity. It develops co-curricular activities in
mathematics. Finally, it brings about changes in the teaching of

mathematics.
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China Mathematical
Competition

2010

Commissioned by Chinese Mathematical Society, Fujian
Mathematical Society organized the 2010 China Mathematical
Competition held on October 17, 2010.

Compared to the competitions in the previous years, while the
test time and problem types remain unchanged in this competition,
the allocation of marks to each problem is adjusted slightly to make
it more reasonable.

The time for the first round test is 80 minutes, and that for the

supplementary test is 150 minutes.
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Part I Short-Answer Questions (Questions 1 — 8, eight marks

each)

@D The range of (&) = /x —5 — /24 —3x is
Solution. It is easy to see that f (x) is increasing on its domain

[5, 8]. Therefore, its range is [ —3, +/3]. []

@» The minimum of y = (acos’x — 3)sinx is —3. Then the
range of real number a is
Solution. Let sin + = ¢. The expression is then changed to

g() =(—at* +a —3)t, or
g() =—at’ +(a — 3)t.
From —at® + (a —3)t =— 3, we get

—at(t? —1) —3( —1) =0,
(t —D(—at(t +1) —3) =0.

Sincet —1 < 0, we have —at(t +1) —3 <0, or
a(t* +1) =—3. )

Whent =0, —1, expression D always holds; when 0 <t <

1, we have 0 <t* +¢ < 2; and when —1 <t <0, —% <t +

t << 0. Therefore, *% <a < 12. []

o The number of integral points (i.e., the points whose x-
and y-coordinates are both integers) within the area (not
including the boundary) enclosed by the right branch of
hyperbola x> — y* = 1 and line x = 100 is

Solution. By symmetry, we only need to consider the part of

the area above the x-axis. Suppose line y = k intercepts the
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right branch of the hyperbola and line x = 100 at points A, and
B,(k =1, 2, ..., 99), respectively. Then the number of
integral points within the segment A,B, is 99 — k. Therefore,

the number of integral points within the area above the x-axis is

99
D199 — k) =99 x 49 = 4851.
k=1

Finally, we obtain the total number of integral points

within the whole area as 2 X 4851 + 98 = 9800. []

o It is known that {«,} is an arithmetic sequence with non-
zero common difference and {b,} a geometric sequence,
satisfyinga, =3, b, =1, a, =b,, 3a; =b;; furthermore.,
there are constants « and 8 such that for every positive

integer n, we have a, = log,b, + 5. Then a + f =

Solution. Let the common difference of {a,} be d and the
common ratio of {6, } be g. Then
3+d =gq, ©)
3(3 +4d) = ¢°. @
Substituting @ into @. we have 9 +12d = d* + 6d + 9.
Then we getd = 6 andg = 9.

Therefore, 3 +6(n — 1) = log, 9" +Borbn —3 = (n —
Dlog, 9 + B holds for every positive integer n. Lettingn = 1 and

n = 2 in turn, we find that « :%andﬁ = 3.

Consequently, a +8 = V3 + 3. []

@D Function f(x) =a™ +3a" —2 (a >0, a # 1) reaches the

maximum value 8 on interval [ —1, 1]. Then its minimum
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value on this interval is

Solution. Leta® = y. The original function is then changed to
g(y) = y* + 3y — 2, which is increasing over (*%, + %j.

When 0 <a <1, we havey € [a, a '] and
e =a 2 +3a —2=8a" =2=>a = —.

Then

_ (LY 1 ,_ 1
g(y)min*(z) +3><2 2 1"

Whena > 1, we havey € [a', a ] and
g(y)max :aZ +3a 72 =8:>a =2.

Then  g(y)pw =27 +3 X2 =2 :7%.

In summary, the minimum value of f(z)onx € [—1, 1]is —

] ==

@» Two persons roll two dice in turn. Whoever gets the sum
number greater than 6 first will win the game. The
probability for the person rolling first to win is

Solution. The probability for rolling two dice to get the sum

number greater than 6 is % = % Therefore, the required
probability is
7 5 7 5Y 7 7 1 12
— = | X = | X=4r == X—— ==,
12 - (12) 12 - (12) 12 - 12 1 _ 25 17
144

]
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o The lengths of the nine edges of regular triangular prism
ABC -A,B,C, are equal, P is the midpoint of CC, , and the
dihedral angle B-A,P - B, = a. Thensina =

Solution 1. Let the line

z

through segment AB be x-axis
with the origin O being the
midpoint of AB and let the line
through segment OC be y-axis to

establish a space rectangular

coordinate system shown in

Fig. 7. 1. Assuming the length

of an edge is 2, we have
B(l? Oa O)a Bl(la O, 2)9 F1g71

A, (—1, 0, 2), P@0,+3, 1). Then

——

BAI:(—Z,O,Z),ﬁ:(—l,ﬁ, 1)9

— —

BlAl:(_Zaov O)9B1P:(_la«/§q_1).

Let vectors m = (x,, y1» z1) and n = (x,. ys, z,) be

perpendicular to BA, P and B, A, P, respectively. We have

|

{7‘/1) . BlAl :*2].“2 == Oy

>

« BA, =—2x, +2z, =0,

P

—_—>

'BP = X +«/§yl+zl :Og

Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
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neB P =—x, +«/§y2 — =z, = 0.

We can then assume thatm = (1, 0, 1), 7 = (0, 1, +/3).

From |m «n |=|m || n]|] cosa |, we have

ﬁ=f~2\cosa\:>|cosa|=§.
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Therefore, sina = @
Solution 2. As seen in Fig. 7. 2, we have
PC =PC,, PA, = PB. Suppose A, B and
AB, intersect at O. Then we get OA, =
OB, OA =0B,, A/B | AB,.

Since PA = PB,, then PO | AB,.
Therefore AB, | plane PA,B.

On plane PA, B through O draw line
OFE 1 A, P with foot point E. Fig. 7. 2

Connecting B, E, /B,EO is then the plane angle of the
dihedral angle B-A,P —B,. Assuming AA, = 2, it is easy to find

that PB = PA, =5, A,O = B0 =42, PO =.3.
In right triangle APA,0O, we have A,O « PO = A, P « OE,

or 2 + 3 =5 « OF. S0 OE =18
N3
As B,O = /2, we have

B.E = ./B,O? 1 OE? — 2+% _ 45

5
Finally,
sina = sin/BEO = 81O _ 42 _ /10 (]
BlE % 4
5

Q The number of positive integer solutions of equation x +
y +2 =2010 withx <y < =z is

Solution. It is easy to find that the number of positive integer

solutions of x + 3y + 2 = 2010 is Cpy = 2009 X 1004,

We now classify these solutions into three categories:
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(1) x = y = z, the number in this category is obviously 1;

(2) there are exactly two that are equal among x, y, 2 —
the number in this category is 1003;

(3) x, y, z are different from ecach other — suppose the
number in this category is k.

From
1 +3 x1003 +6k/ = 2009 X 1004,
we have

6k = 2009 X 1004 —3 X 1003 —1
= 2006 X 1005 —2009 +3 X2 —1
= 2006 X 1005 — 2004.

We get k£ = 1003 X 335 —334 = 335671,

Therefore, the number of positive integer solutions

satisfyingr <y <z is

141003 + 335671 = 336 675. []

Part I Word Problems (16 marks for Question 9, 20 marks
each for Questions 10 and 11, and then 56 marks in
total )

o It is known that f(x) = ax® +bzx* +cx +d (a #0), and

| /'(x) | < 1for 0 <z < 1. Please find the maximum
value of a.

Solution 1. f'(x) = 3ax® + 2bx +c. We have

70 =c¢,
FlE)=3a+b+c
2 7461 D Cs

F'(1) =3a +2b +ec.
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Then

3a = 2f7(0) +2f (D) f4f’(%j.
We get
3al = |2/7€0) +2(D —4f/(%j‘

<2 f O [+2] D |+4‘f’(%j‘<8,

Therefore, a < % Furthermore, it is easy to find that

f(x) = %xa —4x* + 2 +m (where m is any constant) satisfies

the given condition. Therefore, the maximum value of a is %

Solution 2. Let g(x) = f'(2) +1. Then0 < g(x) <2for0 <

x <1, Letz = 2x — 1. Thenxzzziland—l<z<l. Let
_ (zH+1)_3a_,  3a+2b 3a )
h(z)f;,( 2 ) 17 +72 z+4 +b +c +1.

It is easy to check that 0 <h(2) <Zand0<h(—2) <2 for
—1l<z<1

<h(z) +h(—=2)

Therefore, 0 < <2for—1 <z <1. And

2
that is
3a 2 3a

Then we have%va +c+1 ZOand%z2 < 2. From 0 <
2 8
2 <1 we geta <§.

As f(x) = ﬁaf —4x* +x +m (where m is any constant)
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satisfies the given condition. We obtain that the maximum value

ofais%. D

@» Given two moving points A(x,, y,) and B(x,, y;) on
parabola curve y* = 6x withx, +x, =4 andx, # x,, and
the perpendicular bisector of segment AB intersects x-axis
at point C. Find the maximum area of AABC.

Solution 1. Let the midpoint of AB be M (x,, y,). Thenx, =

-, + ) + 2z
L2 9 and y, = P12 We have
2 2
s _ Yz T Y1 Y TV 6 _ 3
AB Ty — X yfé _ﬁ vz y().
6 6

The equation of the perpendicular bisector of AB is

y*y():*%(I*Z). ®
It is easy to find that one solution of it isx = 5, y = 0.
Therefore, the intersection C is a fixed point with coordinate

(5, 0).

From O, we know the equation of line ABisy — y, = 3
Yo

(x —2), 0or
x =%y —yo) 2. @

Substituting @ in y* = 6z, we get y* = 2y,(y —y,) +12,

or
y? —2y,y +2y5 —12 = 0. ®

As y, and y, are two real roots of @ and y, # y,. we have
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A = dy? —4(2y2 —12) =—4y? +48 > 0.

Therefore, — 2+/3 < v < 2./3. Then we have

|AB | = (171 *1'2)2 +(y1 *y2>2 Y

2 A
oo

J

0 NCG, 0)

(1 +%5j[<y1 ) — Ay v, ]
(142

1 +y6j(4y§ —4(2y% —12)

9+ vy (12 —yd).

w o <

Fig. 10. 1

The distance from point C(5, 0) to segment AB is

h=|CM|=.G—-22+0—y)% = /9 + L.

Therefore,

Same =5 | AB [+ h = L /O F D2 =30 « /955

- %J%w Fy2)(24 —292)(9 + y2)

2

<1J1(9 + 8 +24 —2y5 +9 +y3j3
- 3

3

_u
-Up

The equality holds if and only if 9 + y§ = 24 — 257, i.e.
vo = +4/5. Then we get

A(SE ) B[S R 5 )

and A(w, 5 +ﬁ>j, B(G_?/g, 5 +ﬁj.
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Consequently, the maximum area of AABC is %ﬁ

Solution 2. Similar to Solution 1, we get that C, the
intersection of the perpendicular bisector of AB and the x-axis,
is a fixed point with coordinate (5, 0).

Letx, =t5, 2o =t5s 11 >1,5 t3 +15 =4. Then S aapce is the

absolute value of

5 0 1
% b W6t 1,
2 6, 1

SO

Aapc = %(5%;5] +/6¢it, =611 —Sﬁm)

= S et + 5
%(4 —2t1ty) oty +5)(yt, +5)
=5(5);
Therefore, S ape < %ﬁ and the equality holds if and only
if (¢, —1,)* =t,t, +5andti +¢; =4. We then gett, = f%f

and 7, =— , which implies either

N
J6

A(C ) B[S 5 )
or

(6+r <f+f>] (6_3m’ £+ﬁj'
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. . .14
Finally, the maximum area of AABC is ?ﬁ []

@ Prove that equation 2x* + 5x — 2 = 0 has exactly one real

root (denoted as r), and there is a unique strictly
increasing sequence {a, } such that % =7tz ot A e
)

Solution. Let f(x) = 22° + 52 — 2. Then we have f'(2) =

6x* +5 > 0, which means f(x) is strictly increasing.

Furthermore, f(0) =—2 < 0, f(%) = % > 0. Therefore,
f(x) has a unique real rootr € (O, %) From 2r° +5r —2 =0,
we have

%= r3=r+r1+r7+rw+"

B} 1 —r
Therefore, sequencea, = 3n —2 (n =1, 2, ...) satisfies the

required condition.

Assume there are two different positive integer sequences
a; <a, <+ <a, <-=candb, < b, < - <bh, < -
satisfying

r e s e = 0 e bl e = %

Deleting the terms that appear at the both sides of the
expression, we have
T e e I e I R T S I e L I SR TLIN

where s; <<s, <<s; <<+, 1, <t, <t; <--- with all thes; and¢;
different from each other.

We may as well assume thats, <<z;. Then
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r’n < 't At e =t s e,
1 <™ e e K P e
S e Y
1—r l—l
2

It is a contradiction. This proves that {a, } is unique.

2011

Commissioned by Chinese Mathematical Society, Hubei Mathematical
Society organized the 2011 China Mathematical Competition held on
October 16, 2011.

Part I Short-Answer Questions (Questions 1 — 8, eight marks
each)
o LetA = {a,» a,» as» a,}. Suppose the set of sums of all
the elements in every ternary subset of AisB = {—1, 3,
5, 8}). Then A =
Solution. Obviously. every element of A appears three times

in all the ternary subsets. Then we have

3(a1 +a2 +(13 +a4) = (71) +3 +5 +8 - 159

ora, ta; ta; +a, =5. Therefore, the four elements of A are

5—(=1)=6,5-3=2,5—-5=0,5—8 =—3, respectively.

The answer isA = {—3, 0, 2, 6}. []
P +1

@D The value field of f(z) = P is
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Solution. Letx = tanf, — =~ <0 < = and 6 i%. We have

2 2

cosf 1 _ 1
tand —1  sin@ —cos 0 ﬁsin(ﬁ - %)

Letu :ﬁsin(ﬁf%j. Then — /2 < u < 1and u # O.

Therefore, f(x) = % € ( oo, ﬁ}u (1, + o).

2
o Suppose a and b are positive real numbers satisfying % +%
< 242 and (a —b)? = 4(ab)*. Then log.b =
Solution. From ai +% < 2/2, we havea +b <2/2ab. On the
other hand,
(a +b6) = 4ab + (a —b)* = 4ab +4(ab)?
ab « (ab)® = 8(ab)*,
and that means
a +b =22ab. @
Therefore,
a+b =2J2ab. @

The equality in @ holds only when ab = 1. Associating it
with @, we find

a =42 —1, a =+2 +1,
and

b =42 +1, b =42 —1.

So the answer is log,b =— 1. []
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@ Suppose cos’d — sin’@ < 7(sin’d — cos’@), § € [0, 27).
Then the range of 0 is

Solution. From the inequality
cos’d —sin’f < 7(sin*@ — cos’d),

we have

sin*d + %sinsﬁ > cos’0 + %cosm.

Since f(x) = x* + %1 is increasing over (— co, + <o),

then sin @ > cos @, and that means

2+ < <2/m+%"(k €.

Butd € [0, 27n), so the range of 0 is (%, %j []
@D Seven students are arranged to attend five sporting events.
It is required that students A and B cannot attend the same
event, every event is attended by at least one student, and
each student must attend one and only one event. Then
the number of the arrangement plans meeting the required
condition is . (the answer should be given in
numerical value)
Solution. There are two possible cases that satisfy the required
conditions:
(1) there is an event attended by three students — this case
has C} « 51 —C} « 5! = 3600 plans;

(2) there are two events each attended by two students —

this case has %(C? «Ci)«5! —Cl.+50 =11400 plans.
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Therefore, there are 3600 +11400 = 15000 plans that meet
the required condition. []

@ Given a tetrahedron ABCD, it is known that ZADB =
/BDC = ZCDA =60°, AD = BD =3and CD = 2. Then
the radius of the sphere circumscribing ABCD is

Solution. Let the center of the
sphere circumscribing ABCD be O.
Then O is on the vertical line of
plane ABD through point N the
circumcenter of AABD. It is known
that AABD is regular, so N is the
center of it. Let P and M be the
midpoints of AB and CD,
respectively. Then N is on DP with
ON 1 DP andOM L CD.

Let 0 denote the angle between CD and plane ABD. From

~/CDA = ~CDB = ZADB = 60°,

we find cos @ :i, sin 0 :Q.
7 NG
SinceDM=%CD=1,DN=%-DP=%-§-3=£,

by cosine theorem we have. in ADMN ,
MN? = DM? +DN? —2+« DM « DN + cos§

‘ 1
=12 +(f3)2 =21 +./3 =2,
J3

that is MN = /2. The radius of the sphere circumscribing ABCD

is then
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The answer is R = /3. []

@D Linex — 2y —1 = 0 and parabola y° = 4z intersect at
points A, B, point C is on the parabola, and ZACB =
90°. Then the coordinate of C is

SO|Uti0n. LetA(Ily yl)s B(Igy yz)s (:(t29 Zt). From

y? =dx,
we get y* —8y —4 = 0, which means y, +y, =8, vy, «y, =—4.

Since xy, =2y, +1, x» =2y, +1, we have

x, taxy, =20y, +y,) +2 =18,
T o xy =4y, oy, +2Cy; +yy) +1 =1,
Furthermore, by ~ACB = 90°, we have CA « CB = 0,
which means
(=2 —2,) + 2t —y )2t —y,) =0,
that is
t" —(xy fFa )ttt fay s, H4E =20y, Fy)t +y, 0y, =0.
Then
t" — 14t —16¢ —3 =0,
or

(2 +4t +3)U* —4r —1) = 0.

Obviously, t* —4t —1 # 0; otherwise, we havet® — 2 «

2t =1 = 0, which meansCisonx —2y —1 =0, i.e., C
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coincides with either A or B. So¢* + 4t +3 = 0. Thent, =
—1 s Ly = — 3.
Therefore, the coordinate of Cis (1, —2) or (9, —6). [ |

., 1)
o Letan :Cg()() * (%)200 . [ﬁj (7’1 = 19 29 PP 95). Then

the number of terms that are integers in {a, } is

100—5n

. 200—n
Solution. We havea, = Cio 373 «2 ¢ . Whena,(1 <n <

20037 % ong 100 ; O ust be integers. Then

95) is an integer,

6| n+4.
Whenn =2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68,

200 —n __ . 400 — 5n

74, 80, 3 and R are all non-negative integers. So

the corresponding a, , totally 14, are integers.
When n = 86, we haveag = C3 « 3*° « 27°, The number of

the factors of 2 in 200! is

[@]+[200] [ZOO] [200] [ZOO] [200] 200

2 22 25 2! 2° 26 27

5 ] =197,

By the same reason, the numbers of the factors of 2 in 86!
and 114! are 82 and 110, respectively. Therefore, the number

200!

, : 86 __ . . _ _ _r
of the factors of 2 in C5;, 861 - 1141 18197 —82 —110 = 5. So
ags 1S an integer.

Whenn = 92, we have ay, = Ch5 » 3°° « 27'°, In the same

way, we find the numbers of the factors of 2 in 92! and 108!
are 88 and 105, respectively, which means that in C§, is 197 —
88 — 105 = 4. Therefore, ay, is not an integer.

Overall, the required number is 14 +1 = 15. []
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Part I Word Problems (16 marks for Question 9, 20 marks
each for Questions 10 and 11, and then 56 marks in
total)

@D Suppose f(x) =]|lglx +1) | and real numbersa, b(a <b)

satisfy £(a) — f’(*z i;j F(10a + 66 +21) — dlg 2.

Find the values of a , b.

; ] (b F1 )
Solution. As f(a) ff[ b+2j,wehave
B b +1 . 1 .
| lgla + 1) | = ‘lg( b7+2+1j‘ = ‘lg(ibjtzj‘ =] 1gb +2) |.

Then eithera +1 =56 +2o0r (a +1)(b +2) = 1. Sincea <
b,soa +1 +# b6 + 2. Therefore, (a +1)(b +2) = 1.
From f(a) =] lg(a +1) | we know 0 <a + 1. Then

0<a-+1<b+1<b+2,
which implies
0<a+1<1<b+2.
Therefore,
(10a +66 +21) +1 =10(a +1) +6(b +2)
10

Then

£(10a +6b +21) = ‘1g[6<b +2) +b1%] ‘

— 166 +2) +%]

On the other hand,

f(10a +6b6 +21) = 4lg 2.
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So
10
lg[G(b +2) + =] = 4lg2,
. 10 . 1 o
which means 6(b +2) +—— =16. Then eitherb =——orb =
b +2 3
— 1 (discarded) .
Substituting b :—%into (@ +1b +2) =1, we finda =
2
-
Therefore a =*%, b =*%. []

@) Suppose sequence {a, | satisfiesa; =2¢ —3(¢t € Randt #=+1),

2t"™ —3a, +2¢ — D" —1
_ p N
A pt1 a. Lo —1 (n € )

(1) Find the formula of general term about {a, }.
(2) If r >0, find out which is larger betweena,:; anda,.

Solution. (1) The given expression can be rewritten as

200 —1(a, +1)

nbl = 1.
@ a, +20" —1

Then

a +1  2@a, +1) ot —1

ntl o n - .

t 1 a, +2t 1 a,,+1+2

t" —1
a, +1 2, . a1
Let o b,. Then b, i with &, =
2t —2 _ 9

t —1
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L _ 1 .l on
b b +n —1) 5
Therefore, a;’ ol 1’ which meansa, = 2 =D —1.
t" —1 n n
(2) We have
o a = 2" =1 2" =D
n+1 n n +1 n
_ Z(t 71) vee n—1 n _
7n<n+1)[n(1+t+ +m 4
n+DQA +¢ 4 +1"")]
2 — 1D . w1
771(n+1)[nz A4t 4+ +t"H]
_ 2 — 1 n n o no_ n—l
71(n+1)[(t D+ =)+ + " =]
_ 2 —1)* n—1 n—2
7n(n+l)[(t e e 1)+

p(F T e D) e

It is obvious thata,,, —a, >0fort >0(t #1). Therefore,

A1 = Ay []

@D Straight line / with slope %

2

y
) 2 P
\‘A%/B

= 1 at points A, B, and
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intercepts ellipse C :

x

point P (342, +/2) is in the
top-left of / (as shown in
Fig. 11. D).

(1) Prove that the center of the inscribed circle of APAB

Fig. 11. 1
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is on a given line;

(2) When ZAPB = 60°, find the arca of APAB.
Solution. (1) Let! be a straight line such that y = %x +m,

andA(a:“ y1)9 B(l‘zy yz).

.2 2
Substituting y = th +m into > +yz =1, and simplifying

3 36

it, we have

2x% + 6mx + 9m*— 36 = 0.

2_ — 2
Then.rl +1‘2 :737)’1’ X1 :My llePA :Ma
2 X _Bﬁ
9 T 2
kpp = M Therefore,
Z, *3&
—/2 s —A/2
R S Vi N/7 + Ve N/7

X 73«/? X2 73«/?

(y1 —/2)(xy —342) + vy —2)(x, —342)
(11*3\/5)(1'_7*3&) ‘

In the expression above, the numerator is equal to

(%xl +m _ﬁj(l'z —3J2) + (%Iz +m —ﬁ)(.rl —342)

= 21112 +(m —242)(x, +25) —6420m —42)

~f+(m —2J2)(—3m) — 62 (m —/2)

3
2 9m*— 36
3

=3m2—12 —3m’>+6+/2m —6/2m +12 = 0.

Therefore, kpy +kpy = 0. Since P is in the top-left of /, we
know that the bisector of ~APB is parallel to the y-axis.

Therefore, the center of the inscribed circle of APAB is on line

x = 342.
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(2) When ZAPB = 60°, by the result in (1), we have kpy =
J3 s kpy =—+/3. Then the equation for line PA is y — J2 =

2

2
J3 (x —3./2). Substituting it into - + 2
g

36 T 1, and eliminating

vy We get
1427 + 946 (1 —34/3)x +18(13 —34/3) =0,

18(13 — 34/3)

14 s 1.C.

which has roots x, and 3+2. Sox, « 342 =

x, = w Then we find

IPAI:qulfgﬁ\:w_

342(343 — 1)
e

In the same way, we have | PB |=

Therefore,

S Apas :%"PA || PB |+ sin 60°

_ 1 3/2G3 +D [ 3/24/3 —1) 43
2 7 7 2

_ 11743
19 -

2012

Commissioned by Chinese Mathematical Society, Shaanxi

Mathematical Society organized the 2012 China Mathematical
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Competition held on October 14, 2012.

Part I Short-Answer Questions (Questions 1 — 8, eight marks

each)
@D Lect P be a point on the image of y = x + %(\r = 0).

Through P draw lines perpendicular to y = x and y-axis
with foot points A, B, respectively. Then the value of
PA - PBis
Solution 1. Let P(Io > xo + le The expression for line PA
X o

is then

2
y - (I(J +?Oj:7(r 71‘())9

or y =—x +2x, +£.
X

From
Yy =X

y =—x +2x, Jrl,

X o

we getA(l'o +L, Z +L).

Xo X o

On the other hand, we have B(O, o +i). Then PA =

Xo
1 1 —>
(*; 77) and PB = (—x,, 0). Therefore,
Xo Zo
PA-PB =1L (2 =1
X

The answer is —1.
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Solution 2. As scen in Fig. 1. 1, ¥
the distances from P (I() s Xy T xl) to
0
lines y = x and y-axis, respectively, B Ly
A

are

2

ot g A
| PA | — o W2
J2 Zo Fig. 1. 1

and

‘ PB | = X,

Since O, A, P and B are concyclic points, then

VAPB = — /AOB — ?jf

Therefore. PA « PB =| PA \-IP_EI-cos%Tﬂ:*l. []

@» Suppose AABC with angles A, B and C, and the
corresponding sides a » 6 and ¢ satisfies equation acos B —

bcos A = ic. Then the value of tan A is
5 tan B

Solution 1. By the given condition and the Law of Cosines, we have

“ .chraz —b? 71)./)2+c2 —a =ic
2ca 2bc 5°°
2 2 __ 3 2
ora’ —b B Therefore,
a4 . ¢t +a® —b?
tan A _ sinAcos B _ 2ca
tan B sin Bcos A b . bt ¢ —at

2bc
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The answer is 4.
Solution 2. As seen in Fig. 2.1,
through C draw CD | AB with foot
point D. We have acos B = DB and
becos A = AD. By the given condition,

Sf-————->n

we have DB — AD = %c Combining

it with DB +AD = ¢, we get AD =

Fig. 2. 1

%c and DB = %c. Therefore,

CD
tanA _ AD _ BD
tanB  CD  AD

BD

= 4.

Solution 3. By the projection theorem, we have acos B +bcos A =

c. Combining it with acos B —bcos A = %c , we getacos B = %c

and bcos A = %c. Therefore,

tan B sin BcosA b« cos A

4
. —c

tan A sinAcosB ascosB ? _ 4 (]
g()

o Letx, y, = € [0, 1]. Then the maximum value of M =

o=y | +V]y—2| +V]z—2x]is

Solution. We may assume 0 <<z <y <<z < 1. Then

M=Vy—x +vz—y +Vz—x.
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Since
y—x + AV —y <20y —x) +(zx —y)] = V2 —2),
we have

M < J2(x —x) +/2—x =02 +1) /2 —x <2 +1.
The equality holds if andonlyify —ox =2 —y, 2 =0, =z =

1(16 X :Ovy :%92’ :1j,

Therefore, the answer is M ... =2 + 1. []

@D Let the focus and directrix of parabola y* = 2px(p > 0)
be F and/, respectively. A and B are moving points on the

T

parabola satisfying Z/AFB = e Let the projection of M

the midpoint of segment AB on [ be N. Then the

maximum value of M is
| AB |

Solution 1. Suppose LABF = 0(0 <0 < 23—7() Then by the

Law of Sine, we have

| AF | _ | BF | _ | AB |
sin 0 %in(zj—ﬁj eini.
) 3 ’ 3
And then
| AF [+| BF| _ | AB|
. . (2 .
sin @ Jrsm(? 0) sin -
So
. . (27
| AF |+| BF | _ sm@Jrsm(? 0] ~ Zcog(g 71)
| AB | i ’ 3 )

sin —
3
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As seen in Fig. 4. 1, by using the I
definition of a parabola and the s
property of a trapezoid, we have

N

| MN | = w Then | B
o\ F r

AN - 2)
| AB | ) 3 )

| MN | ’

Therefore, TAB | reaches the
Fig. 4.1

. T
maximum value 1 when 8§ = e

The answer is 1.

Solution 2. By using the definition of a parabola and the

property of a trapezoid, we have | MN | = w In
/AN\AFB, by using the Law of Cosines we have
| AB |* =| AF |* +| BF |* =2 | AF |+| BF | cos
= (| AF [+| BF |)* =3 | AF |+| BF |
= (| AF | +| BF |)? —3(—‘ AF |1 BE ‘j‘
2
- (LAELABELY
The equality holds if and only if | AF |=| BF |.
Therefore, the maximum value of ‘| Ag || D

@D Suppose two regular triangular pyramids P ~ABC and Q —
ABC sharing the same base are inscribed in the same sphere.
If the angle between the side-face and the base of P — ABC is

45°, then the tangent value of the angle between the side-face
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and the base of Q —ABC is
Solution. As seen in Fig. 5.1,
connecting PQ, then PQ is perpendicular
to plane ABC with the foot point H
being the center of AABC. The center
of the sphere O is also on PQ. Connect
and extend CH to let it intersect with
AB at point M. M is then the midpoint
of AB, and CM | AB. It is easy to see
that ~/ PMH and ZQMH are the plane

angles formed by the sides-faces and

the bases of the regular triangular pyramids P ~ABC and Q ~ABC,
respectively. Then </ PMH = 45°, so PH = MH = %AH.

Since /PAQ =90°, AH | PQ,thenAH? =PH -QH. We
then have AH* = LAH - QH.

Therefore, QH = 2AH = 4MH.

QH _,
MH ’

The answer is 4. []

Finally, tan Z/QMH =

@ Let f(x) be an odd function on R, and f () = 2” forx =
0. Suppose for anyx € [a, a +2], f(x +a) =2f(2).
Then the range of real number a is

Solution. According to the given condition, we have

.TZ (l 2 O) ’
f(x) = ‘
—x* (& <0).

So2f(x) = f(/2x). Therefore, the original inequality is
equivalent to f(x +a) = f(J22).
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As f(2) is increasing over R, thenx +a =2z, i.e.,
a =2 —Da.

Furthermore, sincex € [a, a + 2], (42 — 1) x reaches
(V2 —1)(a + 2) the maximum value when x = a + 2.

Therefores a = (/2 —1)(a +2) ., from which we obtaina =
J2.i.e.,a €[22, + o).

The answer is then [/2, + =). []

@D The sum of all the positive integers n satisfying % < sin =~
n

1.
< — 18
3
Solution. As sin x is a convex function for x € (O, %), we

have ix < sinx < xz. Then
T

SII’IE<E 4,smﬁ>; E I,
T T 1 T 3 T _ 1
smﬁ<ﬁ §,51n§>?><§—3,

that is

. 1 ¢ . 1+ 1 .7
smﬁ<Z<smﬁ<smﬁ<smﬁ<?<sm§.

Therefore, all the possible values of positive integers n are
10, 11, 12, and their sum is 33.
The answer is 33. []

@D An information station employs four different codes, A,

B, C and D. for communication, but each week uses only
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one of them. The code used in a definite week is
randomly selected with equal chance among the three ones
that have not been used in the last week. Suppose the
code used in the first week is A. Then the probability that
A is also used in the seventh week is . (expressed
as an irreducible fraction)

Solution. Let P, denote the probability that code A is used in

the £th week. Then the probability that A is not used in the k£ th

week is1 — P,. Therefore, we have

P/1+1 :%(lfp/‘).

1 1 1
Pk+1 _Z :_g(Pk _T)

As P, =1, {Pk — } is then a geometric sequence with 3

4

1
4
% as the common ratio. So we have

as the first term and —

71737ik71
Pt i)

73_ik1 1
Pk*z( 3) e

_ 61
Therefore, P, = 243"

. 61
The answer is 243" D
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Part I Word Problems (56 marks in total for three questions)

@D (16 marks) Suppose f(x) = asinax — %Cos 2x +a f% +

%9(1 € R, a #0.

(D If f(x) <0 for anyx € R, find the range of a.
(2) If a =2 and there exists x € Rsuch that f(x) <0, find

the range of a.
Solution. (1) We have f(x) = sin®x +asinx +a — i Let
a

t =sinx(—1 <t <1). Then
2 3
g ) =1 +tat ta——.
a

The sufficient and necessary condition for f(x) <0, Vx

€ Ris
g(—1) =1-3 <o,
a
3
g(l) =1+2a —— <0.
a

Therefore, we obtain the range a of is (0, 1].

(2) Asa =2, then —% <—1. We have

e —g(—1) =1— 2,
a

Then f(2)wn = 1 — . Therefore, the sufficient and
a
necessary condition for f(z) <0, Jx € Ris1 _ 3 <0,0r0 <
a

a < 3.

Finally, we obtain that the range of a is [ 2, 3]. []
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@» (20 marks) It is known that each term of sequence {a, } is
a non-zero real number, and for any positive integer n

holds the equation
(ay +a, +++a,)" =ai +aj +-+ +al.

(1> When n = 3, find out all the sequences consisting of

three termsa,, a», as.

(2) Does there exist an infinite sequence {a,} such that

asn; =—20127 If it exists, write out the formula of general

term; if not, give your reason.
Solution. (1) Whenn =1, we haveai = a}. Sincea, # 0, we
geta, = 1.

When n = 2, we have (1 +a,)* =1 +a3. Sincea, # 0, we
geta, = 2ora, =—1.

Whenn = 3, we have (1 +a, +a;)* =1+a} +ai. Fora, =
2, we geta; = 3ora; =—2; fora, =—1, we geta; = 1.

In summary, we get three sequences consisting of three

terms that satisfy the given condition:
{1, 2,3}, {1, 2, —2}),and {1, — 1, 1}.
(2) LetS, =a, +tay, +++ +a,. Then we have
S =ai +ai+-+alln €N,
(S, +a,)? =al +a3 ++ +ad +ai,.

Finding out the difference of the two expressions above and
bya, # 0. we have 2S, =a’, —a,..
Whenn =1, we know from (1) thata, = 1.

Whenn = 2, we have

2a, =2(S, —S,-) = (i —a,) —(ai —a,).
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And that is

(apn, ta, )y —a, —1) = 0.

Then we geta,41 =—a, ora,41 =a, +1.

Finally, froma; =1anda.s; =—2012, we find the formula

of general term for a required sequence as

all =
2012(—=1)", n = 2013.

@D (20 marks) As seen in Fig. 11. 1, ¥
in the rectangular coordinate
system XOY, the side of the
rhombus ABCD is 4, and | OB | =
| OD | = 6.

N, 1 <n <2012,

(1) Prove that | OA |«] OC | is a )

constant.

(2) When point A is moving on
the half circle (x — 2)* + y* =
4(2 < x < 4), find the trace of
C.
Solution. (1) Since | OB | =| OD |
and | AB|=|AD|=|BC|=|CD|,

then O, A, C are collinear.
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As seen in Fig. 11. 2, connecting
BD, then BD is perpendicular to AC
and through its midpoint K. So we

have

B
A c
M
X
D
Fig. 11. 1
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| OA |* = (2 +2cosa)? + (2sina)? = 8(1 + cosa) = 16cos’
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| OA |« OC | = (|OK |—| AK HD(| OK |+| AK )
=|OK |* =| AK |
= (OB |* —=| BK |*) = (| AB |* —| BK |
=| 0B |* —| AB |* = 6% —4* = 20 (a constant).

(2) LetC(xs y)s A(2 +2cosa, 2sina), where

o = 4XMA(— <a <§)

s
2

Then £ XOC = As

@
5

@
29

then | OA | = 4cos —. Combining it with the result in (1), we

a
2
get | OC | cos% = 5.

Then we havex =| OC | cos% =5,andy =\OC|sin% =

Stan = € [—5, 5.

2
Therefore, the trace of point C is a segment with the ends
(5, 5) and (5, —5). []

2013

Commissioned by Chinese Mathematical Society, Jilin Mathematical
Society organized the 2013 China Mathematical Competition held on
October 13, 2013.
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Part I Short-Answer Questions (Questions 1 — 8, eight marks
each)
o Given A ={2,0, 1, 3}, 1letB ={x|—x €A, 2—2* ¢
A'}. Then the sum of elements in B is

Solution. It is easy to find that B < {—2, 0, —1, —3}. We
have 2 —z* ¢ A whenz =—2, —3,and2 —x* € A whenx =
0, — 1. Therefore, B = {—2, — 3}, the sum of whose elements
is —5.

The answer is —5. []

@D In a plane rectangular coordinate system 2Oy, points A,
B are on the parabola y* = 4z, satisfying OA - OB =—1,
and point I is the focus of the parabola. Then S, opa °

Sprors =

Solution. Let F(1, 0), A(xys v1)» B(xs, y,). Then x, =

yi _y3
491'2 = 4,and
_ A% .A0 — _ 1 2
—4 =0A 0B =x12, Ty1y:, = E<y1y2) +yiye

from which we have 11—6(y1y2 + 87 = 0, or y,y, =— &.

Therefore,

1 1
Srora * Saors = ?‘OF "|y1 ‘)' (?‘OF "‘yz ‘)

1 ,
I"OF‘Z"ylyz ‘:2-

The answer is 2. []

@D Suppose in AABC we have sin A = 10sin BsinC, cos A =
10cos Beos C. Then tan A =
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Solution. Assin A — cos A = 10(sin Bsin C — cos Bcos C) =
— 10cos(B +C) = 10cosA, we havesinA = 11cosA. Therefore
tan A = 11.

The answer is 11. []

@D Supposc the side of the base and the height of regular
triangular pyramid P — ABC are 1 and /2, respectively.
Then the radius of the inscribed sphere of the pyramid is

P

Solution. As seen in Fig. 4.1, suppose the
projections of the inscribed sphere’s center O
on faces ABC and ABP are H, K,
respectively, the midpoint of AB is M, and
the radius of the sphere is». Then P, K, M

are collinear, /PHM = /PKO = % and

OH =0OK =r, PO =PH —OH =2 —r,

MH :JgAB :Jg, PM = JMH* +PH* = [ +2 :¥.

Then we have

r_OK _ _MH _ 1
N =~ P0 sin ZKPO PM 5
Therefore, r = Jg
The answer is g []

@D Leta, b be real numbers, and f(x) = ax + b satisfies
| f(x) | <1foranyx € [0, 1]. Then the maximum of ab
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is
Solution. It is easy to find that a = f(1) — f(0), b =
f(0). Then

. . . . 1, L1, )
ab = £(0) « (f(1) — f(0)) =—| f(D) f?f(l) +z(f(1))

1., , 1
< Pl
4(f(l)) 1

When 2£(0) = (1) ==1.i.¢..a =b =i%, we getab = %
Therefore. the maximum of ab is %
.1
The answer is e D

Q Take randomly five different numbers from 1, 2, ...,
20. Then the probability that there are at least two
adjacent numbers among them is

Solution. Suppose ¢, < a, < ay < a, < a; taken from 1,

2y ..., 20. If ays ass azs ays as are not adjacent to each

other, then we have
1 <a, <a, 1 <ay; —2<a, —3 <a; —4 <16,

from which we know that the number of ways to select five
numbers not adjacent to each other from 1, 2, ..., 20 is the
same as selecting five different numbers from 1, 2, ..., 16,

i.e., Cjs. Therefore, the required probability is

Cgo *C?s -1 7C?6 :&
Cso oo 323

. 232
The answer is 393" []
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@D Suppose real numbers x » y satisfy v — 4y =2 /x —y.

Then the range of x is

Solution. Let/y =a, v/ —y =b(as b =0). Thenx =y +
(x —y) =a® +b*. The equation in the question becomes a® +

b* —4a =2b, which is equivalent to
(a =2+ —1D* =5, b=0.

As seen in Fig. 7.1, the trace of b
point (a s ) in plane aOb is the part

of the circle with center (2, 1) and

radius +/5 satisfyinga, b = 0, i.e.,

the union of point O and arc
ACB. Then

Jat b7 € {0y U2, 245].

Therefore, x =a’® +b* € {0} U
[4, 20].
The answer is {0} U [4, 20]. []

@D Suppose sequence {a,} consists of nine terms, which satisfy
A 1 .
a, =day =]land — € {23 1, *?} foranyl S {1’ N
a;

8}. Then the number of sequences like this is

Solution. Let b, = @(1 < { < 8). Then for each {a,}

i

satisfying the given condition, we have

8 8
1T 6 =[] “* =% =1, witho, € {2, 1. *i}(léi < 8.
. a; a, 2

@

Conversely , a sequence of eight terms {5, } satisfying @O can
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uniquely determine a sequence {a, } in the question.

1

In each {b,} , there are obviously even number of T and

the same number of 2, with the remainder being 1. Or, in other

words, the numbers of — % and 2 are both 2%, while the

number of 1 is 8 —4k. Here, it is easy to check that £ can only
be 0, 1, 2. Once k is given, there are Ci* C¢*,, ways to construct
{b,}. Therefore, the total number of {b,} satisfying @ is

N =1+ CC +CCi =1+28 x15+70 X1 = 491.

The answer is 491. []

Part I Word Problems (56 marks in total for three questions)
@D (16 marks) Suppose positive number sequence {x, )
satisfies S, =2S,.,, n =2, 3, ..., whereS, =x, +- +

x,. Prove that there exists a constant C > 0, such that

Xy >C°2”’ n=1,2,....

Solution. Whenn = 2. S, = 2S,_, is equivalent to

T, =x1 t +tx,. @
L1 .
LetC = le. We will prove

x, =Ce2",n=1,2,.... @

by induction.

Whenn =1, it is obviously true. Whenn = 2, we have x,
>z, =C 2%,

Whenn =3, assume x, =C « 2", b =1, 2, ..., n — 1.

Then from @, we have
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X, =a, +(xy F o +x,00)
Zx, +(C 2"+ +C2"1)
O 2 42 e b2 = C e 2,
Therefore, @ holds for every n. ]

@ (20 marks) Given an ellipse equation 1—2 + ?’—) =1(a > b
a D

> 0) in a plane rectangular coordinate system Oy, let A,
A,, Fi, F, be its left and right end-points, left and right
focuses, respectively, and P be any point on the ellipse
different from A,, A,. Suppose there are points Q, R
satisfying QA, | PA,. QA, | PA,, RF, | PF,, RF, |
PF,. Find and prove the relationship between the length
of segment QR and b.

SO'UtiOﬂ. Let ¢ = /\/dz 7])2. Then Al(fav O)a Az(dy O)v
Fl(fC’ 0)9 Fz(('v O).

2
Denote P(‘Tov y()), Q(‘T1a y]>s R(l‘gy y'_))y Where % +

2
%:1,%7&0.

From QA, | PA,, QA, | PA,, we have

AiQ AP = (x, +a)(x, +a) +yiy, =0, @
AzQ‘AzP :(.Tj 7a)(«r()7a)+y]y() = 0. @

Subtracting @ and @, we have 2a (x, +x,) =0,i.e. 2, =
— x,. Substituting it into @, we get — 2§ +a® +y,y, = 0, or

2 2 2 2
g, = Zo—a’ ThenQ(,Io, Mj
Yo Yo

From RF, 1 PF,, RF, | PF,, in the same way we obtain

2 2
X - C
R [* Zoy 22 j Therefore,

Yo
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2 2
—at X, ¢ b?

2

x

QR | = | = = .
Yo Yo ‘y0|

Since | y, | € (0, 6], then | QR | = b, where the equality
holds if and only if | y, | =56 (i.e., P(0, £6)). []

@ (20 marks) Find all the positive real number pairs (a» 6),
such that f(z) = ax® + b satisfies

f(xy) + f(x +y) = f(x)f(y) (for any real numbers x, y).
Solution. The given condition is equivalent to
(az’y’ +b) + (alx +3)" +b) = (ax® +b)(ay” +b). D
In D, lety =0. We haveb + (ax® +b) = (ax® +b) + b, or
(1 —b)ax® +b(2 —b) =0.

Asa >0 and ax’ can be sufficiently large, thenl —b =0,
ie., 0 <<bh <1.
In D, lety =—x. We have (ax* +6) +b = (ax® +06)*, or

(a —a®)x" —2abx® + (20 —b*) = 0. @

Denote the left-hand side of @ as g (x). It is obvious that
a —a® # 0 (otherwise, froma >0 we knowa = 1. Theng(zx) =
— 2bx* +(2b — b*) with b > 0, which means g(x) can be

negative. A contradiction). Then

(26 —bY)

a —a” a —a”

2 2
g(x) = (a *az)(xz —_ab )j _ Lab)

= (a *az)(xzf b )Jr b (2 —2a —b)

1 —a 1 —a
=0

holds for any real number x. So we havea —a” >0, i.e.,0 <

a <1.
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Furthermore, from IL > 0 and
—da

b b
y = — — =0,
g,( 1 aJ 1 a(2 2a —b) 0

we have 2a +b < 2.
So far, we get the necessary condition thata , 6/ must satisfy

as follows:
0<b<1,0<a<1,2a+b<2. ®
We are going to prove that for any pair (a, b) satisfying ®
and any real numbers x, y, @ holds, or equivalently,
hiz, y) = (a —aDx’y* +a 1 —b)(x* +y*) +
2axy + (20 —b6*) = 0.
As a matter of fact, when @ holds, we then have

b
1—a

a(l—b) =20, a —a® >0and (2 —2a —b) =0.

Combining it with x* + y* =—2xy, we get

hix, y) =(a —aDx’y* +a(l —b)(—2zxy) + 2azxy + (20 —b*)
= (a —a®)x’y* + 2abxy + (2b —b*)

b
1—a

:<a—a2>(1y+ )'+1fa<2—2a—b>>o.

Therefore, the set of all the pairs (a s /) meeting the given

condition is

{Gay ) |0 <b <1,0<a <1, 2a +b <2},
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2010

@» (40 marks) As seen in
Fig. 1.1, the circumcenter
of acute triangle ABC is O,
K is a point ( not the
midpoint) on the side BC,

D is a point on the extended

line of segment AK, lines
BD and AC intersect at Fig. 1. 1

point N, and lines CD and

AB intersect at point M. Prove if OK | MN, thenA, B,
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D, C are concyclic.
Solution. By reduction to
absurdity, assume that A, B, D,
C are not concyclic. Let the circu-
mcircle (with radius r) of ABC
intersect AD at point E. Join BE

and extend it to intersect line AN

at point Q; join CE and extend it
to intersect AM at P. Join PQ., as
seen in Fig. 1. 2.

We have

PK?® = the power of P with respect to ©®0O +
the power of Q with respect to ©O
= (PO* —r*) + (KO* —r").

(We will prove it in the appendix)

In the same way,
QK? = (QO* —r*) +(KO* —r").
Then we have
PO* — PK* = Q0* — QK"*.

Therefore, OK L PQ. By the given condition OK 1 MN,
we get that PQ | MN. Then we have

AQ AP
QN ~ PM' ©

By Menelaus’ Theorem, we obtain

NB DE _AQ _
BD "EA QN U 2
MC DE (AP _ o

CD "EA ' PM
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NB _ MC or ND _ MD Then
BD CD’ " BD DC"
ADMN o ADCB, which implies ~.DMN = /DCB. Then

BC | MN. Therefore, OK 1 BC, and that means K is the

From @, @, @, we get

midpoint of BC , which is a contradiction. This completes the
proof that A, B, D, C are concyclic.
Appendix. We are going to prove

PK*® = the power of P with respect to ®O +
the power of Q with respect to ®O.

Extend PK to point I, such that
PK « KF = AK « KE @

(see Fig. 1.3). Then P, E, F, A
are concyclic, and we have

/PFE = /PAE = /BCE.

Then E, C, F, K are

concyclic, and we have

PK « PF = PE « PC. ®
From ® and @, we get PK* = Fig. 1.3
PE « PC — AK + KE = the power

of P with respect to ®O + the power of Q with respect to ©O.

]

Remark. If E is on the extended line of AD, then the proof is

similar.

@D (40 marks) Given positive integer &, letr = £ —5—%. Define

PG = fG) =rlrl, fP0) = (PG, x ER, 1= 2.
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(Here [x | denotes the minimum integer not less than x; e. g.,

(%W =1, [1] = 1.) Prove that there exists a positive integer m

such that £’ (») is an integer.

Solution. Define v, (n) as the exponent of 2 in positive integer
n. We will prove that £ () is an integer form = v,(k) + 1.
We use mathematical induction on v, (k) = v.

Whenv =0, k£ isodd and £ + 1 1is even. Then

. [@D)] _ . L if l
FG) = £ f(k+2j(/<+2}(/e+2)<k e

is an integer.
Assume the proposition is true forv —1(v =1). Then for v

=1, let

k=27 +a‘,71 . 2’U+] +av+2 . 2F+2 + “t

wherea; € {0, 1} fori =v +1, v +2,.... We have
_ 1 1] _ 1
f<r>f(/e+2j(/z+2}(k+2)</e+1>
Lk,
gty TRk
1

= o + 27 Fagy + 1) e 2" +(ay Fag) .

20Fl L wee 2% ...
1
== /3/ + a0
> @
with
=20 4 (e, +1) 02" + (apy Fa,n) o 277 4o 427 4 ey

1

Obviously, v,(#") = v — 1. Let v = &' + - By

assumption. we know £’ (+') is an integer, which is equal to
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£ () by M. The proof is then completed. []

@D (50 marks) Given integer n > 2, suppose positive real
numbersais ass ... a, satisfya, <1,k =1,2, ..., n.

LetAk :a1+a22"'+ak’k :19 2,...37’1.

Prove ‘ ; a 2 A,

k=1

Solution. For1 <% <n —1, we have 0 < Ef:]“f <k and0 <

2” a; <n —Fk. By using the fact that | x —y | <max{x, y}

i=k+1

forz, y >0, we get

|A7,Ak( j2a+f2

i=k+1
1 k
e (g
:k+l i=1
1< 1 1)\x
< max {;(;1&, (z nj; a,}

< max {*(n —k), (

3‘,_.

)4}

1
k
Lk

n

Therefore,

‘Eakii:Ak = ‘nA”*j:Ak
k=1

k=1 k=1

n—1

_ ‘S(A” —AD|S D 1A, — AL
k=1

This completes the proof. []
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Q (50 marks) The code setting of a cipher lock is established
on an n-regular-polygon with vertices A,, A,, ..., A,:
cach vertex is assigned a number (0 or 1) and a color (red
or blue), such that either the numbers or the colors on
each pair of adjacent vertices are the same. We ask: How
many code-sets can be realized for this lock?

Solution. Given an arbitrary code-set for the lock. if two

adjacent vertices have different numbers, we label the sides

linking them by letter « ; if they have different colors, we label
it by 4 ; if both the numbers and colors are the same, we label it
by ¢. Once the number and color on vertex A, are set (there are
four different sets for it), we can thensetA,, A;, ..., A, one
by one according to the letters labelled on each side. In order to
let it return to the initial set of A, finally, the numbers of sides
labelled a and & must be both even. So the number of code-sets
for the lock is four times of the number of labelled-side
sequences which satisfy the condition that the numbers of sides

labelled by @ and b are both even.
Suppose there are 21(0 << [%]j sides labelled by a ,

n—21
2

and 2 (O <j < [ ]) sides labelled by 6. Then there are

CZ' ways to label 27 sides by a from n ones, C./,;, ways to label
2j sides by b from n — 27 ones, and the remaining sides are
labelled by c¢. Therefore, by the Multiplication Principle,
there are C.'C.,, ways to label all the sides. So there

are totally

—
ol
—

u Zz]
[ > CJ o)

ji=0

HM
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code-sets for the lock. Here we stipulate C; =

When n is odd, we haven — 27 > 0, and then

n—2i
(=]
C¥, = gn2l @
n—ai .

j=0
Substituting it into D, we get

(7] [z]
45 (Chigrrly = 22 (Crizm)

i=0

Stz + Dt (- D

k=0 k=0

—@+D"+@-D"
=3 +1.

[=]
Yo't

j=0

. e . n . e n
When n is even, if i < o then @ remains true; if; = o

then all the sides of the polygon are labelled by a, and that
means there is only one way to label the sides. Therefore, there
are totally

n &

(2]
42[(}1 E Z,] —4 X(l + 2 (C?,f‘z“”)J
j=0 i=0

(2]
=244 D> (CH2 ) = 3" 43

i=0
code-sets for the lock.

In summary,

3" +1 when »n is odd,
the number of code-sets for the lock =
3" 4+ 3 when n is even.

]
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2011

o (40 marks) As seen in Fig. 1.1, points P, Q are,
respectively, the midpoints of AC, BD — the two
diagonals of cyclic quadrilateral ABCD. Let /BPA =
Z/DPA. Prove ZAQB = /CQB.

AN A
\‘A\ C

Solution. As shown in Fig. 1.2, we extend segment DP to
intercept with the circle at point E. Then LCPE = /DPA =
ZBPA. Since P is the midpoint of AC, we get@ = C?: » which
means ~/CDP = /BDA. Furthermore, ZABD = /PCD.

AB _ PC .
Therefore, ANABD «» APCB. Then BD D e AB
CD =PC - BD.

Then we have
AB » CD :%Ac . BD = AC - (%BD):AC . BQ,

AB _ BQ L _ . .
orE T D Combining it with ZABQ ZACD, we derive
that AABQ «» AACD. So Z/QAB = /DAC.

Extending segment AQ to intercept with the circle at point

F, we then have
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ZCAB = ZQAB — ZQAC = ZDAC — ZQAC = LZDAF,

which means B/E = IS} Furthermore, as Q is the midpoint of
BD, then ZCQB = ZDQF.

Since ZFAQB = /DQF, we then have ZAQB = /CQB.
The proof is completed. []

@D (10 marks) Prove for any integer n = 4, there exists a

polynomial of degree n,
f(x) =z2" +a, 2"+ F+a,x +a,

with the following properties.

(1) aos ars ... a, are all positive integers;

(2) For any positive integer m and arbitrary £ (k = 2)
positive integers ri, r2s ..., r, that are different from

cach other, we have
SGn) # fG) G fGr).
Solution. Let
f(x) = (x +D(x +2)(x +n) +2. @

Obviously, f(x) is a monic polynomial of degree n with
positive integer coefficients. We are going to prove that f(x)
has property (2).

For any integer ¢, since n = 4, we know that there exists
definitely a multiple of 4 in any n consecutive numbers¢ + 1, ¢
+2, ..., ¢t +n. Then from @, we have f() = 2(mod 4).

Then for any 2 (k¢ =2) positive integersris ras ... s 7y s WE

have
FUD) Gy fry) =2 =0(mod 4).

On the other hand, for any positive integer m, we have
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f(Gn) = 2(mod 4). Therefore,
fGm) Z ) f Gy f(ry)(mod 4),

which implies that f(m) # f(r)) f () f (). We then find
the required f(x) and complete the proof. []

@D (50 marks) Leta;s ass ..., a, (n = 4) be positive real
numbers with a; < a, < --- < a,. For any positive real
number r, the number of ternary groups (i, j, k)

—a,

e oa; . .
satlsfymga’fa =r (1 <i<j <k <n)is denoted as
k j

£.(). Prove f,(r) < "T

Solution. Givenj(1 <j << n), the number of ternary groups
(i, j, k) satisfyingl <i <j <k < n and

a; —a;
J Lo, @

a, —4a;

is denoted as g; (+). For fixed ¢, j with ¢ << j, there is at most
one k satisfying D; so there are j — 1 ways to choose i, which
means g, (r) <<j — 1. In a similar way, for fixedj, # withk >
j » there is at most one 7 satisfying D; so there are n —j ways to

choose k£, which means g; () <n —j. Therefore,
g;(r) <minlj —1,n —j}.

Then, whenn is even (i.e. ., n = 2m), we have

2m—

Zq'(r) = Eq.(r) + Zg-(r)

j=m

()

2m—1

3G D+ > Gn f’”(’”{“ +m(m2’1)
j=2 j=m+1

n?
2
m°-—m <mz:T.
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Whenn isodd (i.e. n = 2m + 1), we have

n—1 2m

Far) = Dg, () = g+ D) g o

j=m+1

2m

<§]<]’—1>+ DY @m +1 -

j=m+1

2
2 n
=m- < —.

4

The proof is completed. ]

@D (50 marks) Given a3 X9 array A with each cell containing
a positive integer, we sayam Xn (1 <m <3, 1 <n <9)
subarray of A is a “good rectangle” if the sum of the
numbers in its cells is a multiple of 10, and call a 1 X1 cell
of A “bad” if it is not contained in any “good rectangle”.
Find the maximum number of “bad cells” in A.

Solution. We first claim that the number of “bad cells” in A is

no more than 25. Otherwise, there will be at most one cell in A

that is not “bad”. Without loss of generality, we assume the

cells in the first row of A are all “bad”. Then let the numbers

from top to bottom in the ith column be a;, b, ¢; (G = 1,

2y ... 9 In turn, and define

k k
Sk:Eaia Tk:2([1;‘#(‘;)9}»’:1927...999
i=1 i=1

with S, = T, = 0. We are going to prove that three number

groupsSo,SH...,Sga Toa T]a...aTs)yandS()+ToaS1+
T,, ..., S¢ + T, each form a complete set of residues
modulo 10:

If there existm, n, 0 <m <n <9such thatS, =S, (mod
10), then
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> a, =S, S, =0(mod10),

i=m+1
which means that the cells in the first row and from columns
m +1ton form a “good rectangle”. But it is a contradiction to
the assumption that the cells in the first row are all “bad”.
If there existm, n, 0 <m <<n <9such thatT, =T, (mod

10), then

Db, +e) =T, T, =0(mod 10).

i=m+1
So the cells ranging from rows 2 to 3 and columnsm + 1 to
n form a “good rectangle”, which means there are at least two
cells that are not “bad”. But it is also a contradiction.
In a similar way, we can also prove that there are nom, n,

0 <m <n < 9such that
S, +T,=S,+T,(mod10).

Therefore, we have

9

9 9
DS =D T, =D)(S, +T) =0+1+2+w +9

k=0 k=0 k=0

= 5(mod 10).

Then

9 9 9
DS, + T =D>)8, +>.T, =5 +5 = 0(mod 10).

k=0 k=0 k=0

It is again a contradiction! Therefore, the number of “bad
cells” in A is no more than 25.

On the other hand, we can construct a 3 X 9 array in the
following and check that each cell in it that does not contain

number 10 is “bad”.
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Therefore, we find out that the maximum number of “bad
cells” in A is 25. []

2012

@D (10 marks) As seen in Fig. 1.1, in acute triangle AABC,
AB > AC, M, N are two different points on BC such that
ZBAM = ACAN, and O,, O, are the circumcenters of
ANABC, ANAMN, respectively. Prove O,, O,, A are

collinear.
A A
B MN C B MN _ C P
Fig. 1. 1 Fig. 1. 2

Solution. As shown in Fig. 1.2, we connect AO,, AO,, and
through A draw a line perpendicular to AO, and intersect with
the extended line of BC at point P. Then AP is a tangent line of
®0,, which means /B = /PAC.

As /BAM = ZCAN, we have

ZAMP = /B + Z/BAM = ZPAC + LCAN = ZPAN.

Then AP is also a tangent line of ©O, the circumcircle of



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

China Mathematical Competition (Complementary Test) 57

ANAMN . Therefore, AP | AO., and that meansO,, O,, A are

collinear. The proof is complete. []

@ (40 marks) Let A = {2, 2%, ..., 2", ...}. Prove:
(1) Foranya € A, b € N",ifb <2a —1, thenb(b +1)
will not be a multiple of 2a.
(2) For anya € A(= N" — A) satisfying a # 1, there
exists b € N* satisfyingb << 2a — 1, such thatb(b +1) is a
multiple of 2a.
Solution. (1) Foranya € A, a = 2* (¢ € N"). Then 2a =
21, Let b be any positive integer strictly less than 2« —1. Then
b +1) <2a —1.

Between b and b + 1, one is an odd number that contains no
prime factor 2, and the other is an even number that contains at
most the £th power of 2. Therefore, 6 (b + 1) is definitely not a
multiple of 2a.

(2) Fora € Aanda # 1, supposea = 2m where & is a non-
negative integer and m is an odd number greater than 1. Then
2a = 2"'m. We will present three different proofs in the
following.

Proof 1. Letb =max, b +1 = 2"y, Eliminating b, we have
28"y —max = 1. Since (2", m) = 1, the equation has integral
solutions that can be expressed as

x =a, +2"z,
(wheret € Z, and (xy, y,) is a special
y =y, tmt
solution of the equation).

Denote the smallest solution among them as (x", y ).
Then x* << 2¢7,

Therefore, b =max"™ <2a —1and b (b +1) is a multiple of 2a.

Proof 2. Since (2", m) = 1, by the Chinese Remainder
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Theorem, the congruence equation
x = 0(mod 2"*"),
x =m — 1(mod m)

2k+1

has a solution x = b withbs € (0, m). It is easy to see thatb

< 2a —1land b (b + 1) is a multiple of 2a.

Proof 3. Since (2", m) =1, then there existsr € N, r <
m — 1, such that 2" = 1(mod m).

Taket € N” such thatsr >k +1. Then 2" =1(modm). It

is easy to see that there exists
b =@Q" —=1) —q+2"""'m >0(qg € N,

such that 0 < b < 2a — 1. Then we have m | b, 2/ | b + 1.
Therefore, 6 (b + 1) is a multiple of 2a. []

@D (50 marks) Let Py, P, P,, ..., P, ben +1 points on a
plane, and the minimum distance between each two points

of them isd (d > 0). Prove

d n
|P(>Pl "‘P()PZ |""'|P0Pu ‘>(§j V(n + 11,

Solution 1. We may assume that | P, P, | <| P P, | <+ <| P, P, |.

At first, we will prove that | P, P, | > % Vk +1 for any
positive integer n.

Obviously. | P, P, | =d >%mfork —1.2.....8.
and the second equality holds only when £# = 8. Then we only
need to prove that | P, P, | =>d = % JE +1 fork =09,

Take each P, (i =0, 1, 2, ..., k) as the center to draw a

circle with radius % Then these circles are either externally
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tangent to or apart from each other. Take P, as the center to

draw a circle with radius | P, P, | +%. Then the previous £ +1

smaller circles are all located in this larger one.

2 2
Then Tr[\ P,P, \+%j > (b + 1)7!(%] , from which we
have | P, P, \>%(«/k 1D,

Vk+21 -1 “k;_l for £ = 9.

It is easy to check that

Then | P, P, | > %«//z T fork = 9.

Over all, we have | P, P, | > % JEk +1 fork =09,

Therefore,

| PuP, |+| PyPy || PP, | > (%j NCESND

Solution 2. We may assume | P, P, | <| P, P, | <+ <| P, P, |.

Take each P,(: =0, 1, 2, ..., k) as the center to draw a

circle with radius % Then these circles are either externally

tangent to or apart from each other.

Let Q be any point on ®P,. Since

(P.QI<I PP |+ PQI=I PP |+

1
<IPoPy |+ | PoPi | = 2 | PPy .
we get that the circle with center P, and radius % | P, P, | cover the
2
previous £ + 1 smaller circles. Then we have n(% | P P, Ij >

(k +1>n(%)', and that is
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PP, |>%«/k T1G =0.1.2. ... k).

Therefore,

d n
|P()Pl‘.‘P()PZ"..'.‘POPH‘>(§j Vn+ D!, D

o (50 marks) LetS, =1 +% + e +i, where n is a positive
n

integer. Prove that for any real numbersa, 6 with0 <a <
b <1, there are infinite many terms in the sequence {S, —
[S, 1} that are within (a, b6). (Here [« ] denotes the
largest integer not greater than real number x. )

Solution 1. For anyn € N*, we have

1 1 1 1 1
- .o = = - 74»7
tg et 1+2+[21 : 22)+

1 1,1 1 1
>1+§+(22+22)+ +(2,+ +2”j
_ 1 1 01 1
=l e >
LetNo:[#]H,m:[SNJH.Then <Ny,
b —a 0 b —a

1
Ny

<b —a,and Sy, <m <m +a.

Let N, = 22" Then S*\"l = Sy >m +1 =m +6b.

We claim that there existn € N* with N, <<n <U N, such that
m+a <SS, <m +0b (or, in other words, S, —[S,] € (as O)).

Otherwise, assuming the claim is false, then there must
exist 2 > N, such thatS, |, <m +aand S, =m +0.

Then S, — S,—=1 = b — a. But it contradicts the fact that
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/1 < VL < b —a. Therefore, the claim is true.
0

Sy =S =
Furthermore, assume there are only a finite number of

positive integersns ..., n, satisfying
S, =[S, €. b d=<j<k.

Define ¢ = mm {S —[ S, ]}. Then there exists non € N*

Isj<

such that S, — [S,,] € (a, ¢). It contradicts the above claim.
Therefore, there are infinite terms in the sequence {S, —
[S, ]} that are within (a, b).
The proof is complete.

Solution 2. For any» € N*, we have

1 1,1 1 1

>1+?+(22+22+ +(2,,+ +2”)
11 11
Thy 2 2"

Therefore, S, can be larger than any positive number as

long as n becomes sufficiently large.

Let N, = [b i ]+1 Then < <4 —a » and whenk > N, »
a N,

we have

1 1
S, =S, = < —— <b—
k k—1 b No a.
So for any positive integer m > Sy . there exists n > N,
such that S, —m € (a, b), or, in other words, m +a < S, <
m +0b. Otherwise, there must be £ > N, such that S, | <m +a

andS, =m +b,1.e.,S, — S, b —a. But it contradicts the
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1 1
fact thatS, *S;\_l :z<N70<b*a.
Now let m; =[Sy, ] +i(: =1, 2, 3, ...). Then there

existsn; > N, such that m; +a < S,,! <m; +b,1.¢e., Sn,. —
[S,,':I € (a, b).
Therefore, there are infinite terms in the sequence {S, —

[S,]) that are within (a. b). []

2013

@D (40 marks) As seen in Fig. 1. 1, AB is a chord of circle w,
P is a point on arc AB, and E, F are 2 points on AB
satisfying AE = EF = FB. Connect PE, PF and extend

them to intersect with w at C, D, respectively. Prove

EF «CD = AC - BD.

NN

Solution. As shown in Fig. 1.2, we connect AD, BC, CF,
DE. Since AE = EF = FB, we have
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BC « sin/BCE _ distance between B and CP _ BE

AC « sin/ACE  distance between A and CP AE 2.

@

In the same way,

AD - sinZ/ADF _ distance between A and PD _ AF _ 9
BD « sin/BDF distance between B and PD BF

®
On the other hand, since
/BCE = /BCP = /BDP = /BDF,
ZACE = ZACP = ZADP = LADF,
multiplying @ by @, we havcig:% =4, or
BC « AD = 4AC + BD. ®
By Ptolemy’s Theorem, we have
AD « BC = AC « BD +AB + CD. @

Combining @ and @, we get AB « CD = 3AC - BD, and
that is

EF - CD = AC - BD.

The proof is complete. ]

@D (40 marks) Given positive integersu s v, the sequence {a, |

is defined as: a;, = u +v, and form =1,
Ao = Ay T U
A1 = A, + 0.
Denote S,, =a, +ta, ++++a,(m =1, 2, ...). Prove

that there are infinite terms in sequence {S,} that are

square numbers.
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Solution. For positive integer n . we have

Sotiy = a; +(ay, taz) +(a, +as) + -+ Capriy, Faptiy)
=u+ov+a, +tuta +v)+a, +tu-ta, +ov)+-+
(a1 +u +a,y +v)
=2"(u +v) +2S,,.

Then

Spry =27 (u +v) +2S1
=2""(u +v) +22" 7 (u +v) +2Sy2)
=22 (u +v) +2°Sy2
=ce = —1D 2" (u+v)+2"" (u +v)
=(u+v)ne2"",

Suppose u +wv = 2* « g, where £ is a non-negative integer.,
and ¢ is an odd number. Taken = g « [*, where [ is any positive
integer satisfying/ =% —1(mod2). Then Sy, = g%{% « 2t 110l
and

E—ltqel’ =k —1+0=k—1+G 1)
=k(k —1) = 0(mod 2).

Therefore, S,»—; is a square number. Since there are
infinite /’s, there are infinite terms in {S,} that are square

numbers. The proof is complete. []

o (50 marks) Suppose there are m questions in an
examination attended by n students, where m, n = 2 are
given natural numbers. The marking rule for each
question is as follows: if there are exactly x students
failing to answer the question correctly, then they will
each get 0 marks, and those who answer it correctly will

each get x marks. The total marks of a student are the
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sum of marks he/she gets from the m questions. Now

rank the total marks of the n students as p, = p, = -+ =

p.. Find the maximum possible value of p, + p,.
Solution. For any & = 1, 2, ..., m, assuming there are x,
students failing to answer the £th question correctly, then there
aren — x, ones who answer it correctly and each gets x, marks
from it accordingly. Suppose the sum of the n students’ total

marks is S. Then we have
Zp,- =S = Zxk(n — ;) =n21,, — 21;
i=1 k=1 k=1 k=1
As each student gets at most x, marks from the kth

question, we have

P2 T ps toe +p, _ S —p
n—1 n—1"

Since p, = ++ = p,, then p, <

Therefore,

N
[
—lro
[
ie
+
=
B\
B
\
[
9

m

:22;1?&— 171- xi.

k=1 n k=1

By the Cauchy Inequality, we have

m

il‘ﬁ 2%(2 Ik)z.

k=1 k=1

Then
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m

PP, < 221;*m (217,,)2

E—1
= m(n—l) (IZ;I, m(n*l))'er(n*l)

<m(n — 1.

On the other hand, if there is a student who answers all the
questions correctly, while the other n — 1 students fail to answer

any questions, then we have

P TP =p1= Z(n—l) =mn — 1.

k=1

Therefore, the maximum possible value of p, + p, is m

(n — 1. []

° (50 marks) Letn, & be integers greater than 1 and satisfy n
< 2*. Prove that there are 2% integers not divisible by n,
such that if we divide them into two groups, then there
must exist a group in which the sum of some integers can be
divided by n.

Solution. At first. we consider the case thatn = 2", r = 1.

Obviously, at this time » < k. We take three “2"'” s and 2k —3

“1”s — each of them cannot be divided by n. If these 2%

numbers are divided into two groups, then there must exist a group

that contains two “2"'”s, whose sum is 2° — divisible by n.

Next, we consider the case that n is not a power of 2. At

this time, the 2% integers we take are
*19 *1’ *23 *229 PR ) *2,\‘ 29 1, 2’ 229 FETER) Zk ].

Then they each cannot be divided by n.
Assume these numbers can be divided into two groups, such

that any partial sum of numbers in one group is not divisible by
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n. We may say that “1” is in the first group. Since (—1) +1 =

1

0 is divisible by n, the two “—1”s must be in the second group;
since (—1) +(—1) +2 = 0, the “2” is in the first group; then
the “—2” is in the sccond group.

Now by induction, assuming 1, 2, ..., 2’ are in the first
group and —1, —1, —2, ..., — 2" in the second one (1 </ <

k —2), since
(D + (=1 +(=2) =+ (—2) +27 =0

is divisible by 7 » we get that 2" is in the first group. and then —
2" in the second.
Therefore, 1, 2, 2*, ..., 2" is in the first group and — 1,

—1, —2, —2°, ..., —2"" in the second. Finally. since
(=D + (=D +(=2) ++ (=2 +2"" =0,

then 2¢ ' is in the first group. Therefore, 1, 2, 2%, ..., 2" " are
all in the first group.
On the other hand, the knowledge about the binary number

system tells us that every positive integer which is not greater

than 2* — 1 can be represented as the partial sum of 1, 2,
2%, ..., 2", Sincen <2' —1, then it is the partial sum of 1, 2,
2%, ..., 2" that is of course divisible by »n itself. This is a

contradiction to the assumption.
Therefore, we have found out 2% integers that meet the

requirement in the question. The proof is then complete. []



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

China Mathematical
Olympiad

The China Mathematical Olympiad, organized by the China
Mathematical Olympiad Committee, is held in January every year.
About 150 winners of the China Mathematical Competition take part
in it. The competition lasts for two days, and there are three

problems to be completed within 4. 5 hours each day.

Z{JB (Changchun, Jilin)

First Day
8:00~12:30 January 15, 2011

@» Leta,sars ... a,(n =3) be real numbers. Prove that
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ZH) ai — Z”: @@ < [%](M —m)’,

i=1 i=1
wherea,; =a,» M = maxi—;—<,a;» m = min,<;,—, a;. [x]is the
largest integer not exceeding x.
Solution. If » = 2k (£ is a positive integer) , then
Z(Z a; — Z a,a,u): E(a, —a;)) <a(M —m)?,
i=1 i=1 i=1

therefore,

E a; — Z aa, < 2(M—m)? = [1](]\/[ —m)Z,

i=1 i=1 2 2

If n = 2k + 1(k is a positive integer), then for 2 + 1

numbers arranged in a cyclic way, one can always find three

. . . . 2k+1
consecutive increasing or decreasing terms (as HFl (a; —

a1 )(ai —a;) = H%t] (a; —a;)" =0, so it is not possible
that for every i, a; —a,—; and a,;; — a; having opposite signs).
Without loss of generality, we assume that a;, a., a; are
monotonic, then

(Cl1 _a2)2 +(a2 _a3>2 < (a] _Cl,‘g)Z.
Hence,

2(2”3 a? — Z”J aia;+1)= Z”J(ai —a)’

i=1 i=1 i=1
n
< (Cl] 7(13)2 + Z(a, 7(,1,;])29
i=3

which transformed the question into the case of 2k numbers. We

have

Z(Z”: a? — Z”: a,»a,-+1)< (a7 —as)* + Z”:(ai —aq)"

i=1 i=1 i=3

< 2k(M —m)*,
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i.e.,

(Z} a? — 2 a,»a,+1)</€(M —m)? = [%](M —m)?.

@D Asshown in Fig. 2.1, D is the
midpoint of arc BC of the
circumcircle of triangle ABC,
X lies on arc BD, E is the
midpoint of arc AX, S lies on
arc AC, SD intersects BC at
R, SE intersects AX at T.
Prove that if RT || DE, then

the incenter of triangle ABC

lies on line RT.
Proof. Connect AD, denote the intersection of AD and RT by
I, then AI is the bisector of /BAC. Connect AS, SI, then by
RT | DE , we have

/STl = /SED = /SAI,

soA, T, I and S are concyclic, and we denote this circle by w;.
Connect CE, denote the intersection of CE and RT by J,

connect SC, then
/SR] = /SDE = /SCE,

so S, J, R andC are concyclic, and we denote this circle by w,.
Denote by K the intersection point of w; and w, other than
S, we prove next that K is the intersection of AJ and CI.
Denote by K, the intersection of w, and AJ other than
A, then
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/SK\A = ZSTA

%(SA Y XE) = %(SA L AE)

ZSDE

ZSRT = ZSR]J,

so S, K,, J and R are concyclic, i.e., K, belongs to w,.
Similarly, denote by K, the intersection of w, and CI other than
C, then K, belongs tow,. Hence, K, and K, coincide, and K is
the intersection of AJ and CI.

As /CAD = /CAI, and LTJE = ZCJR = ZCED =
ZCAD,soA, I, J and C are concyclic, therefore, ZACI =
ZAJI.

On the other hand, by the concyclicity of C, K, J and R,
we have /BCI = /ICR = ZAJI, and ZACI = /BCI, solis
the incenter of the triangle ABC. []

@D LetA,, Ay, ..., A, ben non-empty subsets of a finite set
A of real numbers satisfying the following conditions:
(1) The sum of elements of A is equal to 0;
(2) Pick arbitrarily a number from each A;, and their sum
is strictly positive.
Prove that there exist setsA; - A, ..., A, » 1 <i, <i,
< s < {, <n, such that

(A, UA, U= UA, [<21a],

| X | denotes the number of elements of a finite set X.

Solution. LetA ={a,. ..., a,} witha, >+ >a,. By (1) we
havea, + =+ +a, = 0. Consider the smallest element of each
A;, the sum of these numbers is greater than 0. Assume that
there are exactly k; sets among A,, ..., A, whose minimal

element isa;, 7 =1, 2, ..., m. Then, one has
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ki + o +k, =n.
By (2), we have
kl(ll + e +k,,,a,,, >O.

Fors =1, 2, ..., m —1, there are in total &, +++- +£k, sets,
whose minimal elements are greater than or equal to «,.
Therefore, the union of these sets is contained in {a» ..., a.}
whence the number of elements does not exceed s.

Next, we prove that there existss € {1, 2, ..., m — 1}

sn

such that & = &y + -== + &, > —. We prove this claim by
m
contradiction. Suppose that

by 4o b, < s =1,2,....m —1.

With the help of the Abel transform and the fact thata, —

a >0,1<s<m —1, we know that

O<ikjaj
i=1

m—1

Da, —a )y £ kD) ta, (ky b k)
s=1

m—1

sn
<D, —a.) P ta,m
m

s=1

71 m

m ; @
We then get a contradiction. For such an s, we take the sets
among A, ..., A,, whose minimal elements are greater than

a, s say A,-] , A,-2 s ... A Then, by the above results, we

i, .
k

know that the total number of such setsisk =k, ++- +k, > .
m

and the number of elements of their union does not exceed s,
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e [A, UA, U UA, [<s<® —E gy ]
- : 7 71

Second Day
8:00~12:30, January 16, 2011

@D Given positive integer n, let S = {1, 2, ..., n}. Find the
minimum of | AAS [+| BAS |+| CAS | for nonempty
finite sets A and B of real numbers, where C = {a +6 | a
€ A, b € B}, XAY = {x | = belongs to exactly one of X
andY}, | X | denotes the number of elements of a finite
set X.

Solution. The minimum is» + 1.

First, by taking A = B = S, we have

| AAS |+] BAS |+ | CAS | =n +1.

Second, we can prove that/ =| AAS | +| BAS |+| CAS | =
n+1. Let X\Y ={x | x € X, x ¢Y}. We have

[ = A\S [+| B\S |[+] C\S |+ S\A [+] S\B [+] S\C |.

All we need to prove are the following:

(O | A\S |+ B\S |[+] S\C | =1,

() | C\S | +] S\A | +| S\B | = n.

For (i). In fact, if | AAS | =| B\S | =0, thenA, B < S. So
1 cannot be an element of C, hence | S\C | =1, therefore (i) is valid.

For (ii). If A NS = J, then | S\A | = n, the claim is
already valid. If A N S # J, we assume that the maximal
element of A N Sisn —k, 0 <k <n — 1, then

| S\A | = k. @

On the other hand, for: =% +1, £ +2, ..., n,eitheri ¢
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B (theni € S\B) ori € B (thenn — %k +i € C,i.e..n —k +
i € C\S), hence
| C\S |+| S\B | =n — k. ©)

From @ and @, we obtain (ii).
In conclusion, (i) and (ii) are valid, so/ =n + 1. Hence,

the minimum isn + 1. D

@D Given integer n > 4. Find the maximum of

le_lzlai(ai +b;)
2;’:11);(d,‘ +b,)

for non-negative real numbers a,

A2s vve s Ay blv [725 P} b” Satisfying
a, ta, +++a, =b, +by, ++- +0b, > 0.

Solution. The maximum is » — 1. By homogeneity, we can

assume without loss of generality that 2?71‘1" = Z’;ilb, =1.

First, it is clear that ifa, =1, a, =a; =+ =a, = 0and

by = 0. by =by = =b, = . then D)7 a,Ca, +b) = 1.
n — e

El bila; +b;) = 1 ., hence
i=1 n —1
Zai(a, TL[),)
—'il =n —1.
Eb,((l,‘ +b,)
i=1
Now we prove that for any real numbersa s ass ... a,»
bis by ... b, satisfying 2::1“1‘ = 2?:151 =1, we have
Eai(a; +b,)
~r <77 _1.

Zb,v(a,- +b6,)
i=1
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Note that the denominator is positive, it is equivalent to

show that

n

2 a;(la; +b0;,) < (n *1)2 b.(a; +b;),

i=1 i=1

(n *1)2 b + (n *2)2 ab, = 2 a;.
i=1 i=1 i=1

By symmetry, we can assume that b, is the smallest one

amongb,s bys ... b,. Then

(n *1)2 b + (n *2)2 a;b;
i=1 i=1
= —DbF+ e — 1), b+ (n —2) D) ab,
i=2 i=1

= (n —1)b: + (2 b;)z +(n —2)b,
i—2

= —Db: +1 =06 +(n —2)b,

=nbi +n —4)b, +1

SRR g = ”
= ’Zl:a /IZ;CL D

@D Prove that for any given positive integers m, n, there
exist infinitely many pairs of coprime positive integers a »
b, such thata +b6 | am* +bn".

Solution. If mn = 1, then the claim is valid. For mn =2, since

n“Cam* +bn’) = (a +0)n*" +a (mn)* —n*™"),

it is sufficient to prove the existence of infinitely many coprime

number pairsa, b, such that

a+b| mn) —n“",(a +b, n) = 1.



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

76 Mathematical Olympiad in China

Let p = a + b, we only need to prove that there are
infinitely many prime numbers p and positive integer 1 < a <

p — 1 such that

p | Gnnd)* —n?.
By Fermat’s theorem, i.e., whena, =a,(mod p — 1), a,
=1,a;, =21, (mn) = (mn)*2(mod p).

So we only need to prove that there are infinitely many

prime numbers p and positive integer a such that
p | Gnnd* —n. )

If there are only finitely many such primes, say p..
p2s ... p, Cas mn = 2, the existence of such primes is

obvious). Suppose that

(mn)* —n = pirps:...pir, a,’s are non-negative integers
aA<i<n. @
Let a = pirpseepi-(p, — De(p, — 1) + 2, and
suppose that
(mn)* —n = plipfe--pf, B,’s are non-negative integers
(1 <:i<nr).

If p, | n, then, by @ and a = 2, we know that p?: | n,
hence pfi | (mn)* —n, and by @ we have 8; < a,.

If p. fn. then p, tm, so (p¢™', mn) = 1. By Euler’s
Theorem (as p(pfi'') = p%i(p, — 1) is a factor of a —2)

(mn)* —n = (mn)* —n(mod p&i™h).

Because p¢"' {(mn)? — n, the congruence relation above

implies that p¢ "' {Gnn)* —n. So B, < a,. Hence.,
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(mn)* —n = piiphz-plr <

pirpseepir = (mn)’ —n,

which is in contradiction with « > 2. So there are infinitely

many primes p and positive integers a such that p | (mn)* —n.

]

2012

First

Day

8:00~12:30 January 15, 2012

@D Asshown in Fig. 1.1, ZA

ABC. On the circumcircle

is the biggest angle in triangle
of ANABC, the points D and E

are the midpoints of ABC and ACB, respectively. Denote

by ®O, the circle passing t

hrough A and B, and tangent to

line AC, by ®O, the circle passing through A and E, and

tangent to line AD. ®O, intersects ®O, at points A and
P. Prove that AP is the bisector of ~BAC.

Solution. Join respectively the
pairs of points EP, AE, BE,
BP, CD. For the sake of
convenience, we denote by A,
B, C the ZBAC,
ZABC, ZACB, then A + B +

C = 180°.

angles

Take an arbitrary

point X on the extension of CA,

a point Y on the extension of DA. It is easy to see that AD =
DC, AE = EB. By the fact that A, B, C, D and E are
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concyclic, we get

/BAE = 90° —— /ZAEB =90° — =, ZCAD

=90° — = /ZADC = 90° —

c
2

B
2

pof— o

As line AC and ©O, are tangent at point A, line AD and
®O0, are tangent at point A, we get

ZAPB = /BAX =180°—A, ZABP = ZCAP,
and

Z/APE = /EAY = 180° — /DAE = 180° — (/BAE + ZCAD — A)

—180° —[90°—~ € _(gp° - B — g0+ A
= 180 (90 2) (90 2]+A79O +2.
By computation, we obtain
ZBPE = 360° — ZAPB — ZAPE = 90° + 2. = ZAPE,

In AAPE and ABPE, we apply Law of Sine, and take

into account that AE = BE, we obtain

sin/PAE _PE _PE _ sin/PBE

sin/APE AE BE sin/BPE’

Therefore, sin/PAE = sin/PBE. On the other hand,
~/APE and ZBPE are both obtuse, so ~/PAFE and /PBE are
both acute, thus / PAE = /PBE.

Hence, /BAP = /BAE — /PAE = /ABE — /PBE =
~/ABP = /CAP. []

o Given a prime number p, let A be a p X p matrix such that
its entries are exactly 1, 2, ..., p° in some order. The

following operation is allowed for a matrix: add one to
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each number in a row or a column, or subtract one from

each number in a row or a column. The matrix A is called

“good” if one can take a finite series of such operations

resulting in a matrix with all entries zero. Find the number

of good matrices A.

Solution. We may combine the operations on the same row or
column, thus the final result of a series of operations can be
realized as substracting integer x; from each number of i-th row
and substracting integer y; from each number of j-th column.
Thus, the matrix A is good if and only if there exist integers x;
y;ssuch thata,;, =z, +y; foralll <i,j < p.

Since the entries of A are distinct, x5, 22, ..., x, are
pairwise distinct, and so are y;» v, ... y,. We may consider
only the case thatx; <x, <+ <z, since swapping the value of
x,; and x; results in swapping the i-th row and j-th row, which is
again a good matrix. Similarly, we may consider only the case
that y, <y, <<+ <y,, thus the matrix is increasing from left
to right, also from top to bottom.

From the assumptions above, we have a;;, = 1, aj; or ay
equals 2. We may consider only the case that a,, = 2 since the
transpose of the matrix is again good. Now we argue by
contradiction that the first row is 1, 2, ..., p. Assume on the
contrary that1l, 2, ..., k is on the first row, but 2 + 1 is not, 2
< k < p, thereforea, =+% +1. We call £ consecutive integers a
“block”, and we shall prove that the first row consists of several
blocks, that is, the first # numbers is a block, the next %
numbers is again a block, and so on.

If it is not so, assume the first n groups of £ numbers are
“blocks”, but the next £ numbers is not a “block” (or there are

no £ numbers remaining). It follows that for; =1, 2, ..., n,
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VGoDitl s Y—nitzs « -+ s Y is @ “block”, the first nk columns of
the matrix can be divided into pn 1 X k& submatrices a;, ; 1)et1»
Qi Gebitzs eees Qips il =152, ... psj=1,2,...5n,each
submatrix is a “block”. Now assume a, .1 = a, let b be the
smallest positive integers such thata + 5 is not on the first row,
thenb <k —1. Sinceas, i1 —d1, w11 =T2 —x, =asz —ay =k,
we have a;, 401 = a + k, therefore a + b lies in the first nk
columns. Therefore, a + & is contained in one of the 1 X £
submatrices mentioned above, which is a “block”, however a ,
a +k are not in this “block”, which is a contradiction.

We showed that the first row is formed by blocks, in
particular 2 | p, however, 1 <k < p, and p is a prime, which is
impossible. So we conclude that the first row is 1, 2, ..., p,
the £-th row must be (¢ —1)p +1, (A —1)p +2, ..., kp. Thus
up to interchanging rows, columns and transpose, the good

matrix is unique, the answer is therefore 2(p 1)%. ]

o Prove that for any real number M > 2, there exists a
strictly increasing infinite sequence of positive integersa; »
a»s ... satisfying both the following two conditions:
(1) a; > M' for any positive integer 7.
(2) An integer n is non-zero if and only if there exists a
positive integer m and b,, by, ..., b, € {—1, 1}, withn
=bia, +byay, ++ +b,a,.
Solution. For given M > 2, we construct by induction a
sequence {a, } that satisfies the requirements. Take a,, a, that
satisfya, —a, = 1landa, > M?*. NOW SUPPOS€ @1 s Ay ... s Ay
are already chosen, such thata, >M', i =1, 2, ..., 2k and
such that the set A, = {b,a, ++** +b,an | b1s...s b, =+1,1

< m < 2k} does not contain 0. It is obvious that A, is
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symmetric, i.e., Ay =—A,. A, ={a1, —a,, 1, —1}. Let n be
the smallest positive i inA,, N = >

¢ smallest positive integer not 1n A, , = ., @i» NOW
choose positive integers aq1 s aspre satisfying asr —ap = N +

2k
s agpin >MP, agy, > Z ,a:. We now show that A, does
. . 2k
not contain O andn € A,,,. First, n =— 2 _, @i T aun + oy,

On the other hand, if Zil;lb,»a,- =0, m <2k +2,as0 €&

A,, we must havem = 2k +1 or 2k + 2.

2k+1

Ifm =2k +1,then | > 'bia, | =awn — 25 ai >0,

=

If m = 2k +2and by, and by, are of the same sign, then

2642 2k .
| E{: b.a; ‘ = Ao T — Ei:]a; > 03 if by and by are

1

of different signs, then

2k+2

‘ 2 bia;
i=1

2%k 2k
- ‘ E bia; * (ann *Clzwrz)‘ 2‘ Aokt — Aopt2 ‘* E a;
i=1 i=1

=N-+n—N =n >0.

The {a,} thus constructed satisfies the requirements since 0
is not contained in any A,, and any non-zero integer between

— k and £ is contained in A,. []

Second Day
8:00~12:30 January 16, 2012

o Let f(x) = (x +a)(x +b) wherea, b are given positive
real numbers, n = 2 be a given integer. For non-negative
real numbersx,, x5 ..., x, that satisfy x; +x, + - +
x, = 1, find the maximum of F = E
JACTRRR

Solution 1. As

min{ f(x,;),

1<=i<{j<n
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min{ f(x;), f(x;)} = min{(x;, +a)(x; +0),(x; +a)(x; +b)}

< J(x; ta)(x; +b)(x; +a)(x; +b)

<%((I, ta)(a, A0 + (e +0) (e, +a))

= x.x; Jr%(.r, +x;)(a +0) +ab,

SO
F< > x,»x]+“2“ (x: +2) +C e ab
1<i<j<n <iej<n
1 \ 2 N 2 a +b . -
:?[(211) 71:1 I;]+T(71*1);xl+(/;.ab
:l(1*212)+n_1(a+b)+cz.ab
2 — ! 2 n
1 1 S 2 n—1 .
< —|1—-—— . 2,
2(1 77(1:11))+ 2 (a +b6) +C, «ab
1 1 n—1 n(n —1)
N R nin —1)
2( nj+ 5 (a +0) + 5 ab

=" 71(L+a +b +nab)_
2 n

The equality holds whenxy = x, =+ =z, = i. So the
n

maximum of F is 2 ;1(% +a +5b +nab)_

Solution 2. We show that the maximum value is attained when

T, =Xy = =x, = L, and F .. = n 71(l +a +b +nabj,
n 2 n

We induct on n to show a more general statement: for non-

negative real numbers x,, x,, ..., x, satisfyingx, +x, + - +

x, = s (where s is a fixed non-negative real number), the

maximum value of F = le: min{f(x;). f(x;)} is

<j=
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attained whenx, =2, = ** =2, = —.

Since F is symmetric, we may assume x; < &, < *** < x,.
Note that f(x) is strictly increasing on non-negative real

numbers, we have

F = (71 *1)][(11) + (7’1 *Z)f(l‘z) + e “V’f(l‘u*l)-

Whenn =2, F = f(x,) <f(%), equality holds when x, =

x,. Assume that the statement holds for n, consider the case of
n + 1. Applying inductive hypothesis on x, +x; + *=* + 2,4 =

s —x1», we have
F <af(x)) +%n(n *l)f(%j:g(xl),

where g(x) is a quadratic function of x, the leading

772721, and the coefficient of x isa + 6 —
n

coefficient is 1 +

n—1 S . .
b+-—1, ,
o (a +b an therefore, the axis of symmetry is

nzilta +0b +2‘Lj—a —b
n < s '
P :1 2(n + 1)

n-

(The above inequality is equivalent to [(n —1)s —2n(n +1)(a +
H1n +1) < 25(2n* +n — 1); obviously, left-hand side <

(n? —1)s << right-hand side.) Therefore, q(néﬁj is the

maximum of g (x) on [O, ] Thus, F attains its maximum

N
n+1
s —a s

whenx, = x5 = =2, = = — = x,, completin
n n+1 p &

the solution. []
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@D Let n be a square-free positive even number, k be an

integer, p be a prime number, satisfying p < 2/n, p 1n.,
p | n+£k%. Prove thatn can be written asn = ab +bc +ca ,
where a, b, ¢ are distinctive positive integers.
Solution. Since n is even, we have p # 2. As p {n, we have
p tk. We may assume without loss of generality 0 <<% << p. Set

_ _ 2
a=k,b=p*k,thenc=n kCp /€)=n+/€ — k.
p p

By assumption, ¢ is an integer, and a, b are distinct

positive integers. It remains to be shown thatc >0, andc¢ #a,
b. By the AM —GM inequality, we have kﬁ +k =2/n > p, thus

n+k*

n +k* > pk, hencec > 0. If c = a, then k =k, thus

n =k(2p —k). Sincen is even, k is also even, as a consequence
n is divisible by 4, which contradicts the fact that n is square-
free. If c = b, thenn = p* — k*. Since n is even, £ is odd,
implying that n is again divisible by 4, which is a contradiction.

We conclude that a, b, ¢ satisfy all the requirements,

completing the proof. []

@D Find the smallest positive integer £ with the following
property: for any £ clement subset A of the set S = {1,
2, ..., 2012}, there exist three pairwise distinct elements
as b, cofSsuch thata +6, b +c¢, ¢ +a all belong to A.
Solution. Without loss of generality, we may assume a << b <
c. Writex =a +b, 2 =b+c,y =a +tc,thenx <y <z,
x +y >z,andx +y + 2z is even. On the other hand, if there
existx, y, 2 € A such thatx <y <z, x +y > 2, and that

. xrt+y —=z x t+z—
x +y + 2 is even, set a :+,b :fy

s C
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y tz —x
2

of S,andx =a +b,y =a +tc¢, 2 =b +c.

, it is clear thata, b, ¢ are pairwise distinct elements

The required property is equivalent to the following: for
any k-element subset A of S, there exist three elements =, y,

z € A such that
<y <z,xt+ty >z,andx +y +ziseven. (%)

IfA={1,2,3,5,7,...,2011}, | A|=1007, and A does
not contain three elements satisfying property ( * ). Therefore,
k =1008.

We next prove that any 1008-clement subset of S contains
three elements satisfying property ( * ).

We prove a general statement: For any integer n = 4, any
(n + 2)-element subset of {1, 2, ..., 2n} contains three
elements satisfying ( * ). We induct on n.

Whenn =4, let A be a 6-clement subset of {1, 2, ..., 8},
then A N {3, 4,5, 6, 7, 8} contains at least four elements. If A
N {3, 4,5, 6, 7, 8) contains three even numbers, then 4, 6,
8 € A satisfying ( * ). If A N {3, 4, 5, 6, 7, 8} contains
exactly two even numbers, then it contains two odd numbers.
For any two odd numbers x, vy of {3, 5, 7}, two of (4, =, y),
(6, xs y)s (8, x5 y) would satisfy property ( * ), thus one of
them is contained inA. If A N {3, 4,5, 6, 7, 8} contains exactly
one even number x ; then it contains all three odd numbers, then (x,
5, 7) satisfies ( * ). The result holds forn = 4.

Assuming the result holds forn (n =4), consider the case of
n +1. Let A be (n +3)-elements of {1, 2, ..., 2n +2},if | A
N{l,2,...,2n} | =n+2. By inductive hypothesis, the result

follows. It remains to consider | A N {1, 2, ..., 2n} | =n+1,
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and2n +1, 2n +2 € A. If A contains an odd number x in {1,

2,...,2n}, then x, 2n + 1, 2n + 2 satisfy ( * );if no odd
number of {1, 2, ..., 2n} greater than 1 is contained in A,
then A :{15 2,4,6,...,2n,2n+1, 2n +2},and4, 6, 8 €

A satisfy (% ).
Hence, the smallest # with the required property is 1008.

]

I RM (Shenyang, Liaoning)

First Day 8:00 -12:30
January 12, 2013

@D Two circles K, and K. of different radii intersect at two
points A and B, let C and D be two points on K, and K,
respectively, such that A is the midpoint of the segment
CD. The extension of DB meets K, at another point E,
and the extension of CB meets K, at another point F. Let
[, and [, be the perpendicular bisectors of CD and EF,
respectively.

(1) Show that /, and [,
have a unique common
point (denoted by P ).

(2) Prove that the lengths
of CA, AP and PE are
the side lengths of a
right triangle.
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Solution (1) Since C, A, B, E are concyclic, and D, A, B,
F are concyclics CA = AD, and by the theorem of power of a

point, we have
CB+CF =CA «CD =DA «- DC = DB - DE. @

Suppose on the contrary that/, and /., do not intersect, then

CF _ DE L .
CB DB Plugging into O, we get CB

DB?, thus CB = DB, hence BA 1 CD. It follows that CB and

CD Il EF ., hence

DB are the diameters of K, and K, , respectively, hence K; and
K, have same radii, which contradicts with assumption. Thus,
[, and /, have a unique common point.

(2) Join AE, AF and PF, we have
ZCAE = ZLCBE = ZDBF = /DAF.

Since AP | CD, AP is the bisector of L EAF. Since P is on
the perpendicular bisector of the segment EF, P is on the
circumcircle of AAEF. We have

/EPF = 180° — Z/EAF = /CAE + /DAF
2/CAE = 2/CBE.

Hence, B is on the circle with center P and radius PE,
denoting this circle by I'. Let R be the radius of I'. By the

theorem of power of a point, we have
2CA* =CA +CD =CB « CF =CP* —R*,
thus
AP? = CP? —CA* = (2CA* +R*) —CA* = CA* + PE"*.

It follows that CA, AP, PE form the side lengths of a
right triangle. []
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e Find all non-empty sets S of integers such that 3m —2n €
S for all (not necessarily distinct) m, n € S.
Solution Call a set S “good” if it satisfies the property as stated
in the problem.
(1) If S has only one element, S is “good”.
(2) Now we can assume that S contains at least two

elements. Let
d =min{|m —nl|l:m,n €S, m Fnj.
Then there is an integer a s such thata +d, a +2d € S.
Note that

a +4d = 3(a +2d) —2(a +d) € S,
a—d =3(a+d)—2(a +2d) €S,
a+5d =3(a+d)—2(a —d) €8S,
a —2d =3(a +2d) —2(a +4d) € S.

So we have proved that if
a+td,a+2d €8,
then
a 72da a 7d, a +4d7 a +5d S S.
Continuing this procedure, we can deduce that
{a +kd |k € Z, 31k} =S.

LetS, ={a +kd | k € Z, 31k}, it is easy to verify that S,
is “good”.

(3) Now we have proved that S, = S. If S # S,, pick a
number b € S\S, ., then there exists an integer /, such thata +
ld <b <a + ([ +1d. Since at least one of / and [ + 1 is

indivisible by 3, we know that at least one of a +id, a + (I +
1)d is contained in S,. Ifa +1d € S,, note that0 <| b — (a +
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ld) | <d, by the definition of d , we must have b = a +Id. If
a +( +1d € S,, note that

0<|la+U+Dd —0b|<d,

by the definition of d , we also have b = a +d.
In both cases, we have proved that there is a number 6 €

S\S, of the formb =a +1d. This/ must be divisible by 3, hence

a+U—2)dsa+U—1d €8S.

So

a+U+3d =3 +U+Dd) —2(a +id) €S,
a+U—3)d =3(a+U—-1Dd)—2(a +1d) € S.

Continuing this procedure, we havea +(/ +3j)d € S, j €
7, which implies that {a +kd | d € Z} =S. We claim that S =
{a +kd | k € Z}, since for any number = ¢ {a +kd | d € 7},
there is an elementiny € {a +kd | ¥ € Z) such that 0 <| x —
v | <d. By the definition of d, we must have x € S. So S =
{a +kd | B €7}, and it is easy to verify that such S is “good”.

We conclude that there are three classes of “good” sets:

(LS ={a};

(2)S ={a +kd | b €7, 3 1k};

(3)S ={a +kd | k € Z},herea.d € Z,d >0. [ |

@D Find all positive real numbers ¢ with the following
property: there exists an infinite set X of real numbers

such that the inequality
max{|z —(a —d) |s |y—al, |z—C(a+d) |} >td

holds for all (not necessarily distinct) x, y, ¢ € X, all
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real numbers a and all positive real numbers d.

Solution The answer is0 <: < %

1—2¢

) 1
Firstly, for 0 <z <?, choose A € (O, 51+ 1)

jv ICtI; =

A X ={x1, 225 ... ). We claim that for all (not necessarily
distinct) ', y, = € X, all real numbers a and all positive real

numbers d , we have the following inequality:
max{| x —(a —d) |, |y—al, | z2z—C(a+d) |} >1td.

Suppose on the contrary that there exista € R, d € R" and

Xis X 2, such that

max{| x;, —(a —d) |, |x; —a |, | 2, —(a +d) |} <td.

Hence,
—td <zx; —(a —d) <1td,
—td <x; —a <1td,
—td <z, —(a +d) <1id,
i.e.,

x, +—)d <a <x; +( +8)d,
fl‘jitdgang‘“‘rtde (*)

x, — (0 +0)d <a <z, — (1 —1)d,
which implies that

z, — (1 +0)d <a <z, +1 +0)d,
‘1[+(17t>d< <l]+l‘d7

x;, —td <a <z, — (1 —1)d,

a

1

note that 0 <: < o It follows that
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d>1‘k*1‘,- @
201+
X, — X
<L,
d 1—2¢ ©
Xy — X
< —) .
d=7= ©)

By @, @ andd >0, we getx; <x; <x,, hencei >j >
ko M AT AN F27, we get

X; — X /V *Xi

- —
X — X AR =

Xj — X X, —X;

1 —2¢ = 201 41 henmee

By @ and @, we get

Lj "X 1 —2¢

= >,
Tr — X, 201 + 1)

which contradicts @ ! Thus our earlier claim about X is proved.

Secondly, fort = %, we show that for any infinite set X ,

for anyx <y <=z in X, we can choosea € Randd € R" such
that

max{|z —(a —d)|. |y —al,|z—(a+d) |} <tud.

Infact, letd == ;‘T, hencex +(1 —t)d =z — (1 +t)d.

Leta = max{x + (1 —t)d, y —td}. Sincet = —, we obtain

1
2
vy —x <2d < +20)d,
{1‘3/ <0< (2t —Dd,

y—td <x +{ +t)d,
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hence

x+ 0 —t)d <a <z +{+8)d,
y—td <a <y +tid,
e = +0)d <a <z—U—1t)d,

from which we conclude that

max{| x —C(a —d) |, |y —al, |z —(a+d) |} <td.
So every ¢t = % does not satisfy the requirement of the
problem.
. . . 1
In conclusion, the set of all required ¢ is (O, ?j. []
Second Day 8:00 — 12:30
January 13, 2013
@ Given an integer n = 2, suppose A, Ay, ..., A, aren
nonempty finite sets satisfying | A;AA; | =|i —; | for all
i?j S {1a 29 ) n}.

Find the minimum value of | A, |+]| A, |+ -+ +| A, |.
(Here | X | denotes the number of elements of a finite set
Xand XAY ={a|la€X,aé¢Y)U{ala€Y,a ¢ X}
for any sets X and Y. )
Solution For cach positive integer k#, we prove that the
minimum value of S,, is % + 2; the minimum value of S, is
k(k +1) +2.
Firstly, define the sets A, Ay, ... s Ags Ay as follows:

A,‘ ={i7i+17...5k}9 l =17 2,...7k;Ak+1 ={k7k+1};
Ak-]‘ :{'Ie +1’k+2,...,/€+j71},j =2:3s ...k +1.
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For this family of sets, it is easy to verify that | A;AA; | =
j —i =|i —j | holds in the following cases:

(D1 <i <j <k
(D 1<i<j=Fk+1;
D1 <i<k+1<j<2k+1;

Dk +1 =i <j <2k +1;

5k +2 <71 <j <2k +1.

Moreover., the case of i = j is trivial, and the case of i > can
be reduced to the case of i << j. Thus, for alli, j € {1, 2, ...,
2k + 1}, we have verified that

|ADA; | =j —i =[i—jl.
For the above (2k + 1) sets. we can easily calculate that

k(/e2+1) jLZJrk(/e;l)

Sopy =

=kt +1) +2;

if we choose the first 2% sets, we get that
SQk = SZkH 7/2 = /Zz +2.

Secondly, we show that S,, =£* +2and S,y =k (k +1) +
2. Note the following facts:

Fact 1. For any two finite sets X, Y, we have | X |+] Y |
=] XAY |.

Fact 2. For any two non-empty finite sets X , Y, if | XAY |
=1,then| X |+|Y |=3.

When n = 2k, it follows from Fact 1 that

| A [+ A | =1 AiDA | =2k +1 —2i, 4
:13 27 ...’k 71.

By | AyAA, | = 1 and Fact 2, we have | A, |+]| A | = 3. So



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

94 Mathematical Olympiad in China

k—1

S’Zk :‘Ak |+|Ak\l ‘+Z(‘Az ‘+‘A2k-1—z |)
i=1

k—1
=3+ 2,2k +1—2i) =k +2.
i=1

Similarly, whenn = 2k + 1, we get that

‘ Ai ‘+‘ A2k+27i ‘ 2‘ A;’AAZkJsz,’ ‘ = 2/8 +2 *22, Z
- 19 29 e e 9 k 71.
Since | A,AA,, | =1, we have

(‘Ak ‘+‘A/c+1 |)+‘A/s+2 |>3+1 =4,

SO

k—1

St :‘A/z |+|Ak+l ‘+‘Ak+2 ‘JFZHA; ‘+‘A2k+21 D

i=1

k—1

=44+ D,k +2—2i) =k(k+1) +2.

i=1
In conclusion, the minimum value of S,, is £#* + 2, and the

minimum value of S, isk (k& +1) + 2. Equivalently, for any n

2
= 2, the minimum value of S, is [%]* 2. ]

@D For cach positive integer n and each integer i (0 <i <n),
let C: = ¢(n, i) (mod 2), where ¢c(n, i) € {0, 1},

and define

f(n, q) = Zc(n, i)q'.

Letm, n and ¢ be positive integers with ¢ +1 not a power
of 2. Suppose that f(m, q¢) | f(n, ¢). Prove that f(m,
) | f(n, r) for every positive integer r.

Solution For each positive integer n, we write n in binary
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representation asn = 2% +2% +--- +2%, where 0 <a, <a, < -
<< a;. Define a set T(n) = {2, ..., 2%}, T(0) is considered
an empty set.

By Lucas’ Theorem. C, is odd if and only if T(:) < T(n),
hence

fsg) = 25 ¢ = [ a+qm,
ACTOD C€T(n)

where 6 (A) denotes the sum of all elements of A.

For m , n and ¢ as given by assumption, we show that if

s = 11 A+g| 11 A+ = fas g,

«€TCm) C€T(n)

then T (m) = T(n), and consequently, f(m, r) | f(n, r) for
every r.

For any integers i, j, 0 << i << j, we have the following

factorization:
@ =1 ="+ D (g + D" D,
therefore,
(" +1.¢" +1) =" +1,2) | 2.

Let s(k) be the largest odd divisor of a positive integer % ,
then s (¢> +1) and s (¢ + 1) are coprime. Clearly, ¢ > 1. If:
>0,q¢" +1=1or2(mod4), andg® +1>2, thuss(g’ +1) >
1. If i = 0, since ¢ + 1 is not a power of 2, we haves(q +1) >

s(q” + 1). Since

beT) "

1. For anya € TGn), s(g* + 1) | H

s(1 +¢q“) >1, wehavea € T(n), hence T(mn) = T (n), which
completes the proof. []

0 Given positive integers m and n, find the smallest integer

N (=m) with the following property: if an N-clement set
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of integers contains a complete residue system modulo m ,
then it has a non-empty subset such that the sum of its
elements is divisible by n.

Solution The answer is

N = max{m, m +n *%m[(m, n) +1]} .

First, we show that N > max{m sm+n — %m[(m , n) + 1]}

Letd = Gmsn),and writem —dm,» n —dn,. Ifn >%m(d+

1), there exists a complete residue system modulo m, x,,
Xys ... &, such that their residue modulo n consists exactly of
m, groups of 1, 2, ..., d. For example, the following m

numbers have the required property:

Z+d7’11]9l:19 29...9d9j =1, 29...97’)’11.

Finding another set of £ = n — %m(d + 1) — 1 numbers vy, ,
y2s ... vy, that are congruent to 1 modulo n , the set
A={l‘1512,...,1',,,,y1,...,yk}

contains a complete residue system modulo 7 , however, none of
its non-empty subsets has its sum of elements divisible by n. In
fact, the sum of the (smallest non-negative) residue modulo n of
all elements of A is greater than zero and less than or equal to

m,(1+2+--+d)+k =n—1. Thus,

N =m +n *%m(d +1),

N Emax{m, m +n *%m[(m, n) +1]},
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Next, we show that N = max{m, m +n *%m[(m, n) +1:|}

has the required property.

The following key fact is frequently used in the proof:
among any k integers, one can find a (non-empty) subset whose
sum is divisible by .. Leta,, a»s ... a, be integers, S; =a, +
a, + -+ +a,. If some S, is divisible by £, then the result is true.
Otherwise, there exist 1 <<i <<j <<k, such thatS, =S, (mod k),
then S; —S; = a4 ++* +a; is divisible by £, the result is again
true. The following fact is an easy corollary of the previous
result: among any % integers, each of which is a multiple of a ,
one can find a (non-empty) subset whose sum is divisible by ka.

Returning to the problem, we shall discuss two cases.
Case 1:n < Lm(d + 1. and N = m,

We call a finite set of integers a k-set if the sum of all its
elements is divisible by 4. Let x,, 23, ..., x, be a complete
residue system modulo m. Clearly, we can divide these numbers
into m; groups, each group consisting of a complete residue
system modulo d. Let y;s y:5 ...s y, be a complete residue
system modulod , and y; =7 (mod d). Ifd is odd, we can divide
+1

cach group into d d-set, for example, {yi» yo1}s o..» {ye2,

ye b, {yat. We get %ml(d + 1) d-sets. Since n, é%ml(d +

1), we can choose some of these d-sets such that the sum of

their elements is divisible by n,d (= n). If d is even, similarly,
a complete residue system modulo d can be divided into %
d-sets, with y<4 remaining. Two remaining numbers can form

another d-set. In the end, we dividex,», 225 ... s x,, INtO %m d +
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[7%] d-sets (possibly with a number left if 7, is odd).
m,

Since n, <%ml(d + 1) :%mld +/7,wehavenl <

Do | —

m.d +[%] , again we can find some of these d-sets such that

the sum of all their elements is divisible by n,d = n.
Casec 2:n > %m(d +1), N =m +n *%m(d + 1.
Let A be an N-element set, containing a complete residue

. 1
system modulom, xy» x25 ..., x,,» with some other n — 5m

(d +1) numbers. If d is odd, as shown in case 1. we may

divide 1, x5 ..., x, Into %m (d + 1) d-sets. Divide the
.. 1 . o 1
remaining n — ?m (d + 1) numbers arbitrarily into n, — ?m )

(d +1) groups, each with d numbers. Among each group of d
numbers, one may find a d-set, therefore, we have another

ny — %m 1(d +1) d-sets, and totally n, d-sets. If d is even, as

. . .. . 1
discussed in case 1, we may divide =, x5 ... x, Into 5 m

d + [%]dfsets. If m, is odd, we are left with a number x; with

d ‘1,*%

. Divide the othern f%m (d +1) numbers arbitrarily
into 2n; —m,(d +1) groups, each with % numbers. From each

group, we can find a % —set; from any two %fscts. we can
find a d-set. If m, is even, then we can find another n, —

%ml(d +1) d-sets, and totally n, d-sets. If m, is odd, {x,} is a
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%fset, we have 2n, —m ,(d +1) +1 %fsets, and also n, —

%m d +1) + %d* sets. Again, we can find n; d-sets. Finally,

we can choose some of these n, d-sets, such that the sum of all

their elements is divisible by n,d ( = n). []

AR (Nanjing, Jiangsu)

First Day
8:00 - 12:30, December 21, 2013

@D In an acute triangle ABC, AB > 4
AC, the bisector of angle BAC
and side BC intersect at point D,

two points E and F are in sides Y,

AB and AC, respectively, such

that B, C., F, E are concyclic. g
Prove that the circumcenter of B D C
triangle DEF coincides with the Fig. 1. 1

innercenter of triangle ABC if

and only if BE +CF = BC.

Solution. Let I be the innercenter of AABC.

(Sufficiency) Suppose BC = BE + CF. Let K be the point
on BC such that BK = BE, thus CK = CF. Since BI bisects
ZABC, CI bisects ZLACB, ABIK and ABIE are reflection
with respect to BI, ACIK and ACIF are reflection with
respect to CI, we have /BEIl = /BKI == — Z/CKI == —
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/CFI = Z/AFI. Therefore, A, E, I,
F are concyclic. Since B, E, F, C are
concyclic, we have ZAIE = /AFE =
ZABC, and hence B, E, I, D are
concyclic.

Since the bisector of Z/EAF and
the circumcircle of AAEF meet at I,
IE = IF. Since the bisector of ZEBD
and the circumcircle of ABED also
meet at I, IE = ID. So, ID = IE = IF, that is, I is also the
circumcenter of ADEF.

Q.E.D.

(Necessity) Suppose I is the circumcenter of ADEF. Since B,
E, F, C are concyclic, AE « AB = AF « AC, AB > AC, we have
AE < AF. Therefore, the bisector of /EAF and the perpendicular
bisector of EF meet at I, which lies on the circumcircle of AAEF.

Since BI bisects ZABC, let K be the symmetric point of E
with respect to BI, then we have /BKI = /BEI = ZAFI >
~/ACI = /BCI. Therefore, K lies on BC, /IKC = /IFC,
ZICK = ZICF, and AIKC 2 AIFC.

Hence BC = BK +CK = BE +CF. []

@D For any integer n withn > 1, let

D) ={a —0b | a, b are positive integers with n

=abanda > b}.

Prove that for any integer 4 with & > 1, there exist %
pairwise distinct integersn,s ny5 ... n, withn, > 1(1 <
i1 <k),such that D(,) N Dn,) N -+ N D(n,) has at

least two elements.
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Proof. Leta,, a,s ...» ax be £ + 1 distinct positive odds,

where each of them is smaller than the product of other %

numbers. Write N =a,a;***a,.,. Foreach:i =1,2, ...,k +1,
_ 1N L. _1I(N 2 o
letx;, = 5 (a, +a,j, Vi 2 (a; a,), then x; vi N.

Since a;a; < N andM >a;, (;, yOUU <i <k +1)arek +1

positive integer solutions of equation x> —y* = N. Without loss
of generality, suppose x;; = min{x,, xs» ... 241 . For each

2
bt

i €{1,2,...,k},sincex? —y? =z, — yi., , we have

(;T,' +17;¢A])(;T,' _;T;\‘fl) - I,2 _I:?H»l - y,z _yiA]
- (yi +ym)(y1 *ykﬂ)-
Letn;, = (x; +xp)(x; —24) = (y,- +y/¢71)(y,ﬂ *ykﬂ), then

ka+] = (I,‘ +Ik+1> 7(1‘,‘ 71‘&4,1) S D(n[)a
Zyk-l - (y, +yk\1) *(yz *yk-l) € D(n).

So xpi1 = yir s 2x441 and 2y, are two different members of
D) NDy) N N D). []

@D Let N be the set of all positive integers. Prove that there
exists a unique function f: N° — N” satisfying f(1) =
f(2) =1and
fG) =f(fa—1)+fn—Ffn—1),n =3,4,....
For such f, find the value of f(2") for integer m = 2.

Solution. Since £(1) = 1. we have% < (D < 1.

We show by induction that for any integern > 1, f(n) is
uniquely determined by the value of f (1), f(2), ..., f(n —

D, and% < f(n) <n.
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Forn = 2, f(2) =1, the claim is true.
Assume that for anyk, 1 <k <n(n =3), f (k) is uniquely

determined, and% < f(k) <k, thenl <% <fn—1 <

n—1,and 1 <n — f(n —1) <n — 1, hence by induction
hypothesis, the value of f(f(n — 1)) and f(n — f(n — 1)) is

determined, and the value of f(n), by definition, is
f) = f(fn —1)) +fn—fn—1)), )

which is uniquely determined. Furthermore, we have
TS =D = (=) = [ =D

%m Cf 1) < fi— fi—1) = — fn— D).

Equality @ implies o < f(n) < f(n —1) +(n — f(n —1)) =

n
2
n. The claim is also true for n. By induction, we proved that

there exists a unique function f: N" — N satisfying the
required properties, and % < f(n) <n.

Next, we show by induction that for any positive integer n »

we have
fa+1 — fn) € {0, 1}. &)

Whenn =1, @ is true.
Assume that @ is true forn < k. By @, we have

[ +2)—fk+1D
=(f(fk+D)+fk+2—f+1))) —(f(fR) +
[ +1—fk))
=(f(fGe+D) —ffR)) +(fk+2—f+1D) —
S +1—fk))). v
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By induction hypothesis, f(k +1) — f (k) € {0, 1}.
If f(k +1) = f(k) +1,sincel < f(k) <k, it follows,
from @ and induction hypothesis, that

Sl +2) —f+1) = f(f)+1) —f(f(k)) € {0, 1}.

If f(k+1)=f(k),sincel <k +1— f(k) <k, it follows
from @ and the induction hypothesis that

fk+2)—fk+1) = fk+2—f)) —
fk+1—fk)) € {0, 1},

Thus, @ is true forn = £ + 1. By induction,® is true for
any positive integer n.

Finally, we show by induction that for any positive integer
m, we have f(2") = 2",

For m =1, the result is clear.

Assume that the result is true for m = k, i.e., f(2") =
271, consider the case form = £ + 1.

Assume on the contrary that f(2*"") # 2", since f(2""") =
2%, and £(2"'") is an integer, we have f(2*"') = 2" + 1. Since
F(1) =1,by @, let n be the smallest integer such that f(n) =
2" +1, we haven <<2""', by the minimality of n, f(n —1) = 2*,

Notice that n — 2" < 2", we have

2 +1=f) = f(fn =) +fn —fn —1))
= f2") + fn —2) <22 =24,

which is a contradiction. It follows that f(2*"') = 2*, the result
is also true form = & + 1. By induction, f(2”) = 2" for any

positive integer m. []
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Second Day
8:00 - 12:30 December 22, 2013

@D For any integer n with n > 1, let n = pfi-pf be its
standard factorization, write

wn) =t, Qn) =a, +++ +a,.

Prove or disprove the following statement: Given any
positive integer 4 and any positive real numbers « and 3,

there exists a positive integer n with n > 1 such that

wln +k) Qn +Fk)
Wi eand ey =8

Solution. The answer is YES.
From the definition of w and Q, we have
wlab) <wla) +wlb), )

Qlab) = Qa) + Q) , @

for any positive integers a s b. Given a fixed positive integer £
and positive real numbersa, 8, we take a positive integer m >

(w(k) +1)a. As there are infinitely many prime numbers, we

can take a sufficiently large prime p such that % +log,2
< B, and take m pairwise distinct prime numbers g;» gz ... s
q. that are all greater than p. We will show that n = 21% "%k
has the desired property.
First, we prove wln &) >a. Letn, =2 Tk 29927
w(n) k
1. Asqis qz25 ... q, are all odd prime numbers, 2% + 1 | n,

ql

2 . .
when1l <i¢ <m, thend, = is an integer greater than 1.
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Note that
(27 =1, 2 —1) =2“" —1 for all positive integersr. s, @

and (¢;» q;) = 1G # j), we have

(divd,) = %(2% +1.20 41 <%(2% 1, 2% — D)

2(2(1’. 2(1]) . l 22 o 1
3 3

dy»d;s ..., d, are the pairwise coprime factors of n,, and
each of them is greater than 1. Hence, w(n,) = m. From O

and the choice of m, we have

w(n +k)>w(n1)> w(n,) > m > a.
w(n) w(n) wlk) +1 wlk) +1

QG +k)
Q)

and cannot be divided by 3, we haven, = 21%"% +1 =4+3(mod9),

Next, we prove < fB. As qiq:°**q, is a odd number

that is, 3 Il n,. Suppose g is a prime factor of % and ¢ < p, then

20, — 1 = (20979 — 1) « n, = 0(mod g).

From the Fermat’s Little Theorem, 2" = 1(mod ¢). From ®,
g | 2% — 1 From (¢ — 1, 2q1q2*+q,) = (g —1, 2) <
2,g—1<p <q;,(G =1,2,...,m),henceq | 2° =1, q = 3.

This contradicts that ng—l is not a multiple of 3. Therefore, each
prime factor of % is larger than p. So % > p%/®  From @
and the choice of primes p andg,» g2+ ... q.» We have
7’171
3
< Q) +1 +log,(n, — 1D

= Q) +1 Jrqqu"'q,,,lngZ’

Qn +k) :Q(k)+ﬂ(3)+ﬂ( 3

)<Q(k) +1 Jrlogp(nfl)



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

106 Mathematical Olympiad in China

Q(n +k> Q(k) +1 JV(JIQZ"'(ImlOg/)Z < Q(k) +1

+log, 2 < 8.
Q(?’l) q1q2”°q”; pm gl 18

]

e Given X = {1, 2, ..., 100}, consider function f: X - X
satisfying both the following conditions:
(D) f(x) #xforallx € X;
(2)A N f(A) # T forall A < X with | A | = 40.
Find the smallest positive integer %4, such that for any such
function f there exists a set B & X satisfying | B | = & and
B U f(B) =X.
Remark. For a subset T of X, we define f(T) = {x | there
exists z € T such that x = f(z)}.
Solution. First, we define a function f: X — X with

F(3i—2) =3i —1, f(3i —1) =3i, £(3i) =3i —2,
izla 29...930$
FG) =100, 91 <j <99, £(100) = 99.

Obviously, f satisfies condition (1). For any A < X with | A |
= 40, if

(1) there exists an integer i with 1 <<i << 30 such that | A N
(3t — 2,3 —1,3i} | =2,thenA N f(A) # J; or

(ii) 91, 92, ..., 100 € A, then A N f(A) # J also holds.

In both cases. f satisfies condition (2). If a subset B of X
satisfies f(B) UB = X, then we have | B N {3; —2, 3i —1, 3i} |
=2foralll <i <30, {91, 92, ..., 98} © B, and B N {99,
100} = . Hence, | B | = 69.

Next, we will show that, for any function f satisfying the
described conditions, there exists a subset B © X with | B | <69

such that f(B) U B = X.
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Among all the subsetsU © X withU N f(U) = &, choose
one such that | U | is maximal. If there are many U & X with
| U | being maximal. choose one such that | £(U) | is maximal.
The existence of U is guaranteed by condition (1). Let V =
fW,w = X\(U U V). Note that U, V, W are pairwise
disjoint and X = U UV U W. From condition (2), | U | < 39,
| V<39, | W |[=22. We make the following assertions:

() f(w) € U, for all w € W. Otherwise, letU" =U U
{w}, since f(U) =V, f(w) €U, f(w) # w, we have U"
fWU’H = . It is a contradiction to | U | being maximal.

(i) f(wy) # f(wy) for all w,, w, € W, w, # w,.
Otherwise, letu = f(w,) = f(w,) then by condition (1), u €
U. LetU = WU\{u}) U{w,s w:},since f(U) <V U {u}, U
N U A{up) = T, we have U N fWU)H = J. It is a
contradiction to | U | being maximal.

LetW ={w,, wss ..o w,}su; = f(w,;), 1<<i <<m then
by (i) and (i), w15 w2y ..., u, are distinct clements of U.

i) f(u,;) # f(u;) foralll <i <j < m. Otherwise, let
v = fu) = fu;) €V, U = W\u,)) U{w,}» then fU)
=V Ulu,},U N fWUH =J. However, | fWU) [ >] £ |.
It is a contradiction to | f(U) | being maximal.

Therefore, f(u,)s f(us)s ..., f(u,) are distinct
elements of V. In particular, | V |=| W |. As | U | < 39, we
have | V|+|W |=6land |V |=31. LetB =U UW, then | B | <
69and f(B) UB =2V U B = X. Overall, the desired smallest
integer & is 69. []

@ For non-empty sets S, T of numbers, we define

S+T ={s+t|seS,t €T}, 25 ={2s|s €S}.
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Let n be a positive integer, and A, B be non-empty subsets
of {1, 2, ..., n}. Prove that there exists a subset D of A +
B such that

| A |- B |

D+D <C2(A+B),and | D | = 5
n

’

where | X | denotes the number of elements of a finite set X.

Solution. LetS, ={(a.b)|a—b=y,a €A, b € B}. Since
n—I1

E | S, |=|A|«| B, there exists an integer y, such that 1 —

y=1l-n

n <y, <n—1land| S,

| Al-|B| _[A]|-][B]|
= .
| 2n — 1 - 2n

LetD = {26 +y, | (a, b) € Sy“}, then

"o

[Al-IB]

D=, |= AT

From the definition of S, , for each d € D, there exists
(as b) € Syﬂ such thatd =20 +y, =a +b € A +B. SoD <
A +B. Foranyd,, d, € D, letd, = 2b, +y, = 2a; — y¢>
dy, =20, +y,(b,, b, € B, a, € A), then

d, +d; =2a, —y, +2b, +y, = 2Ca, +b,) < 2(A + B).

Therefore, D satisfies the condition. []
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First Day
8:00 - 12:30, March 27, 2011

@D Given an integer n = 3, find the maximum real number M,
such that for any positive numbers x,, x,, ..., x,, there
exists a permutation y;», ys»s ... y, of x5 225 ..., 2,
that satisfies

n y,2

2 2 >Ms
i—1 Yir1 T Yir1Yite + Yite
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where y,11 = y1s Y2 = y2. (posed by Qu Zhenhua)
Solution. Let

n 9

F(I]a...aI”):Z :

X
2 . 2
i=1 Litl T Li+1 42 +xi

First, take 1, = 2, = =+ = 2,., =1, x, = e, then all
permutations are the same in the sense of circulation. In this

case, we have

2 2
Flrisoovw) =m =3+ = fel.

Lete =0, F >n—1,so0M <n —1.

Next, we show that for any positive numbers x,, ..., x,»
there exists a permutation y;s ... y,satisfying F(y,, ... s y,)
= n —1. In fact, take the permutationy,, ..., y, withy, =y,

= -+ =y, and by the inequality a®* —ab +5b> <max(a®, b*), we

see that

—ro

v
vi

<
oo

wro| rore

Y

Fly,soiis y,) = + + oo + =n—1,

ot

<
<

where the last inequality is obtained by AM-GM inequality.
Summing up, M =n — 1. []

@D Letn > 1be an integer, £ be the number of distinct prime

factors of n. Prove that there exists an integera, 1 <a <

% +1, such thatn | a®> —a. (posed by Yu Hongbing)

Solution. Letn = p§1 -+ pg+ be the standard factorization of n.
Since pi1, ..., pit are pairwise coprime, by the Chinese
Remainder Theorem, for each i, 1 < i < k&, congruence

equations
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x = 1(mod p{i)
x =0(mod pi), j #i

have solution x;.

For any solution of x§ = x,(modn), we see thatx,(x, —1)
= 0(modn). Then for eachi =1, 2, ..., k, either x, =0(mod
pii)or xy, = 1(mod p{i). Further, let SCA) be the sum of
elements of subset A of {x,, x5, ..., x,} (particularly, S(J)

= 0). Obviously, we have
S(A)(S(A) —1) = 0(mod n).

(This is because of the selection of x,, such that S(A)
mod(p¢:) is either 0 or 1.) Moreover if A # A’ then S(A) #
S(A")(modn). Therefore, the sum of all subsets of {z;, x,, ...,
x, ) is exactly all solutions of x(x —1) = 0(mod n).

Let S, =n, S, be the least non-negative remainder of x; +x, +
e« +x, modulen, r =1, 2, ..., k. ThusS, = 1. Foralll <r
<k —1,8S, #0. Since® +1 numbers S, S, ..., S,arein[1,
n], by Dirichlet’s Drawer Principle, there exist 0 <</ <<m <k,
jn (G +Dn

such thatS,, S,, in the same interval (7, 7 ] , (0 <
k —1), where/ = 0 andm = k do not hold simultaneously.

Thus, | S, =S, | <. Denotey, =S,» vy, =S, —S,,

k
(r =2,3, ..., k). So any sum of y, = x,(mod n)(r = 1,
25 ... k) meets the requirement.

IfS, —S, >1, thena = Y1 Ty T Ty =S, —S, €

(1 , /%) is the solution of the equation x*> —x = 0(mod n).

IfS, —S, =1, thenn | (y, +y;, + = +y,) + (y,u +
Vom+2 + .. erk)’ that iS, n ‘ (1‘1 + ) + e + I/) + (.l‘m+] +
Xopie + = +a,). Notice that m > [, which contradicts to the
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definition of x;.
If Sm _S/ == Oa then n ‘ Ni+1 +y/+2 + e +ym ’ that i59 n
| ;01 +x,02 + - + x,.» which contradicts the definition of x;.

ItfS,, —S, <0, then

a =y, +y; te+y,) + (yu T+ y)
=S, —(S, —S)=1—-(S,, —S»

is the solution of equation x> —x =0(modn), and1 <a <1 +k£.
Summing up. there exists a satisfying the condition. []

o Let 3n7 be the vertex number of a simple graph G (integer
n =2). If the degree of each vertex is not greater than4n .
there exists at least one vertex with degree 1, and there
exists a route with length not greater than 3 between any

two vertices. Prove that the minimum number of edges of

G is %nz —%n.

Remark. A route between two distinct vertices « and v with
length £ is a sequence of vertices u = vy Vis vo. s Up = U,
wherev,andv,,,7 =0, 1, ..., k—1, are adjacent. (posed by
Leng Gangsong)

Solution. For any two distinct vertices « and v, we say that the
distance between u and v is the shortest length of the route
between u and v. Consider a graph G* with vertex set {x,,
T2s euns Tanlws Yis Yoo ... ¥u)» Where y, and y; are adjacent
(1 <i <j <mn),x; and x; are not adjacent (1 <; <j <3n* —
n), x;andy; are adjacent if and only if i =j (modn). Thus, the

degree of each x; is 1, and the degree of y; does not exceed

2 __
n—1 +?m7n:4n*2.
n
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It is easy to see that the distance between x; and x; is not

greater than 3. So graph G~ satisfies the condition of the

problem. G* has N = 3»n° —n +C. = %nz *%n edges.

In the following, we show that any graph G = G(V, E)
satisfying the condition of the problem has at least N edges. Let
X C V be the set of vertices with degree 1, Y < (V\X) be the
set of remaining vertices adjacent to X, and Z < V\(X UY) be
the set of remaining vertices adjacent toY. LetW = VA(X UY
U Z). We will point out the following facts.

Property 1. Any two vertices inY are adjacent. This is because
of the fact that if y,, y, € Y are two vertices. there existx,, x, €
X that are adjacent to y, and y,, respectively; hence y, and v,
are adjacent since the distance between x; and x, is not greater
than 3.

Property 2. The distance between vertex in W and vertex inY
is 2. This is because of the fact that if the distance between w, € W
and y, € Y is greater than 2 (obviously, distance >1), suppose
thatx, € X is adjacent to y,, then the distance between w, and
x,1s greater than 3, which is a contradiction. Furthermore, we
know this Property 2 means each vertex in W is adjacent to some
vertex in Z.

Denote by xs y» = and w the numbers of element in sets X ,
Y, Z and W, respectively. Now count the number of edges:
there are C? edges between points inY, x edges from points of X
toY, at least = edges from points of Z to Y, and at least w edges

from points of W to Z. So, if y = n, then
|E[=ZC +a +24+w =3n"+C, —y =3n" +C., —n = N,

and if y << n — 1, since each degree of vertex is at most 4n .
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we have

Ttz <yldn —(y—1D) =yln +1—y)
(n —1D@Bn +2) =3n* —n —2,

w =3n? —y —yUn +1—y) = 3.

<
<

Select a vertex P in W such that P is adjacent as less as
possible to vertices in Z. Suppose the least number isa, a > 0
(by Property 2). Denote the set of these a vertices by Np & Z.
Counting the number of the edges again, there are C) edges
between points in Y, x edges from points of X to Y, at least y
edges from points of N, toY (by Property 2, the distance from
P to vertex inY is 2), at least z —a edges from points of Z\N

toY, and at least aw edges from points of W to Z. Thus,

|E| =C +x+y+z2 —a +aw
=3’ —1+C +@G —Dw —1).
Ifa > 1, then
|E| =230 —14+C +(w — 1
=3n* —2+C +3n* —y —yln +1—y) > N.
If a = 1, since the degree of each vertex in W is at least 2,
when we count the edges from points of W to Z. we should add

at least w/2 edges., so

\E|>3n2*1+C§+%w
=3n* —1+C Jr%(?mz —y —yUn +1—y)) > N.
. . 7, 3
Summing up, the least number of edges is N = on T .

]
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Second Day
8:00 - 12:30, March 28, 2011

o Let H be the orthocenter of a K
cubit-angled AABC, P be a A
point on B/E of the circumcircle M
of AABC. PH intersects f((\? at
M. There exists a point K on H
AB such that the line is KM 5K 7 c
parallel to the Simson line of P \;PV
with respect to AABC, the
chord QP |l BC, the chord KQ intersects BC at point J.
Prove that AKM] is isosceles. (posed by Xiong Bin)

Solution. We show that JK = JM.

Draw line from P and let it be
perpendicular to BC and intersect the
circumcircle and BC at point S and L,
respectively. Let N be the project
point of P on AB. Since B, P, L and

N are concyclic,

/SLN = /NBP = ZABP = /ASP.

Thus, NL | AS. Since NL | KM, then KM || SA.

Let T be the intersection point of BC and PH. Since points
K, Q, P and M are concyclic and BC | PQ, so are K, J, T and
M. Suppose that the extension of AH intersects the circumcircle

at point D. Then we have
ZJKM = LAMTC, ZKMJ] = ZKT]J.

It suffices to show that /A MTC = AZKT].
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It is easy to see that D and H are symmetric over line

BC. Then
/SPM = /SPH = /THD = /~HDT.

Furthermore KS = AM, so ADM = KPS.

Consequently s

/TDM = ~HDT + Z/ADM = /SPM + /KPS
= /KPM = ZKDM,

which means that points K, T and D are collinear. Thus
/KT] = /DTC = ZMTC.

So L/JKM = ~ZKM]J. Consequently JK = JM. []

@D Leta,s ass ... be a permutation of all positive integers.

Prove that there exist infinite positive integers i’s, such
that (a;, a;y) < %z’. (posed by Chen Yonggao)

Solution. We prove this problem by contradiction. If the

conclusion of the problem is not true, then there exists i,, and
3. . .
we have (a;, a; 1) > i fori = i,.
Take a positive number M > i,, so if ¢ = 4M, then (a;,

CJ,,’+1) > %7 2 3M

SO, 1fZ>4M9 a; 2((1,96{,\1) >3M,then{1, 29 ) SM}
g{(lls Ao 9 ooos (14,\/171}.
Hence
‘ {lv 25 oo 3M} N {azM’ AIM+1 9 o oo o a/LMfl} ‘

=3M —(C2M —-1) =M + 1.

By Dirichlet’s Drawer Principle, there exists 2M < j, << 4M —
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1 such that Ajos Aj 41 < 3M. Thus,

1 3M 3 3 .
(a-fo’ a-’o’l) <?max{a‘,o, ajo.l} <7 = z . ZM <z]oy
which is a contradiction. []

@ We call a point sequence (A, s A, s ... A,) interesting , if

the abscissa and ordinate are equal for each A,, and the

slopes of segment OA,, OA,, ..., OA, strictly increase
( O is the origin) , and the area of each AOA A, (0 <i <
n =D is o

For a point sequence (A,, A,, ..., A,), insert a point A

adjacent to two points A; , A, satisfying()j = ()7 +()T,:l ,

then we call thus obtained new point sequence (Ay, ..., A,

A, Ay, ..., A)) an expansion of (Ag, Ay, ..., A).

Let (Ay, Ay, ..., A))and(B,, B,, ..., B,) be any two

interesting point sequences. Prove that if A, = B, and A,

= B,,, then we can expand both point sequences to some
same point sequence (C,, C,s ..., C,). (posed by Qu

Zhenhua)

Solution. We see that by the condition of the problem, an
expansion of an interesting sequence is still interesting.

First, we construct the interesting sequence (C,, C;, ...,
C.) containing all points of sequences (A;, A, ..., A,) and
(By» Bys ..., B,);andC, = A, =B,,C, =A, =B,,.

By the Pick Theorem, we know that the area of triangle
equals 1/2 if and only if there is no grid point on the triangle
except triangle vertices. Hence there is no grid point on
ANOA A, except its vertices. Therefore, if the slopes of OA;
and OB; are equal, then A, = B;.
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Denote the slopes of segments Dy

from points of {A,} and {B;} to the
origin in strictly increasing order by
Dy, Dys ..., D,, whereD, =C, =
A, =Byand D, =C, =A, =B,. If D,
a sequence (D;, D,,) 1is not /
interesting, then we can insert
several points £, ..., E, such that Fig. 6. 1
the sequence (D;, E,, ..., E,,
D;.,) is interesting. In fact, consider the convex hull P of the
grid points on AOD,D,,, except the origin. P is a convex
polygon or segment D;D,., (a degenerated polygon). Then the
sequence of vertices of P is interesting. Thus, we have
constructed the interesting sequence (C,, Ci5 ... C,).

Finally, it suffices to show that the interesting sequence
(Ays Ay ...+ A,)) can be expanded to (C,, Cy, ..., C,), and
the same is true for (B,, B,, ..., B, ). We only need to prove
this for the case of n = 1, since we can apply the conclusion for
n=1t0o(A;, Ai,).i=0,1,...,n—1successively. LetC, =
A, and C, = A,. By induction on £, for # = 1, we need no
expansion. Suppose that the conclusion is true for all positive
integers less than k.

Then denote the grid point A
satisfyingO—A> = OA, +OA’. and we
see that A must be a point of C,, ...,
C,— . Since if not, there is no grid
point on interior of segment OA , and
there existsi, 0 <<i <k, such that A
locates in the angle made by rays OC;

and OC ;.,. We may suppose that i >
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0, otherwise take the graph symmetric over the line x = y.
Since the area of the parallelogram L/OA,AA, is 1, C, locates
outside of L7TOA,AA,, C,,, locates outside of L7JTOA,AA, or C,,
= A,. In any way., we take B such that OB = OC, +(f,+1 and
take B” such that C..,B" OA,, C,B" | A,A, then A locates on
[70C ;. ,B’C;. Thus, A locates inside of (7OC.BC,,,, which
contradicts the fact that the area of L7JOC,;BC,, is 1. Therefore
the inserted point A to (A, A,) for expansion is some C;. Then
we use the induction hypotheses to (A,, A) and (A, A,
respectively. []

2012

First Day
8:00 - 12:30, March 25, 2012

o Let H be the orthocenter of an
acute-angled AABC with /A >
60°. Let points M and N be on
sides AB and AC, respectively,
such that ~HMB = 60° =
</ HNC. LetO be the circumcenter
of AHMN. Let points D and A

B C

Fig. 1. 1
be on the same side of line BC,

such that ADBC is regular (see
Fig. 1. 1). Prove that points H, O and D are collinear.
(posed by Zhang Sihui)
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Solution. Let T be the orthocenter of AHMN. Extended lines
of HM and CA intersect at point P. Extended lines HN and BA
intersect at point Q. It is easy to see that points N, M, P and Q

are concyclic.

Fig. 1. 2

By L/ THM = ZOHN . we see that /PQH — ZOHN =
/NMH — ZTHM = 90°, that is,

HO 1 PQ. @)

Let point R be symmetric to point C over HP. Then HC =
HR.

By ~/HPC + ~HCP = (/BAC —60°) +(90° — /BAC) =
30%, we see that /CHR = 60°. Hence AHCR is regular.

By ZHPC = ZHQB and LHCP = £ZHBQ, we see that
APHC v AQHB. Then APHR «» AQHB, so AQHP o
ABHR.

Denote by £(UV, XY) the angle between UV and XY
(positive anticlockwise) .

Since /PHR = 150°, we have ~/(PQ, RB) = Z(HP,
HR) = 150°, ABCD and ARCH are regular. So ABRC <
ADHC. Hence Z(RB, HD) = /(CR, CH) =-— 60"



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

China National Team Selection Test 121

Consequently,
Z(PQ, HD) = Z/(PQ, RB) + Z(RB, HD) = 150° — 60° = 90°,
that is

DH | PQ. @

By @ and @, points H, O and D are collinear. []

@D Prove that, for any given integer # = 2, there exist £

distinct positive integersa;, as» ... s a, such that for any
integers b5 by ... s by witha, <b, <2a,,1=1,2, ...,
k, and any non-negative integersc;, c¢»s ... ¢, s WE have

ka,lbi‘” < Hilb,, provided Hfﬂbﬁfr < Hfflb,-.
(posed by Chen Yonggao)

Solution. We will prove a stronger proposition: for any given

real number k£ and any positive integer n, there exist n positive

integersais azs ... s a,s satisfyinga,.y >2a,, 1 <i <n —1,
and for any real numbersb,s bys ... 5 0,5 a; <b; <2a;,1 =1,
2, ... n, and any non-negative integers ¢;s css ...s C,s W€

have k H];:lbjff < Hl;zlb,- » provided H];:lbjff < Hl;zlb,-.

Let £ > 1. We prove the proposition by induction onn. If n
=1, ¢, =0, then takea, > %, the conclusion is true. Suppose
that the conclusion is true forn = 1. There are xr;, <z, <+ <
x, satisfyingx,i; >2x;, 1 <<i <n —1. Now consider the case of

n + 1. Take a positive integer x,+; > 2x, s satisfying

L pt1 >}€(2x”)”. @
2x, X,

Then leta; =tx;» i =1, 2, ..., n +1, ¢ is a sufficiently

large integer, such that
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a'{ﬂ > 2”a2"'a,,+1 ’ @
and
ko2l <apa,. ©)

In the following, we will show that thesea,; (1 <i <n +1)
meet the requirement. Letb; € [a;, 2a; (1 <i <n +1) be the

real number (notice that we haveb, <<b, <<++ <b,,, ), andc,; (1
. . . . . n+1
<{ < n + 1) be non-negative integers, satisfying thb;r <
H”H /},_
i=1
n+1
If Zizlc, < n, then

nt1

k Il bii <k 1 <k- 2”7161;:3[)#1 <a1"'aubn+1

i=1
n+1

< |] b.. (by using @

i=1

It >)" ¢, =n +2, then

i=1
al ntl
H bll' 2 b111+2 > aY71b1 > 2”612"'(1”71/)1 > H b,‘. <by using @)
i=1 i=1
It is impossible.
n+1 .
If 2,71‘7‘ =n + 1, we consider three cases.

Ifc,.;, =2, then

nt1
Mo
i=1 ~ U1 1 > a1 aq

1 = * 7 = *

N b, b, Za, 2a,

H b;

i=1

n—1
_ Tt . X .
. (21”j > 1. (by using @)

It is impossible.
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If Cpr1 — 1, then

n+1

| | c
b,"

i=1

n+1

H/}I

i=1

Note that b? € [x;» 22;], 1 < i < n. By the induction

hypotheses, we see that

n+1 n+1

kIl os < ] b..
i=1 i=1

If Cpt1 — Oa then

n+1

11,

i=1 > b, b, \" >an+1 a, \"
nt1 = ¢ = ¢
H/ b, b, 2a, 2a,
.
D ;!
i=1

_ Tan (X )" .
-5 (ZIJ > k. (by using @)

Thus, we have checked that a,, a,, ..., a,., meet the

requirement. []

@D Let P(x) = 2™ +auwna™" +asex™" ++ +a,x +a, be
a polynomial of degree 2012 of real coefficients with 1 as
its leading coefficient. Find the minimum of real number ¢
such that | Imz | < ¢ | Re 2 |, where Re = and Im z are.,
respectively, the real and the imaginary parts of any root
of a polynomial obtained by changing some of the
coefficients of P (x) to their opposite numbers. (posed by
Zhu Huawei)

Us

102" Consider the

Solution. First, we point out that ¢ = cot
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*1” — x. Changing the sign of coefficients

polynomial P(x) = x
of P(x), we obtain four polynomials P(x), — P(x), Q(x) =
2”4+ x and — Q(x). Note that P(x) and — P (&) have the

1006 isin 10067c
2011 20117

same roots; one of the roots is 2, = cos

Q(x) and — Q(x) have the same roots, and are the opposite

number of the roots of P(x). Thus Q(x) has a root 2, =— 2.
Then,
(1 Imz, | | Imz, | ¢
) > D) = .
‘ mln(‘ Rez, | | Rexz, | cot 4022

Next, we show that the answer is ¢ = cot WKZZ For any

P(x) = 2" 4+ aunx®®" + asox®® 4+ +a,x +ay,
we obtain a polynomial
R(l) = b20121‘2012 +bz()11172011 +b20101"2010 + b +bll' +bov

by changing sign of some coefficient of P (x), where b5y, = 1,

and forj =1, 2, ..., 2011,

\aj ‘9] =0, 1(m0d4)»
—la; |, j =2, 3(mod 4).

We show that, for each rootz of R(x), we have | Imz | <
¢ | Rez|.

We prove this result by contradiction. Suppose there is a
root z, of R(x), such that | Imz, | >¢ | Rez, |, then =, # 0 and

either the angle of z, and 7 is less than 0 = 40%, or the angle of

z, and —7 is less than ¢. Suppose that the angle of z, and 7 is less
than ¢; for the other case, we need only consider the conjugate

of z,. There are two cases:
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If z, is on the first quadrant (or imaginary axis), suppose
that £ (zy, 1) = a <0, where £ (z,, 7) is the least angle that
rotates 2, to ¢ anticlockwise. For 0 <<j < 2012, if ;j =0, 2(mod
4), then Z(b;zh, 1) = ja < 2012a < 20120,

Ifj =1, 3(mod 4), then £(b;z}, i) = ja < 20116 and

Z/(b,zy» i) = a. Thus, the principal argument of 6,2} € [2x —

2012a, 27> U |0, %n *a]. The vertex angle of this angle-

domain is 2012a + %7{ g = %n +201le <7 Andb,z). 0 <

< 2012, are not all zero, so there sum cannot be zero.
If =, is at the second quadrant, suppose that (i, z,) = a
< 0,if j =0, 2(mod4), then £(1, b;z{) = ja <20120. If j =

s

1, S(mod 4)9 then 4<l9 /)]Zf)) :ja <2011a < 2

. Thus, every
principle argument of 6z} € |0, % + ZOlla]. Since% +2011a
< m,and b;z}, 0 < j < 2012, are not all zero, so their sum

cannot be zero.

Summing up, the least real number ¢ = cot 4022. []

Second Day
8:00 - 12:30, March 26, 2012

@D Given an integer n = 4, Let A, B < {1, 2, ..., n}.
Suppose thatab +1is a perfect square number for anya €

A and b € B. Prove that
min{| A |, | B [} <log.n.

(posed by Xiong Bin)
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Solution. First we prove a lemma.

Lemma. Given an integern =4, let A, B = {1, 2, ..., n}.
Suppose thatab +1is a perfect square number for anya € A and
b €B. Leta,a' €A, b, b €B,anda <a', b <b', thena'd’
> 5. %ab.

Proof of the lemma. First notice that (ab + 1) (a’d" + 1) >
(ab” + Db +1). So

(ab + DWW +1 > J/(ab +1DDb +1).

Since two sides of above inequality are all integers, we have

(ab +D@b +1) = (S + Db +1) +1)°.

By expansion, we obtain

ab +a't) =ab’ +a'b +2/(ab” + Db +1) +1
>ab +a'b +2ab" a'b.

Bya <a'. b <b', we haveab' +a’'b >2ab. Leta't’ =ab,
and combining the above inequality, we have (1 +2)ab > (2 +

24A)ab, sod >3 +242 > 5.5,

Now turn to the origin problem. Let A = {a;, a»s ...
ants B =Ab1sbosoiis byt ar <ay << <a,, b <b, -
< b,. We may suppose that 2 < m < Since a,b, +11is a
perfect square number, we have a6, = 3. By the lemma, a,b,

n.
> 5. 56{1[]1 > 425 ak+1])/3+1 > 4&&])&9 k = 29 L _1 ThuS,
n® =a,b, =4" a,b, >4".

Therefore, m < log,n. []

@D Find all integers £ = 3, with the following properties:

There exist integers m and n satisfying (m, k) = (n, k) =
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landt | m — DD —1) with1l <m <k, 1 <n <k and
m +n > k. (posed by Yu Hongbing)
Solution. If £ has a factor of square number greater than 1, let

t* | k.t >1, then takingm =n =k f/ti—l—l,wesee that such

k has the properties.

If £ has no factor of square number, if there are two primes
p1s pesuch that (p, —2)(p, —2) =4 and p,p, | k. Letk =
pi1p2p, and pys p2s ... p, be pairwise different, r = 2.
Since there is at least one of (p, — D) p,ps-=p, + 1 and (p, —
2)pspsp, + 1 1is coprime with p, (otherwise p, divides their
difference p,p;+-+p,, which is a contradiction), taking this
number as the number m, then, 1 < m <k, (m, k) = 1.
Similarly, we can take a number n of (p, — 1) p,ps+=-p, + 1 or
(py —2)ppsp, +1such that 1 <n <k, (n, k) = 1. So
pipep, | Gm —1)(n — 1), and

mt+n =(py —2)papsp, T 1+ (py —2)pipsp, +1

Such m , n will satisfy the conditions.

If there are no two primes p,, p,such that (p, —2)(p, —2)
=4, pip, | k, then it is easy to verify such integer £ = 3 can
only be 15, 30 or as p, 2p (where p is an odd prime). It is easy
to see that, if £ = p, 2p, 30, then there are nom, n satisfying
the conditions; if # = 15, then m = 11, n = 13 satisfy the
conditions.

Summing up, integer £ = 3 satisfies the conditions if and

only if £ is not an odd prime. nor double of an odd prime and

nor 30. []
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e Suppose there are beetles on a chessboard consisting of
2012 X 2012 wunit squares. Each wunit square can
accommodate at most one beetle. At a moment, all beetles
fly and land on the chessboard again. For a beetle, we call
the vector from its flying unit to its landing unit the
beetle’s “displacement vector”. We call the sum of all
beetle’s “displacement vectors” the “total displacement
vectors”.

Find the maximum length of “total displacement
vector” considering the number of beetles and all possible
positions of flying and landing. (posed by Qu Zhenhua)

Solution. Set up a coordinate with origin at the center of

chessboard O and the grid line as the coordinate line. Denote

the set of the centers of squares by S, and the set where the
beetles initially stand on by M, & S, and the set that the bectles
land onbyM, = S. Let f: M, — M, be the one-to-one mapping
defined by a beetle’s position v at the beginning to the position

u = f(v) of first landing. Thus, the total displacement vector

is given by

V=2 —v)= D u— >, v @
VGMI

WEM, veM,
Note that the right-hand side of @ is independent of /. We
need only to find the maximum of | V | = | ZuEM? u— ZWGMI v |
forallM,, M, =S, | M, | =| M, |. We may suppose that M,
N M, = &, since element of M, N M, does not change | V |.
Suppose that | V' | attains its maximum at (M ,, M), obviously
V # 0. Let line!/ L V be at point O.
Lemma 1. Line ! does not pass any point of S. M, is the set of

Son one side of [, and M, is the set of S on the other side of .
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Proof of Lemma 1. First, M, UM, = S. Otherwise. since | S |
is even, there are at least two points ¢« and 6 which are not in
M, U M,. Suppose that the angle betweena —b and V does not
exceed 90°, then | V +(a —b) | >| V |. So add a into M, , add
b into M, then | V | will increase, which is a contradiction.

Second, M, =—M,. Otherwise, there exista, b € S, such
thata, —a € M, and b, — b € M,. Suppose that the angle
betweena —b and V does not exceed 90°. Puta into M,, and b
intoM,, Vchanges toV +2(a —b),and |V +2@a —b) | >|V |,
which is a contradiction.

Third, / does not pass any point of S. Otherwise, let/ pass
asa € M, —a € M,, then changea intoM,, —a intoM,, V
changes toV +4a. Notice thata 1. V,s0 |V +4a | >|V |, which
is a contradiction.

Fourth, we show that M, is the set of S on one side of [
(the side that V is pointing to), and M, is the set of S on the
other side of /. Otherwise, there isa € M, at the side that V is
pointing to. And there is ab € M, on the other side. Then the
angle betweena —b and V is less than 90°. Change a into M, and
b into M, thenV changes intoV +2(a —b) , the length of which

is greater, which is a contradiction. Lemma 1 is now proved.

Lemma 2. Let S, :{u,y) €S |x\:/e—%or ly =k —

%}, k=1,2, ..., 1006, / be a line passing O and does not

pass points of S,. Denote all points of S, on one side of / by A, ,

all points of S, on the other side by B,. DenoteV, = 2

z(GAku B
D . v» then the maximum of | V, [ is obtained when / is
vE P

horizontal (or vertical), and V, is vertical (or horizontal) .
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Proof of Lemma 2. S, is located at

~
the boundary of a square with 2k points el
on each side. Let the four vertices of
the square be A(k *%, k *%j, . N
/ .
B(k+é’k%),c(k+l’ C/l e o e o 0o 0o o o
z k=6, =3
1. N 1 Fig. 6. 1
/eJrzjandD[/e 5 k+2).By

symmetricity, we may suppose that / intersects AD at point P
with non-negative slope. Let P be located between the 1 (1 < ¢
<k th (from top to bottom) of S, on AD and the (+ +1)th of S,
on AD (see Fig. 6.1, in case of ¥ = 6, + = 3). Thus,
Ve = 2k =22k —1) ] +Qk —0)(— 2k —1)i +1j) +
£k —1i + @k —0) )
=22k — D —0)i +2(—(k =) +3k> =3k +1) j.

where ¢ and j are horizontal and vertical unit vectors,

respectively. Denote (b —1)° = u, 0 <u < (& —1)*, then

% |V [P =@k —D%u +u’ — 23k —3k +Du + 3k* —3k +1)°
=u® —(2k% =2k +Du + (3k* =3k + 1%,
As a quadratic function of u, u = k* — k + L is the

2
symmetric axis. It is casy to know that | V, | takes its maximum
atu = 0. Sot = k, that is, [ is horizontal, so V, is vertical.
Lemma 2 is proved.

Turn to the original problem. By symmetricity, we need to
only consider that the slope of / is non-negative and less than 1.

Let M,, M, be located on two sides of /. Denote M, N S, =
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Aky Ml ﬂ Sk :Bka Vk = E“GA u _21/613 v,then

1006 1006

RAEEDNAESINRAE )
k=1 k=1

1006

$05 [V e < 23, [ Vi e If £ is horizontal, M, is all the

fe
points of S on the upper half-plane, M, is all points of S on the
lower half-plane; each | V, | takes its maximum, and all V,
point upward. And the equality of @ holds. So | V | indeed
takes the maximum | V | ... = 2 X 1006°. []

IR (Jiangyin, Jiangsu)

First Day
8:00 — 12:30, March 24, 2013

o Given any n( > 1) coprime positive integersa;, a»s ... s
a,s, denote A =a; +a, ++* +a,. Letd, = (A, a;) (the

greatest common divisor), i =1, 2, ..., n.
Let D; be the greatest common divisor of {a,, az, ...,
a,\{a:}y i =1, 2, ..., n. Find the minimum of

n A —a; . .
Hizl iD. (posed by Zhang Sihui)

Solution. Consider

D1 = ((lga A3 oo a,,)anddz = (Clzy A)
= (azy a +a2 4 oo +a,,)‘

Let (Dy, d,) =d. Thend | ays d |ass ... d |a,»d|a +
a, +++ +a,. Thus, d | a,. Consequently,
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d | ((l19 azy...sa,,).

Sincea;s ass ... a, are coprime, we have d = 1. Note
thatD] |a2, dz ‘(12 and (Dla dz) - 1. We haVeD]dQ |a2. SO
Dldz gaz. Slmllarly, we haVe Dzdg <6139 e e D”dl gal.

Hence.
ﬁ d;D; = (D,d,) » (Dyds) » =+« (D,d,)
N <asa;-a,a,
T 0
Considering
E(A —a;) = ﬁ(;aj)
>E(<n —1)(Eaj)ﬁ)
= —D" - Ha ©)

and by @ and @, we see that

f[A — L= (n D,

-1 diD:
On the other hand, ifa;, =a;, =+ =a, =1,
n A —a; o n
HFl 4D (n — 1",
. . o A —a,; . ,
Summing up, the minimum of H;:] JD s (n — D",

]

@D Suppose that O and I are the centres of the circumcircle
and incircle of AABC with radius R and r , respectively, P
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is the midpoint of arc BAC. Let QP be the diameter of O.
Let PI intersect BC at point D, and let the circumcircle of
AAID intersect the extended line of PA at point F. Let

point E be on PD such that DE = DQ. Prove that, if

/AEF = /APE. thensin’ ~ BAC — %r. (posed by Xiong

Bin)

Fig. 2. 1 Fig. 2. 2

Solution. Since LAEF = ZAPE, then ANAEF «» AEPF. So
AF « PF = EF’. Since points A, I, D and F are concyclic,
PA « PF =PI « PD. Thus,

PF* = AF « PF +PA « PF
= EF* +PI - PD.

@

Since PQ is the dimeter of circle O and point I is on AQ, we

see that AT | AP. Consequently,
ZIDF = /IAP = 90°,
Thus, we have
PF?* —EF* = PD* — ED”.
Combining @, we have

PI - PD = PD* —ED".
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Thus
QD* = ED* = PD* —PI - PD = ID « PD.
Consequently, we have
AQID v APQD. @

Since PQ is the diameter of circle O, we see that BP | BQ.
Suppose that PQ is the perpendicular bisector of BC at point M.
Note that I is the incentre of AABC. We have QI = QB* =
QM « QP. Thus,

AQMI o AQIP. ®

By @ and @, we see that LIQD = £ZQPD = ZQPI =
ZQIM. Hence, MI |QD. Let IK 1 BC be at K. Then
IK | PM; thus,

PM _PD _ PQ

IK ID MQ
By the Circle-Power Theorem and the Sine Theorem, we
know that
PQ +« IK = PM « MQ = BM « MC

_ (%BC) — (Rsin/BAC)? .

_PQ-IK _2R-.r _2r 0

thus, sin? ~BAC o 7 R

o Suppose there are 101 persons sitting around a round table
in an arbitrary order. The £th person possesses & pieces of
carts, # =1, ..., 101. We call it a transition if one
transits one of his carts to one of his adjacent persons.
Find the minimum positive number %, such that whatever

the order of the seating, there is way of no more than %
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transitions so that each person possesses 51 carts. (posed
by Qu Zhenhua)
Solution. The answer is & = 42 925,

Let the circumference of the table be 101, and the distance
between two adjacent persons be 1. In the following, we
consider the least transition times.

Denote the person who initially possesses i cards by [i —
51]. So, if p >0, then we can think of person [ p | as the source
who should send out p cards; and if p << 0, person [p ] is the
sink who should receive — p cards.

Suppose that at the end of transitions, each person has 51
cards. If person B possesses a card u initially belonging to
person A, we can think that A carries card u to B by passing
through the minor arc A/-E\ﬁ, the length of the route is the arc
length | A/I\S | means the times of transitions.

Let seating order be as shown in the figure. Person [i]
transits all his: cards to person [—:](G =1, 2, ..., 50) with
route length i. So there are all together 1* + 2° + -+ + 50 =
42 925 transitions. In the following, we will show that no less
transitions can meet the requirement if persons are seated in this
way.

We use the notion of [49] 1501 43
“potential”. Let potential at

the highest position [50] be \ 0]

50; the neighbor positions 1 [0]
[49] and [ 48 ] each has [l [-2]
potential 49, ..., the lowest

position [ — 49 ] and [ — 50 ]

each has potential 0. Then, (491501 48]

the total potential at the Fig. 3.1



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

136 Mathematical Olympiad in China

beginning is
S =101 X 50 + (100 +99) X 49 + - +(2 +1) X 0.
And at the end of transitions, the total potential is
T =51 X50 + (51 +51) X49 + -+ + (51 +51) X 0.

The difference is S — T = 42,925,

Since after each transition, the total potential changes at
most 1, so at least 42,925 transitions are needed.

In the following, we show that whatever be the order of
seating, there is always a way of no more than 42, 925
transitions such that each person possesses 51 cards. To show
this, we give two lemmas.

Lemma 1. Letc, ay» a1 ... a, be integers with their sum
zero, andc =0, ay <a; < ** < a,.

If n + 1 persons denoted by [c],[ao]s[ai]s ...y [a,i]s
possess N + ¢, N +ays N +a,5 ... and N + a,-, cards,
respectively, where N is a positive integer, such that N +a, >
0. Let the persons stand on 0, 1, ..., n of the number axis.
such that [¢] stands at n. Then there is a way of no more than

n—1 . ..
cn + Z,»:omf transitions, such that each person possesses N

cards.

Proof of Lemma 1. Suppose thata,, =+ >a, >0 =a,_, =
> a,, then inductionon M =a, , ++- +a,. f M =0, then [ ]
passes ¢ cards to [a; ], such that [a; ] obtains —a; cards (0 <i <
s —1). Suppose that person [a; ] stands at z; (0 < i <»n — 1),
thenxy, 2,5 ..., x,, is a permutation of 0, 1, ..., n — 1.
Thus, a card that passes from [c¢] to [a;] needs n — =z,

transitions. So the total transitions needed are
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s—1 s—1 s—1
Z(n —x)(—a;) =cn + 2 xia; <cn + Z la;
i=0 i=0 i=0

n—1
=cn + E a;.
i=0

Now suppose that the conclusion is true for integers smaller

than M. Consider the case of integer M. Suppose that

Apl =" = A,y A, 1 aQ a1 = =a,.
Then there is a person in [a, 1], ..., La,.] and a person in
[ayv]s ... [a,-1 ] such that their distance is no more thann —s

— [ + 1. We may suppose that the distance between [a, , | and
La, ] is no more thann —s —[ + 1, then let person [a, , | pass
acardu to[a, , ] by no more thann —s —/ +1 transitions. Next,

by induction on ¢ and

Ay Z 0 Z A, > a,, —1 =2a,

2'" 26{[ 2(1[71 +1 >(1[72 2"' >a05
we see that by taking no more than

L=on+Wn—-—1Da,, ++—5s+Da, 1 +
n—s)a,, — 1)+ —s —Da,« +-+
la, U —DCa,y +1) +U —2)a, 5 +++ +0a,

transitions, cach person possesses N cards. Addition of the

transitions of card u, we know that there are no more than

n—1

IL+n —s—1[+1) =cn +Zial

i=0
transitions. The proof of Lemma 1 is completed.
Lemma 2. For any permutation of [ —50], [—49], ..., [49],

[50] on a circle, there always exists a person [¢ ], denote the

line passing through [¢] and the origin by /, such that the sum of
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each side of / (include ¢ ) in the brackets has the same sign of c.

Proof of Lemma 2. Let the permutation on the circle be [a, ],
[a:]s ...5 Lawn ] clockwise. Then there is a directed diameter /
of the circle such that[a: ], [as]s ... s [as | are on one side of

land[as Js [as2 s ... Law | are on the other side.

If 20:1“ = 0, then take ¢ = a; ; else, if Eila # 0, then
the sums of each side of / have different sign. If we rotate / 180°
clockwise, we see that the sum of each side changes sign. So
there exists a [¢ ] which meeting the requirement of Lemma 2.

Take [¢]in Lemma 2. Suppose that ¢ =0 (else change each
[a;] by [ —a,;]and change all the directions of the arc. Letc =
¢1 +cys c1s ¢y =0, such that the sum of ¢, and the numbers on
one side of (not include ¢) [ is zero. Denote 50 numbers on this
side by ay <a; < +* < a,, and denote 50 numbers on the other
side by b, <b; < +:* <by. Then the sum of ¢, and b5 615 ... »
by 1s also zero. Using Lemma 1 toc,s ags a1s ... s ay and ¢, »

bos bis ... by, respectively, we obtain that the transition

times are no more than

49 49
L =50¢, + >, ja; +50c, + >, jb;.
ji=0

i=0
Since ¢y ags .o s agys bys ... 5 by is a permutation of —50,
—49, ..., 50, by the order inequality

19

L =50c+ >, jCa, +b;)

j=0

49
<50° + > j(2j —50 +2j —49)

7=0

=42 925.

Summing up, the least positive integer # = 42 925. []
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Second Day
8:00 - 12:30, March 25, 2013

0 Let p be a prime, a and & be positive integers, satisfying
pt <k <2p°. Prove that there exists positive integern, n
< p* such that C; = n = k(mod p*). (posed by Yu
Hongbing)

Solution. We are to prove an extended problem.

Let p be a prime, a and k be positive integers, satisfying p*
<k << 2p“. Prove that for any non-negative integer b, there
exists positive integer n, n << p**” such that n =k (mod p*) and
C! =k (mod p").

If6 =0, p* =1, taken =%k — p*. We prove by induction.
Suppose that the conclusion is true for integer & = 0. That is.
there exists a positive integern << p*™’n =k (mod p*), and C; =
k (mod p’).

Letl <t < p — 1. Consider

=

ath _ -

Ch v — n +tp i

mtipt = -
i=0 k —i

v, (m)
1 p

For integer m, let P(m) = p“»", r(m) = » Where

_m
P(m)
v, (m) is the number of p in the standard factorization of m.

Since b —i < 2p* < p“'', we see thatv,(k —i) < a and
n —i =k —i(mod p*). Hence,

Pk —i) | n+1p* —i.

Consequently,

w . _TT PG —i
e H r(k —i)
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If e —i #p*,thenv,(k —i) <a —landa +b —v,(k —i)
=b+1. Ifk —i = p*, thenv,(k —i) = a. Hence,

k—1

T n—i n 1 o tp?
Cova *H PG —rk — 1) Il PG —irtk |

0<i<k—1

iEk—p*
T r—o
= (t -9—[ H :(Z z)] « tp" (mod p"™).
0<i<h—1
iFk—p“

This is because that if & —7 # p*, then p* | (n —i) — (B — i),
So

v,(n —1) =v,(k —i).

Since H o lr((z;z,; is coprime to p, we see that
r

iFk—p®
Cloperr (0 <t < p —1) goes through the following remainders of

modular p"";

C:: “‘]'Pb’]' :O’ 19...71071.

Since C! = k(mod p’), there exists j (0 <j < p — 1), such
that C; 4+ jp” = k(mod p*™'). That is, there exists 1 (0 < ¢ <
p — 1, such that Ct,,e =k (mod p”™'). Let N =n +1p*"”. Then

N < p""', N =n =k(mod p*) and C§ = k(mod p"™").
The extended problem is proved by induction. []
eLetn >Zandalaaza...9(1,,’]717]’)27...9bnben0n-

negative integers. Prove that

n (1 . 1<, VT |
) G E ) (hBn) = et

i=1

@

(posed by Leng Gangsong)
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n—1
Solution. Denote A = (n L j , n = 2. Obviously, A > 1.

For given: € {1, ..., n}, fix p = ai +0b; fork =1,
2, ..., nand fixa; and b, (j # i). Then the left-hand side of

@ZL(Z)—[)?‘FZHECL;U‘F +Z b;)* is a quadratic
n ! n

function of 6, , b, € [0, +/p ], with leading coefficient — A + % <
n n
0. Thus, its minimum is taken at the endpoints, that is, b, = 0 or
a; — O.
So, we can suppose thata,b, = 0,7 =1, 2, ..., n.

Case 1. Eacha,; =0, then by the mean value inequality, we

have
(%E b,-jz =] v,
i=1

Case 2. Eachb; =0, then by the mean value inequality, we

have
1 ~ 1 T i
[”;:1 ) ZJ ];[1 t

Case 3. We may suppose thatb, = ++ =b, =0, ajq = *** =
a, =0, 1 <k <n.
Let ajas***a, — ak ’ b/‘,+1"'b” :/)”7/1 s A s b 20. Then by the

mean value inequality, we have
al +al + - tai =kats by 0 +0, = (n — kD,
It suffices to prove that

R ®

. P
n n-

By the mean value inequality, we see that

The left-hand side of
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o) I LI S (e SR et X

n n n n

kterms n—kterms

n—k

ko2 n —Fk\n 2(n—k)
> Avan e (;j o b,
n

So, it suffices to show that Ai(nn;) " =1, that is. to
n n—k
show (7) < Ak,
n —k
In fact,
n_,_n_ ... L |

n—k n—~Fk .n*k —_——

nk—nterms

n—kterms

—(n + (nk —n)
nk —k

_ ( n )(n Dk :Ak. D

n—1

@ In a planc with cartesian coordinates, let P and Q be two
regions of convex polygon (including boundary and interior)
whose vertices are all integer points (i.e., their coordinates
are all integers) and T = P 1 Q. Prove that if T is not
empty and does not contain integer point, then T is a non-
degenerate convex quadrilateral. (posed by Qu Zhenhua)

Solution. Since the non-empty intersection T of two convex

closed polygons is a closed convex polygon or degenerated

polygon, there are three possible cases.

(1) T is a point. Then T must be the vertex of P or Q.
contradicting the fact that T contains no integer point.

(2) T is a segment. Then T must be the intersection of an
edge of P and an edge of Q, which contains the vertex of P or

Q. which is a contradiction.
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(3) T is a closed convex polygon.

So, it remains to be shown that T is a quadrilateral.

First, we note that if T has two adjacent edges on the edges
of P (or Q) , then the common vertex of this two edges must be
the vertex of P (or Q). which is a contradiction. Thus, the
boundary of T is formed alternately by a part of an edge of P
and then a part of an edge of Q, and each vertex of T is the
intersect point of edges of P and Q. Thus, the number of edges
of T is even.

We see that if an edge ¢ of P intersects an edge f of Q, then
e must intersect another edge of Q, otherwise T will contain an
integer point.

In the following, we show by contradiction that the
number of edges of T can be 6 or more.

If T has edges no less than 6, then suppose P contains %
integer points except the vertices of P.

Case 1. If & =0, then P is an element integer triangle, or a
parallelogram with area 1. So, P can be located between two
parallel lines /,, /,. And there is no integer point in the open
domain ) between /, and /,. At least three edges of P are the
edges of T, because T has at least six edges.

(a) In case of P being ANABC
(See Fig.6.1), DE, FG and HI are
edges of Q. D, G and E may coincide
with F', H and I, respectively. Lines

FG, HI, [, and [, form a convex B G H
quadrilateral. Since line DE does not Fig, 6. 1
intersect segment BC, we see that the

intersect point of line DE and FG or of line DE and HI is in Q.

Thus, Q has integer vertex in Q, a contradiction.
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(b) In case of P being a parallelogram [JABCD. Let AD,
AB and BC be three edges of P (see Fig. 6. 2). The intersection
point of line EF and HG locates in Q. Let AB, BC and CD be
three edges of P (see Fig. 6.3), and there is no edge of Q on
AD. Similar to the case of (a), we can see the intersection
point of line EF and HG or of line EF and IJ locates in Q,

which is a contradiction.

Fig. 6. 2
Case 2. & = 1. Consider A
integer point X on P other than M/ /)f\\
the vertices. Since X ¢ T, ///M’ N>
there exists an edge MN of T U U
such that T and X are separated &
Fig. 6.4

by line MN (denote by [ ) (see
Fig. 6.4). Thus, MN is a part
of boundary of Q. M is on the edge AB of P, N is on the edge
CD of P. A, C and X are on the same side of / ( A and C may
coincide, but B and D do not by the hypothesis that T has at
least six edges). Thus, there is another vertex U of T on AB.
and there is another vertex V of T on CD.

Denote the convex hull of points X and vertices of P below
[ by P’. Then P’ and P coincide below BD , and the part of P’
up BD is ABXD. Comparing T" = P’ N Q with T, we see that
T’ T, and the boundary of T is the boundary of T with MN ,
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MU and NV replaced by M'N’, M'U" and N'V’, respectively.
That is, T’ and T have the same number of edges, and the
number of integer points of P’ other than vertices is less than
that of P. By a finite procedure like this, we can obtain a
convex polygon with no interior integer point. By Case 1, it is

impossible. []

IV (Nanjing, Jiangsu)

First Day
8:00 - 12:30, March 23, 2014

@D Let O be the circumcenter of AABC and H, be the
projection of A onto BC. The extension of AO intersects
the circumcircle of ABOC at A’. The projections of A’
onto AB and AC are D and E, respectively. Let O, be the
circumcenter of ADH ,E. Define Hy, Oy, H¢ and O
similarly.
Prove that H,O,, HOp and
H O, are concurrent. (posed
by Zhang Sihui)
Solution. Let T be the symmetry
point of A over BC, F be the
projection of A’ onto BC, and M be
the projection of T onto AC.
Since AC =CT, we have L/ TCM =

Us

2/TAM. Since ALTAM = 5
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ZACB = ZOAB, we have
/TCM = 2/0AB = ZA'OB = Z/A'CF,
and
/TCH, = Z/A'CF + Z/A'CT = ZTCM + Z/A'CT = ZA'CE.

Because of the fact that ~CH.,T, CMT, ZCEA’,
~/CFA’ are right angles, we have,

CH, CH, CT _cosZTCH, cos ZA'CE

CM CT "CM  cos/TCM  cos/ACF
_CE _CA" _CE
CA" " CF ~CF’

i,e.,CH, +CF =CM «CE,soH,, F, M and E are on the
same circle w .

Similarly, let N be the projection of T onto AB, then H, ,
F., N and D are on the same circle w,. Since A’FH,T and
A’EMT are both right trapezoid. the perpendicular bisector of
the segments H,F and EM meet at the midpoint K of the
segment A'T.i.e.. K is the center of circle w, and KF is the
radius of circle ;. Similarly, K and KF are also the center and
the radius of circle w,, respectively. Thus, w, and w, are the
same, D, N, F, H,, E and M are on the same circle. So O, is

the midpoint K of A'T, O,H, [|AA’.
Since ~ H.AO + /AH H, = g — /ACB + /ACB = %

we have AA” | HyzH¢, thus O4H, | HgHe, therefore,
O Hss OgHy and OcH¢ all pass through the orthocenter of
AH,HH. []

o Let AjA,--+Ay be a regular 101 — gon, and color every

vertex red or blue. Let N be the number of obtuse
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triangles satisfying the following conditions: The three

vertices of the triangle must be vertices of the 101 — gon,

both the vertices with acute angles have the same color,
and the vertex with obtuse angle has different color.

(1) Find the largest possible value of N.

(2) Find the number of ways to color the vertices such
that maximum N is achieved. (Two colorings are
different if for some A, the colors are different on
the two coloring schemes.) (posed by Qu Zhenhua)

Solution. Defining x; = 0 or 1 depends on whether A; is red or
blue. For obtuse triangle A,_,A;A ., (vertex A; is the vertex of
the obtuse angle, i.e., a +b < 50), these three vertices satisfy

the conditions of the problem if and only if
(I,'_l”,' u)(I,'_IH,/,):la @

otherwise equal 0, here the subscript modules 101. Thus,

101

N = Z 2 (x; —xi)(x; —244).

i=1 (a, b)
Here Z ..., stands for the summation of all positive integer pairs

(a, b) satisfyinga +b6 < 50. There are 49 +48 ++-+ +1 = 1225 such
positive integer pairs. Expanding O, we have

101

]\J = :ZE:J :E:J ( X, — X ) (.17 i Xitp )

i=1 (a, b)

1
(xi —xxi- — XX T u‘ri‘Fl))
i=1 Cas b)
101 101 50

= 12250, aF + D) > Gk —1 —2(50 — k) ax s
i=1

i=1 k=1

101 50
= 12250 + >, >3k — 10D xx . @

i=1 k=1

Here n is the number of the blue vertices. For any two vertexes
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A, 'dndAj7 1 < <] <10lylet
d(A,y AJ) :d(Aja Az) :mln{] *le 101 *] +l}.

Let BS{A,, Ay, ..., A} be the set of all blue vertices.

Then @ can be written as
N = 12252 —101C2 +3 >, d(P, Q), ®

plQcs

where {P, Q} pass through all the two-element subsets of B.
Without loss of generality, we assume that n is even. Otherwise,
change the color of all vertices, the value of N does not change.
Writen = 2t, 0 <t < 50, from one point, renumber all the blue

vertices by P, , P, ..., P, clockwise. Then

t t t—1
S ar. @ = S dP.. P +%ZE(¢Z(P,, P+

(P, QI=B i=1 i=1 j=1

d(P.,, P, +d(P,,. P, ) +d(P, . P))

< 50t Jr%t(t —1).

@

Here the subscript of P; modules 27, and we use the inequality

d(P;, P,,) <50and

d(Piy P;+j) +d(Pi+j9 P,‘+,) +d(Pi+17 P,7j> “V’d(Pifjv P,)
< 101.
6)

Combining @ and @, we have

N < 12257 —101C? +3(50t +—1(2)1t(t — 1))
101 5099

. 2
-l +—2 L.

The right-hand side of ® attains its maximum value when
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t =25, thus N < 32 175.

Next, consider the necessary and sufficient condition of
N = 32175. First, t = 25 means that there are 50 blue vertices.
Secondly, for 1 <7 < ¢, we have d(P;, P.,) = 50. When d(P;,
P.,) = 50, equality of ® holds. Therefore, the number of ways to
choose 50 blue vertices such that N achieves maximum is equal to the
number of ways to choose 25 diagonals from the longest 101
diagonals such that any two diagonals do not have common vertices.

Edging A, and A, .7 =1, 2, ..., 101, we get a graph G.
Note that 50 and 101 are relatively prime, so 1 +50n(0 < n <
100) form a complete residue system module 101, i.e. G is a
circle with 101 edges. Therefore, the number of ways (written
as S ) to color 50 vertices blue and N achieves maximum is equal
to the number of ways to choose 25 edges of G such that any two
of them do not have common vertices. Now, fix one edge ¢ of
G. Since the number of ways to choose edges havinge is C3! , not
having e is C3}, so S = Ci! + C}. Similarly, the number of ways
to have 50 red vertices is also S, thus the number of ways to color
the vertices such that the largest value of N is achieved is 2S.

In summary. the largest possible value of N is 32 175, the

number of ways to color is 2S = 2(C}: + C3). L]

@D Show that there are no 2 — tuples (&, y) of positive
integers satisfying the equation

(x +D(x +2)(x +2014) = (y + Dy +2)---(y +4028).

(posed by Li Weigu)

Proof. Forn = 2" « m(k is a non-negative integer, m is odd),
let v(n) = 2*.

We prove this by contradiction. Assume (x, y) is one
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positive integer solution of the equation. Let
v(x +i) = max {v(x +j)}.
1<j<2014
If 1 <j <2014, j # i, then
v(x +j) =vlx +1+G =) =v(G —1),

SO

v ( 11 @ +j)] — 0 (2014 — )1+ G — DD < 0(2013D).
1<j<<2014, j#i
Since Hfifu +j) = ijj”(y +j) is a multiple of 40281, thus

40281
20131

x+i>v(x+i)>v( )>21007.

Therefore, = > 2", So (y +4028)"* > [[ " (y +j) =

T G ) =210 We have y +4028 > 27, > 2",

Lemma. Let0 < <%<1 <i<w.Ifr =43 4y =
n !

2 max,<;<, {x;}, then

1
n

=1—x —y.

1l—x = (ﬁ(l *1‘,))
i=1

Proof of lemma. By the AM — GM inequality, the inequality on
the left is easy to prove. The inequality on the left holds, since
(ITa—zn) = L > L
i=1

" 1 "1+ 4220
>

=11 —x,

n

n +nx + 22::11?

1
1+x+y
=1—x —y.

The lemma is proved.
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Back to the problem, letw =z +2015 >2"7, z =y +402ﬁ

> 2°°%; then the equation is equivalent to

o (=)0 -0
- ()l ()

By the lemma,

1

w(l 722%5j>w : ((1 *ij@ —%j(l 72?#))—

>w(1 2015 2. 2(314“)
2w w”
2015 1
1 — L
>w( ij g

Therefore, the decimal of w - ((1 — lj(l — j)j

2014 o 3 1
(1 o jj belongs to(g, 2}.

On the other hand, by the lemma

) 1712 + 3% e 4027
= 427« 2014

1
1 9 40272\
2ol —— (1L ||l —
e (g a) (- E)

17 437 f e 140270 2. 4027/‘)

21
- ( 427 « 2014 (427)°

thus

» 4+2014° —1 ) 1 9 40272 21
2 =zteovot T o {1 =51 =T ]l - =5
= 12 - = (( 4z2j( 422) ( 127 D

,  4+2014% —1 4027
12 8z?

. 4.2014° —1 1

>z

>z

12 8"
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4.2014% — 1
12

(2 (9 )y 027 ) 7
z [[1 4z2](1 422j (1 12 Jj belongsto(g,lj,

which is a contradiction.

Since z° is an integer, so the decimal part of

Therefore, there are no 2 — tuples (&, y) of positive integers
satisfying

2014 4028

[+ =1]¢ +i. []
j=1 j=1

Second Day
8:00 - 12:30, March 24, 2014

@D Given an odd integer £ > 3. Prove that there exist

infinitely many positive integers n, such that there are

2
two positive integers d;, d. that all divide n 2+1, and
d, +d, =n +k. (posed by Yu Hongbing)
Solution. Consider the Diophantine equation
(b =2 +Day = (x +y — k) +1, @

we prove that D has infinitely many positive odd solutions (x, y).

Obviously, (1, 1) is a positive odd solution, let (x;, y,) =
(1, 1. Assume that (x;, y,;) is a positive odd solution of D,
andx;, <y, letx;yy =y, yin = =Dk =3y, +2k —x;.

Since @ can be written as
28—k =1k =3y +2k)x +(y —k)* +1 =0,

by Vieta’s theorem., (x4, .41 ) is also a integer solution of @.
Since x,; , y; and k are all positive odd integers, and & = 5, so

x 41 1s a positive odd integer, and
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Vit1 — (k —1D)(k *3)3/, + 2k — X, =X = 1(mod 2),
Vit >8y, + 2k - x; >y, > 0.

Thus, (s y;1) is a positive odd solution of O, and x; +
v; <xi1 tyi1. By (x1, y1) and the construction above, we get
a series of positive odd solutions of D: (x;» y;)si =1, 2, ...,
such that x;, +y, <x, +y; << -

For any integer ¢ greater thank, x;, +y, > k. Letn =z, +
v, —ksd, =x;5d, =y,. Thenn is a positive odd integer, and
d,+d, =n+k. Since (k —2)* +11is even, we can show thatd, ,

n? +1

d, are both divisors of ,andd, +d, =n +k. Thus such n

satisfies all the conditions, therefore there exist infinitely many

positive odd integers n satisfying the conditions. []

@D Lectn be a given integer which is greater than 1. Find the
greatest constant A (n) such that for any non-zero complex

Z1s %2 ... Z,» WE have

e

1<<k<n

2 | 2, |* ZA(n) min{| 2,01 — 2z,
k=1

where z,;; = z,. (posed by Leng Gangsong)
Solution. Let

%72‘71’

/1() (71 > -
— ™ otherwise,

™
4cos® —

2n

we prove A,(n) is the greatest constant.
If there exists £ (1 < %k < n) such that| 2,01 —z, | =0, the
inequality holds obviously. So without loss of generality, we can

assume that
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2y =1, )

min | e+l T Rk
1<k<n

Under this assumption, it suffices to show that the
minimum value of E:Zl |2y [Pis Ao ().

When n is even. Since

Z‘Zk‘2:12(|24|+|24+1| 2 Zp+1 — R ’

k=1 =

2% lr\g{l” | Tl T % |Z} = %v
, (1 1
and equality holds when (21, 2,5 ..., 2,) = DT g e
1 1 .. " g M
5 T ) thus the minimum value szk : | 2, | is - =A,(n).

Next, consider the condition when n is odd. Let

Zrt1

(9,,—arg €0, 20,k =1,2, ..., n.

=" then by @D,

Forallk =1, 2. ..., n.if0, < or0, /32

s
2
|Zk ‘2 +| L+l ‘2 :‘ ZTp T Rkt ‘2 +2 ‘ Xy sz+l | cos 0,

2‘2,‘«72;{71‘221. @

Ifo, (%, %), then by cos 8, << 0 and @,

<‘ Zpr T Rptl ‘2

:‘zk‘2+‘zk~1‘2*2‘2ksz+1|C056k
<(‘Zk ‘2+‘2k+1 ‘2)<1 +(_2C056k))

2 2 g/
- (‘ Zk ‘ +‘ R k+1 ‘ * 2sin’ 7

Therefore,
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> ; 1
‘Zk |_+‘Zk+l ‘2270- ©)
Zsinz?k

Now consider the following two conditions.

(D) If forall k(1 <k <n). 0, € (% 3’21) by ®

C 1
) R @

=1 sin” =

2

n ) 1 e ) ‘
Z | 2y |? :?2(‘ 2 [Pz 1) =

k=1 k=1

»-J>‘>—A

. n Zpt1 Tt
Since | | _ L= — 1, we have
k=1, 2,

E@k :arg(H @jJerTr:ZmTc, ®
k=1 =1 <

k
where m is a positive integer, and m <<n. Note that» is odd, so

O<sinM<sinu=cosl. ©
n 2n 2n

_ 1 TS :
Let f(x) = snie’ ¢ € [4, 1 ] It is easy to show that

f(x) is a convex function. By @ and Jensen’s Inequality, and

combining ® and ©. we have

X , 1 X 1 n 1
2 |Zk ‘Z = — =
~ 440, T 4 (1~ 4,
k=1 =1 sin ) sin (;Zkl 7)
- n., 1 LI 1 =X, (n).
4 ; MTC 4 2
sin- —— COS™ —
n 2n
. . . 37
(2) If there exists j (1 < j < n), such that0, ¢ 5 )

let
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By @, forj € I, we have | z; |* +| 2,,, |* =1; and by ©,

for; & I, we have

) ; 1 1
\zj\“ﬂzjﬂ\ZZia}?.
G2
2sin 5
Therefore,
. 1 ) 2
20 lm P = (20U Pz 1D+ 25U 2 1P+ 2 1)
k=1 jel je&l
%|1|+f<n—\1\>
1 n +1
= — = .
1 (n+1 11D 1 @
Note that
n +1 n e n
= — Scos’ — =
4 4 , T cos 2n n +1
COSE
L ) 1
Ssin® ~ =1 —cos’ ~ <1— " =
s 2 cos 2 n +1 n +1

The equality holds whenn = 3; whenn =5,

P ox 1 1
I < < < —,
sin’ 2n (Zn) 2n n +1 n +1

the inequality also holds. So for odd integern = 3, z ;:1 2% .
L Combining @, we have
cos®
2n
E‘Z;«‘Z>l’ 1 :Ao(n).
k=1 b X
2n
On the other hand, when z, = I e LR =1,
2c0s

2n
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29...97’19Wehave‘2k — Zphl |:19 kR =1,2, ..., n, and

Ekﬂ | =z, |* achieves its minimum value A, (n).

Summing up, the greatest A (n) is
%9 2 ‘ n,

, otherwise.

4cos . D

@ For positive integer £ > 1, let £ (k) be the number of ways
of factoring %2 into product of positive integers greater
than 1. (The order of factors are not countered, for
example f(12) = 4, as 12 can be factored in these four
ways: 12, 2 X6, 3 X4, 2 X2 X3.)

Prove that, if n is a positive integer greater than 1, p is a

prime factor of n, then f(n) < % (posed by Yao Yijun)

Solution. We use P(n) to stand for the biggest prime divisor
of n, and define P (1) = f(1) = 1. We first prove two lemmas.

Lemma 1. For positive integer n and prime p | n, we have f(n)

<>,

Proof of Lemma 1. For convenience, a factoring satisfying

. S(dD.

the condition is called a factoring for short.

For any factoring of n, writen = n,n,**n,, since p | n, so
there existsi € {1, ..., &}, such that p | n, (if there is more
than one such ¢, choose any one of them), without loss of

generality, assume that: = 1. Map this factoring to a factoring

n
ofd = —,d =n,nyn,.
n,

For two different factorings of ns n = nyn,**n, andn =
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’ 4 / . . / /
niny-n, (where p dividesn, and n,). If n, = n,, thend =

nyn, andd = nyn; are two different factorings of d (d is a

divisor of%); ifn, #n,.thend = # = d’, so these two
n, 7

factorings map to a factoring of ¢ and d’ . respectively ( d and

./ (d). Lemma 1 is
P

d’ are divisors of %). Thus, f(n) < 211
proved.

Lemma 2. For positive integern, let g (n) = Ed‘n 1%, then
gn) <n

Proof of Lemma 2. Induction on the number of different

prime divisors of n. If » = 1, theng(1) = 1. If n = p*, pisa

prime, then

p —1
p—1

gn) =1 +1+p +ee+po! =1+ <1l+p*—1=n.

Assume that when the number of different prime divisors
of n is £, we have g (n) < n. Consider the situation when n has
k + 1 different prime divisors. Let the prime factorization of n

ben = pir-pip™t ', where p, < -+ < p, < p,.1» and write n

k41

_ pt1
mp . So
appl Y1

g(n) —g(m)+22 ﬁH] =glm) +olm) an

’
dlm i=1 le*l

where o (m) stands for the sum of positive divisors of m. By

assumption, g (m) < m, since

oc(m)

S ( Eopit! 1)?4*# -1
1 i =1 )b — 1

DPra1 — 1

a;+1
<(1r 2 o -v

+1
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k p?,+1 —1 "
U e

k

< (Il pi)yiy =1
i=1

= n —m,

so g(n) <n. Lemma 2 is proved.

Back to the problem, it suffices to prove, for positive

. , ’ < n )
integer n, f(n) POD holds

By induction onn, if n = 1, the equality holds. Assume that

forn =1, 2, ..., k,wehave f(n) < -2, Then, ifn =k +
P )

1, by Lemmas 1 and 2 and the assumption,

Fe+D = D) ra = D) A

P(d)
N ( k41 j< k+1
E\Pk+1)) PGk +1)
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August 10, 2010

@D Letn be an integer greater than two, and let A,, A,, ...,

A,, be pairwise distinct nonempty subsets of {1, 2, ..., n}.

w A N A
EULA LA |7

(Here, we setA,,., =A,. Foraset X, let| X | denote the

Determine the maximum value of 2

number of elements in X. )

Solution The answer is n.
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. A, NAL
We consider each summands, = ——————~————.
‘ Ai “| A1»1 ‘

If A; N A, is empty set, thens; = 0.

IfA; N A, is nonempty, because A; # A ., , at least one of
A and A, has more than one element, that is, max{| A, |,
| A.sy |} = 2. Because A; N A, is a subset of each of A; and
A A NAL [<min{| A, [, [A. |} and

o ‘A,"|Ai+1‘
- min{ | A, |, | A |} <L
max{| A; [, [ A, [} emin{[ A, |, [ A [} 2"

It follows that
2n 2n
A NAL | 1
g < E - =
i=1 ‘ Ai ‘ .| Ai+l ‘ i=1 2 "

This upper bound can be achieved with sets

Al :{1}’ AQ :{1’ 2}9 A3 = {2}5 A,1 :{29 3}7 P )

Az :{nfl» ny. Az :{n}s Ao, = {n, 1}.
[]
@» In triangle ABC, AB = AC. A
Point D is the midpoint of side
BC. Point E lies outside the F

triangle ABC such that CE 1. AB

and BE = BD. Let M be the

midpoint of segment BE. Point

F lies on the minor arc A/B of B D C
the circumcircle of triangle ABD Fig. 2. 1

such that MF | BE. Prove that

ED 1 FD.
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Solution 1. Construct point I, such that EF, = BF, and ray
DF, is perpendicular to line ED. It suffices to show that FF = F,
or ABDF, is cyclic; that is,

/BAD = /BF,D. @
Set L/ BAD = ZCAD = x. Because EC | AB and AD | BC,
ZECB =90°— ZABD = /BAD = x.

Note that MD is a midline of triangle BCE. In particular,
MD | EC and

/MDB = /ECD = x. ©)

In isosceles triangle EF,M, A
we may set /EF M = /BF M =
y. Because EM |1 MF, and MD |
DF,,

HF)

/EMF, = Z/EDF, = 90°,

implying that EMDF, is cyclic.

Consequently, we have B D C
ZEDM = ZEF M =y. Fig. 2.2
Combining @ and @ . we obtain

ZBDE = ZEDM + ZAMDB = x + y.

Because BE = BD, we conclude that triangle BED is
isosceles with ~MED = /BED = /BDE = x + y. Because
EMDEF, is cyclic, we have /MF,D = /MED = x + y. It is

then clear that
/BF,D = /MF,D — /MF,B =x = /BAD,

which is D.
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Solution 2. (Based on work by Sherry Gong and Inna
Zakharevich) We maintain the notations used in Solution 1. Let
» and O denote the circumcircle and the circumcenter of triangle
ABD, and let T be second intersection (other than B ) between
line BE and . Extend segment DE through E to meet w at S.
Point F, lies on w such that DF, | DE. We will show that FF, =
ForF,B = F,E. Let M, denote the foot of the perpendicular
from F, to line BE. It suffices to show that M, is the midpoint
of segment BE , that is, EM, = M, B,
Because ~/SDF, = /EDF, =
90°, O is the midpoint of SF,.
Because BTAD is cyclics, /BTD = T,

ZBAD = ZBCE = x. Note also ¢ F(Fy)
that BD = BE and /EBC =

ZDBT. We conclude that

triangle BDT and BEC are C

congruent to each other, implying
that BE = ET. Hence, OE L
BT. Let N be the foot of the perpendicular from S to line BE.
Note that segments NE and EM., are the respective
perpendicular projections of segments SO and OF, onto line BE.
Because SO = OF,, NE = EM,. Because TE = EB, it suffices
to show that TN = NE, which is evident since

/STE = /SEB = /SDB = /EDB = /BED = /SET

and so triangle SET is isosceles with SE = ST. []

@D Prove that for every given positive integer n » there exist a
prime p and an integer m such that

(a) p =5(mod6);
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(b) p 1n;

(¢) n =m*(mod p).
Solution 1. There are infinitely many primes p that are
congruent to 5 modulo 6. (This is a special case of the
Dirichlet’s theorem on primes in an arithmetic progression that
can be easily proven directly. There is at least one such prime
(namely, 5). Suppose there were only finitely many primes
congruent to 5 modulo 6, and let their product be P. Then 6
P —1, which is larger than P and congruent to 5 modulo 6,
must have another prime divisor congruent to 5 modulo 6,
which is a contradiction. Thus, the original assumption was
wrong, and there are infinitely many odd primes that are
congruent to 5 modulo 6.) In particular, one such prime p is
larger thann. Thus, p satisfies both conditions (a) and (b). We
can write p = 6k + 5 for some positive integer k. We set m =

n"" . Then the Fermat’s Little Theorem, we have

12649 — _ 6k+4 6kt4 — p—1

m® =n =n on en =n «n?" «n =n(mod p).

Solution 2. Setm =n —1. Thenm® —n =n’ —3n’ +2n — 1,
which is relatively prime ton. Any prime divisor p of m® —n is
relatively prime to n, that is, p satisfies the conditions (b) and
(c). It remains to find a p that is congruent to 5 modulo 6.

Note that

m* —m =mGn*—1) =Gn —DmGn +1),

which is divisible by 6. Hence, m® —n =m —n =—1 = 5(mod
6). Thus, there is a prime divisor p of m® — n that is congruent
to 5 modulo 6, and this is the prime we sought. []
Comment. The original version of the problem is as follows.

Prove that for every given positive integer n, there exist a
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prime p and an integer m such that
(a) p =3(mod 4);
(b) p fn;
() n =m*(mod p).
It was inspired by a solution to the problem 3 of IMO 2010.

o Letx,s 225 ... 2, (wWhere n = 2) be real numbers with
i+ xi e 2l =1,
Prove that

n

b 2 2 1\ 2
[ S— R n Ty
Z( 2” iI?J kk = (n +1j AEl kk'

k=1 i=1

Determine when the equality holds.
Comment: Expanding the left-hand side of the desired

inequality gives

n ; n , n )
_ Xk B 2x% I 2 kai
- kf n .9 n . aN2
E=1 k=1 g . ix; k=1 (g dxi)”
i=1 i=1
" n .

B T 1 Z 1 i 1 Ejk 2
- k n . 2 2 n . aN2 L
k=1 R E RS Lk ( E ) lzx,-)“ k=1
i= i=

n
= > 7 PR PR
k=1 5 X § 1x;
i—1 i—1
n 2
o Xp o 1
PR
k=1 k § . lI,Z
i—1
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or

that iSa
N af S y (n +1)°
(25 ) (et = 52 v

We present two proofs of the above inequality.

Solution 1. We rewrite @ as

zm(i] z—zj(ikxi)é (n + 17,

k=1 k=1

By the AM - GM inequality, we have

n n

n 12 % 2oy 7’112 ,
477(2 k’j(;klk)—ﬁi(; k’j(;kzk)
n/:'/% n ik‘ri\)z

k=1

=(2
()

k=1

It suffices to show that

%Jrk <n +1

or
O0<nk +k—k —n=—kE¢k-—-1),

which is evident.
Now, we consider the equality case. Note that the last
inequality is strict for 1 <<%, <n. Hence. we must have x, = -+ =

x,—1 = 0. For the AM - GM inequality to hold, we must have
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n

N

n
nxy 2 2 2 2 2
E % = kxi ornxi tx, = x1 +nx;
k=1 1

2
n

. 1
with xz? + 22 = 1. We must have 27 = 2 = —and x, = *+ =

2
Xy — O-
Solution 2. (By Lynnelle Ye) We write @ as

Ii) g
> i (;kxk)>o.

k=1

(n + 1)? *471(

Note that the left-hand side of the above inequality is the

discriminant of the quadratic (in¢) .
() =n(xi 4+ 225+ FnxHt? —(n + Dt +

2 2
(x% + 5 4 +1—”).

It suffices to show that f(z) has a real root. Because the
leading coefficient of f(x) isn(x} + 225 + ++ +nx2), which is
positive, it remains to be shown that f(z) < 0 for some ¢.

Because xf + - + 22 =1, we have
f@) =n(xi +225 - +nxidt> —(n + D (i + x5 + - +

X 1'2
—+ oo _._7”
2 nj

(NI

Dt + (1T +
B ‘ o
= E (nkxitZ —(n + Dz Jrij
k=1 k
= Z”:xz(nktfl) /f*i
k=1 ‘ k '

It is easy to see that f(%j < 0 because for t = —,

each summand

2 — —
x} (nkt ﬂ)(t —ij=“(k Dk =n)

/Q nk \O’
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completing our proof. For the equality case of the given
inequality, we must have equality case for the above inequality
for every k; that is, x;, = 0 for 2 <%, <<n — 1. It is then not

difficult to obtain that

2t =al = % (]

Second Day
8:00 - 12:00, August 11, 2010

@D Let f(2) and g (2) be strictly increasing linear functions
from R to R such that f(x) is an integer if and only if
g(x) is an integer. Prove that for any real number x,
f(x) — g(x) is an integer.

Solution. We can write f(x) =ax +band g(x) = cx +d for

some real numbersa, b, ¢, d witha, ¢ > 0.

By symmetry, we may assume thata = c.
We claim thata = ¢. Assume on the contrary thata > c.

Because ¢ > ¢ >0, the ranges of f and g are both R. There is a

x, such that f(x,) = ax, +b is an integer. Hence g (x,) = cx,

+d is also an integer. But then,
X 1
f (1‘0 Jr;j =ax, +b +1
and
1 c
g f()“‘ri :(‘I(>+l) +i.
a a

But this is impossible because we cannot have two integers

g(xy) and g (x,) that have positive difference £ which is less
a



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

China Girls’ Mathematical Olympiad 169

than 1.
Therefore, we can write f(x) =ax +band g(x) =ax +d
for some real numbersa, b, d witha > 0.

Thenb —d = f(x,) — g(x,) must be an integer, that is,

f(x) —glx) =b—d

is an integer. []
@ In acute triangle ABC, F
AB > AC. Let M be KA

the midpoint of side
BC. The exterior angle
bisector of /BAC p

meets ray BC at P. Fig. 6. 1
Points K and F lie on
the line PA such that MF 1 BC and MK 1 PA. Prove
that BC* = 4PF « AK.
Solution. Let @ and O denote the circumcircle and the
circumcenter of triangle ABC, respectively, and let N be the
midpoint of arc B/Z (not containing A ). Note that line MN is
the perpendicular bisector of segment BC. In particular, both F
and O lie on line MN. Note also that ray AN is the interior
bisector of /BAC implying that NA | FP or /NAF = 90°, It
follows that NF is a diameter of w. It is clear that MK [ AN,

from which it follows that

AK _ FK
MN FM®
Hence,
PK + AK _ PK - FK -MN‘

FM
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Note that MK is the altitude to the hypotenuse in right
triangle FMP , implying that triangle FMK and FPM are similar
to each other and PF + FK = FM?. Combining the last two

equalities yields

_ PF+FK « MN _ )
PF « AK = =50 205 = FM « MN,

B/ C ’
N
Fig. 6. 2

By the power-of-a-point theorem ( or cross-chord

BC*

theorem), we have FM « MN = BM « MC = 1

. Combining

the last two equalities gives the desired result. []

@D Let n be an integer greater than or equal to 3. For a
permutation p = (x1, 225 ..., x,) 0of (1, 2, ..., n), we say
that ; lies in between x; and x, if i <<j << k. (For example,
in the permutation (1, 3, 2, 4), 3 lies in between 1 and 4,
and 4 does not lie in between 1 and 2.) SetS ={p, ps» ...
P ) consists of (distinct) permutations p; of (1, 2, ..., n).
Suppose that among every three distinct numbers in {1,
2, ..., n},one of these numbers does not lic in between the
other two numbers in every permutations p; € S. Determine
the maximum value of m.

Solution. The answer is 2" .
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We first show thatm < 2"'. We induct onn. The base case
n = 3 is trivial. (Indeed, say 3 does not lie in between 1 and 2,
then we can have S = {(1, 2, 3) , (3,1, 2), (2,1, 3), (3, 2,
1)}.) Assume that the statement is true for n = & (where k£ =
3). Now considern =% +1 and a set S, satisfies the conditions
of the problem. Note that if the element £ + 1 is deleted from
each permutation p; in S, » the resulting permutations ¢; form a
set S, that satisfies the conditions of the problem (forn =k). It
suffices to show the following claim: there are at most two
distinct permutations p and ¢ in S,;, that can map to the same
permutation » in S, (by deleting the element # + 1 in the
permutations p and g).

Indeed. assume that for

p1 = (1 Z2s oo Tim)s P2 = (Y1s Yoo vue s Vi)

D3 :(219 Z2 ...9Zk\1)

inS,, g1 =¢q: =¢g; =q. By symmetry, we may assume that
qg =, 2,..., k). Assume thatx, =y, =z, =k +1. Again by
symmetry, we may assume that1 <a <0 <c¢ <k + 1. (Note
that because ¢, = ¢, = ¢qs = ¢, a, b, ¢ are distinct.) We
consider three numbersa, b, £ +1. We have p, = (..., £ +1,
as ...s b, ...) (in particular, « lies in between # + 1 and b),
p. =C..sas ...k +1,0b,...) (in particular, £ + 1 lies in
betweena andb ), andp; = (.., as ....0, ... k+1,...)
(in particular, b lies in betweena and £ +1). Hence each one of
the numbersa, b, £ +1 lie in between the other two numbers in
some permutations in S, , violating the conditions of S,. Thus
our assumption was wrong and at most two elements in S,;; can
be mapped to a element in S, , establishing our claim.

[t remains to be shown that m = 2" ' is achievable. We
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construct permutation p inductively: (1) place 1; (2) after
numbers 1, 2, ..., [ are placed, we place/ +1 either to the left
or the right of the all the numbers placed so far. Because there
are two possible places for each of the numbers2, 3, ..., n, we
can construct 2" ' such permutations. For any three numbers 1 <
a <b <c¢ <mn, c does not liec in betweena and b. Hence, this set
of 2"™" permutations satisfies the conditions of the problem,
completing our proof. []
Comment. The original version of the problem is as follows.
There are n books arranged in a row on a shelf. A librarian
comes periodically and rearranges the books in a new order. It
turns out that, among any three books, there is one that is
never placed anywhere between the other two. Prove that the
total number of different orders that occur is at most 2",
To enhance the level of difficulty of the test paper, the

problem decides to ask contestants to find this maximum value.

@D Dctermine the least odd number a > 5 satisfying the
following conditions: There are positive integers m
ms,s nys n, such thata = m? +ni, a* = m% +ni, and
m, —n, = m, —n,.

Solution. The answer is 261.

Note that

261 = 15* +6°, 261> = 189" +180%, 15 —6 = 189 — 180.

We know that there is no number in between 5 and 261 that
satisfies the condition of the problem. Assume on the contrary
that a is such a number. We may setd = m, —n, > 0. Because
a is odd, m, and n,; have different parity, and so d is odd.

Becausem, << 261, d < 15; that is, the possible values of d are
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1,3,5,7,9,11, 13, 15. We will eliminate every one of them.

We can writem, =n, +d anda® = (n, +d)* +nj or
2a* —d* = Q2n, +d)*. @

If d =1, then @ becomes a Pell’s equation z* —2y* =—1

with (x, y) = (2n, + 1, a). This Pell’s equation has minimal

solution (x, y) = (1, 1) andx +y+/2 = (1 +./2)%* for positive
integers k. The y values of the solutions of this Pell’s equations
are 5, 29, 169, 985, .... Thus, the only possible values for a
are 29 and 169. It is easy to check that neither 29 nor 169 can
be written in the form of (n, +1)* +n7. Henced # 1.

If d is a multiple of 3, then m, = n,(mod 3) and a® =
2m 5 (mod3). Because 2 is not a quadratic residue modulo 3, we
conclude that 0 = m, = n, = a(mod 3). Hence, mi + ni =
0(mod 3), from which it follows that m, = n, = 0(mod 3).
Thus, a = m{ + n7 is a multiple of 9 and m3 + n; = a” is a
multiple of 81. We can writem, = 3m’ s n, =3n",anda = 9a’
for integers m,, ns, a’. We have m’> + n’* = 9a),. Again,
because —1 is a not a quadratic residue modulo 3, we must have
m’ =n" =0(mod 3). It follows thatd = 3(m’ —=n’) is divisible
by 9. Thus, d = 9.

Because ¢ <261 = 15% +6%, n, < 6. Therefore, n;, = 3 and
a =12 +3°% =153. But then @ becomes 9% « 577 = (2n, +9)*,
which is impossible. Hence, d # 3, or 9, or 15.

Ifd = 11 ord = 13, because 2 is not a quadratic residue
modulo d s from a®> = 2m3(modd), we conclude that0 =m, =
n, =a(modd). It follows that 2m? =a =0(modd) and0 =m ,

=n, =a(modd). In particular, n, =d, m, = 2d and

a =m?+n? =5d* > 261.
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Hence, d # 11 or 13.
Ifd = 5, we also note that 2 is not a quadratic reside

modulo 5. By the same reasoning before, we have
m, =n, =m, =n, = 0(mod 5).

If n, =10, thenm, =15anda = m? +n? = 10* + 15* >
261. Thus, n, =5, m, =10, anda = 125. But then @ becomes

5% « 1249 = (2n, +5)°%,

which is impossible. Hence, d # 5.
If d =7, then because a <261 = 15* +6%, we haven, <8.
The possible values of a are then 65, 85, 109, 137, 169, 205,
245. But then D becomes (2n, + 7)* = 2a® — 49. It is easy to
check that there is no solution in this case. Hence, d # 7.
Combining the above, we conclude that 261 is the answer

of this question. []

AN (Shenzhen, Guangdong)

The 10" China Girls’ Mathematical Olympiad was held during July
28 — August 3, 2011 at the No. Three Senior High School of
Shenzhen in Shenzhen, Guangdong Province, China. Around 39
teams from Mainland China, plus 9 teams from Russia, the United
States, Singapore, Japan, etc., totally 188 girl students attended
the competition. The competition consists of two rounds each
lasts four hours and contains four problems. The team from Shanghai
High School won the first place in team total score. 20 participants

won gold medals, 40 won silver medals, and 80 bronze medals.
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First Day
8:00 -12:00, August 1, 2011

@D Find all positive integers n such that equation 1,1 _1
x v n

has exactly 2011 positive integer solutions (x, y) withx <

y. (posed by Xiong Bin)
Solution. From the given equation, we have xy —nx —ny =
0=>(x —n)(y —n) = n’. Then, besides x = y = 2n, for any
x —n equal to a proper divisor of n°, we will get a positive
integer solution (&, y) satisfying the required condition. Therefore,
n’ should have exactly 2010 proper divisors that are less than .

Suppose n = pit--pit, where p,, ..., p, are prime
numbers different from each other. Then the number of proper
divisors of n* less than n is

(20’1 +1)"'(2ak +1) —1
2 .

So (2¢; +1)+++(2a, +1) = 4021. Since 4021 is prime, we
getk =1, 2a; +1 = 4021, anda; = 2010,

', where p is any prime number. [ |

Therefore, n = p**
o As shown in Fig. 2. 1, the diagonals
AC, BD of quadrilateral ABCD
intersect at point FE, the
midperpendiculars of AB, CD
(with M, N being their midpoints,

respectively) intersect at point

F, and line EF intersects with
BC, AD at points P, Q,
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respectively. Suppose MF « CD = NF « AB, DQ « BP =

AQ « CP. Prove PQ 1 BC. (posed by Zheng Huan)
Solution. As shown in Fig. 2.2,
connect pointsA -F, B-F, C - F,
and D — . By the given condition,
AAFB and ACFD are both isosceles
triangles with FM and FN being the
altitudes to each triangle’s base.

Since MF « CD = NF - AB,
NAFB oo ADFC. Then /AFB =
/CFD and /FAB = /FDC. Moreover, /BFD = /CFA.
From FB = FA, FD = FC, we have ABFD 2 ANAFC, which
means that /FAC = ZFBD and /FCA = ZFDB. Therefore.

points A, B, F, E and pointsC, D, E, F are each concyclic.

From the above result, we get
/FEB = /FAB = /FDC = /FEC,

which implies that line EP is the angle bisector of /BEC. Then

EB _ BP , , ave ED _ QD
EC P In the same way, we have FA AQ"
If DQ «- BP = AQ « CP, thenEB « ED = EC « EA, which

means ABCD is a cyclic quadrilateral with I as the center of its

we have

circumcircle. At this time, since
/EBC = %4DFC - %LAFB — /ECB.

we then get PQ | BC. []

@D Suppose positive real numbersa s b, ¢, d satisfy abed = 1.

Prove
1 1 1 1 9 25
i i B S e T
a+b+c+d+a+b+c+d 1 (posed by Zhu
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Huawei)
Solution 1. First, we will prove that, whenever there are two

numbers amonga s b, ¢, d that are equal, the inequality holds.

We may assume thata = b and lets = a +0 + ¢ +d. Then
we have
1 1 1 1 9
W b T d Ta T etd
—Zgetd 9 24—+ 2
a cd s a s
:é*2a3+(azs +2)
a S

We define the expression above as f(s). Then we see that

f (s) reaches the minimum fors = i.
a

Whena = g, however, we have

s =a+b+c+d =20+ =
a

23
5

At this time, f(s) reaches the minimum for s = 2a + 2_
a

We then have

2 —2a® + (azs -0—2) =
a s

When 0 < a <J7§, we have



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

178 Mathematical Olympiad in China

E*Za Jr(a eri)}z*Zag + 6a =£+5a + (a —2a*)
a a a

S
2 5020 [Z.50 =210 =28
a a 4

Second, we consider the case thata, b, ¢, d are different
ad

c

from each other. We may assume thata >0 > ¢ > d.

bece+c =abcd =1, by using the result above, we have

(@21

Lepedebegt >k
ad 0o« “—+b+¢+<

Therefore, we only need to prove that

N 9

11
S P A

14
b

S

-\.‘,_.

+i+$+—d J O]
¢ ¢ a—+b+c+c

1.
a
1
ad
C
We have

1 1 9 ¢ 1 9
s+ > B —
@ a +a’JraerJrc+d ad c ad

<:>ac+cd*c2*ad> 9 .

acd (a+b+c+d)(—+b+2<j

(a +d *%*c‘)
c

<:>(afc)(cfd)> 9
acd ad
(a +b+c+d) f+b+25

(a —c)(c —d)

.
1 9
“ (a+b+c+d)(f+b+2ﬁ)

=

\Y
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S(a +b +c +d)(a?d +b +20j>9ad

Cﬂ+b +2c = «/9ad('-'a +b+c+d >ﬂ+b +20)
¢ ¢

¢ﬂ+3c = +/9ad .
c

The proof is complete. ]
Solution 2. We prove it by using the adjustment method. We

may assume thata < b < ¢ < d, and define

_ryr 1 1. 9
f(a’b’(’d)ia+b+c+d+a+b+c+d'

Firstly, we will prove

f‘(d,ba(‘vd)}f(/\/a(faby /\/(l(,'ad). @

As a matter of fact, expression @ is equivalent to

1 1 9 - 1 1 9

a ¢ atbtec+td Jac Jac 2+ac +b +d
o Ga =) 9CGJa —e)?
ac (a +0 +c +d)(2 Vac +b +d)

CWa =)t =0 ®

<(a +b+c+d)(2Vac +b +d) = 9ac
2

b +d =2bd =

( w2
c[a+c+ 2 ][2@+ 2 j>9

7( c = Jac.
From1 = abcd =a *a *c » c=>ac < 1= 2 = 2 +/ac and
JVac

a +c¢ =2 +ac, we have the following condition:

2 2
The left-hand side of @ = (2 Vac + @] (2 Jac + @j
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= 4 +/ac «4+/ac = 16ac > 9ac = the right-hand side of ®.
Therefore, @ holds, which means f(a, b, ¢, d) (with
a <b <c¢ <d ) reaches its minimum if and only ifa = ¢ (i.e. a

= b = ¢). So we may assume that (a, b, ¢, d) =

(%, %, %, ta) (t =1). Then we only need to prove that, for

allr =1,
1 1 1 5 25
I I Y i >7~
f(t t t t) 4 @
We have
(L5 L)
: t t t 4
<:>3t+%+ ) 3 2%
t P+ =

¢
&12¢% —25¢7 + 76t — 75t +12 =0

S — D2t —° — 14t —271% + 3617 +24¢ +12) =0
<12¢° — 1% —14¢" — 271 + 3617 +241 +12 =0

&St — 12" + 11" — 3¢ —30¢* +6¢ +30) +42 = 0.

©)

Since r =1, 12¢° +6¢ =2 /1217 « 61 = 1242 t* > 3¢*, and

11" 430 =2 /11"« 30 = 2./330 ¢* > 3047,

then (+ — 1)(12¢° + 11" — 3¢® — 30¢" + 61 + 30) + 42 > 0.
Therefore,® holds, which justifies @.
The proof is complete. ]

@» »n(n =3) table tennis players have a round-robin
tournament — each player will play all the others exactly
once, and there is no draw game. Suppose, after the

tournament, all the players can be arranged in a circle
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such that, for any three players A, B, C, if A, B are

adjacent, then at least one of them defeated C. Please

find all possible values of n. (posed by Fu Yunhao)
Solution. We will prove that» can be any odd numbers not less
than 3. Supposen = 2k +1, an odd number greater than 3, and
n players are represented by A, A5 ..., Ay, Let us arrange
the competition result as follows: A, (1 <i < 2k + 1) defeated
Aiiss Aidas oo s A (we stipulate that Ay = A 7 =1,
2y ...5 2k + 1) but lost to the other players. Then these
players can be arranged in a circle in order A s Ays oov s Asigr s
A,. Now, given any three players A, B, C with A, B being
adjacent in the circle, we may assume thatA =A,, B=A,,, C
=A,, (1<t <2k +1, 2<r <2k). Then eitherr orr —11is an
even number not less than 24, which implies that at least one of
the players A, B defeated C.

On the other hand, suppose n is an even number not less
than 4, and the n players can be arranged in a circle A, .
Ass ...5 A, A, that meets the required condition. We may
assume that A, defeated A,. According to the requirement, at
least one of A,, A; defeated A,, and then A, defeated A, ; but
at least one of A,;, A, defeated A;, so A, defeated A;, and so
forth. We then get that, forany1 <: <<n, A, defeated A4, and
lost to A,., (stipulate that A,;,, = A, A, = A, ). We now

—2 airs —
5 P

divide the players after A, and before A,—, into n

each consists of two adjacent players. Then there is at least one
player in each pair who defeated A;, and that means, besides

n

A,_i, there are at least ;2 players who defeated A;. Then A;

2
lost at least % games. Son players lost totally at least n? games.
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But the number of total games is C} = % < % This is a
contradiction. Therefore, the possible values of n are all the

odd numbers not less than 3. []

Second Day
8:00 -12:00, August 2, 2011

@D Given real number a, please find y
the minimum real number A = A
A(a), such that for any complex

numbers 2, . 2, and real number x

€ [0, 11,if [ 2 [<a |z —2 | B
C
then | 2, —xz, | <A | 21 — =2, |.
O X
(posed by Li Shenghong) Fig. 5. 1

Solution. As shown in the figure, in

the complex plane, points A, B and C denote the complex
numbers z,, =, and xz., respectively. C is obviously on the
secgment OB. The Vectors BA and CA are represented by
complex numbers 2, —z, and 2, —xz,, respectively. As | z, | <

a |z —=,|.wehave | OA | <a | BA |. Then

| 2, — 225 | =| AC | = max {| OA |. | BA |}

:max{‘ZW‘ﬁ‘Z]_ZZ‘}
= max {a | 2, —=2; |, ]2 —2 |}
Therefore, A (a) = max{a, 1}. []

@D Are there any positive integers m » 7 such that m* + 11" is
a square number? Prove your conclusion. (posed by Yuan

Hanhui)
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Solution. Assuming there are positive integers m, n such that

m?®» + 11" = k* withk € Z, we then have
11" =k —m®™ = —m'")(k +m'),
which means that there are integers a ,3 = 0 such that

/e*mm:11“q @
E+m' =11°, @

It is obvious that @ << 8. Subtracting @ from @, we have
2m" = 11117« — D).
Letm = 117m,, where y, m, € N*, 11 fm,. Then
117 e 2m1{° = 11117 — 1),

which implies 10y = « and 2m 1" = 11F7* — 1.

By Fermat’s Little Theorem, we have m 1’ = 1(mod 11),
then 2m i’ = 2(mod 11). But 117 —1 = 10(mod 11), which is
a contradiction. So the proved conclusion is that there are no

positive integers m , n such that m* + 11" is a square number. | |

o Suppose n small balls have been placed into » numbered
boxes B, B,, ..., B,. Each time we can select a box B,
and do the following operations:

(1) If & =1 and there is at least one ball in B, ; move one
ball from B, into B,.

(2) If # = n and there is at least one ball in B, , move one
ball from B, into B,,.

(3) If 2<k <n —1and there are at least two balls in B, ,
move one ball from B, into B,,; and one ball into
B, s respectively.

Prove the following: no matter how the balls are
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distributed among the boxes originally, it is always
realizable to let each box contain exactly one ball by finite
operations. (posed by Wang Xinmao)

Solution. For any two vectorsx = (x1, 235 ..., x,) andy =

(Yis ¥z . s v, if there exists 1 < & << n such that
L1 = V19 eees Tp—1 = Yp—19 Ty >yka

we then denote it asx >y. Letx = (x,, x5, ..., x,) represent
the distribution of the balls among the boxes. Then x is a non-
negative integer vector. The operation defined in the question,
if executable, can be expressed as x +a;, wherea;, = (—1, 1,

Oy ey My, =0, ...50,1, =2, 1,0, ..., D@2 <k <
GALEEIL

k=2

n—1sa, =,...,0, 1, —1). Then for & = 2, we always
have x +a, > x. So for any initial distribution of the balls, after
a finite number of operations on every B, (¢ = 2) that contains
at least two balls, we can arrive at a ball distributiony = (y,,
V2s ... s v, satisfying y, <<1for all# = 2. If at this time y, =

- =y, =1, the problem is solved; otherwise, we have y, = 2.
Assuming 7 is the smallest number such that y; = 0, we can then

do a series of operationson B, B,, ..., B, ;:

Bi. Bz,y ...s Bi

(yls 19 ) 17 09 NVitl s oo y”)
By, B2y ...s Bi

(y19 1, ....,1,0, 1, y;+1,...,y,,)

(yl9 17...9 17 O, 1’ 19 y;+17...yy”)*)'”*>

B
(yl, 0,1, ..., 1, Vitls ...’y”)4’

(ylfla 1"..’19‘)/,719-..")/”)
to get (y, — 1, 1, ..o 1, yi1» ...» y.). Repeating the

operations above, we can finally arrive at the ball distribution

vector that meets the requirement. []
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Q As shown in Fig. 8.1, ©O is the escribed circle touching
side BC of AABC at point M, and points D, E are on the
segments AB, AC, respectively, satisfying DE || BC ;
®O0, is the inscribed circle of AADE tangent to side DE at
point N ; OB, DO intersect at point F', and O,C, EO
intersect at point G. Please prove that MN divides segment

FG equally. (posed by Bian Hongping)

Solution 1. If AB = AC, then the graph is symmetric about
the bisector of £ BAC and the conclusion is obvious. So we may
assume that AB > AC. As shown in Fig. 8.2, let L be the
midpoint of BC, line O, L intersecting with FG at R, and O, N
be extended to intersect with BC at K. Draw line AT that is
perpendicular to BC at T and intersects with line DE at S.
Connecting AO, obviously O, is on the segment AO. By

Menelaus’ theorem, we have
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O.F BD A()_1 0.G CE.A():1 D

FB DA ~ 00, " GC "EA T00,

BD _CE O.F 0,G

Since DE | BC, we have DA —EA" So ol GO , which
means that FG || BC. Then fg (Bf’ = 1. Therefore, R is the

midpoint of FG. We now only need to prove that M, R, N are
collinear. For this purpose, by the inverse of Menelaus’

theorem, we only need to prove that

OR LM KN _, ®
RI.. MK NO, ’
. O.R _O.F _ 00, AD
Since FR || BL , we have RL _ FB A0 DB (the

second equality is justified by D). So we only need to

prove that

00,  AD LM KN _, o
AO 'DB "MK 'NO,

Since O.K | DE, OM 1 BC, AT 1 BC, DE | BC, then
linesO, K. OM, AT are parallel. By the theorem of dividing

the segments into proportional by parallel lines, we have CI)L\C())I =
MK DT
MT" Substituting it into @, we then only need to prove
AD LM KN _ 1 ®
DB “MT "~ NO, )

Since DE IIBC, KN | DE, ST 1 BC, quadrilateral
KNST is a rectangle and then KN = ST. Furthermore, from

DS | BT we have 22 — AS

DB~ o Substituting these results into @,

we now only need to prove
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LM  NO,
MT  AS" ©

Let BC =a, AC =b, AB = ¢. We have

a

BM = a% (the property of an escribed circle) , BL = 2

’

2 2 g2 2 2 72
BT = ccos /ABC = ¢ + & T b° _a tc b.

2ac 2a
Then
c—b
LM _ BL —BM _ 2 _ a
MT BT —BM ¢t =0 +alc —b) a+b+c
2a
On the other hand,
2S sk
NO, _AD + DE + AE _ DE _ a
AS ZS/\AUE AD +DE +AE a +b +C.
DE

Therefore, ® holds. The proof is complete.
Solution 2. Let the radii of ©®O and ©®O, be r and r,,

respectively. Obviously, O,, O and A are collinear.

DE // BC= % - ?E

OF  Sowo, %(ABsin %) 00,
oG _ S ro0,c _ %(ACsin %j 00,
Gk Semn, 71+ CE

=FG | DE || BC.
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Connect ON and extend it to intersect with BC at K. If
ZABC = ZACB, then by symmetry, the proposition holds. So
we may assume that LZABC << ZACB in the following.

We connect OM, O,M, OB, MD, DO, , respectively (see
Fig. 8.3). Since O, N [|OM, we have

Fig. 8. 3
_ 1 . —
SA()NM - SAM(X)l - ?T . 001 e Sin D) N @
1 . C
oG Ol B SAB(}(JI ?BO + 00, « sin ?
GE DF S/\BD()l 1 «BD « DO, + sin B
2 2
.00, «sin &
_ 2
— - ©)
r1 » BD « cos —
2
r=BO-cos 2. r =DO, -sin B,
2 2
SA\I)MN 7SAMEN = %NK « DN — NE
1

. B C
?BD «sinB - (rlcot > — ricot ?) ®

From @ and @, we have
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oG
GE

S ADMN S /AMEN

1

-« 00, ¢« sin —

189

C
2

_ : B . CV).]
—?rI-BD-smB-(cot 5 cot 2)-

B, . C B_ . C
r « OO0, « sin ?-sm 5 (CO'[ 5 cot 2)

Q

—B

=7+ 00, ¢ sin 5

Combining it with O, we get

%(SADMN - SAMEN) = ZSAM()N-

GE
W06, , _0G, (DF | EG
Since 2 =0 (OD +()E)’ then
F )G . DF | EG
(% * SAMNU 7(()7E * SAMEN - (()7D =+ OT]' SAM{)N ’

VI'BD'COS%

OF - SAMND — DF - SAM()N _ oG - SAMEN +EG SAM{)N @

OD OFE

On the other hand,

_ Spmey * OG £ EG « Samon
S anve = OE '

OF - SAM.\"I) — DF - SAMUN

Therefore, Sanue = OD

In the same way,

S - OF . SAM:\"I) — DF - SA\M()N
ANMF — OD .

By @, we have S xmc = Sanur. Therefore, MN divides

segment FG equally.

The proof is complete.

]
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2012 (Guangzhou, Guangdong)

First Day
8:00-12:00, August, 10, 2012

@» Let ais ass ..., a, be n non-negative real numbers.
Prove that
1 a ajaz* " d,
! < 1.
1+a, Jr(1—0-611)(1—|-a2)Jr JF(l-‘-al)(l—i-ag)'"(l-‘-a,,) !

(posed by Ai Yinghua)
Solution. Leta, = 1. We prove the following identity:
k

- a1 o o - a;
2 = g v

J

by induction on n.
It is evident that D is true forn = 1. Suppose that D is true

forn —1, n = 2, then forn,

k=1 j—=1 =1 j—1 aj =1 aj
a1 n
B 1 a ( aj a ajil j
=1 ].+aj =1 ]. +Cl]'
n
-1 - @i

@D As shown in the figure, circles I'y and I', are tangent
externally at point T. Points A and E are on circle ',
lines AB and DE are tangent to circle I', at points B and
D, respectively. Lines AE and BD meet at point P. Prove
that
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o8 - EL,
(2) ZLATP + ZETP = 180°.
(posed by Xiong Bin)
Solution. Let the extension of AT meet circle I, at point H ,

and the extension of ET meet
B T,

circle I', at point G. Then it is

casy to see that AE |GH,

thus AATE v AHTG,
AT _ET

consequently,ﬁ TG And
AH _ EG .
further we have TH ~ TG Fig. 2. 1

By the Circle Power Theorem, we have

AB* _ AT -AH _ ET -EG _ ED’
TH: TH.TH TG +«TG TG?’

Hence a-_ AB.
TG ED’
therefore,

AT _HT _AB
ET GT ED"

By the Sine Law, we
have Fig. 2. 2

AP sin /ABP _ sin /EDP _ EP

AB  sin Z/APB sin Z/EPD ED°

Hence,
AP _AB _ AT
EP ED ET’
that is, PT is the bisector of the exterior angle of SATE.

Therefore,
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ZATP + /ETP = 180°. []

o Find all the pairs of integers (a, &) satisfying the
following condition: there exists an integer d = 2 such
that a” +b6" +1is divisible by d for any positive integer n.
(posed by Chen Yonggao)

Solution. Ifa +b is odd, thena” +b" +11is even, thusd = 2.
If a +6 is even, thena” +56" +1is odd, sod is odd.
Sinced | a +6 +1, (a +b+1)* =a® +b> +1+2(a +b +

1) +2Cab —1),andd | a®* +b6* +1, then.d | 2(ab — 1), so we

haved | ab — 1.

We see that a® +6° +1 = (a +b)* +b6* —ab) +1 =

(—D(—=1—-1)4+1=3(modd), andd | a® +b*+1, henced | 3,

sod = 3.

Since
(a — b)) =a*+b* —2ab=—1—2=0(mod 3),

we havea =b(mod3). Thus, 0 =a +b +1=2a +1(mod3), we
see thata = 1(mod 3).
Therefore, « = b = 1(mod 3). Consequently, for any

positive integer n, we have
a" +0" +1=1+1+1 = 00(mod 3).
Summing up, the required integer pairs are of the forms:

2k, 20 +1),(2k +1, 201), (3k +1, 3] +1), wherek and [ are
integers. []

@D There is a stone (of go game) at each vertex of a given regular
13-gon, and the color of each stone is black or white. Prove

that we may exchange the position of two stones such that the
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coloring of these stones are symmetric with respect to some

symmetric axis of the 13-gon. (posed by Fu Yunhao)
Solution. Take any vertex A and the symmetric axis / passing
it. There are six pairs of vertices symmetric to /. If the color of
stones at each pair of vertices is the same, then the coloring is
symmetric to /.

If there is only one pair of symmetric vertices that has
different color stones, then exchange the stone at one vertex of
the pair in different color to A with the stone on A.

If there are exactly two pairs of vertices in different colors,
then exchange the white stone in vertex of a pair with the black
stone in vertex of the other pair.

Now suppose that for any vertex A and the symmetric axis
passing A, there are at least three pairs of symmetric vertices in
different colors. We shall show this is impossible.

If there are x black stones and y white stones, thenx +y =
13 ; without loss of generality, let + be odd and y be even.

If the stone on A is in black, then the remaining stones are
even in black and white, respectively. Hence, there are even
pairs of vertices in different colors, that is, there are at least
four pairs of vertices in different colors.

Similarly, if the stone on A is in white, then there are at
least three pairs of symmetric vertices in different colors.

Since each pair of vertices is symmetric to one axis, we see
that the number of pairs in different colors is at least 4= + 3y.

On the other hand, the number of pairs in different colors

is exactly xy s thus
xy =4x +3y = x +39,

that is, x (y —1) = 39, but it contradicts to
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f(y*l)<(#j_ = 36. []
Second Day

8:00-12:00, August, 11, 2012

@D As shown in Fig. 5.1, the A
inscribed circle ©1 of AABC
is tangent to the sides AB and D
AC at points D and E,
respectively. And O is the

circumcentre of ABCI. Prove
that ~/ODB = ZOEC. (posed
by Zhu Huawei) %
Solution. Since O is the circumcentre Fig. 5.1

of ABCI, we see that
ZBOI =2/BCI = ZBCA.
In the same manner, L COI = /CBA. Hence,
~/BOC = /BOI + ZCOI = /BCA + ZCBA == — /BAC.

Thus, four points A, B, O and C are concyclic. By OB =
OC, we know that ~/BAO = ~CAO. (It can also be seen from
the well-known conclusion that point
O is the midpoint of arc B/E (not
contain point A ) on circumcircle of
ANABC. ) Combined with the fact
that AD = AE, AO = AO, we have
ANOAD = AOAE. Hence, ZODA
= LOEA, therefore, ZODB =
ZOEC. ]
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e There are n cities (n > 3) and two airline companies in a
country. Between any two cities, there is exactly one 2-
way flight connecting them which is operated by one of
the two companies. A female mathematician plans a
travel route, so that it starts and ends at the same city.
passes through at least two other cities, and each city on
the route is visited once. She finds out that wherever she
starts and whatever route she chooses, she must take
flights of both companies. Find the maximum value of n.
(posed by Liang Yingde)

Solution. Consider each city as a vertex and each airline as an

edge in a color corresponding to the airline company it belongs.

Then the airline route chart of this country can be regarded as a

two-color complete graph with n vertices. By the problem

states, any circle contains edges of both colors. That is, the
subgraph of each color has no circle. It is well-known that for
the simple graph without circle, the number of edges is less than
the number of vertices. Thus, the number of edges of the same
color is no more thann —1, that is, the total number of edges is

no more than 2(n — 1). On the other hand, the number of a

complete graph withn vertices isn(n —1)/2. Hence, n(n —1) <

2(n — 1), that is, n < 4.

If n = 4, denote four cities by A, B, C and D. Let three
routes AB, BC and CD be operated by the first company and the
other three routes AC, AD and BD by the second company. We
see that the route chart of each company has no circle. So, the

maximum number of n is 4. []

@D Leta, <a, < - be a sequence of positive integers such

that r/a, =k +1 for some positive integers £ and . Prove
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that there exists a positive integer s such that s/a, = k.
(posed by Jacek Fabrykowski, USA)
Solution. Letg(t) =t —ka,. Theng(r) =r —ka, =a, > 0.
Note that g(1) =1 —ka; <0. Sotheset{t |t =1,2, ..., 7,
g (1) <0} is not empty. Let s be the maximal element of the
set; thens < r. Hence, g(s +1) > 0. On the other hand,

g+ =s+1—ka,y <s+1—ka, =g()+1<1. O

Thus, 0 < g(s +1) < 1. Consequently, g(s +1) = 1. And
by @, 1 =g(s+1) <g(s)+1<1. We have g(s) =0, that is,

s/a, = k. D

@) Find the number of integers £ in the set {0, 1, 2, ...,
2012
2012} such that the combination number . =

20121
k1(2012 — k)

Bin)
Solution. Factorizing 2012 = 4 X 503, we see that p = 503 is a

is a multiple of 2012. (posed by Wang

prime. If £ is not a multiple of p, then

2012 B 4p B Up)! Y 4p —1
A R A 7/e!><(4p*}e)!7/e7>< E—1 )

2012 '
Hence [ . J = % is a multiple of p.

If £ is a multiple of p, there are only five cases: £ =0, p,
2ps 3p, 4p. And we see that in all cases, the combination

numbers

4p 4p
o) 4p
v} () _4Bp +DBp +2)Bp +(p —1))
P 3p (p*l)!

1,

= 4(mod p) .,
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and

6L(2p +1)2p +2)2p +(p —1))]

4p _LCp+Gp+1)Cp +(p +2))2p +(2p —1))]
2p (p — DI (p +D(p +2)2p —1)]

= 6(mod p)

are not multiple of p.
Now we denote the binary numeral of non-negative integer
n by

r

n = "C(a,a,1"a,), = 2 a;2, and s(n) = E ajs
j=0

j=0
wherea; =0or 1forj =0, 1, ..., r.
Then the power m of factor 2" in factorization of » ! can be

expressed by

5+l e+l

= (a,a, 1***aza,); + (a,a, 1**asa.), + = +a,

=a, X(2"—=1) +a,; X@ ' =1) 4+ +a, X
2'—D +a, x 2" —=1)

=n —sn).

2012
If the combination number { L J = 20121 =

kI X (2012 — k)

] |
Gk m) ! is odd (m = 2012 — k), then it means that the powers
k1l Xm!

of 2 in factors of the numerator and the denominator of the

fraction above are the same. Then
E+m—s(k+m) =k —s(k)+m —s(m),

or

sCk +m) sCk) +s(m).
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This means that the binary addition of £ +m = 2012 has no
carrying.

Since 2012 = (11111011100),, it consists of eight 1’s and
three 0’s. If there is no carrying in the addition of 2 +m =
(11111011100), 5 then on the bit of 0 in (11111011100),, &k, m
are 0;on the bit of 1, one is 0, the other is 1, so there are two
choices: 1 =1 +0and1 =0 + 1. Thus, there are 2° = 256 cases
that the binary addition of two non-negative integers & +m =
2012 has no carrying. That is, there are 256 combination
numbers that are odd, and the remaining 2013 — 256 = 1757
combination numbers are even.

If the combination number

[2012J B 20121 (kA m))
k

kI X (2012 — k) Bl X m )

is even but not a multiple of 4, then it means that the power of
2 in the numerator is greater than that in the denominator by 1.

Thus,
k+m—stk+m) =k —sk) +m —s(m) — 1,
or
sCe +m) =sk) +sGn) — 1.

That is, there is only one carrying in the binary addition of
k +m = 2012. The carrying happens at two bits as01 +01 = 10.
By

k +m = 2012 = (11111011100), ,

we see that the carrying can only happen at the fifth (from the
highest bit to the lowest bit) and sixth bits or at the ninth and
tenth bits. So there exist 27 = 128 cases. That is, there are 256
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combinations whose values are even numbers but not the
multiples of 4.

Thus, there are 2013 — 256 — 256 = 1501 combinations
whose values are multiples of 4. Now., we go back to consider

the cases where £ is not the multiple of p = 503.

4p 4p . .
We see that 0 = = 1 is not a multiple of 4. For

4p
4 4 |
PA_ (%P :%,the power of 2 is s(p) + s(3p) —
p 3p p1@3p)!
4p Up)H!
S(4P) —S(BP) =7, and for [ij—w,the powerof

21iss2p) +s(2p) —s(4p) = s(p) = 8. Thus, there are three
combination numbers which are multiples of 4 but not multiples

of p = 503, that is, the number of £ such that the combinations

2012
( . J are multiples of 2012 is 1501 — 3 = 1498. []

IR (Zhenhai, Zhejiang)

First Day
(8:00 -12:00 August 12, 2013)

@D Let A be the closed domain on the plane delimited by
three linesx =1, y =0, andy =¢(2x —¢), where 0 <
t < 1. Prove that the surface of any triangle inside the

domain A with P(z, ¢t*) and Q(1, 0) as two of its vertices

1
cannot exceed R
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Solution. It is easy to y
observe that the domain is a =1

V=t(22—1)
closed triangle. Its three

C(1, (2—1))

vertices are B(%, Oj, Q,

0) andC(1, t(2—1¢)) . Pick a . )
point X inside the ABQC. 7 0|/Bu2.0) |0y *
then the area of APQX is
equal to half of the product of

Fig. 1. 1
PQ with the distance from X

to PQ. So the area of PQX
takes its maximum value when the distance from X to PQ is
maximized, i.e., when X coincides with B or C.

The area of APQB is

i(l —i)zz — Lo e <%<2 e

2 2 4
gi(w)z _ 1
4 2 4

the area of APQC is

%(1 SO =2 0@ -

4
o o 3
<l(2z+1 t +2 zj :i.
4 3 4

Hence, in the domain A , any triangle with P, Q as two of

. . 1
its vertices cannot have an area that exceeds e []

@D As shown in Fig. 2.1, In a trapezoid ABCD, AB || CD,
®O0, is tangent to the segments DA, AB, BC, ®O, is
tangent to the segments BC, CD, DA . Let P be the



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

China Girls’ Mathematical Olympiad 201

tangent point of ©®O, with AB , and Q be the tangent
point of ®O, with CD. Prove that AC, BD, PQ are

concurrent.

Fig. 2. 1 Fig. 2. 2

Solution. Let R be the intersection of lines AC, BD, and join
0,A, O,B, O,P, O,C, O,;D, 0,Q, PR, QR. As shown
in Fig. 2. 2.

As BA and BC are tangent lines of ©O,,

/PBO, = /CBO, — %LABC.

Similarly, we have ZQCO, = %LBCD .

From AB | CD, we know that ~ABC + /BCD = 180°.
Therefore, ~PBO, + ZQCO, = 90°, and as RtAO,BP and

y o 0,P CQ
RtACO,Q are similar, we have BP 0,0
AP 0,Q
O,P DQ -
L AP Q. o
identities, we obtain BP DQ’ which in turn implies
_cq__ . AP _cg
CQ+DQ T AB CD*

Again by AB | CD, we know that AABR and ACDR are

Similarly, we have By multiplying these two

AP
AP +BP
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similar, so AR _ CR Comparing with —— AP CQ, we have AR _
AB CD’ AB CD AP

CR
cQ’
ZQCR. Thus ~PRA = /QRC. So P, R, Q are collinear.
Therefore, AC, BD, PQ are concurrent. []

Meanwhile, APAR is similar to AQCR as /PAR =

@D In a group of m girls and n boys, any two of them either
know each other, or do not know each other. For any
two boys and two girls, at least one boy and one girl do
not know each other. Prove that the number of boy-girl

nln —1)

pairs that know each other is at most m + 5

Solution. From the hypothesis, for any two boys, there is at
most one girl that knows both of them. Letx; be the number of
girls that know exactly 7 boys, 1 <7 < n. So lexi =m. By

counting the number of the above two boys-one girl

combinations, we have

12— 1) nn —1)
;= .
2 2 N 2

i=2

The number of boy-girl pairs that know each other is then

211 —erE(z*l)x m+21(171> X

nn —1)
—

]

<m +

@D Find the number of polynomials f(z) = ax® + bx that
satisfy the following conditions below:
(l)aa b S {19 29 e e e s 2013};

(2) the difference of any two numbers among f (1),
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f(2, ..., £(2013) is not a multiple of 2013.
Solution. 2013 is factorized as 2013 = 3 X 11 xX61. Let p, = 3,
p. =11, p;, = 61. We denote by a; the residue of ¢ modulo p; ,
by 0, the residue of 4 modulo p, G =1, 2, 3), a, b € {1,
2, ..., 2013}. By the Chinese Reminder Theorem, we have a
bijection of (a, b) with (a s ass aszs bys bys b3).
Now., let f;(x) = ax® +b,x, i = 1, 2, 3. We call a

&

polynomial “ good modulo n” if the residues of f(0),
f(D, ..., f(r —1) modulo n are all distinct.

If f(x) = ax® + bx is not good modulo 2013, then there
exists x1 #Z x; (mod 2013) such that f(x,) = f(x,)(mod
2013). Suppose x; Z x,(mod p,;). Letu, and u, be the residues
of x, and x, modulo p; , respectively. Then u, # u,(mod p,) and
fiCu) = fi(uy)(mod p;)s so f;(x) is not good modulo p;.

If f(x) = ax?® +bx is good modulo 2013, then for every:,
fi(x) is good modulo p,. The reason is as follows. For any
distinct pairr,», r, € {0, 1, ..., p, — 1}, there existx,, x, €
{1, 2, ..., 2013} such thatx; = r,, x; =r,(mod p;) andx, =

xg(mod 2013). Now [ (x,) = f(fg)(mod 2213

ja blltf(fl) ;‘—’L

i i

S (x2)(mod 2013), so f(ry) Z& f (ry)(mod p,) .
Hence, we need to determine the number of good
polynomials f; (x) modulo p;.

For p, = 3, by Fermat’s theorem, a good polynomial
f1(x) =a,x +b,x = (a, +b,)x(mod 3)

is equivalent to say thata, +&, is not divisible by 3. There are in
total six such /', (x).

For: =2, 3, if f,(x) is good modulo p; , then for any « and
v Z0(mod p;), fi(u +v) Z fi(u —v)(mod p,), i.e.,
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filu +v) — filu —v) = 2v[a;Bu® +v*) +b, ]
is not divisible by p,. If a; # 0, the residues modulo p; of

i1
elements in the sets A = {3a,u2 | u =0, 1,..., d 5 }and

2 ‘ifl . .
B :{(fb,- —av) lv=1,2,..., P 5 } do not coincide.

and | A |+| B |=p,. SoA UB forms a complete residue system

modulo p,;. Their sum must be a multiple of p,, i.e.,

p; 1

/z’I
ZMT?)a,»uZ + ZZ(*IL —a;v*) =0(mod p,).

pi—1Y 1 pi—1 p;+1 .
:K- 5 . 5 -plls

Now, 1% + 2% + - +[

2

;

a multiple of p;, so — + b, is also a multiple of p,. Hence,

b, is divisible by p;, i.e., exactly one of a;, b; is 0.

Ifa;, = 0, b; # 0, then f;, (x) = b,x is obviously good.
There are p;, — 1 such good polynomials.

Ifa, # 0, b, = 0, then f,(x) = a;x’. For p, = 11, by
Fermat’s theorem, (x*)" = x* = x(mod 11), so for x, #
x;(mod 11) and x{ # x3(mod11), f,(x) =a,x"is good. There
are in total 10 such polynomials.

For p; =61, as4® =64 =125 =5°(mod61), f;(x) =a;x’
cannot be good.

Therefore, the total number that we are looking for is 6 X

(10 +10) X 60 = 7200. []

Second Day
8:00 - 12:00, August 13, 2013

@D Given positive real numbersa,s as» ... a,. Prove that
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there exist positive real numbersx,, x», ..., x, such that
2:’711, = 1, and that for any positive real numbers y, ,
Yos ... v, satisfying Zilzlyi = 1. one has

Z a;x; 1 Za

i=1 X er: i=1

. Then 21, 1. Moreover,

P
E 4 i=1
n

—1 L +y, i=1 —1 L +y,

Solution. Letx;, =

For any positive numbers y;, y,5 ..., vy, With Ejzly

1. By the Cauchy-Schwarz Inequality,

2111 + 2(1 er)z +y, (Zx,)“=1

i=1
Hence,

Z; Zi +y 2’ Z; Z; T v
@ Let S be a subset of m elements of {0, 1, 2, ..., 98}, m
= 3, such that for anyx, y € S, there existsz € S withx

+ vy =2z (mod 99). Find all possible values of m.
SO'ution. LetS={51752’..- m} ASS { s S2 T S19 v
s. — s1) satisfies also the hypothesis, we may assume without
loss of generality that0 € S. Foranyx, y € S, 50(x +y) =
z(mod 99) € S. By takingy = 0, we have that for anyx € S,

50 € S. As 50 and 99 are coprime, there exists a positive

integer # such that 50 =1 (mod 99). Hence,

x +y =50"(x + y)(mod 99) € S.
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Letd = gcd(99, 515 s25 ...» s,). The above argument
then implies thatd € S, therefore S = {0, d, 2d, ...}. For
any positive factor d << 99 of 99, this S satisfies all the

requirements. Hence, all the possible values of m are 3, 9, 11,

33, 99. []

o As shown in Fig. 7.1, ®O, and ®O, are tangent
externally at point T. The quadrilateral ABCD is
inscribed in ®O,. The lines DA and CB are tangent to
®O0, at points E and F, respectively. BN, the bisect of
ZABF, intersects the segment EF at point N. Line FT

intersects the arc AT (which does not contain B ) at

point M. Prove that M is the exocenter of ABCN.

Solution. Let P be the intersection of line AM with EF. Join
AT, BM, BP, BT, CM, CT, ET, TP. As shown in Fig. 7. 2.

As BF is tangent to ©0O, at F, we have /BFT = /FET.
As ©O, is tangent to ®O, at T, we have /MBT = /FET.
Hence, /MBT = /BFM. So AMBT and AMFB are similar,
therefore MB*> = MT « MF. The same argument gives MC* =
MT - MF.

Now again from that ©O, is tangent to ©O, at T, we have
/MAT = ZFET. So A, E, P and T are concyclic, which
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implies that ZAPT = ZAET. As AE is tangent to ©0O, at E,
we have ZAET = /EFT. Thus, ~AMPT = /PFM, and
AMPT is similar to AMF. Therefore, MP, = MT - MF.
From the above argument, we have MC = MB = MP,
which means that M is the excenter of ABCP. So ~/FBP =

%ACMP. Meanwhile, LCMP = ACDA = AABF, and we

have /FBN = %LABF. Hence, /FBN = /FBP,i.e., P

and N coincide. []

@D Lectn =4 be an even number. At the vertices of a regular
n — gon we write in an arbitrary way n distinct real
numbers. Starting from one edge, we name all the edges
in a clockwise way by e;s ¢,5 ... ¢,. An edge is called
“positive”, if the difference of the numbers at its
endpoint and its start point is positive. A set of two edges
{e;, e;} is called “crossing”, if 2 | (; +;), and among the
four, the numbers written at their vertices, the largest
and the third largest ones belong to the same edge. Prove
that the number of crossings and the number of positive
edges have different parity.

Solution 1. Without loss of generality, we may assume that

the numbers written on the vertices are 1, 2, ..., n. Let A be

the number of crossings, and B be the number of positive edges.

We will prove that the parity of S remains the same if we

exchange numbers 7 and ¢ + 1. We distinguish two cases.

Case |I. The numbers i and ¢ + 1 are written on adjacent

vertices, i.e., the endpoints of edge ¢,. Once we exchange ¢

and: + 1, the number of positive edges is modified by 1, thus
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the parity of B is changed. On the other hand, the only two-
edge subset that will become a new crossing (or change from a
crossing to a non-crossing) is {e,—;, ¢, (the subindices are to
be understood modulo n ), all the other two-edge subsets will
not be affected. So the parity of A will change.

Case Il. The numbers i and i + 1 are written on non-adjacent
vertices. Assume that they are written on the (common)
endpoints of ¢;, ¢;.; and of e¢,, e, , respectively. Once we
exchange i andi +1, every positive edge will remain positive, so
are non-positive ones. Therefore, B is unchanged. Now, for
number of crossings, if a two-edge subset does not involve at the
same time 7 and 7 + 1, then whether it is a crossing or not is not
affected by the operation. So the only two-edge subsets to be
considered are the two that have both¢ and: +1 written on their
vertices and the sum of the edge number is even. They will both
become crossing after the exchange if they are not before, and
vice-versa. Hence, the parity of A remains the same.

Now obviously, every pattern can be obtained from a finite
number of such exchange if we start from writing 1, 2, ..., n
consecutively in a clockwise way, and in the initial situation,
B =n—1, A =0. SoA and B have different parity.
Solution 2. Starting from one vertex, we denote the numbers
written on the vertices by x;, x5, ..., x, in a clockwise way.
We may assume that the numbers written on the endpoints of
edge ¢; are x;» x5 1 = 1, 2, ..., n, where x,;; = x;.
Apparently e¢; is positive if and only if x;y;, —x; > 0. Now, let A
be the number of positive edges, and B be the number of

crossings. Write

‘8 = H(I;+] 71,‘).

=1
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As n is even, the sign of 8 is just (— 1",
On the other hand, {e;, e;} is a crossing if and only if 2 |

i +7 and
(l‘j _I;)(Ij _I,-A])(f]uﬂ _I,')(Ij+1 _I,ur]) < O.

We denote by f (e, s ¢;) the left-hand side of above inequality.
obviously f(e;s e;) = f(e;, e;). This quantity is negative if and

only if the two-edge set is a crossing. Now, define

|| (.Tj 7.’[,)(11 71‘,\1)(1‘»“1 7]”,')(1]'(1 71‘,\1)
1<<i<{j=mn
2li+j

= H{f(e,,ej)s

1<i<j<n
20i )

S
I

then the sign of a« is (—1)”. Let us calculate the sign of of. For
1 <i < j <=, consider the times of appearance, and the sign
of x; — x, in @ and f, respectively. We distinguish several
cases.

Case |.; —i =1, x; —a, appears once in 8 with a positive sign,
and once ine. If7 >1, it appears in f (e, 1, ¢;;,) wWith a positive
sign. Ifi =1, x, —x, appears in f (e, ¢,) with a negative sign.
The product of these numbers has a negative sign.

Casell. 2 <j —i <n —1, thenx, —x, does not appear in 3,
and appear in a twice. Among (z — 1, j —1)and (Z — 1, j).
there is exactly one pair that is of the same parity, among (i,
j —1)and (i, j), there is also exactly one such pair. The sign
of x; —x, in each appearance is always positive. For: = 1, its
appearance in f(e;— s e¢,) or f(e;, e,) comes with a negative
sign. Hence, there is a negative sign for each pair (i, j) (i =
1,7 =3,4, ..., n —1). This part of the product has the sign
(=D =—1.
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Case lll. i =1, ; = n, then x, — x, appears once in 3 with a
negative sign, and once in a (in f (e, e; )) with a positive
sign. This part of the product has a negative sign.

In brief, the sign of of is negative, i.e., A + B is odd. | |
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o Suppose that m and & are non-negative integers, and p =
2*" +11is a prime number. Prove that
(@) 2" 7" =1Cmod p*™);
(b) 2" p* is the smallest positive integer n satisfying the
congruence equation 2" = 1(mod p**") .
Solution. We want to prove that 27" pt, + 1 for some

integer ¢, not divisible by p. We proceed by induction on k.
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When £ = 0. it follows from 2" = p —1 that2” = (p —1)* =
p(p —2) +1, in this case, t, = p — 2.
For inductive step, suppose that 22" » = p*"'z, +1 where

k =0and p tt,, then

zm+l e

).

— @7 Yy = (pty, + 1)

P
= Z (Pj(karltk)x

s=0 \'S

2

; _ e
=1+4p«py +P(P2 1)(pk+ltk ) 2 [pj(,bk+lfk)"-
=3 \ S

As k =0, then for anys = 2, we have (£ + Ds =2k +1) =
2% +2 =k +2,s5027" P = p %ty +1, wheret,,;, € Z, and p
tt4i,. It follows from mathematical induction that (a) holds.
Next, we prove (b). Write 2" p* = nl +r , where?, r €
Zand 0 <r <nu. Then it follows from (a) that1=2"""#" =2/
=(2") «2" =2 (mod p*"). As0O <r < n, it follows from the
definition of n that» =0, i.e., n | 2" p*. By the Fundamental

Theorem of Arithmetic, n = 2'p*. If t < m , then 27 =

(2" =1(mod p). On the other hand. 2°"* = (2*")r" =

(— 1" =—1(mod p ), which is a contradiction, and hencet =

m+1,i.e.,n=2""p". []

@D As shown in Fig.2.1, AB is a E
diameter of a circle with center C

O. Let C and D be two different

points on the circle on the same

side of AB, and the lines tangent 0 M
to the circle at points C and D

meet at E. Segments AD and BC

meet at F. Lines EF and AB meet Fig. 2.1
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at M. Prove that E, C, M and D are concyclic.
Solution 1. As shown in Fig. 2. 2, join OC, OD and OE. It
follows from ~OCE + ZEDO = 90° +90° = 180° that ECOD is
cyclic. If O = M, then ECMD is cyclic. We may assume that O
# M in the following. Let G be the intersection of BC and AD ,
and H, be the intersection of GF and AB. Let H, be the foot of
perpendicular of E to AB. It follows from AC | BG and BD L
AG that F is the orthocenter of ABAG, so GH, | AB. As
/CH,D = ZCBF + /DAF =180° —2./BGA, and ZCOD =
180° — /BOC — ZAOD = 180° — (180° — 2/GBA) — (180° —
2/GAB) = 2(/GBA + /GAB) —180° —2 /BGA , then ~CH,D
= /COD, so C, O, H, and D are concyclic. It follows from
/ECO = Z/EDO = Z/EH,0 =90°thatE, C, O, H, and D are
concyclic. Hence, H, = H,, i.e. EF | AB and they meet at
M. Consequently, E, C, M and D are concyclic.
Solution 2. As shown in Fig. 2. 2, join G
EO, CO, DO, CA, CD. 1t follows /}
from ZCOE = /CAF that Rt ACOE v /

CE _CO .
CF ~ A As ZECF
=90° — /BCO = ZOCA , so ANECF o

ANOCA, and hence LCFE = /CAO.

RtACOF, and so

As /BFM — /CFE.so /FBM + '\ o |
/BFM = /FBM + ZCAO = 90°. Fig. 2. 2
Hence, EM 1 AB, it follows that O,

M, D, E, C are concyclic. []

@D Determine all possible values of positive integer n, such
that there are n different 3 —clement subsets A, Ay, ...,

A” Of theset{la 23 P} 7’1}9 Wlth ‘ A,' mA] |#1f0ra“
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1 #7.
Solution. The set of positive integers satisfying the given
condition consists of all positive multiples of 4. We first prove
thatn = 4k (k € Z.) satisfying the condition. Define A, A,, ...,
A, as follows: A, ; = {4i —3, 4i —2, 4i —1, 4i)\{4i —j }, for
alll <i <kand0 <; < 3.

Second., we want to prove that if 4 {» . then such n subsets
do not exist. Suppose to the contrary that A,, ..., A, be
different 3 —element subsets fulfilling the condition stated in the
problem. Let A, = {a, b, ¢}, consider all the given 3 — element
subsets with non-empty intersection, we may assume that they
are A,, ..., A, after relabeling. LetU =A, UA, U-- UA,.

We divide into the following different cases:

If  U|=3,thenm =1<|U|.

4
IfU4,thenm<[3j4U-

If |U | =5, then we prove thatm <<| U | as follows.

Suppose thatm =| U |, then for any 2 <<i, j <<m, we have | A, N
A =2, ]A NA; |=2. As | A, | =3, wehave A, N A, # .
And it follows from | A, N A; [# 1that | A, N A, |=2. It
means that any two distinct subsets of A;, ..., A, have only
two common elements.

Consider the four intersections A, N A,, A, N A;, A, NA,,
A, N As., it follows from the pigeon-hole principle that there
are two intersections that are equal; by relabeling again, we
may assume that they are A, = {a, b, d}, As = {a., b, e}.
Then for any 4 << < m , we have a, b € A,; otherwise, A,

contains at least one of « or b, and the other three elementsc, d and
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e, in this case, | A; | =4, which is impossible. Hence | U | =m +2,
which contradicts to | U | = m.

From the argument above, one can divide the subsets A, ...,
A, into several groups, and any two subsets in the same group
have non-empty intersections. Moreover, the number of subsets
in the same group is not more than the number of elements
appeared in this group. As the number of subsets is n, which is
equal the number of elements in {1, 2, ..., n}, so each group
has exactly four subsets. It follows that 4| » , which contradicts

the original assumption 4 1 . ]

o Letays ass o..sa,s b1y by ... b, be non-negative numbers

satisfying the following conditions simultancously:
(D 23" (ai +b) =1
(2) 23" ita, —b) =05

(3) 2?:11.2((1,‘ +b,) =

10
, 1 <k <n.
Prove that max{a,, b, < 1o+ 42 for all k n

Solution. For any 1 < k& < =, it follows from the given

conditions and Cauchy’s Inequality that

n n

(ka,)? < (Eia;)z _ (Zibi>2

i=1 i=1
< (;ﬁbi)(;b,-)

n

- (10 i) (1 - Za)

< (10 —ka’a) (1 —ay)
=10 — (10 +k)a, +ka;.
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10
10 + k%"

Similarly. b, < -2 _, and

- < [}
It follows from that a, 10 - 42

hence the result follows. []

o Let £ be an integer and £ > 1. Define a sequence {a, } as
follows: ay = 0, a, = landa,., = ka, +a,, forn =1,
25 ...
Determine, with proof, all possible £ for which there
exist non-negative integers ¢, m (¢ #* m) and positive
integers p, ¢ such thata, +ka, = a, +ka,.
Solution. The answer isk = 2.
Itk =2, thena, =0, a, =1, a, =2,s0a, +2a, =a, +
2a, = 4. Hence, (/, m) = (0, 2) and (p, q) = (2, D.
For 2k = 3, it follows from the recurrent relation that the
sequence {a, | is strictly increasing, and% | a,+, —a, for alln =

1. In particular, forn = 0, we have
Ay = Ay EO(mOdk), Aoyt = Aq El(modk) (%)

Suppose there exist¢, m € N, and p s ¢ € Z, such that? #m and
a, tka, =a, +ka,. We may assume that¢ <m, and divide into
the following cases.

(a) p <l <m : Thema, tka, <a, tka,, <ka, ta,; =
a1 < a, < a, + ka,. which contradicts the original
assumption.

()¢ =p <m:1f¢ =p =m—1, then we havea,, +ka, =
a, tka, = (k +1)a, , and modulo ¥ we havea, =a,, modk,
which contradicts( * ).

If¢ =p <m—1,thena, +ka, <a,—» tka,» =a, <
a, +ka,, which contradicts the original assumption.

(c) ¢ < p < m: In this case, from ¢ we have a, > 0, then
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a, thka, <ka, ta,, =a,, <a, <a, +ka,, which contradicts

the original assumption.

(¢ <m < p:Thena, >a(+/e+*a = a,. It follows
from
ka, +a, =ka, ta, =ka, @
that
a(,>a,)*akmEapf%:kk_la,) )
Note that
a, =ka, 1 ta,, =ka, s ©)
hence
a, >a, 212/2;161,) =k —Da,, =a,,. ®

Then by increasing property of {a,} and @, we havea, =
a, » so inequalities - turn into equalities. It follows from
@ thatm = p, and from @ that p = 2. Hence, a, = a,-, = a,
= 1. And it follows from @ that¢/ = 0. Froma, +ka, = a, +
ka,, we have k* =k +k = 2k, sok = 2, which is impossible.

So £ = 2 is the only solution. []

@ As shown in Fig 6.1,
AABC is a right-angled
triangle, ~/C = 90°. Draw

a circle centered at B with
radius BC. Let D be a
point on the side AC, and

DE be tangent to the
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circle at E. The line through C perpendicular to AB meets
line BE at point F. Line AF meets DE at point G. The line
through A parallel to BG meets DE at H. Prove that GE =
GH.
Solution. Let K be the
intersection of AB and DE', and
M be the intersection of AB and
CF. Join FK, AE and ME. In
ANABC, it follows from CM _L
AB that BM « BA = BC* =
BE?, so ABEM o ABAE, Fig. 6.2
and ABEM = /BAE.
As /FMK = /FEK = 90°, so MFEK is cyclic, and
ZBEM = /ZFKM. It follows from /BAE = /BEM =
/FKM, so FK || AE , and hence

KA _EF . KA BF _ D
KB BF' ~ 7' KB FE

As the line EGA intersects AEBK , we have

EG KA BF _
GK " AB 'FE ! ®
. HK  AK
As BG || AH, we have kG kg%
HG _ AB
GK BK® ®
EG _ <
From O-®, we have =1, and so EG = HG. []

HG

@D There are n(n = 3) players in a table tennis tournament,

in which any two players have a match. Player A is called
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not out-performed by player B, if at least one of player A’s
losers is not a B’s loser.
Determine, with proof, all possible values of n, such that
the following case could happen: after finishing all the
matches, every player is not out-performed by any other
player.

Solution. The answer isn = 3 orn = 5.

(1) Forn = 3, suppose A, B and C are three players, and
the result of three matches are as follows: A wins B, B wins C,
and C wins A. These results obviously satisfy the condition.

(2) If n = 4, suppose that the condition holds, i.e., in
view of the results of all matches, every player is not out-
performed by any other player. It is obvious that none of these
four players wins in his three games, otherwise, the other three
players will be not out-performed by this player. Similarly,
none of these three players loses in his three games. It follows
that each player wins one or two matches.

For the player A, assume that A wins B and D, but loses to
C, then both B and D win C; otherwise, they would not out-
performed A. For the loser in the match B vs. D, he only wins
C, and so the loser is impossible to be not out-performed by the
winner. Consequently, for n = 4, the given condition could not
happen.

(3) For n = 6, one can o ~—— 0
construct the tournament results

by means of the following directed

/

graph, in which each black dot

represents a player, and « — °

represents a match with the result

that player « wins player °. Fig. 7. 1
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(4) If there exist tournament results such that each of »
players A, (1 <<i < n) is not out-performed by any other player,
we will prove that the same holds for n + 2 players as follows:
Suppose that M and N are the additional players to the original n

players. Construct the game results of M and N as follows:
A, >M,M—>N, N —>A,

forall: =1, 2, ..., n, and the game results M
among A,’s are still the original ones. Now we ®

want to check that these n +2 players satisfy the / \
given condition. For any player G € {A;, Ne-——— @G
A,. ..., A,}, then it suffices to consider the Fig. 7. 2
players G, M, N, and it reduces to the case n

= 3.

One can check that each of these three players G, M, N is not
out-performed by any one of the other two players. Hence, the
tournament result of these n +2 players satisfies the required condition.

In particular, it follows from (1) and the induction step of
(4) that the required condition holds for any odd n» withn =3 .
Moreover, it follows from (3) and the induction step of (4)
that the required condition holds for any evenn withn =6, and

it completes the proof. []

@D Determine all possible values of integer £ for which there

/)+l+ab+1:k.

exist positive integers a and b such that

Solution. The answer is that# = 3 or 4.
Fix a possible value k£, among all the pairs (A, B) of
positive integers satisfying

M_._u:

A B ks
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choose any (a, 0) such that b is the smallest. Then the quadratic

equation
22+ —kb)x +0° +b =0

has an integral root = = a. Let x = a’ be the second root, it

follows froma +a’ = kb —1thata’ € Z , and from
asa =06 +1)

thata’ > 0. Hence, we have

And it follows from the assumption on b that

a=b,a =0b.
So one of a and a” is equal to b. Without loss of generality, we
may assumea = b, 80k =2 +%, and sob | 2i.e.,b =1or 2,

and £ = 3 or 4, respectively.
Ifa =6 =1, thenk =4;ifa =06 = 2, then k = 3.
Consequently, £ = 3 or 4 is the only solution. []

2011

First Day
8:00 - 12:00, October 29, 2011

@D Given that 0 < x, y < 1, determine, with proof, the

ay(l —x —y)
(x +y)A =21 —y)

maximum value of . (posed by Liu
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Shixiong)
Solution. Whenx =y = %, the value of expression is %
. xy(l —x —y) 1
We will prove that T+ - -y =3 for any
0 <x,y <1 as follows.
xy(l —x —y) 1
=1, < =
ety =1 then o a—oa—y ~ 273

Ifx +y <1,thenletl —x —y =2 >0, it follows from
AM - GM Inequality that

xy(l —x —y) _ xyz
(x+y)A —2)( —y) (x +3y)(y +2)(z +2)

xyz 1

< = —.
2 xy «2yz ¢ 2/ zx 8

. . o1
In conclusion, the maximum value of the expression is R

]

@) LetM < {1, 2, ..., 2011} be a subset satisfying the
following condition: For any three elements in M, there
exist two of them « and b, such thata | b or b | a .
Determine, with proof, the maximum value of | M |,
where | M | denotes the number of elements of M. (posed
by Feng Zhigang)
Solution. One can check thatM = {1, 2, 2°, 2°, ..., 2", 3,
3X2,3X%X2%, ..., 3 x2%} satisfies the condition, and | M | =
21.
Suppose that | M | =22, and leta, <a, < +- < a, be the
elements of M, where | M | =& >=22. We first prove thata, ., =

2a, for all n; otherwise, we have a, < a,.1 < a,.» < 2a, for
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some n <<k + 2, then any two of these three integers a, a,;1»
a,1» do not have any multiple relationship, which contradicts
the assumption.

It follows from the inequality above thata, = 2a, =4, a,
=2a, =8, *** ay =2a, =2" >2011, which is a contradiction!

Hence, the maximum value of | M | is 21. []

@D Letn = 2 be a given integer.

(1) Prove that one can arrange all the subsets of the set

{1, 2, ..., n } as a sequence of subsets A,, A,. ...,
A, ,such that | Ay, | =| A, [+1or| A, |—1, wherei =
19 29 ce e s 2" andAan :Al.

(2) Determine, with proof, all possible values of the sum

D7 (1S (A, where S (A) = >0 rand S(2)

TEA,
= 0, for any subset sequence A;, A,, ..., A, satisfying
the condition in (1). (posed by Liang Yingde)
Solution. (1) We prove by mathematical induction that there
exists a sequence A;, A,, ..., Ay such thatA, ={1}, Ay =
and satisfies the condition in (1).
When n = 2, the sequence {1}, {1, 2}, {2}, & of {1, 2}
works.
Assume that whenn = k. there exists such a sequence B »
B,, ..., By of subsetsof {1, 2, ..., k}. Asforn =% +1, one
can construct a sequence of subsets of {1, 2, ..., & + 1}, as

follows:

A, =B, :{1}9
Ai:B,;l U{k +1}yZ:2, 3’...’2k+17
A- :B]- 2”9]‘ :2k+29 2k+33...92k+1.

One can easily check that the sequence fulfills the required
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conditions stated above. By induction we have proved (1) forn
= 2.

(2) We will show that the sum is 0, independent of the
arrangement. Without loss of generality, we may assume that
A, = {1}, otherwise shift the index cyclically. It follows from
| Ay | =|A;|+1or| A, |—1that their parities are different,
and hence the parities of the index label of any subset and its
cardinality are the same.

It follows that )" (—1)'S (A) = >} S (A)—>)
S (A), where P consists of all subsets of {1, 2, ..., n} with
even numbers of elements, and Q consists of all subsets of {1, 2,

.» n) with odd numbers of elements.
Foranyx € {1, 2, ..., n}, among all .-clement subsets, x

appears in exactly C.Z} of them, hence it contributes to the sum
DS = D0 S (A) as

—Cl + 0L, —Chy + e+ (DO == A =D =0

Therefore. »)° (—1)'S (A,) = 0. [

@» Asshown in Fig. 4.1, AB and CD are
two chords in the circle ®O meeting
at point E, and AB # CD. OI is
tangent to ®O internally at point F,
and is tangent to the chords AB and
CD at points G and H , respectively. /
is a line passing through O, meeting
AB, CD at points P, Q, respectively,
such that EP = EQ. Line EF meets
the line / at point M. Prove that the
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line through M and parallel to the line AB is tangent to
the circle ©0O. (posed by Li Qiusheng)
Solution. As shown in Fig. 4. 2, draw a line parallel to AB and
tangent to circle ®O at point L, which meets the common
tangent line to these two circles at a point S. Let R be the

intersection of lines F'S and BA , and join segments LF and GF.

Fig. 4. 2

First, we prove that the points L , G and F are collinear. As
both SL and SF are tangent to ®O, SL = SF; as both RG and
RF are tangent to ®I, RG = RF.

As SL ||RG., we have SLSF =
ZGRF, so
_ 180" — ZLSF _ 180° — ZGRF

2 2
= ZGFR,

ZLFS

and hence L, G and F are collinear.
Similarly, as shown in Fig. 4.3,
draw a line parallel to CD and tangent

to ©O at point J , then F. H and J are
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collinear. Let tangent lines to the circle
®O at the points L. and J meet EF at
points M, and M, , respectively. In the
following, we prove that the points M,
and M, coincide. It follows from the
homothety centered at F mapping ©O

M\E _ LG

to ©I that LJ [|GH , then EF OF

_JH _M.E

~HF EF and hence M, and M,

coincide. Denote this point by K.

Finally, we want to prove that

points M and K also coincide. It suffices
to show that K lies on the line /.

As shown in Fig. 4. 4, join KO, as KL and KJ are tangent
to ©0, so Z/LKO = ZJKO.

Note that KO bisects ~/LK] , it follows from KL || AB and
KJ | CD that the line KO meets lines AB and CD with the same
angles of intersection, and hence KO is just the line/, i.e., K
lies on the line /.

Hence, K is just the intersection point M of line EF and /.

]

Second Day
8:00 — 12:00, October 30, 2011

@D Determine, with proof, whether there is any odd integer
n = 3 and n distinct prime numbers p,, pss ..., p, such
thatall p, +p,..G =1, 2, ..., n, and p,, = p,) arc
perfect squares? (posed by Tao Pingsheng)
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Solution. The answer is negative. Suppose that there exist odd
integer n = 3 and n distinct prime numbers pi;, p2s ... P,
satisfying the given condition.

If all p,» p»s ..., p, are odd, then it follows from the
given condition that all the sums p, + p,;;; are multiples of 4, so
the prime numbers p,, p,, ..., p, modulo 4 appear to be 1 and
3 alternatively, and it contradicts the fact that» is odd.

If one of pys p2s ...5 p, is 2, then without loss of
generality, we may assume that p, = 2. As both p, + p, and
p. + pi1 are prefect squares and both are odd, it follows that p,
and p, are congruent to 3 modulo 4. Similar to the discussion in
the first case, we know that the primes p., p;3, ..., p, modulo
4 appear to be 1 and 3 alternatively, son — 1 is odd, which is a
contradiction.

Hence, there are no odd integer n = 3 and n primes

satisfying the given conditions. []

@ Leta, b, c >0, prove that
(a —b)* (b —c)? (¢ —a)?
(c +a)c +b) (a+b)la+c) WB+)b+a)

(a —b)*
T at bt et

(posed by Li Shenghong)
Solution 1. It follows from %(a —2b)* + %(a —20)" + (b —
¢)? =0 that

3(a® +b6% +¢*) =2a* 4+ 2ab + 2bc +2ac = 2(a +b)(a +¢)s

so we have (@ +b)(a + ) < %(a2 + 6% + ¢*). Similarly,

we have
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b +a)b+e) <%(a2 F el

and (¢ +a)(c +b) <%(a2 F g eh).

Hence,
(a —b)* (b —¢)* (c —a)t
(c +a)lc +b) (a +b)(a +c) WO+ +a)
2, (a -0+ b —c) + (¢ —a)?

= = P -
3 a’® +bt + ¢t
(a —b)* +l(l) —¢c+c—a)t
= 2, 2
E a’ +b" +c
(a —b)*

a® +b° 4%

Solution 2. It follows from Cauchy Inequality that

(a —b)* (b —¢)? (¢ —a)? .
[(c +a)(c +b) (a+b)a +c) b +c)b +a)]

[(c +a)(c+b)+(a+b)(a+e)+ W+ +a)]
=a—=bl|+b—c|+|c—al)?
=a—=bl+b—c+c—al) =4(a —b)2.

And

(c +a)(c +b) +(a +b)la +c) + W +c) +a)
= (a* +b* +¢*) +30ab +bc +ca) <4(a® +b* +c),

hence
(a —b)* (b —¢)? (¢ —a)?
(c +a)c +b) (a+b)(a+c) B+ +a)
- 4Ca —b)*
T (cta)e+b) +a+b)a+e)+ b+ +a)
4(a —b)* _ (a —b)?

T 4@’ + b7+ al FbE et

]
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@D As shown in Fig.7.1, AB >
AC, and the incircle OI of
AABC is tangent to BC, CA
and AB at points D, E and
F, respectively. Let M be the

midpoint of side BC, and
AH | BC at the point H.
The bisector AI of /BAC
intersects the lines DE, DF at

points K , L, respectively.
Prove that M, L, H and K are concyclic. (posed by Bian
Hongping)
Solution. Join CL, BI, DI, BK, ML and KH. Extend CL to
meet AB at point N.
As both CD and CE are the tangent to ®I, so CD = CE.
As

UBIK — /BAI + /ABI — %(4BAC + ZABC)
- %(ISOC’ — JACB) = /EDC = /BD.,

soB, K, D and I are cyclic.

As /BKI = /BDI = 90°, i.e., BK | AK; similarly,
CL 1 AL. As AL is the bisector of Z/BAC, so L is the midpoint
of CN. As M is the midpoint of BC, so ML [l AB.

Since /BKA = /BHA =90°, it follows that points B, K ,
H and A are cyclic, so /MHK = /BAK = /MLK , hence M,
L, H and K are cyclic. ]

Q Determine, with proof, all pairs (a, 6) of integers, such

that for any positive integer n, one has n | (a" +b""").



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

230 Mathematical Olympiad in China

(posed by Chen Yonggao)

Solution. The solution pairs consist of (0, 0) and (—1, —1).
If one of ¢ and b is O, it is obvious that the other is also 0.
Now we assume thatab # 0, select a large prime p such that

p >|a +b° |, it follows from Fermat’s Little Theorem that

a’” +b"" =a + b’ (mod p).

Asp | (a” +b"")and p >|a +b* |, we havea +5b* = 0.

Then we select another prime ¢ such thatg >| b6 + 1 | and
(q. b) = 1. Letn = 2¢g. Then we have
a" b = (—bY)M £ pltl = pla el platl (pll 1)

It follows fromn | (a” +56"") and (¢, b) = 1 that

q | (6™ + D).

Asb ! +1 =) eh+1=b+1modq), andq >|b +1],

it follows thatb +1 = 0,i.e., b =—1,andsoa =—b*> = — 1.

In conclusion, there are only two solution pairs (0, 0) and

2012

First Day
8:00 - 12:00, September 28, 2012

@D Find the least positive integer m, such that for every

prime number p > 3,
105 | 97 —29* +m.

(posed by Yang Hu)
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Solution. As105 =3 x5 X7, the original problem is equivalent
to that of finding the least positive integer m such that 9" —
29” +m can be divided simultaneously by 3, 5, 7.

Since p* and p have the same odd-even character, we have
9" =29 +m = (—1)* — (=1’ +m =m(mod5).

Then we getm =0 (mod 5).

As p > 3is an odd number, we have
9" —29” 4+ =—(— 1)’ +m =m + 1(mod 3).

Therefore, m =2 (mod 3).
We have also p° =1(mod3) for p >3, or p° =3k +1. Then

9" —29" tm =2 —14m =8 +2—1+m
=m + 1(mod 7).

Therefore, m =6 (mod 7).

In summary, we have

m = 0(mod5),
m = 2(mod 3),
m = 6(mod 7).

Then it is easy to find that the least positive integer m is 20.

]

o Prove that, among any n vertices of a regular 2n — 1
polygon (n = 3), there are three ones, which are the
vertices of an isosceles triangle. (posed by Zou Jin)

Solution. Since it is easy to verify directly the assertion for the

casesn = 3 (a pentagon) and n = 4 (a heptagon), we may

assume that n > 4 in the following discussion.

By reduction to absurdity, assume we can select n vertices
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in a regular 2n — 1 polygon A, A, A; A, such that no three of
them constitutes an isosceles triangle. We mark these points
with color red and the remainder » — 1 ones with blue,
respectively.

We may let A, be red, and divide the other 2n — 2 points
inton — 1 pairs (see the figure): (A,, A,—1), (Ass Asn).

e (AL A,
The two points in each

pair cannot be both red as

they plus A, constitute an
isosceles triangle, and must Fig. 2. 1

be one red and one blue for

there are exactly n red points.

Assuming A, is red, then A,,, is blue, and A; must be blue
as ANA LA, A, is an isosceles triangle. Therefore A,, . is red,
from which we infer that A;, A, , arc both blue, as
NA A A5 ANAy 1 As Ay are two isosceles triangles. But
As, A, are the two points in a pair, they must be one red and
one blue. This is a contradiction! The assertion forn >4 is then

also true. The proof is complete. []

@D Let E be a given set with n clements. Suppose A,
Ay, ..., A, are k distinct non-empty subsets of E, with
the property that, for any 1 <i << j <k, either A; N A; =
& or one includes the other (i.e., A; CA,orA; CA; ).
Find the maximum value of 2. (posed by Leng Gangsong)

Solution. We claim that the maximum value of % is 2n — 1. To

prove this, we at first give an example that satisfies # = 2n — 1.

We may let E = {1, 2, ..., n}, and
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{i} for 1 <
{12, ...,i—n+1} forn+1<:

It is easy to see that they possess the given property.

Now we will prove that £ << 2n — 1 by induction.

Whenn = 1, it is obviously true.

Assume that it is true forn <<m — 1. Then whenn =m, we
consider the set that contains the most elements among A,, A,

. s A, excluding E. We may assume that it is A, containing

t(<m —1) elements. Then we can divide A;, A,. ..., A, into
three categories:

(1) the set E;

(2) sets that are included in A, ; and

(3) sets whose intersection with A, is empty.

(Categories (1) and (2) may be empty.)

Then the number of sets in category (1) is not greater than 1.

By induction, the number of sets in category (2) is not
greater than 2z — 1.

The number of elements contained in the union of the sets
in category (3) is not greater thanm —¢. Then by induction, the
number of sets in that category is not greater than 2Gm —¢) — 1.

In total,
EP<<1+Q2t—1)+[2m —¢t)—1] =2m — 1.

Therefore, the proposition is true for n = m.
By induction, we conclude that for any set E of n elements,

we always have & << 2n — 1. This completes the proof. []

@D Let P be any inner point of an acute AABC; E, F be the
projection points of P onto lines AC, AB, respectively;

and the extended lines of BP, CP intersect the
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circumcircle of AABC at points B,, C, (B, # B, C, #
C), respectively. Let R and r denote the radii of the
circumcircle and incircle of AABC, respectively. Prove

EF>7’

B.C, R
completely the positions of P. (posed by Li Qiusheng)

that

, and, when the equality holds, determine

Solution. As seen in Fig. 4.1,
we make PD | BC with
intersecting point D, extend line

AP to intersect with the

circumcircle of AABC at point
A, and connect DE, DF, A, B,
A,C,.

Since P, D, B, I are

Fig. 4.1
concyclic, we have SPDF =

/PBF ;since P, D, C, E, we have L/ PDE = /PCE. Then

/FDE = /PDF + /PDE = /PBF + /PCE
LAA]B] + LAA](/‘] == L(;]AlB].

In the same way, we have /DEF = J/A,B,C,.
Therefore, ADEF ~ AA,B,C,.

The radius of the circumcircle of
ANA,B,C, is also R, and let the
radius of the circumcircle of ADEF
EF R’

B,.C, R°
Now let the incenter of ADEF be
O'. Connect AO’, BO', CO" (see

be R’. We then have

Fig. 4. 2). We have Fig. 4. 2
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(AB +BC +CA) - r
2

- SA()'AI% + SA()/B(? =+ SA()'A(T

_AB-O'F  BC:0'D  CA-OE
2 2 2
_ (AB +BC +CA) « R’

2

S AABC =

Therefore, R” = r. The equality holds if and only if
O'D L BC,O'E L CA,OF 1L AB,

which implies P = O" and P is the incenter of AABC.

Therefore, EF = L and the equality holds if and only P
B,C, " R
is the incenter of AABC.
The proof is complete. []

Second Day
8:00 -12:00, September 29, 2012

e Let H and O be the orthocenter and circumcenter of acute
triangle AABC, respectively ( A, H, O are non-collinear) .
Suppose D is the projection of A onto line BC, and the
perpendicular bisector of the segment AO meets line BC at
E. Prove that the midpoint N of OH is on the circumcircle
of ANADE. ( posed by
Feng Zhigang)

A

Solution. As seen in Fig. 5.1,
we extend HD to let it intersect

with the circumcircle of AABC

’ . E B\, |D C
at point H', link FN, DN, \/
BH, BH’', OH’, and denote H
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the midpoint of AO as F.

As H is the orthocenter, we have
/CBH = /CAH' = /CBH.

Therefore, D is the midpoint of HH'. On the other hand,
N is the midpoint of HO, so DN is the median of AHOH’.

Therefore, DN = %()H/.

Since OH' = OA and F is the midpoint of OA , then
DN = LOH' = LOA = AF.

It is easy to see FN AH. Then AFND is an isosceles
trapezoid and A, F, N, D are concyclic.

Furthermore, from ZADE =90° = Z/AFE we know A, F,
D, E are also concyclic. Then A, FF, N, D, E are concyclic,
which implies that the circumcircle of AADE crosses N at the
midpoint of OH. The proof is complete. []

Remark. By the facts that the radius of the nine-point
circle of a triangle is half of that of the circumcircle and N is
the center of the nine-point circle of AABC, we can get also

that AFND is an isosceles trapezoid.

2

. . 1 p
@ Sequence {a,} is defined by a, = o @wn =a, 2312,
n =0,1,2,.... Find integer &, such thata, <1 <a,.

(posed by Bian Hongping)

Solution. From the given condition, we have

% = Ay <a1 < e <a2012.

We note that
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1 _ 2012 _ 1 1
Ay a,(a, +2012) a, a, +2012°
or
1 1 _ 1
a, A, a, +2012

By the telescoping sum, we have

n—1

1 1 1
a, a, ; a; +2012°

Then

2011 2011

1 1 1
_ — - - < = =1.
2 2, a, +2012 2 2012 |

A 2012 i=0

Therefore,
() <a1 < ee <a2012 <1

Then we have

2012 2012

1 1 1
2 — = - - > - =1,
az013 g a; +2012 g 1 +2012

which means a,; > 1.
Consequently, we find that £ = 2012. ]

@D Givenann xn grid, we call two cells in it adjacent if they
have a common side. At the beginning, each cell is
assigned number + 1. An operation on the grid is defined
as follows: one chooses a cell, and then changes the signs
of every number in its adjacent cells (but not change the sign
of the number in itself). Find all the integersn = 2, such that
after a finite of operations, all the numbers in the cells of the
grid are changed to —1. (posed by Shen Huyue)

Solution. We will prove that n meets the required condition if

and only if it is an even number.

We denote the cell in the -row and j-column of the grid as
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AyG,j e{l,2,..., ).

Whenn =2k, £k € N*, we mark each A, satisfying: +; =
0(mod 2) with color red (presented by shaded areas), and that
satisfying; —¢ = 3(mod4) andj —i Z j +i(mod 4) with blue
(presented by oblique line areas) (see Fig. 7. 1).

g

\
&\

\
§\

Fig. 7. 1 Fig. 7. 2

In this way, we can see that every cell adjacent to a blue one is
red, and there is exactly one blue cell around each red one.

Now we do the operation on each blue cell. The number in
each red cell is then changed from +1 to —1, while the numbers
in the remaining cells are unchanged.

Since n is an even number, we can rotate the grid around its
center O anticlockwise by 90°. Then all the red cells of the
rotated grid cover exactly all the cells that are not red in the
original grid (see Fig. 7. 2).

We do the operations again for the original grid on all the
cells that are covered by blue cells of the rotated grid. Then we
see that all the numbers with value +1 in the remaining cells of
the original grid are changed to —1, while the numbers in the
other cells are unchanged.

Therefore, when n is an even number, all the numbers in the
cells of the grid can be changed to —1 by a finite of operations.

When n is odd, we denote the number in cell A; as M, (i =
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1, 2, ...sn), and denote the number
M, | x
of operations on ecach of their adjacent o
V1 MZ Ty feeeees
cellsas iy Tos vvvs Tpts Yis Vos euns ¥ | M,
v..1s respectively (see Fig. 7.3). | ... ..
After finite operations, it is easy [ | | [ M| Ty
et | M,
to see that: Jrt] T
M, is changed from +1 to —1 if Fig. 7.3

and only x;, + y, is odd;

M, is changed from +1 to —1 if and onlyx, +y, +x, +y.
is odd;

M ; is changed from +1 to —1 if and onlyx, +y, +2; +y;
is odd;

M, is changed from +1 to —1 if and only x,—» + y,—» +
X1 + v, 1s odd, and
M, is changed from +1 to —1 if and only x,—, +y,-, is odd.

Since n 1s odd, the sum of » odd numbers is still odd. Then,

(x1 +yi)+ (v +y1 o, Ty2)+ (22 Fy, Tas +y3)
T+ (Iu 2 T Ve T Ty 1)7L (In 1ty 1)
=2(x; +xs o +x,0 Ty Fy, T Fy)

is odd. It is impossible!
Therefore, all the numbers in the cells of a givenn Xn grid
can be changed from +1 to —1 after a finite of operations if

and only if » is an even number. []

Q Find all the prime numbers p, for which there are
infinitely many positive integers n, such that p | n""" +
(n +1D". ( posed by Chen Yonggao)

Solution. »*"" + (n + 1)" is always an odd number for any
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positive integer n , so the required p will not be 2. Now we are
going to prove that, for any prime number p = 3, there are
infinite many positive integers that meet the condition. We
present two proofs in the following.

Proof 1. For any prime number p =3, letn = pk —2 be an odd

number. Then

I R ) I G Y |
= 2O e 2 —1 =21 —1(mod p).

Next, letk —1 = (p — Dr.

Thenn""" + (n +1)" = 0(mod p).

Therefore, whenn = p(p — 1)t + p — 2 (where ¢ is any
positive integer), we have p | n""" + (n +1)".
Proof 2. Given any prime number p = 3, we have (2, p) = 1.
By Fermat’s Little Theorem, we know 2" = 1(mod p). Letn
= p' —2, wheret =1, 2, 3, .... We have

n D= (=2 (D

= 2/}171 _1 — (prl)p/ \+p/ 2+~~-+p+1 _1
=1-—1=00(mod p).

The proof is complete. []

2013 NEGHAETRCEL D

First Day
8:00 - 12:00, August 17, 2013

@D Do there exist integers a, b and ¢ such that a*bc + 2,
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ab’c +2, abc® + 2 are perfect squares. (posed by Li
Qiusheng )
Solution. No. Suppose the contrary that there are such
integersa, b and c.

If one of them is even, say a ., thena®bc +2 = 2 (mod 4),
which contradicts the assumption that a’bc + 2 is a perfect
square. We may then assume that ¢, 6 and ¢ are odd, so they
are either 1 or 3 (mod 4). It follows from the Pigeon-hole
Principle that two of them are congruent modulo 4. Relabel if
necessary, we may assume thata =5b(mod 4), soabc® +2 =c* +

2=1+2 =3 (mod 4), which violates the perfect square

assumption. []
@D Lectnbeanintegersn =2, anda;s 225 ... x, € [0, 1.
Prove that

E kxpx, < %Ekxk.
k=1

1=<k<<l<n
(posed by Leng Gangsong )

Solution. Asz,, x»s ..., 2, €[0, 1], z;20; <z,.s0 we have

3 2 kx,x; = Z 3kx,x, < Z (kx, + 2kx,).

1<k<<I<n I<k<<l<n I<k<<l<n

For1 <k < n, the coefficient of x, in the last sum is
201 +2 4+ Gk —D]+kn —k) =kn — 1,

so we have

3 >0 kxwr, < D, (hay +2kx) = i‘,k(n — Dz,
k=1

1<<k<<I<n I=<k<<l=n

= (n — I)kak ,
k=1

and hence the desired inequality holds. []
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@ In AABC, point B, is the reflection of the center of
B-excircle with respect to the midpoint of side AC, and
point C, is the reflection of the center of C-excircle with
respect to the midpoint of side AB. The A-excircle
touches side BC at point D. Prove that AD 1 B,C,.
(posed by Bian Hongping)

Solution. Let A, be the center of

A-excircle. By the properties

about centers of ex-circles, the

following sets of three points are

collinear: {B,, A, C,}, {A,, C,

B,}and{C,, B, A,},and A/A L

B,C,.

On the plane, choose point P
such that 675 = Ifé, then it
follows from B,C = AB, that C,P = AB,. As BC, = C,A and

the points C,, B, A, are collinear, the points B, C,, P are

collinear, so BP = C,B,. It follows from

180° — 4BAC)7 (180" - 4ABC)
2 2

_ /BAC ; ZABC _ 180 —ZLACB — /BCA,

ZAC,B = 180° — (

that AA,BC » AA B,C,. Let A, D and A, A be the altitudes of
the AA,BC and AA,B,C,, respectively, with respect to the

opposite sides soBlcl _AA
PP "S°7BC T A D

If BP = C,B. then A, A LBlCl,sogg =D 1BP L
AA, then BC | A,D, so we have ABPC v» ANA,AD, and

>

hence CP | AD. Again by C,P = B,C, one has B,C, = CP,
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and hence AD | B,C,. D

o There are n(n = 2) coins in a row. If one of the coins is
head, select an odd number of consecutive coins (or even
1 coin) with the one in head on the leftmost, and then
flip all the sclected coins upside down simultancously.
This is a move. No move is allowed if all n coins are tails.

Suppose n coins are heads at the initial stage, determine if

nt1
there is a way to carry out{ 3

Jmoves. (posed by Gu Bin )

Solution. The answer is possible.

For any configuration of the coins, we define a corresponding
01 —sequence c¢c»...c, of length n as follows: ¢; = 1, if the:-th
coin from the left is head, otherwise, ¢; = 0. It is easy to see
that the status of the n coins as one-to-one correspondence to
such 01 — sequences, so in the following, we will consider this
sequence model instead.

Initially, the sequence is 11---11, denoted by 1" (with n
consecutive digits of 1). Similarly, 00-:-00, denoted by 0" (with
n digits of 0). For any 01 — sequence with at least a digit “17,
consider the following move: locate the first digit “1” from
right to left in the sequence, then take the 01 — subsequence
from left to right starting this “1” of maximal odd length, and
change the 01 — parity in this subsequence just like flipping the
coins in a move. Denote by a, the total number of moves in the

271-1
3

way stated above. We claim: a, :L J Whenn =1, it is easy

to see thata, =1 = L%J, proceed by induction. Assume formula

2u+1

a, =L 3 Jholdsforn =k,l.e.,a, =L

2/e+1
l
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Now, we discuss the casen =% +1,1i.e., we want to find
the total number of moves as described above if the sequence is
1", i.e, there are £ + 1 coins in a row.

If £ is odd, then by induction hypothesis, the sequence 1"
(with £ + 1 digits of 1) changes to 10" (with & digits of 0) after
a, moves as stated above. After an additional move, it changes
to 01°7'0 (with £ — 1 digits of 1), then after applying a, — 1
moves, the sequence changes to 0°"' (with £ + 1 digits of 0. In

fact, recall that in sequence of a, moves from 1* to 0* by, the

first move is from 1* to 1 '0. Therefore, we have

b+l
Apr1 — Zak - ZLLJ =2

2/:}]71 2M272 2k\2
) -3 7L J

3 3 3

If £ is even, by the induction assumption it takes a, moves
from 1**' to 10", then apply an additional from 10* to 01*, and

finally by the induction assumption again, it takes a, moves

from 01* to 0. Then we have
k1 p1
a/s+1:2dk+1:2L23 J+]:2.%+1

2&+2 . 1 2k+2
3 _L 3 J

n+1

By induction that a, = L 3

J, hence there exists a way to

make the required number of moves. []

Second Day
8:00 - 12:00, August 18, 2013

@D A non-empty setA = {1, 2, 3, ..., n}is called a good set
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of degree n if | A | < minx. Denote by a, the number of
rE€A

good sets of degree n. Prove thata,» = a,y1 +a, +1 for
any positive integer n. (posed by Li Weigu )
Solution 1. Let A be a good set of degree n, and | A | = k.,
then min,cxx =k, so A < {k, &k + 1, ..., n}. Hence the

number of good sets of degree n with £ elements is C. . It

ntl

follows thata, = 2#1 e =C +C +C

If n is even, n = 2m , then
Aomt2 — ﬂ'_lfmvz =+ Cgmﬂ doeee Ciiili
= (C m+1 + m+1> + (sz + (/Zm) e (Ciiiii =+ C::+l)
(C%m 1T Cgm (sz : } ) +(C '7171 =+ Cgmﬂ e

0
+ C:;:+l ) Jr C2/u+1
= Qo1 T az, +1.

If nisodd, n = 2m — 1, then

Ao2pt1 — (/201\ + C§m + -+ C 2 T Ciii"l
= (G, +C,) +(C, 0 +C, ) + - +(Cry +CHD +C
- ((/Zm + (/9171 1 e C:;:‘Fl) + (C%m 1+ Cgm g e

+Col +C) +C,
= ay, taz 1 +1.

In summary. the equalitya,» = a,1 +a, + 1 holds for all
positive integers n.

Remark. Let F, be the n-th term of Fibonacci sequence. From

the combinatorial identity El[ 0] Ct, = F,, one can derive

that(l,, == F”H 71.
Solution 2. 1f » = 1, there is only one good set of degree 1,
namely {1},s0a; = 1.

If n = 2, then there are only two good sets of degree 2:
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{1}, {2}, s0oa, = 2.

Recall thata, , a,:; are the numbers of the non-empty good
subsets A of {1, 2, ..., n)and {1, 2. ..., n +1}, respectively.
satisfying | A | < min,c,x.

Consider the case n + 2: For any non-empty good set A of
degree n +2, A is a subset of {1, 2, ..., n +2}, then we have
the following three cases:

(a) A does not contain the element n + 2;

(b) A contains n + 2, and has at least 2 elements;

(&) A = {n +2}.

In the following, we focus on the number of good sets of
types (a) and (b). For any good set A in (a), it follows from
| A | < min,eax and max,cax << n + 1 that A is a good set of
degree n + 1. Conversely, any good set of degree n + 1 is also a
good set of degree n + 2, therefore, there are exactly a,4, good
sets of type (a).

For any good set A = {a,, as» ... ar» n + 2} of degree
n + 2 of type (b), wherea, <a, <+ <a, <n +2. Asa, =
min ,cax =] A | =2, one can consider the non-empty set A’ =
{a, —1,a, =1, ..., a, =1}, wherel <a, —1 <a, —1 <~
<a, —1<n+1,and A’ satisfies | A" | =] A |—1<a, — 1=
min, e 2> hence A’ is a good set of degree n. Conversely, any
good set of degree n can be represented in the form A’ = {a, —
l,a, =1, ...5a, =1}, whercA ={a1,ass ... ar,n +2}1is
a good set of degree n + 2 of type (b), so the correspondence is
one-to-one between A and A, and there are exactly a, good sets
of degree n + 2 of type (b).

According to the discussion on the number of good sets of

types (a), (b) and (¢), we havea,4» = a,u ta, +1. ]
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@ As shown in Fig. 6.1, PA, PB are P
tangent to the circle with center O |
at A and B, point C (different from
A, B)is on minor arc AB. The line " E
[ through point C and perpendicular y ('% 5
to PC meets the angle bisectors
ZAOC and ZBOC at points D and
E, respectively. Prove that CD =
CE. (posed by He Yijie)
Solution 1. As shown in Fig. 6.2, Line
PC meets the circle ©O at another point
F. Join BC, BE, BF, OF, respectively.
Since B, C are on ®O, OE bisects
ZBOC, and hence OE perpendicularly
bisects BC, soCE = BE. By FO = BO and

PC 1 DE, we have
ZECB = 90° — /FCB = 90° —

%ABOF = ZOBF, and so ACEB

ABOF , hence

CE _CB
BO ~ BF" @

As PB is tangent to ©®0O, so /PBC = /PFB, and APCB
APBF, and hence

CB _ pPC
BF  PB® ®

By © and @. we have CE = BO -

PC
PE" By symmetry,

CD —AO - %" It follows from AO = BO, PA = PB that CD = CE.



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

248 Mathematical Olympiad in China

Solution 2. As shown in Fig. 6. 3. Join
AB, AC, BC. OD meets AC at point M.
As A, C are on ©O, so OD bisects

E
e 1 <
ZAOC. ZDMC = 90° and MC = -AC. v’\
A B
As PC | DE, so cos /ACD = sin ~ACP, V-
and

MC AC ®

€D = s ZACD ~ 2sin ZACP" Fig. 6. 3

Let R be the radius of ©®O. As PA is tangent to ® O, so
Z/ABC = /CAP, and then it follows from @ and the Sine
Law that

<y _ 2Rsin ZABC _ ,  sin ZCAP _ , CP
D ="gn 2ace X gnoace K ap
By symmetry, one has CE = R - B’—P, and it follows from
AP = BP that CD = CE. []

@D Label the sides of a regular n-gon in clockwise direction in
order with 1, 2, ..., n. Determine all integersn (n =4)
satisfying the following two conditions:

(1) n — 3 non-intersecting diagonals in the n-gon are selected,
which subdivide the n-gon into » — 2 non-overlapping
triangles, and

(2) each of the chosen n — 3 diagonals is labeled with an
integer, such that the sum of labeled numbers on
three sides of each triangles in (1) is equal to the
other. (posed by Zou Jin)

Solution. The required integers are those satisfying both

conditions: n =4 and n # 2(mod 4). Suppose that n satisfies the
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conditions (1) and (2), we first prove that n # 2(mod 4) as
follows. Denote by S the sum of the labels in three sides of any
triangle, and by m the sum of the labels in the n — 3 diagonals
chosen. Adding up the sums of labels in three sides of all
triangles in the subdivision in (a), every diagonal appears twice
in those triangles, it follows that (n —2)S = (1 +2 + -+ +n) +
2m. Suppose n =2(mod4), then (n —2)S is even but (1 +2 + -+
+n) +2m is odd, which is a contradiction, son % 2(mod 4).
Let us remark that the condition on the regular n-gon in the
problem can be relaxed to convex n-gon, so we can simplify the

writing-up of the solution.

Fig. 7. 1

In the following, we prove that all integersn withn =4 and
n Z 2(mod 4) satisfy conditions (1) and (2).

The Fig. 7. 1 shows labeling for the casen =4, 5and 7, and
one can verify directly that both conditions hold.

In the following, we show that if n satisfies both
conditions, so doesn + 4.

As shown in Fig. 7. 2, label one diagonal which subdivides
the given (n +4)-goninto a convex n-gon and a convex hexagon
(non-regular anymore). As n satisfies conditions (1) and (2),
one can subdivide the convex n-gon into (n — 2) triangles such

that the sum of the three labels in each triangle is equal to the
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same number S. One can also subdivide the hexagon with three
diagonals with labels: S —2n —1, n +1and S —2n —5. One can
check that the sum of the three labels in each of these four
triangles is also S, hence n + 4 also satisfies conditions (1) and
(2). So it follows that any integer n such thatn = 4 and n #
2(mod 4) satisfies conditions (1) and (2).

Fig. 7.2

In summary. those integers n satisfying conditions (1) and

(2) are exactly given by n =4 andn # 2(mod 4). []

@D Find all positive integers a such that (2" —n") [ (a" —n*)
for all positive integersn =5. (posed by Yang Mingliang)
Solution. The only answers fora are 2 and 4.
First, we prove that a is even. It follows from the given
condition by choosing an even integer n = 6.
Next, we prove that ¢ has no odd prime factor. Suppose
the contrary, let p be an odd prime factor ofa. If p =3, letn =
8, then 2" —n*® = 192 has a factor 3, buta” —n* is not divisible

by 3. contradicting to (2" —n?*) | (a” —n“), hence p is not 3.
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If p =5, letn =16, then2" —n® = 64 110 has a factor 5,

a

but a® —n“ is not divisible by 5, contradicting (2" —n?*) | (a" —
n“), hence p is not 5.

If p =7, letn = p — 1, it follows from Fermat’s Little
Theorem that 27" = 1(mod p).

As (p —1D* =1(mod p),sop | (2" —n*). Moreover, since
aisevenand p |a,son* =(p —1)* =(—1)* =1(mod p) and
p | a”, and hence p does not divide (a” — n*), contradicting
Q2" —=n* | (@" —n*).

Finally, we prove thata is 2 or 4. For this, leta = 2 where
¢ is a positive integer, then it follows from (2" —n?) | (2" —n?)
and (2" —n?) | (2" —a*) that (2" —a®) | (0¥ —n*).

If we choose n to be sufficiently large, it follows from the

ot

fact lim 2— = 0 thatn? —n%* =0, hence 2" =2¢. + — landt —

o 2 n
n—>co

2 are obvious solutions.

If + =3, then by the Binomial Theorem, we haver =27" =
(I +1D7 >1+ & —1 =t, which is impossible. At last, one
can easily check thata = 2 and a = 4 satisfy the condition in the

problem, so the solutions for a are 2 and 4. []
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First Day
8: 00-12: 00, Auguest 17, 2010

@» Leta, b, c € {0, 1,2, ..., 9}. The quadratic equation
ax® +bx +c = 0 has a rational root. Prove that the three-
digit number abc is not a prime number.

Solution. We prove by contradiction. If abc = p is a prime

number . the rational root of quadratic equation f(x) = ax® +bx +

—b £ dac

b* — . . .
9 . Obviously, b dac is a

c =01iSx,, x5 =
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perfect square number, and x;, x, are all negative, and
f() =alx —x)(x —x2).
Thus,
p = f0) =a(10 —2) (10 — x,).
So,
dap = (20a — 2ax,)(20a — 2ax,).

It is easy to see that (20a — 2ax,) and (20a — 2ax,) are all
positive integers. Consequently, p | (20a — 2ax,) or p | (20a —
2ax,). If p | (20a — 2ax,), then p < 20a — 2ax,, so, 80 —
8x, —10x, +x,x; < 0, which contradicts to x,, x, < 0.

Similarly, p | (20a — 2ax,) is not true. []

@» For any set A = {a;» ass ... a,}, denote P(A) =
aias...a,. Let A, A,, ..., and A, be all 99 — element
subsets of {1, 2, ..., 2010}, n = C},. Prove that

2010| 23" P(A).

Solution 1. For each 99-clements subsets A; = {a,s ass ...
agyof {1, 2, ..., 2010} uniquely corresponds to 99 — clements
subset B; = {b1, bys ... s by} of {1, 2, ..., 2010} byb, = 2011 —

ars b =1,2,...,099.

Since Ziix(‘” +b,) =99 x2011 is odd, we see thatA;, B;
are different subsets of {1, 2, ..., 2010}. When A; take all 99 —
elements subset of {1, 2, ..., 2010} ,s0 are B;. Moreover

P(A,)) +P(B»)

=a,as;**agp + (2011 —a,;) (2011 —a,) (2011 —aq)

=a,astay +(—a)(—ay)(—ay)(mod2011)

= 0(mod 2011).
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Thus,

23TPA) = SIPA) + DIP(B) = 0(mod 2011).
i=1

= i=1 i=1

hence 2011 ‘ EP(A,-).
i=1

Solution 2. Let f(n) = (n — 1D (n —2)++(n —2010) —n " —
2010!, wheren € Z.

Since 2011 is prime, by Fermat’s Little Theorem, »*" =
1(mod 2011). By Wilson’s Theorem, we have 2010! =
— 1(mod 2011). Thus,

(i) If 2011 4 n, then
) = — D —2)-(n —2010) = 0(mod 2011).
(i) If 2011 | n, then

fn) = (2011 —1)(2011 —2)++-(2011 — 2010) — 2011%""° — 2010!
= 2010! —2010!(mod 2011)
= 0(mod 2011).

So f(n) = 0(mod 2011) has 2011 solutions in the sense of
mod 2011.

Since f(n) is a polynomial of order 2009, and for alln €
Z, 2011 | f(n), we see that each coefficient of f(n) can be
divided by 2011.

Turn to the original problem, E;ZIP(A;) is the

coefficient of term with order 1911 of f(u), thus

2011| 237 PAD. []

@D As shown in Fig. 3. 1. Let the inscribed circle I of AABC
touch BC and AB at D and F, respectively. Let I intersect the
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segments AD and CF at H and A
K, respectively. Prove that

FD X HK
FH X DK

Solution 1. Suppose that the

= 3.

lengths of segments are AF =z,
BF = y, CD = =z, then by

D C

R Fig. 3.1
Stewart’s Theorem, we have

_BD | 40 CD
BC "¢ The
y(x +2) +z(x +y)° B

B y tx2 xd

AD* «AB* —BD « DC

) dryz
=x° + .
* y tz

) ) _AF*  2?
By Tangent-Secant Theorem, we have AH = AD  AD
Thus;
B B _AD* —z* dryz
HD =AD —AH = ==5 AD(y +=2)°
Similarly, we have
- dayz
KE =eriz + )’

Since ACDK «» ACFD, we see that

_ DF xXCD _ DF
DK = ~CF CFZ.

By the fact of AAFH v AADF, we have

_ DF xAF _ DF

FH AD  AD'
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By the Cosine Law,

DF* = BD* + BF* —2BD « BFcos B

_ 2[1 )ty (& +z)2)
Y 2(x +y)(y +2)

_ bry’z
(x +3y)(y +2)°

Thus
dryz dryz
KF XHD _CF(x +y) AD(y +=z)
FH X DK gx’ . DFz
AD CF
16xy’z

= ‘ =1
DF*(x +y)(y +2)
Appling Ptolemy’s Theorem to cyclic quadrilateral DKHF ,
we have
KF «- HD = DF «- HK + FH + DK.

KF X HD =4, we obtain ——+—————
FH X DK ’ FH X DK

Solution 2. First we prove a

FD x HK

Combining with = 3.

lemma. Q

Lemma. As shown in Fig. 3. 2. \
If the circle touches AB and AC at ‘,’ A
B and C, respectively, Q is a C

point on the circle. AQ intersects Fig. 3.2

the circle at point P, then

we have
PQ - BC = 2BP - QC = 2BQ « PC.
Proof of the lemma. By Ptolemy’s Theorem, we see that

PQ - BC = BP - QC +BQ - PC.
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Since AB tangents to the circle, we see that LZABP = ~AQB.
Further by /BAP = /QAB, we have AABP »» AAQB.

Consequently,
BP _ AP _AB
BQ AB AQ’
Thu59
(@)2 _AP _AB _AP
BQ AB  AQ AQ°
Similarly,
(CP)2 _ AP
cQ AQ’

_ (CPY _ (BPY o . .
Thus, (CQ) = (BQ) , that is BP « QC = BQ « PC. So

PQ - BC = 2BP - QC = 2BQ - PC.

The lemma is proved.

Turn to the original problem.
Let circle I intersect AC at point O
and draw segments HO, OK , OD
and FO. As shown in Fig. 3. 3.

By Ptolemy’s Theorem, we

have

Fig. 3. 3
KF « HD = DF « HK +FH « DK.
Thus,
FD x HK _,  KF xHD _,
FH X DK FH X DK ’

Since CQ and CD are tangent to circle I , by Lemma, we see that

KF -« DO = 2DK - FO,
HD - FO = 2FH - DO.
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Multiply above two equations by each side, we have
KF « HD - DO « FO = 4DK « FH « DO - FO,

... KFXHD _
that is, FH <~ DK 4. []

o Let a and b be positive integers such that 1 <a <<b < 100.
If there exists a positive integer £ such thatab | (a* +5"),
then we say that the pair (as 6) is good. Determine the
number of good pairs.

Solution. Let (a, b) =d,a =sd, b =1td, (s, 1) =1,1 >1,

then std® | d* (s* +t*). Sok =2 and st | d* *(s* +¢*). Since (st

s* +1t*) =1, we have st | d"*. Therefore, any prime factor of

st can be divided by d.

If there is a prime factor p of s or z no less than 11, then p
divides d. So p* | a or p* | b, but p* > 100, which is a
contradiction.

So the prime factor of st may be 2, 3, 5 or 7.

If there are at least three prime factors of st among 2, 3, 5,
7, then there is a prime factor of s or 7 no less than 5. Andd >
2 X3 x5 = 30, so that @ or b = 5d > 100, which is a
contradiction. The prime factor set of st cannot be {3, 7},
otherwise, a orb =7 X 3 X7 > 100, which is a contradiction.

Similarly, the prime factor set of sz cannot be {5, 7}.

Therefore, the prime factor sct of sz can only be {2}, {3},
{5}, {7}, {2, 3}, {2, 5}, {2, 7) or {3, 5}.

(i) If the prime factor set of sz is {3, 5}, then d can only be
15. Then, s =3, ¢t = 5. So there is one good pair (a, b) = (45, 75).

(ii) If the prime factor set of sz is {2, 7}, then d can only

be 14. Thens =2, ¢t =7o0rs =4, t = 7. So there are two good



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

China Southeastern Mathematical Olympiad 259

pairs (a, ) = (28, 98) and (56, 98).

(iiD) If the prime factor of sz is {2, 5}, then d can only be
10 or 20.

Ford =10, thens =2, =5;s =1, ¢t =105 s =4, =
5; s =5,¢ =8.

Ford = 20, thens =2,¢t =5; s =4, ¢t = 5.

There are six good pairs.

(iv) If the prime factor of sz is {2, 3}, then d can only be
6, 12, 18, 24 or 30.

Ford =6,s=1,t =655 =1,¢t =12; s =2,t =33 s =
2t =935 =3,t =435 =3,t =8;s =3,t =1655 =4, ¢
=935 =8,t=9;5 =9,t =16.

Ford =12,s =1,t =635 =2,t =335 =3,t =435 =
3, ¢t =8.

Ford =18, s =2,¢t =3; s =3, t = 4.

Ford =24, s =2,¢t =3;5s =3, t =4.d =30, s =2,
t = 3.

There are 19 good pairs.

(v) If the prime factor set of st is {7}, thens =1, =7, d
can only be 7 or 14.

So, there are two good pairs.

(vi) If the prime factor set of sz is {5}, thens =1, ¢ =5,
d can only be 5, 10, 15 or 20. So, there are four good pairs.

(vii) If the prime factor set of sz is {3} then we have the
following:

whens =1, ¢ =3, d can only be 3, 6, ..., or 33;

whens =1,¢ =9, d can only be 3, 6 or 9;

whens =1, ¢t = 27, d can only be 3.

There are 15 good pairs.

(viii) If the prime factor set of sz is {2}, then we have the
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following:
whens =1,¢ =2, d canonly be 2, 4, ..., or 50;
whens =1, ¢ =4, thend canonly be 2, 4, ..., or 24;
whens =1, ¢t = 8, thend can only be 2, 4, ..., or 12;

whens =1, ¢+ = 16, thend can only be 2, 4 or 6;

whens =1, ¢ = 32, thend can only be 2.

There are 47 good pairs.

Therefore, there are all together 1 +2 +6 +19 +2 +4 +
15 +47 =96 good pairs. []

Second Day
8: 00-12: 00, Auguest 18, 2010

e As shown in Fig. 5. 1. LetC
be the right angle of
ANABC. M, and M, are
two arbitrary points inside
AABC, and M is the
midpoint of M ,M,. The

extensions of BM,, BM and Fig. 5. 1
BM, intersect AC at N,, N

M, N, jLMZNZ >2MN.
BM, BM, BM

and N, respectively. Prove that

Solution. As shown in Fig. 5. 2.
Let H,, H, and H be the
projection points of M ,, M, and
M on line BC, respectively. Then

M, N, _ H,C
BM , BH,’
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le\fg _ HZC
BM, BH,’

MN _ HC H,C+H,C

BM BH BH, +BH,’
Suppose that BC =1, BH, = x and BH, = y. We have

M,N, _H,C _ 1—-=x
BM BH, x

M,;N, H,C _1—y
BM,  BH, v
MN HC 1—x+1—y

BM  BH x +y

Thus, the inequality we are to prove is equivalent to

— 1 - l—x +1—
1 —x X Y~ x + Y,
x y x ty
o . 1,1 4 . ,
which is equivalent to — + — = , that is, (x —y)° =0
x v x +y
which is obviously true. []

@ Let N° be the set of positive integers. Definea, = 2, and

forn =1, 2, ...,

i+i+---+1+%<1,/1 eN*}_

Api1 = min{/\
ay a a,

Prove thata,, =a? —a, +1forn =1, 2, ....

Solution. By a, = 2. a, — min{}{ $+%<1’ A EN }
1
. 1 1 1 1 1
consider — +— <1, then— <1—— ==, >2, hencea, =
a, A A 2 2
3. So the conclusion is true forn = 1.

Suppose that the conclusion is true for all integer n < & —

i+i+.-.+i +i
a, asz ayp A

1k =2). If n =k, thena,., :min{){
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<1l,42 €N’ } Considering

N L O T
a, [2%] ay A
thatis,0<i<1—(i+i+ +i),wehave
a, as ay
1
A > .
N N R
a az ay
In the following, we show that
1
1,i,i, 7i:ak(ak*1).
a as Ay
By the induction hypotheses, for 2 < n < k, a, = a,
(a,.n —1) +1, we have
1 _ 1 _ 1 1
a, =1 a,Ca,y =1 a0 —1 a,y’
1 1 1 .
therefore = — . By taking the sum, we have
Ay a, —1 a, —1
1 _ 1 — , that is
iy Ai—1 Ay —1
k
1,1 1
~ a; a, —1 a, a,Ca, — 1)
1
Consequently, = a,Cay, — D
N N R
aq as ay
Therefore,

1

Apy1 — mm{)& | L‘F*‘F"

a as

=a,(a, — 1) +1.

Ay

-+i+%<1,/m eN"*}
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By induction on n, for all positive integer n, we have, a,.;

a® —a, +1. D

@D There are 2n real NUMbBETS @1 » Aos vus @ys Tis Fos ous

and r, satisfyinga, <a, <+ <a,and0 <r, <r, < =
< r,. Prove that ZZI:] 2::](1;% min(r,, ;) = 0.
Solution. Write a matrix of n X n elements as follows:

a a;ry  a)dz;rp  a;dszr ttoaannm
Ad 7y A2d27; dA2d37 Tt Aq2anr:

Ay = |asary asa.r, asasr; Tt Aszdnrs

. . . .

a,ar; a,azr; a,asrs o a,d Ty

Since

ZZa,ajmin(ri, r;) = Zalajmin(rl, r;) + Zazajmin(rz, ri)

i=1 j=1 = o

+ e + Eakajmin(rk s 1) e
j=1

J

u
+ § a,a;min(r,, r;),

i=1
its £th term is

n

§ ara;min(r,, r;) = aa,ry taza,r, + 0 Faa,r,
ji=1

+akak\li’k + .. +aka,,rk

which is the sum of elements of the 2th row of A,, & =1,
29 cee s N,

Therefore, EL] ijla,-ajmin(r,-, r;) is the sum of all

elements of A,.
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On the other hand, the summation can also be done as
follows: Take the elements of first column and the first row of
A, ,sum up; denote the rest (z —1) X (n —1) element by matrix
A, , then take the first column and the first row of A,, sum up,

denote the rest by matrix A;, ..., so we get

n

Zza,ajmin(ris rj‘) Zr;\,(ai +2a/((ak71 +ak72 + e +a7,))

i=1 j=1 k=1

n

S (@ ) - (Ba))

k=1 i=hkt1 i=hkt1
n n n

2 2

=20 ((2a) —(2ar))
k=1 i=k i=k+1

+r,,(§a;)z *rl(Za,)Z *rg(Za,-)r

=2 i=3

o *77171(201)2
= 2(}’% 77’/\y71)(2a;)2 >O
i=k

k=1

(wherer, = 0). D

o Given eight pointsA,, A,, ..., Agon a circle, determine
the smallest positive integer n such that among any =
triangles with vertices in these eight points, there are two
which have a common side.

Solution. First, we consider the maximal number of triangles

with no common side.

Consider the maximal number of triangles with no common

side pairwise. There are C{ = 28 chords by connecting eight
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points. If each chord only belongs to

one triangle, then these chords can

only formr < [%] =9 triangles with

no common side pairwise. But if
there are nine such triangles, then
there are 27 vertices. So, there is one
point in eight points, which is the

common vertex of four triangles.

Fig. 8. 1

Suppose that point is Ag, then eight edges are connected to

seven points A, A,, ..., A;. So, there must exist an edge

AsA; > which is the common side of two triangles, which is a

contradiction. Sor < 8.

On the other hand, when » = 8, we can make such eight

triangles, see figure. Denote the triangles by three vertices as:
1,2,8, ,3,6), (1,4, D, (2,3, 4), (2,5, 7, (3, 5,
8), (4, 5, 6) and (6, 7, 8). So the minimal number of » is 9.

]

2011

First Day

8: 00-12: 00, July 27, 2011

2
@ fmin 420 3, find
Jat +1

(1) the range of b;
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(2) the value of « for given b. (posed by Lu Xingjiang)

ax® +b
xt 41

0. By f(0) =0, we see thatb = 3.

Solution 1. Denote f(x) = . It is easy to see thata >

S :M =ax? +1 er;a}Z«/a(b*a) =3,

x? +1 Jat +1
equality holds if @ vaZ +1 = 2%, thatis, if x = + |2 —2¢,
Vit +1 a
. b =T =9 .
The value of a for given b isa = T E— especially

whenb = 3., a :%.

GD b —2a <0.let Vol +1 =1t =1). f(x) —g() =

b —a . . .
at + o monotonically increasing whent¢ = 1, so,

minf(x) = g(1) =a +b —a =b = 3, whena >%.
rER

Summing up, we get (1) the range of 6 is [3, + =),

(2) Iftb =3, thena 2%; if b >3, thena :ﬁ'
. . 2 4p .
Solution 2. Let f(x) = “ "2 Jtis easy to see thata > 0.
Jat 1
Since min, e 51127% = 3, and f(0) = b, we sec thatb = 3.
Jxt +1
ax(rz b 72“)
"(x) = ; z
f G+ DV

@ Ifb —2a <0, let f'(x) =0, we have the solution z, =
0, and if x <0, then f'(x) < 0; and if x > 0, then f'(z) > 0.
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f(0) = b is the minimal value. Henceb = 3, anda = %

(i) Ifb —2a >0, let f (x) =0, we have the solutions x, =

0, 2,., =+ M
Noa

It is easy to see f(0) = b is not the minimal value, which

implies b6 > 3; and f (&, ,) is the minimal value

b — 2a

a - +0b
flan = =322/ab—a) =3
b — 2a
+1
a
— 2
=a’ —ab +% = 0=q = ¥’
_— 2
that is, & > 3 anda = b Zb 9

Summing up, we get

(1) the range of b is [3, + o).

b —/b* —9

(2) Ifb:3,thena>%;ifb ~3, thena — :

]

@D Lcta, b andc be coprime positive integers so thata® | (6° +
¢y bt | (a® +c¢*)andc? | (a® +6*). Find the values of a »
b and c. (posed by Yang Xiaoming)
Solution. By the condition of the problem, we havea® | (a® +
b 4+, b* | (@ +b° +¢*)andc? | (@ +b6° +¢). Sincea, b
and ¢ are coprime, we see thata®b*c? | (a® +6° +¢*).
Without loss of generality, suppose thata =6 = ¢, so

2 2
b c*

3

3a =Za® +b° +¢* =atbici=>a =

b
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and

11
20° = 0% + ¢ = at=>2b° 2%3/7 <¥.
c

We see that if ¢ = 2=b < 1, the result contradicts b = c.
Thus, ¢ = 1.

Ifc =landb =1, thena =1,s0Ca, b, ¢c) =, 1, 1) is
a solution.

Ifc =1, b =>2anda = b, thenb® | b + 1, which is a
contradiction!

Ifb =2anda >b >c¢ =1, then
a’b? | (@ 40 +1)=2a° =4 +0° +1 =a’b*=a E?,
and by ¢ =1,
) . ‘ b*
a1 W+ D=0 +1 =4t = I:>4b3 +4 =0b".

For 6 > 5, the inequality has no solution. Takeb =2, 3., 4,
5, we see that the solutions arec =1, 6 =2, a = 3.

Therefore, all solutions are (a, b, ¢) = (1, 1, 1), (1, 2,
3, (1,3, 2), (2,1, 3), (2,3, 1), (3, 2, 1) and (3, 1, 2).

]

@ LetsetM = {1, 2, 3, ..., 50}. Find all positive integer
n, such that there are at least two different elementsa and
b in any subset with 35 elements of M, such thata +6 =n
ora —b = n. (posed by Li Shenghong)

Solution. Take A = {1, 2, 3, ..., 35}, then for anya., b € A,

a—b <34, a+b<34+35=060.

In the following, we show that1 <<n < 69. Let A = {a,,
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@ss ... ass ) without loss of generality, suppose thata, < a,
< eer < ass.
(D Ifl <n <19, by
1 <a, <a, <+ <as;; <50,
2<a; +tn <a, +tn <+ <as;; +n <50 +19 =69,
and by Dirichlet’s Drawer Theorem, there exist 1 < i, j < 35
(i # j) such thata; +n =a;, thatis, a;, —a; =n.
(D If 51 <n <69, by
1 <a, <a, <+ <a;; <50,
1<n—ays <n —ay <+ <n—a, <68,
and by Dirichlet’s Drawer Theorem, there exist at least 1 < i,
j <35G #j) such thatn —a; = a,, thatis, a;, ta, = n.
(iiD) If 20 < n < 24, since

50 —(2n +1) +1 =50 —2n < 50 —40 = 10,

we see that there are at least 25 elements ina, s a»s ... as; that
belong to [1, 22 ].
There are at most 24 elements in {1, n +1}, {2, n +2}, ...,
{n, 2n} such that {a,, a;,} = {i, n +1}. Hence, a; —a, = n.
(iv) If 25 <n <34, since{l, n +1}, {2, n +2}, ..., {n,
2n} have at most 34 elements, by Dirichlet Drawer Theorem,

there exist 1 <7, j < 35(: # j) such thata, =i, a; =n +i,

th‘dtisaj —a; —n.
(v) If n = 35, there are 33 elements {1, 34}, {2, 33}, ...,
{17, 18}, {35}, {36}, ..., {50}. Hence, there exist1 <i, j <

35(: # j) such thata; +a; = 35.

(vi) If 36 < n <50,

ifn =2k +1, {1, 2k}, {2, 2B — 1}, ..., {k, & + 1},
{2k +1}, ..., {50};

if 18 <k <20, 50 —(2k +1) +1 =50 —2k <50 —36 = 14;
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if 21 <k <24, 50 —(2k +1) +1=50—2k <50 —42 =8,
there exist 1 <7, j <<35(: # ;) such thata, +a; =2k +1 = n.

Ifn =2k, {1, 2k —1}, {2, 2k =2}, ...,k —1, k +1},
(ks {2k}, {2k +1},...,{50};

if 18 <<k <19,50—(2k +1) +3 <16k —1<19—1=18;
if 20 <k < 23,50 —(2k +1) +3 <502k +2 <12k —1
<23 —1 =22

if 24 <k <25,50—(2k +1) +3 <50 2k +2 <4k — 1<
25 —1 = 24,
there exist 1 <7, j << 35(; # j) such thata; +a; = 2k. []

o Suppose that a line passing the circumcentre O of AABC
intersects AB and AC at points M and N, respectively, and
E and I are the midpoints of BN and CM , respectively.
Prove that /EOF = /A. (posed by Tao Pingsheng)
Solution. We show that the above conclusion is true for any triangle.
If AABC is right-angled. The conclusion is obvious. In
fact, see Fig. 4.1, where ZABC = 90°. So, the circumcentre O
is the midpoint of AC, OA = OB and N = O. Since F is the
midpoint of CM, we see that the median line OF | AM. Hence
/EOF = ZOBA = ZOAB = /A.
If AABC is not right-angled, see Fig. 4. 2 and Fig. 4. 3.

A A
“ L
o) y ‘( N N

]
M /’\
Er A

B c B C C B

Fig. 4.1 Fig. 4.2 Fig. 4.3
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First we give a lemma.

Lemma. Let A and B be two points on the diameter KL of
circle ®O with radius R, and OA = OB = a. See figure.

Let CD and EF be two chords passing A and B,
respectively. Suppose CE and DF intersect KL at M and N,
respectively. Then MA = NB.

Proof of the lemma. As shown in
Fig. 4. 4. Suppose that CD N EF = P.
Think of that lines CE and DF intersect
/A PAB. By Menelaus’ Theorem, we have

AC | PE
CP EB
BE  PD
FP DA
Then
MA
NB

BM
MA
AN
NB

AC
BE

By the Intersecting Chord Theorem, we get

So

PC -

F
:1,
C
-1 Fig. 4.4
.AD PE PF BM @D
BF PC PD AN"
PD = PE . PF. ©)

AC « AD = AK « AL = R* —4* = BK + BL = BE « BF,

MA _MA +AB _AB _
NB NB +AB AB

Thus, MA = NB.

By @, @, we have Y4 _ MB

®

, that is

NB NA

Now, return to the original problem, see Fig. 4.5 and
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Fig. 4. 6. Extend MN to diameter KK, take point M; on KK},

such that OM ,

= OM. Let CM;, N ©O = A, and let A\B

intersect KK, at N,. By the lemma, MN, =M ;N (orM N, =
MN on the right figure). So, O is the midpoint of NN,. Thus,
OFE and OF are the median line of ANBN, and AMCM,,
respectively. Thus, we have Z/EOF = /BA,C = ZA. []

Second Day

8: 00-12: 00, July 28, 2011

@D Let AA,, BB, and CC, be angular bisectors of AABC.
Let AjA, I BB, and AjA, [ICC,, where A, and A, lic on

AC and AB, respectively,
and let line A, A, intersect
BC at A;. The points B,
and C,; are obtained
similarly. Prove  that
points A;, Bj;, C; are
collinear. (posed by Tao

Pingsheng)

Solution. By the Menelaus

Fig. 5. 1



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

China Southeastern Mathematical Olympiad

Inverse Theorem, we need only to show that

B.C A.,B C;A

=1.

Since line A,A,A; intersects AABC, by
CA, BA, AA,

Theorem, we haveASB . AA . A.C = 1. So
CA, _ AA . A, C
A;B BA, AA.,’
Similarly, we have
AB; _ B,B . B, A
B.C CB, BB,’
BC, _C,C . C.B
C,A AC, CC,-
_ BC, ) _AA,

AA, _AA, - AC,  BC
BAQ BAO . BCO AI )

_AA,
AT

. CA
«AB,and CA, = CBO

Moreover, by AA,

have

A,C _ CA,+CB, Al
AA, — AA, «AB, BC

Then by @, @ and ©, we have

CA. _CA, AC, CB, _ (CAo)Z
A,B  BA, "BC, AB, \A.B)"

Similarly, we have

CB, _ (CBO j

273

@

Menelaus’

« AC,, we have

)

«CB,, we
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AC, _ (Acoj{ -

Since three angle bisectors AA,, BB,, CC, of AABC are

concurrent, by Ceva’s Theorem, we have

AB, CA, BC,
B.C AB C,A -

Thus, by @ and ®, we have

AB; CA; BC, (ABO CA, BCO)Z:1

B.C "A.B C.,A \B,C A,B C,A

that is @. ]

o Given n points P;, P,, ..., P, on a plane, let M be any
point on segment AB on the plane. Denote by | P.M | the
distance between P, and M, i = 1, 2, 3, ... .n. Prove that
20 L PM < max{ >} | PALL 2 I PBI).
(posed by Jin Mengwei)

Solution. Let O be the origin. Then we have OM = ¢t OA +

(1—-0 0B, € (0, D.

| PM | =| OM — OF |
=|tOA +1 —)OB —tOP, — (1 —1) OP, |
<¢|OA —OP, |+ —1) | OB —OF, |
=t | PA |+ —t)|PBI.

Hence,

SUIpM| <> [ PAI+A-0Y) | PB|
i=1 i=1 i=1

<max{i\P,A|,2‘P,‘B‘}- D
i=1 i=1
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@D Suppose that the sequence {a,} defined by a; = a, = 1,
a, =7a,y, —a,2, n = 3. Prove thata, +a,1 +21is a
perfect square for any positive integer n. (posed by Tao
Pingsheng)

Solution. It is well known that the solution of the sequence

can be obtained by solving two geometric sequence. We get a,

= C,A} +C,A5, where

A = 7+f (ng] M?Zm(szzﬁjz,

A1 and A, are solutions of the equationA”> —7A +1 =0, a, =
1 == C1A1 +C2A29 as — 1 = Cl;{f +(:2/1§

Therefore,

a, ta, 2 =27"C Ay +AD) +A7CL, (A, +A%) +2
= At +2

(59 (55 ) -
(59 (5 T -

n—l1 n—1
where x, = (SEJ@] + (Tj is the solution of the

sequence {x, } of positive integersx, =2, x5, =3, 1, = 3x,.1 —

Toas m = 3. []

@D Consider 12 figures on the clock face as 12 points. Color
them in four colors: red, yellow, blue and green. Each
color is used for three points. Configure n convex
quadrilaterals with vertices in these points, such that
(1) there are no same color of vertices for each quadrilateral.

(2) among any three of these quadrilaterals, there is a
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color of vertices such that the vertices of that color
are different.

Find the largest number of n. (posed by Tao Pingsheng)
Solution. We use A, B, C, D to represent these four colors,
respectively, and the points in the same color by lower letters as
ais ass azs b1s bys bys c1s cos cyanddy s dys d; respectively.

Now consider color A. If, in n quadrilaterals, the number
of pointsa,, a;, a; in color A aren,, n,, n, respectively, then
n, +n, +n; = n. Suppose thatn, =n, =n,. If n =10, then
n, +n, = 7. Consider these seven quadrilaterals (its A color
vertex is either a, ora, ), if the numbers of pointsb,, b,, b; in
color B arem, m,, m,, respectively, thenm, +m, +m, =7.
By symmetricity, we may suppose thatm, =m, =m,, thenm,
< 2, that is, m, +m, = 5.

Consider these five quadrilaterals (its A color point is either
a, ora,, and its B color point is either b, or b, ), if the numbers
of pointsc,, ¢;, c; in color C are k,, k,, k;, respectively, then
k, +k, +k; =5. By symmetricity, we may suppose thatk, =k,
=ky, then kb, <1, that is, &, +k, = 4.

Consider these four quadrilaterals, denoted as T,, T,,
T, T, (its color A point is either a, or a, , its color B point is
either 6, or b,, and its color C point is either ¢; or ¢, ). Since
there are only three points in color D, there are two
quadrilaterals that have the same color D point. Suppose that
the same color D point of T, T, isd,.

Then, in three quadrilaterals T, T,, T, whatever be the
color of the wvertex, there are repeated points, which
contradicts condition (2). Hence, n < 9.

We show the maximal number » = 9 by construction of

these nine quadrilaterals.
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D, D,

C) CO) C)
DIDZ b, @ D, DsD.

We draw three “concentric annulus” with four points on
each radius representing four vertices and the color. So nine
radii represent nine quadrilaterals, which satisfy condition (1).

Next, we show that they also satisfy condition (2). Take
any three radii (or three quadrilaterals) .

If these three radii come from a concentric annulus, for
each color except A, there are three points.

If these three radii come from three concentric annuli,
then for color A, there arc three points.

If these three radii come from two concentric annuli, call
these three figures Fig.1, Fig.2 and Fig. 3. The radius

&

directions are called “up radius”, “left radius” and “right
radius”, and denoted, respectively, by S, Z and Y. If three
radii have three directions, then there are three points of color
B in three quadrilaterals. If the three radii have only two
directions, then there are all cases as shown in the tables below,
where 1, 2 and 3 stand for Fig. 1, Fig. 2 and Fig. 3, respectively.
Here, the color in figure means that the three

quadrilaterals have color with different figures.

S |1, 2|1, 2 2 1 S |1, 2(1, 2| 1 2
1 1. 2]1, 2 2 Z 2 1. 2|1, 2 1
Y 2 1 |1, 2|1, 2 Y 1 2 |1, 2|1, 2
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S |1, 31, 3] 1 3 S (1, 3]1, 3] 3 1
3 1, 3|1, 3 1 1 1, 31, 3 3
Y 1 3 |1, 3|1, 3 Y 3 1 (1, 3|1, 3
C D
S |2, 3|2, 3| 3 2 S |2, 32, 3] 2 3
2 2, 312, 3 3 3 2, 3|2, 3 2
Y 3 2 12, 3|2, 3 Y 2 3 12, 3|2, 3
C D
Thus, the maximal number of  is 9. []

2012

First Day
8: 00 - 12: 00, July 27, 2012

@D Find a triple ({, m, n)(1 <[ < m < n) of positive
integers such that 2;:1/@, E k, 2 k form a

k=1+1 k=m+1

geometric sequence in order. (posed by Tao Pingsheng)

Solution. For: € N*, denote S, =

: t(¢t +1)
Dk = =, Let

/ m n
Dk =S,k =S,-S,>,k=5,-5,.

k=1 k=1+1

k=m+1

form a geometric sequence in order. Then

S, (S, —S,) =(S, —S)*, @®

that is S, (S, +S,, —S,) = S..

Thus, S, | S%, that is
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2000 + 1) | m*Gm + 1)7.

Letm +1 =1[(/ +1) and take/ = 3. Thenm =11and S, =
S; =6, S, =S, =66. Substitute it into @, we have S, = 666,

n(n +1)

that is = 666. Son = 36.

Therefore, (I, m, n) = (3, 11, 36) is a solution satisfying
the condition. []
Remark. The solution is not unique. For example, there are
other solutions as (8, 11, 13), (5, 9, 14), (2, 12, 62), (3, 24,

171). (We may show that the number of solutions is infinite.)

@D Let OI be the incircle of AABC. The circle ©1 intersects
sides AB, BC and CA at points D, E and F, respectively.
Line EF intersects lines AI, BI and DI at points M, N
and K , respectively. Prove that DM « KE = DN « KF.
(posed by Zhang Pengcheng)

Solution. It is easy to see that points I, D, E and B are

concyclic and

ZAID =90° — ZIAD,
/MED = /FDA = 90° — /IAD.

So ZAID = AMED, thus points I, D, E and M are
concyclic.

Hence, five points I, D, B, E,
M are concyclic and £ IMB = ZIEB
= 90°, that is AM | BM.

Similarly, points I, D, A, N
and F are concyclic and BN 1 AN.

Let lines AN and BM intersect at

point G. We see point I is the
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orthocenter of AGAB and ID | AB, so points G, [ and D are
collinear.

Since points G, N, D and B are concyclic, we see that
ZADN = /G.

Similarly, “ BDM = /G. So DK bisects ~/MDN , thus

DM KM
DN KN @

Since points I, D, E and M are concyclic, and points I, D,

N and F are concyclic, we see that

KM « KE = KI « KD = KF « KN.

Therefore,
KM _ KF
KN KE° ®
‘ DM _KF o KE —
By @ and®, we see that DN — KE ' thatis DM « KE
DN - KF. []

o For positive composite number n, denote by f(n) and
g (n) the sum of the smallest three positive divisors of n
and the largest two positive divisors of n, respectively.
Find all » such that g(n) equals f(n) to some power of
positive integers. (posed by He Yijie)

Solution. If » is odd, then all factors of n are odd. So f(n) is

odd and g (n) is even. g(n) cannot be f(n) to some power of

positive integer. Therefore n is even. The smallest two divisors

of n are 1 and 2, and the largest two divisors of n are n and n/2.

Let d be the third smallest divisor of n. If there exists £ €

N* such that g(n) = f*(n), then
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3717 =0 +2+d)" =G +d)* =d"(mod3).

Since 3 37”, we see that 3 | d*. So 3 | d, and since d is the

third smallest, we see thatd = 3.

Thus, %n =6*, we getn =4 xX6""', Since 3| n, we see that

k= 2.
Summing up, n =4 X 6'(l € N"). []

@D Let real numbersa, b, ¢ and d satisfy
f(x) =acosx +bcos 2x +ccos3x +dcosdxr <1

for any real number x. Find the values of as 6, ¢ and d
such that « + b — ¢ + d takes the maximum number.
(posed by Li Shenghong)

Solution. Since

) =a +b+c+d,
f() =—a +b—c+d,

Ty_a _b _ _d
f(gjfz 2 ¢ 9

then
_ 2 4 1S
a+b—c+d ff(O)-F?f(Tc)-F?f(?jéB
if and only if f(0) = f () :f(%jzl,that is, ifa =1, 0 +
d = 1and ¢ =— 1, then the equality holds. Let : = cos x,

—1 <t < 1. Then

f(x) —1 =cosx +bcos2x —cos3x +dcosdx — 1

t+ Q- —1) — U —3) +d@&" —8&* +1) —1
2(1 7[2)[74d[2 +22‘ +(d 71)] <07 Vt 6 [717 1]5



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

282 Mathematical Olympiad in China

that is
4dt*> — 2t + (1 —d) =0, Yt € (—1, 1).

Taking t = 1/2 +e, | e | <1/2, thene[(2d —1) +4de] =0,

| e | <1/2. So we see thatd = % Ifd = %, then

Adt* =2t + (1 —d) =2t> — 2t +1/2 =2 —1/2)* = 0.

So, the maximal number ofa +6 —¢c +d is 3, and (a, b, ¢,

_ 1 1
d)—(l,z, 1,2) ]

Second Day
8: 00 -12: 00, July 28, 2012

@D A non-negative number m is called a siz match number. 1f
m and the sum of its digits are both multiples of 6, find
the number of the six match numbers less than 2012.
(posed by Tao Pingsheng)
Solution. Letn = d d.dsd, = 1000d, + 100d, + 10d, +d, .
disdssdys d, €[0,1,2, ..., 9],and Sn) =d, +d, +
ds +d,.
Match the non-negative multiples of 6 less than 2000 into
167 pairs (x» y)s x +y = 1998, such that

(0, 1998), (6, 1992), (12, 1986), ..., (996, 1002).

For each pair (x, y), letx = a,asasa,s» y = b,b,b50,, then
1000(6{1 +bl) +100(a2 +bz) +10(a3 +b3) +((l4 er.;)
=x +y = 1998.

Since x, y are even, a,s b, < 8. Soa, +b, < 16 < 18.
ThuS, ay +b4 = 8. Since as +[)3 < 18 < 19’ as +bg = 9.



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

China Southeastern Mathematical Olympiad 283

Similarly, we can obtaina, +b, = 9anda; +06, = 1. Thus,

S(x) +S(y) = (a, +b,) +Cay, +by) +(as +b3) + (ay, +0,)
=14+9+9 +8 = 27.

Consequently, there is only one of S(x) and S(y) that is
the multiple of 6. (This is because that x, y are all multiples of
3, soare S(x) and S(y). ) That is, there is only one of x and y
which is a six match number.

Therefore, there are 167 six match numbers less than 2000,
and there is just one six match number between 2000 and 2011.

Therefore, the answer is 167 +1 = 168. []
@ Find the minimum positive integer n such that
J71 — 2011 7Jn — 2012 _ s/n — 2013 7Jn — 2011
2012 2011 2011 2013

(posed by Liu Guimei)

Solution. We see that if 2012 < »n < 4023, then % _
n — 2012 [ —2013 _ [n — 2011
P > . _ )
2011 O“‘ndJ 2011 J 2013 0

Otherwise,
n — 2011 n — 2012
—_— (:}
J 2012 J 2011 n — 4023
‘In —2013 n — 2011
no_clld > > )
J 2011 J 2013 " =40z

Thus, if n = 4024, then

Jn — 2011 7Jn —2012 _ Jn — 2013 Jn — 2011
2012 2011 - 2011 2013

So the minimum of n is 4024. []
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@ In AABC withAB =1, letD
be a point on AC such that D
ZABD = ZCandletEbea E
point on AB such that BE =
DE. Let H be a point on DE  p c
such that AH | DE and M be Fig. 7.1
the midpoint of CD. If AH =

2 —4/3, find the size of ZAME. (posed by Xiong Bin)
Solution. Let LZABD = £C = a and £DBC = . It is easy to
see that L/ BDE = a, LAED = 2a,

/ADE = Z/ADB — /BDE = (a +8) —a =f3,
AB = AE +EB = AE +EH + HD.

Hence,

AB _AE +EH _HD _ 1+ cos2a
AH  AH Al sin2a | CotP

= cot a + cot B. ®

Draw lines EK | AC and
EL 1| BD with pedals K and L,

A
K
respectivel Then, L is the A b
P y- » L ERT—
\ M

midpoint of BD. Combining with

L
the Sine Theorem, we obtain
B C
EL _ DEsin ZEDL _ sina Fig. 7. 2
EK DEsin ZEDK  sinf &1
_BD _ LD
CD MD*
Thus;
cota = LD _MD _ MK DK _ cot LZAME —cotB. ©

ELL EK EK EK
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By @. @ and known conditions, we have

AB 1
cot /AME = 22 = =2 +43.
AH 2 —J3
Therefore, ~AME — 15°. []

o Let m be a positive integer, n = 2" —1,and P, = {1, 2, ...,
n} be the set of n points on number axis. A grasshopper
jumps between adjacent points on P,. Find the maximal
number of m such that for any x, y € P,, the number of
ways that a grasshopper jumping from x to y by 2012 steps
is even (passing x or y on the way is permitted) . (posed
by Zhang Sihui)

Solution. Ifm = 11, thenn = 2" —1 > 2013. Since there is

only one way a grasshopper jumps from point 1 to point 2013 by

2012 steps, we see that m << 10.

In the following, we show that the answer ism = 10. To
show this, we will prove a stronger proposition by induction on
m : foranyk =n = 2" —land anyx, y € P,, the number of
ways the grasshopper jumps from point x to y by % steps is even.

If m = 1, the number of ways is 0, where 0 is even.

If m = [, the number of ways is even. Then, fork =n =
2"t —1, there are three kind of routes from point x to point y
by % steps. We show that the number of ways is even for each
kind of route.

(1) The route does not pass point 2°. So points x and y both
are on one side of point 2. By the induction hypotheses, there
are even routes.

(2) The route passes point 2° just once.

Suppose that the grasshopper is at point 2 at the i-th steps.
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(G €{0,1,....k}si=0meansx =2', i =k meansy = 2" ). We
show that, for any ¢, the number of routes is even.

Suppose that the route isx, ars ...s a1y 25 @Giirs o vns
ap1, y. Divided it into two sub-routes: from point x to point
a;,, of i —1 steps and from pointa,;, to point y of £ —7 — 1 steps
(fori = 0 or £, only one sub-route of £ — 1 steps).

Ifi —1<2' —landk —i —1<2' —1, thenk <2'"' —2,
which contradicts & =n = 2" — 1. So, we must have i — 1 =
2" —lork —i —1 =2' — 1. By the induction hypotheses, there
are even ways for a sub-route. So, by the Multiplication
Principle, the number of ways is even.

(3) The route passes point 2' no less than two times.

Consider the sub-routes from 2‘ to 2, the number of ways is
even, since we can consider the routes symmetric to 2°. So by
the Multiplication Principle, the number of ways is even.

Summing up, the maximal m is 10. []

IR ( Yingtan, Jiangxi)

First Day
8: 00 -12: 00, July 27, 2013

@D Leta, b be real numbers such that the equation x® —ax® +
bx — a = 0 has only real roots. Find the minimum of

2a*® —3ab + 3a
b +1

Solution. Letx,, x, and x; be the real roots of the equation
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2% —ax® +bxr —a =0 . By Vieta’s Formula, we have
x, tx, txs =a, x1x tasxs txixs =6, 1375 = a.
By (), 2, +x5)" =3(x 2, +x325 +2,25), we havea’ =
3b,andbya = x, + s + a2y =3 Jx 2920, = 34a » we have
a =343, Thus,

2a® —3ab +3a  a(a® —3b) +a’ + 3a

b +1 b +1
a‘;i?a >a37+3a

. PE
— +1

3

=

= 3a = 943.

If « =3/3, 6 =9, then the equality holds when each root is
equal to /3.

Summing up, the answer is 9+/3 . []

@D Let OI be the incircle of AABC with AB > AC. OI
tangent to BC and AD at D and E, respectively. The
tangent line EP of ®T intersects the extended line of BC at
P. Segment CF is parallel to PE and intersects AD at point
F. Line BF intersects O at points M and N such that M is
on segment BF. Segment PM intersects O1 at the other
point Q. Prove that /ENP = /ENQ.

Solution. Suppose that ©1

touches AC and AB at S and

T, respectively. Suppose

that ST intersects Al at

point G, we see that IT |
AT and TG 1L Al. So we
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have AG « Al = AT? = AD + AE, thus points I , G, E and D are
concyclic.

Since IE | PE and ID 1 PD, we see that points [, E, P
and D are concyclic. Hence, points I, G, E, P and D are
concyclic.

Therefore, £IGP = ZIEP = 90°, that is, IG | PG.
Hence, points P, S and T are collinear.

Line PST intersects AABC. By Menelaus’ Theorem,
we have

AS CP BT _

SCPB TA -

Since AS = AT, CS = CD and BT = BD, we have

PC BD _
PB CD " ©

Let the extension of BN intersect PE at point H. Then line
BFH intersects APDE. By Menelaus’ Theorem,

PH EF DB _

HE "FD " BP

. EF _ PC
Since CF parallel to BE, FD _cD' Ve have

PH PC DB _ @
HE "CD " BP

By @ and @. we have PH = HE. Hence, PH* = HE® =
PH HN

HM « HN. Thus, we haveH—MfPH, APHN oo AMHP and
~HPN = /HMP = ANEQ. Further, since ~PEN =
~ZEQN , therefore /ENP = /ENQ. []

@D Let the sequence {a, } be defined by
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a, =1lsa, =2, a,n =M(H =2,3,...).

a,—

Prove that the sum of squares of any two adjacent terms

of the sequence is also in the sequence.

2 n
. a, +(—1)
Solution. By a,,, = =~———~", we have ¢, a, 1 = a: +
ap—1
(_1)”<7’l - 29 33 oo s)a SO
a, —a,, _a,a,, —a,. _ar +(=D"" —a.,
a1 Ap1dy—2 Ap1dy—2
2
_ Ay T Ay Ay-3 _ Ay T Ay—3
Ay—1d,—2 a,—2
as; —a
= een = 28 L — 2,
as
thatis, a, = 2a,1 +a,»(n =3),a, =1, a, = 2.
Therefor@, a, — (:1/1’1’ +(:2/11_7], /\[ +)(2 - 29 AIAZ - 1,
a, =1lsya, =2n € N".
Then, sinceA,A, =—1landi; =2 — A, , we have

ZfAl =*C1+Czl{§
=
:Cl(l_._/‘tf) :/11.

1 - C1A1 +C2/\2 {/\3 - Clklllz +C2A§
=

Thus, by symmetric condition, we have C,(1 +213) = A,.
So, since 1 +1,4, = 0, we have
al +aly, =CHA F2ADAT +C5A 2D +
2C,Co (A A )" (1 +2,45)
C AT +CA8" = am. D

@D Suppose that 12 acrobats labeled 1 — 12 divided into two
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circles A and B, with six persons in each. Let each acrobat
in B stand on the shoulders of two adjacent acrobats of A. We
call it a tower if the label of each acrobat of B is equal to the
sum of the labels of the acrobats under his feet. How many
different towers can they make?
(Remark. We treat two towers as the same if one can be
obtained by rotation or reflection of the other. For example,
the following towers are the same, where the labels inside the
circle refer to the bottom acrobat, the labels outside the circle

refers to the upper acrobat.)

Solution. Denote the sum of labels of A and B by x and y.,

respectively. Then y = 2x. Thus, we have
3Jx =x+y =1+2+--+12 =78, x = 26.

Obviously, 1, 2 € Aand 11, 12 € B. Denote A = {1, 2, a,
by c,d),wherea <b <c¢ <d. Thena +b +c¢ +d = 23, and
a=3,8<d <10fd <7,thena +b +c +d <4+5+6+

7 = 22, which is a contradiction. )

(1) Ifd =8, thenA ={1,2,a, b, ¢, 11 10
8}9 C<7’a+b+(f:15. ThUSa (av bv ('):
(3,5, D or (4, 5, 6), thatis, A = {1, 2, 4 9

37 59 79 8}0rA:{19 29 47 59 69 8}.
IfA :{19 29 39 5’ 7, 8}’thenB :{4’
6,9, 10, 11, 12}. Since B contains 11, 4, 6 and 12, there is

6 12

only one tower that, in A, 8 and 3, 3 and 1, 1 and 5, 5 and 7
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are adjacent.

IfA={1,2,4,5,6,8},thenB ={3, 7,9, 10, 11, 12}.
Similarly, we see that, in A, 1 and 2, 5 and 6, 4 and 8 are
adjacent, respectively. There are two arrangements, that is,

there are two towers.

(2) Ifd =9,thenA ={1,2,a,b,c¢,9},c <8, a+b+
¢ =14, where (a, b, ¢) = (3,5, 6)or (3,4, 7), thatis, A =
{1,2,3,5.6,90orA ={1,2,3,4,7,9}.

ItA={1,2,3,5,6,9},thenB ={4, 7,8, 10, 11, 12}.
To obtain 4, 10 and 12 in B, 1, 3, and 9 in A must be adjacent

pairwise, it is impossible!

6 11 8 5

IfA=1{1,2,3,4,7,9),thenB = {5, 6,8, 10, 11, 12}.
To obtain 6, 8 and 12 inB , 2 and 4, 1 and 7, 9 and 3 must be
adjacent in A, respectively. There are two arrangements, that
is, there are two towers.

(3) Ifd =10, thenA ={1, 2, a, b, c,
10}, wherec <9, a +b +¢ = 13. Thus, (a,
b, c) =(3,4,6), thatis. A = {1, 2, 3, 4,
6, 10} and B = {5, 7, 8, 9, 11, 12}. To 9 7

12 11
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obtain 8, 9, 11 and 12 in B, 6 and 2, 6 and 3, 10 and 1, 10 and
2 must be adjacent, respectively. There is only one tower.

Summing up, there are six different towers all together. []

Second Day
8: 00 -12: 00, July 28, 2013

@ Let f(a) = [%]—0— [%]—0— + [ﬁg'], where [z ] is the

greatest integer no greater than x. Call an integer n a
good number if the equation f(x) = n has a real solution
x. Find the number of good numbers in the set {1, 3,
5, ..., 2013}.

Solution. First, we point out two obvious facts:

(a) If m is a positive integer and x is real, then

- (5

(b) For any integer /[ and positive even number m s we have

0 1)
Letm =k (k =1, 2, ..., 2013) in (a) and summing up,
we have
2 2013
re = 5] 2[5 s

k=1 * k=1

that is, f(x) = n has a real solution if and only if f(x) = n has
an integer solution.So, we only consider x as an integer. Since
2013

flx+1D = f(a) =[x +1]— [1]+;([151]— [lj—'])>1
@
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we see that f(x)(x € Z) is monotonously increasing. Now, we

find integers a and b, such that

fla—1 <0< f(a) < fla+1) <
< b —1) < f(b) <2013 < f(b + 1.

Note that f(—1) <0 = f£(0), soa = 0. Since

F1173) = E[k ]:1173+586+195+48+9+1
= 2012 < 2013,
1174
f(1174)*2[ ]—1174+587+195+48+9+1

= 2014 > 2013,

we see thatb = 1173.
So the good numbers in {1, 3, 5, ..., 2013} are the odd

numbers in
{fCO), f(1), ..., £C1173)}.

Letx =2(( =0,1,...,586)in D. By (b), we have

[21+1]

Al [%]@ <k < 2013).

Thus ’

2l +1

al)-r

that is, there is exactly one odd number in f(2/) and f(2[ + D).

2013
FQUFD — £ =1+ 2([
k=2

Therefore, there are 11274 = 587 odd numbers in { f(0), f(1),
.» f(1173)}, that is, there are 587 good numbers in the set
{1,3,5,...,2013}. []

@ Lct n be an integer greater than 1. Denote the first » primes in
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increasing order by pi,s p2s ...s p, CloCos p1 = 2, py =
3, ...). Let A = p{ip2---ptn. Find all positive integers x

such that A is even and has exactly = distinct positive divisors.
X

Solution. By 2x | A, note that A = 4 « pf:---pt . We may
suppose thatx = 291 psz=+psn, where0 <a;, <1, 0 <a,; < p;
(l = 29 39 ) 7’1). Thenv we have

é — 22*“| p:fz*“z ---p;‘;n*“n .

8

Hence, the number of different divisors of A is
X

(3 7(11)([)2 — A +1)"'(p7, —a, +1).
We know that

B =a))(p, —a, + 1D (p, —a, T1) =z =27 pizepin,
)

By induction on n, we shall prove that the array (a;,
ass ...sa,) satisfying @ is (1, 1, ..., D(n =2).

(D) If n = 2, then @ becomes (3 —a,)(4 —a,) = 213,
wherea, € {0, 1}. If @, = 0, then 3(4 —a,) = 3“2 which has no
integer solutiona,. Ifa; =1, then2(4 —a,) =2 +3“2, We havea, =
1. Thus, (a,s @,) = (1, 1). That is, the conclusion is true forn = 2.

(2) Suppose that the conclusion is true forn =% —1. (k =

3), then whenn = k£, @O becomes
B —a))(py —ay, + D) (ppy —a, 1 +D(pp —a, +1)
= 291 pgreepiint pik.
If a, = 2, considering

O<pk—ak +1<P49
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we see that the left-hand side of @ cannot be divided by p, » but
the right-hand side of @ is a multiple of p,, which is a
contradiction.

Ifa, = 0, then @ becomes

B —a)(py —a; T D (pry —amy +D(pp +1)
— 2% plreee plip
Note that p,s p3s ... s p, are odd prime, thus, on the one
hand, p, +11is even. So the left-hand side of @ is even. On the
other hand, the right side of @ is odd. Soa, = 1. But then 3 —
a, = 2, so the left-hand side of @ is a multiple of 4, but the
right-hand side of @ is not, which is a contradiction.

By the above argument, we must havea, = 1, and in @,
pr —ap 1 = pit = p,.
Thus,
(B3 —a)(py —ay, + D) (proy —ay +1) =290 phzeeepiag,

By the induction hypotheses; a1 =a, = *** =a,; = 1.

Thus, a; =ay, =+ =a,, =a, =1, that is, the conclusion
is true forn = k.

By (1) and (2), we conclude that (a5 ass ... a,) = (1,
1, ..., 1), so the integer required isx = 2p,*"p, = p1p2*" ..

]

o Cut off a corner of 2 X 2 unit squares from a 3 X 3 unit
squares, the remaining figure is called a horn (Fig. 7. 1 is a
horn). Now, put some horns without overlapping on a
board of 10 X 10 unit squares (Fig.7.2) such that the
boundaries of the horn coincide with the grid of the

board. Find the maximum of £ such that whatever the %
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horns put on the board, one can always put another horn

on the board. (posed by He Yijie)

Fig. 7. 1 Fig. 7. 2

Solution. First, we have k... < 8,

this is because of that if we put eight

horns as in Fig. 7.3, then no more

horn can be put.

Next, we show that, after putting

any seven horns, there is always

room for another horn.
. , Fig. 7. 3
Consider four 4 X 4 squares in
four corners of 10 X 10 squares. Then any horn can only
intersect one of these 4 X4 squares. So, seven horns are placed
on 10 X 10 squares. By the Dirichlet Drawer Theorem, there
exists a 4 X4 square S such that there is at most one horn H that
intersects S, and H can be contained by a 3X3 squares, soS (1 H is

contained by a 3X3 squares on a conner of S.

We can put a horn on S as shown in

Fig. 7. 4.

Summing up, we have k., = 7. []
Fig. 7. 4
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@D Letn =3 be integer. Suppose thata, 8, 7 € (0, 1) and
aps bis o =0 k=1, 2, ..., n)satisfy D)7 (& +a)a,

<a, >, (e +Bb, <Band >, (k +7)c, < 7. Find

the minimum of A such that Zzzl(k + D apbic, <.

Solution. Leta, = 1 ia’ b, = 1 iﬁ’ C :ﬁ, a;»b;sc; =
0(z =2, 3, ..., n). We see that all conditions are satisfied.
So, we must have
1 a . B . 7 < )
( +,1)1+a 1+ 1+vy A
that iSa
A= apy :
1+a)(1+HA +7Y) —aBy
a3y )
= Ay.
Denote AT 17 —aby 0. We will show
that, for anya,, bys c,s B =1, 2, ..., n, we have
Z(k _._A())akbkfk </\(), @

k=1
which satisfies all the conditions.

By the conditions of the problem,

2” (/z ta, /e+,81) k+}"j3
r Or * Cp
k=1 a ﬁ /4

n L% n k + % n L%
<[2 mal) ’(Z Bbkj '( k+}lf/j <1’
=1 @ i B =7

where we use the Holder’s Inequality: if x,, y,» 2, = 0G =1,

27 ...,n>,then

n n n

(Bewe) = (2e)(So)(Bs). @

i=1 i=1 i=1
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Therefore, to prove D, it suffices to show that, fork =1,

25 ...

have

, n, we have

1

kta kAR kty )?
. . L a/q/)k(:k 1)
a B

k + A
A()

ClkbkC/( < (

that is

k + A,
Ao

®

b +a)(k +p)(k +y>)¥

(akbkc'k )% < ( (18'}/

In fact,
_ aBy
1+ +p+7)+ B +By+re)

> apy
Tk A (a B+ VE+ (af By +ra)

_ kafy
(B +a)(k +Bk +7) —afy’

Ao

Thus.,

/e+/10<(k Fa)k +8) Gk + 1) @

Ao aBy

And since (k +ada, <a, (k +)b, <, (b +7)c, <7, we

2 _ aBy jT

By @ and ©, we see that equation @ holds, thus @ holds.

_ aBr
A+ +pPA +7) —apy’

]

Summing up, we have A, =2,
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9: 00~13: 30, July 18, 2011

o Given any set A = {a,, a,» a3, a,; of four distinct
positive integers, we denote the suma, +a, +a; +a, =
sa. Let n, denote the number of pares (i, j) with1 <7 <
j <4 for whicha; +a; divides s,. Finds all sets A of four
distinct positive integers which achieve the largest possible

value of n,. (posed by Mexico)
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Solution. (Based on the solution by Jin Zhaorong) Let set A =
{a1s ass ays a,} of four positive integers witha, <a, <a; <

a,. Since

%SA = %(al +a, ta; tay) <a, +a, <a; +a, <su»

a, +a,, as; +a, do not divide s,. Therefore,
na gC% *2 = 4.

On the other hand, if A = {1, 5, 7, 11}, n4a = 4, the
largest possible value of n 4 is 4.

Next, we will find all sets A of four positive integers with
ny — 4

First, we see thata, +a,, a; +a, do not divide s, » and

%SA < max{a; +as» a, +a;} <sj,.
T _
Thus, ?SA = max{a] +a1 s Ao +(13}a
and then a, ta, =a, *+as.

Bya, +as | sasletsa = k(a, +as), where & is a positive

integer. And by a;, +a; <a, +a; we know thatk > 2.
As2(as +as) =sy =k(a, +as)sas :%(kal F(E—2ay),

and from
a, — %(kal +(k 72)(13) <a3’

we have £ << 4. Thus, £ = 3. Consequently, we have

2(ay +a;) = 2Ca, +a,) = 3Ca, +as) =sa»

from which we can derive a, = %(3411 +as), a, = %(al +
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3@3).
And bya, +a, | sa.letss =[(a, +a,), we have

3(a, +ajz) = l(al +%(3a1 +a3)),

that is, 6 —10)ay = (5L —6)a,.

Since a; and a; are positive integers anda; <<a;, [ =3, 40r 5.

If/ = 3, we havea, = a;, which is a contradiction.

If/ =4, we have a; = 7a,, consequently, it follows that
a, =5a,, a, = 1la,.

If/ =5, we have a; = 19a,, consequently, we havea, =
1la,, ay, = 29a,.

It is easy to verify that, when!/ = 4, 5, each of a;, + a,,
a1 tazs ay taysanda, +a; divides sy,.

To sum up, all sets A of four distinct positive integers
which achieve the largest possible value of n, = 4 are A = {a,
5a, 7a, 1la}, and A = {a, 1la, 19a, 29a}., where a is any
positive integer. []

@D Let S be a finite set of at least two points in the plane.
Assume that no three points of S are collinear. A windmill
is a process that starts with a line / going through a single
point P € S. The line rotates clockwise about the point P
until the first time that the line meets some other point
belonging to S. This process continues indefinitely.

Show that we can choose a point P in S and a line / going
through P such that the resulting windmill uses each point
of S as a pivot infinitely many times. (posed by British)

Solution. (Based on the solution by Zhou Tianyou) Consider

each line ¢ has a direction, which varies continuously when the
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line ¢ rotates. First, consider the case when | S |= 2& + 1
is old.

In the process of a windmill, we say a line ¢ is on a good
position, if there are £ points of S on each side of the line ¢
when ¢ just leaves one point of S.

We consider two good positions are equal if ¢ passes the
same two points with the same direction, otherwise they are
different good positions. It is easy to see that the number of
good positions is finite in all windmills. Given a positive
direction such as x-axis, denote all good positions in the order
of clockwise angles in [0, 2x) by ¢,, ¢, ..., ¢,. We proceed
to prove in three steps.

Firstly, given any good position, we can see there is at
most one good position. Since if there were two good positions
¢; and ¢; that had the same direction, then they were parallel
and did not coincide, the number on the right side to the lines ¢,
and ¢; should be £ or £ — 1, it could not be possible to both lines
¢, and ?;.

Secondly, for any point in S, there exists some ¢; passing
through P as follows.

Take any point P € S, and line {¢ passing through P but
not through the other point of S. If the number of points to the
right side of line ¢ is s, then the number of points to the left
side of line ¢ is 2k —s. The difference of two numbers is 2k —
2s. Now, rotate ¢ about P clockwise, with s increasing or
decreasing by 1 when (¢ is passing a point, so that 2& — 2s
changes 2. When (¢ rotates 180", 2k — 25 becomes its opposite
number. Therefore, there exists a moment that an ¢ of which
the numbers of points on two sides are equal. Denote the last

passing point by Q. then there is a good position ¢; passing P and Q.
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Thirdly, a windmill starting from a good position meets the
requirement of the problem.

Without loss of generality, we may start with /,. And we
show that the next meeting point is just ¢,, so the windmill
meets all /; and continues infinitely many times. By step two,
we know that each point of S is used as a pivot infinitely many
times.

Suppose that ¢ = ¢, passing P and Q with P as a pivot and
dividing S equally when ¢, is just leaving Q. Suppose that ¢ met
point R next and use R as a pivot, then ¢ remain divides S

equally when ¢ leaving P which is valid for R on any side of P.

This shows that ¢ is still a good position when it met R and
denotes this good position as ¢’. It remains to be shown that

there is no good position between ¢ and¢’, so¢’ = ¢,. Since if

¢, was a good position between ¢ and ¢, take directed line ¢”

passing P and parallel to ¢,. then ¢” divides S equally, so that
there are at least £ + 1 points on the left or right side of ¢ ..
which contradicts the fact that ¢, is a good position.

Now, consider the case when | S | = 2k is even. The
argument above is still valid with suitable revision. We say a
line ¢ is on a good position if there are £ points of S on the
right side of the line ¢ when ¢ just leaves one point of S. Then
the first and second steps can be proven similarly. For the third
step, starting from a good position, we can show similarly that
the next meeting point by ¢ is still a good position. The only
slight difference to the odd case is to show that there is no good
position between ¢, and ¢ ,.

Take directed line ¢” passing P and parallel to ¢,, then
there are £ points of S to the right of /”. If ¢, were on the right
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side to ¢”, then there would be no more than # — 2 points, so ¢’
would not be a good position. If ¢, were on the left side to ¢”,
then there would be at least # + 1 to the right side to ¢”, so ¢”

would not be a good position. Thus, we proved for the even

case. []

@D Let f : R— Rbe a real-valued function defined on the set

of real numbers that satisfies
flx +y) <yf(x) +f(f(x)) @
for all real numbers x and y. Prove that f(x) = 0 for all
x < 0. (posed by Belarus)
Solution. (Based on the solution by Wu Mengxi)
Let y = f(x) —x in inequality @, then we have
() < (f(x) —x)f(x) + f(fx)),
thus»
(f(x) —x) f(x) =0. @
Consequently, for any real number x, we have
(fFf () —fanNffax)) =0.

Note that by taking y = 0, @ implies f(x) < f(f(x)).

Therefore,
f(f(x)) =0,0r f(f(x)) = f(x) <O. ©)

We first show that f(x) < 0 for any real number x by
contradiction. If there is a real number x, such that f(x,) >0,
then for any real number y, we have f(x, +y) < yf(x,) +

ff(xo))

f(f(xy)). Thus, for any y <— (zo)

, we have f(x, +y)
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<C0. So, for any real number 2 <z, *M, we have f(2)
f(xo)
< 0. Therefore, for z < min!0, x, — M , we see that
f(lo)
z << 0Oand f(2) <O, @
Thus, by @, we have
. ) Ff(xo)) F(f(xe))
) <z < sy Xy —————— V< xy
f(z) 2 mln{O x (€N } Xo Jen)

Consequently, f(f(z)) = f(x, +(f(2) —x,)) <0. Thus,
by @ and @, we have

f(f(z)) = f(z) <O. ©)
Hence. for any real number y. by @ and ®. we have
[z +y) <yf(x)+f(f(z)) =y +1Dfl). ©
Lety = x, —z in ©. then
f(xo) < (1 +x, —2)f(2). @

Taking = to be sufficiently negative such that1l +x, —z >
0, then by ® and @, we have f(x,) < 0, which is a
contradiction.

Therefore, for any real number x ,
Sf(x) <0O0and f(f(x)) <O.

Let y =— x in @, then f(0) <— xf(x) + f(f(x)) <
—xf(x) by ®.

Thus, we only need to show that f(0) =0, then forx <0,
f(x) =0, and by ®, we proved f(x) = 0 for all x < 0.

In fact, if f(¢) =t has no negative solution, then for any

real number x, we have
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f(f(x)) # f(x)and f(f(f(x))) # f(f(x)). ©)

So f(f(x)) =0and f(f(f(x))) =0by @. Consequently,
F(f () =0and f(f(f(x))) =0by ®. Thatis, £(0) = 0.

If /() = ¢ has a negative solution, we show that ¢ is
unique. Since if there are two solutionsz, <<¢, <0, then by @,

we have
ty, = f(ty) <y —t))fG) +ff ) =y —t Dt +1,,

thus (¢, — #,)(1 — 7)) =< 0, which is a contradiction.
Furthermore, we show that there exists real number x such that
f(x) #t (otherwise for all y, ¢t <yt +¢, which fails when y <
0), hence @ hold for this x. []

Second Day
9: 00~13: 30, July 19, 2011

o Let » > 0 be an integer. We are given a balance and »
weights of weight 2°, 2', ..., 2"7'. We are to place each
of then weights on the balance, one after another, in such
a way that the right pan is never heavier than the left pan.
At each step, we choose one of the weights until all of the
weights that have not yet been placed on the balance and
place it on either the left pan or the right pan, until all the
weights have been placed.

Determine the number of ways in which this can be done.
(posed by Iran)

Solution. (Based on the solution by Yao Bowen) The number

of waysis (2n — 1)1l =1 X3 X5 X+ X (2n —1).

We prove the problem by induction onn. The casen = 11is

clear, put one weight on the left pan. Hence, there is only one
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way.
Suppose that in the case n = £, the number of ways is (2& —
DI
Then for the case n = & + 1, without affecting the result,
multiply both weights by 1/2, the £ + 1 weights of weight are

1/2, 1, 2, ..., 2", Since for any positive integer r, we have
2 =2 £ 2t e b1 b= S g,

The heavier pan is where the heaviest weight is.
Therefore, the heaviest weight on the balance must be on the
left pan. In the following, consider the position of the weight
1/2 in the procession.

(a) If we take weight 1/2 first, then it must put on the left
pan. Then the remaining £ weights have (2k —1) 1! ways to do.

(b) If we take weight 1/2 at stepz =2, 3, ..., &k +1, we
can put it cither on the left pan or on the right pan because weight
1/2 is the lightest one, so the number of ways is (2k — 1)1

To sum up, whenn =k +1, there are totally (2& —1) 1! +
k X2k =D =Q+2k)C2F =1 =2k +1!! ways, which
completes the induction. []

@D Let f be a function from the set of integers to the set of
positive integers. Suppose that, for any two integers m and
n s the difference f(m) — f(n) is divisible by f(m — n).
Prove that, for any two integers with f(m) < f(n), the
number is divisible by f(m). (posed by Iran)

Solution. (Based on the solution by Long Zichao) According

to the problem, we have f(k) | f(x +k) — f(x), Yx € Zfor

any integer £ # 0. Consequently, f(&) | f(x + k) — f(2),
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Vax €Z,t €Z. So f(k)| fGn) — f(n) for any m, n such that
k | m —n. Thus,

)| fn +n) — flm), @)
fn — (=) | fGn) — fF(—n). @

We now show that for any integern, f(n) = f(—n). Since
otherwise, without loss of generality, if there is an integer n #
0, such that f(n) > f(—n) >0, then0 < f(n) — f(—n) <
f (), which contradicts f(n) | f(n) — f(—n).

Therefore, by @, we have

Slm +a) | fGn) — f(). ©)

If 0 < f(m) <f(n), then by @, we have 0 < f(Gn +n) <
f(n). Combining @ and @, we have f(m +n) = fGn). Then
by @. we get the result f(m) | f(n). For f(m) = f(n), the

result is obvious. []

@ Let AABC be an acute triangle with circumcircle I'. Let /
be a tangent line to I's and let /,, /, and [, be the lines
obtained by reflecting / to the lines BC, CA and AB.
respectively. Show that the circumcircle of the triangle
formed by lines /,, /, and [/, is tangent to the circle T.
(posed by Japan)

Solution. (Based on the solution by Chen Lin) Let P be the

tangent point of / to I'. Denote the symmetric points of P to

BC, CA, and AB by P,, P, and P, , respectively. These points

are on circles I',, ', and ', symmetric to I to BC, CA and AB,

respectively. Hence, ¢, , ¢, and ¢, are tangent toI',, I, and I, at
points P, , P, and P, respectively.
Denotel, N, =C'. 1, Nl =A", 1. NI, =B



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

International Mathematical Olympiad 309

Fig. 6.1

Define the oriented angle of line m to line n by X (m, n).
The magnitude of x (m, n) is the angle rotated anticlockwise
from m ton.

We conclude that

(1) Points P,, P, P, are collinear.

In fact, the midpoints of PP,, PP,, PP. are the pedal
points of P to BC, CA and AB, respectively. The pedal points are
collinear by Simson’s Theorem. So P,, P, and P, are collinear.

(2) Denote the circumcircles of ANA'P,P., AB'P.P, and
AC'P,P, by Ty, T, and T, respectively. And circumcircles of
AA'B'C’ by Q. Then four circles ', T, I'; and Q are copunctal.

In fact, it is just the Miquel Theorem for complete
quadrilateral A’P_.B’P,C’P,. Denote the copunctal point by Q.

(3) Points A, B and C are on circles Iy, I'; and T,
respectively.

—

In fact, circles I, and I'. intersect at point A, and AP, =
A/-}\’ = A/;’\,). Rotate an angle of X (P.A, P,A) about point A, then
r.—-r,, P.—~>P,, and tangent line [, > /,. So, X (., [,) = X
(P.A, P,A)and x (I, [,) = x(P.A", P,A"), which means four
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points are concyclic. That is, point A is on circle I'y. Similarly,
points B and C are on circles I', and I';, respectively.
(4) Point Q is on circle T'.

By definition of point Q,

A (AQ, BQ)

£ (AQ., P.Q) + x(P.Q. BQ)

= X (AP,, P,P) + X(P.P,, BP,)

= X (AP,, BP,)

X (AP,, AC) + x (AC, BC) + x(BC, BP,)
X (AC, AP) + X (AC, BC) + x (BP, BC)
=2 X (AC, BC) — X (AP, BP)

= X (AC, BO).

Hence, four points A, B, C and Q are concyclic, that is,
point Q is on circle T".
(5) Circle I' is tangent to circle Q at point Q.
Let line QA intersect circle Q at points Q and A”, then we have
£ (A'B", B'A") + X (A'B", B'Q)
= £ (A"Q. QA" + x(A'B", B'Q)
= X (AQ, A'Q) + x(A'B’, B'Q)
= X(AP., A'P) + £ (A'B", B'Q)
= X(AB, BP,) + X (A'B", B'Q)
= X(AB, BP,) + £x(P.B", B'Q)
= X(AB, BP,) + X(P.B, BQ)
= A (AB, BQ).

£ (A"B’, B'Q)

This shows that the degrees of A/”ZQ and A/(j) are equal in
circle Q. Note that points A, Q and A” are collinear, and point
Q is the same point on circles Q and I'. Therefore, the tangent
lines of the two circles at point Q coincide. That is, the circles

Q and I are tangent at Q. []
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2012

First Day
9: 00~13: 30, July 10, 2012

@D Given triangle ABC, the point J is the centre of the
excircle opposite vertex A. This excircle is tangent to the
side BC at M, and to the lines AB and AC at K and L,
respectively. The lines LM and BJ meet at F', and the lines
KM and CJ meet atG. Let S be the point of intersection of
lines AF and BC, and let T be the point of the intersection

of lines AG and BC.
Prove that M is the midpoint of ST. (The excircle of
/A\ABC opposite the vertex A is the circle that is tangent to
the line segment BC, to the ray AB beyond B, and to the

ray AC beyond C. )
Solution. Let LCAB = a, LABC =, £BCA = 7. Since AJ is
the bisector of ~CAB, /JAK = /JAL = /2. Since ZAKL =
ZALJ = 90°, points K and L are on the circle w with diameter AJ.

Since BJ is the bisector of ~ KBM , we have /MBJ = 90° —
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B/2. Similarly, ~CML = y/2 and ZMCJ = 90° — 7/2.
Consequently, LLF] = £ MB] — Z/BMF = /MB] — ZCML
=90°—pB/2 —7/2 =a/2 = ZJAL. Hence, point F is on the
circle w. Similarly, point G is also on the circle w. Since AJ is
the diameter of circle w, we have SAFJ] = ./ AGJ = 90°.
Segments AB and BC are symmetric about the bisector of
external angle of ~/ABC. And by AF 1 BF and KM 1 BF, we
see that segments SM and AK are symmetric about BF, SM =
AK. Similarly, TM = AL. And since AK = AL, we have SM =
TM , namely, M is the midpoint of ST. []

@D Letn =3 be an integers and letass ass ... » a, be positive
real numbers such that a,a;**a, = 1. Prove that (1 +
a)) (1 +ay)® (1 +a,)" >n".

Solution. By the AM -~ GM inequality, we have

Atart =2 1y LY
@ E—1 &k —1 E—1 %

- B 1 k=1
/k . /7_1 ay

fork =2,3, ..., n.
Thus»

(1 4+a,))*(1 +az)d(1+a,)"

. 1 2 1 3 1 n—1
> 92 o 2| — e 4t — o see o "
= 2%a, 3(2)(13 4(3ja1 n (n—lj a,

n

= n .
The equality holds whena, = klj’ k=2,...,n,which
is not the case since asas*ra, = 1.

Hence, (1 +a,)*(1 +a;)’+(1 +a,)" >n". []
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o The liar’s guessing game is a game played between two
players A and B. The rules of the game depend on two
positive integers £ and n which are known to both players.

At the start of the game, A chooses integers x and N
with 1 < << N. Player A keeps x secret, and truthfully
tells N to player B. Now player B tries to obtain
information about x by asking player A questions as
follows: each question consists of B specifying an arbitrary
set S of positive integers (possibly one specified in some
previous question), and asking A whether x belongs to S.
Player B may ask as many such questions as he wishes.
After each question, player A must immediately answer it
with yes or no, but is allowed to lie as many times as she
wants; the only restriction is that, among any 2 + 1
consecutive answers, at least one answer is truthful.

After B has asked as many questions as he wants, he must
specify a set of X of at most n positive integers. If = belongs to
X, then B wins; otherwise, he loses. Prove that:

1. If n = 2", then B can guarantee a win;
2. For all sufficiently large k£, there exists an integer n >

1. 99* such that B cannot guarantee a win.

Solution. We rephrase the rule of the game as follows: Given

two positive integers # and n, player A tells a finite set T = {1,

2, ..., N} to player B and keeps one clement x secret. Player

B chooses a finite subset S of T and asks player A whether x

belongs to S. Player A answers it with yes or no and is allowed

to lie at most consecutive £ times. After asking finite questions,

if player B can specify a subset of T containing x with at most n

elements, then player B wins.

(1> If N > 2", we will show that player B can always
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determine some element y € T such that y # x. Thus, we can
restrict N << 2*. Consequently, if n = 2*, then player B wins.

Denote T = {1, 2, ..., N}, player B asks player A same
question 4 times: Is x = 2" + 17 If the answers are all no, then
x # 2" +1 = y. Once an answer is yes, then the next first
question of player Bis: Isx € {t € Z | 1 <t <2"'})71If A
answers yes, then we have tofinday € {t € Z| 2" +1 <: <
2"} such that y # x. If A answers no, then we have to find a y
€{t €Z|1<t<2""}such thaty # x. In this way, by each
answer of player A, we can reduce half the size of the set
containing y. When A answers 2 questions, we can conclude
that there is a unique a» 1 < a < 2*. If a = x, then A lies
consecutive £ + 1 times. Soy = a # x.

(2) We prove that for any 1 < A < 2, if n =
[(2 —=2)A*""] =1, then player B cannot guarantee a win.
Specially, takeA, 1. 99 <<A << 2, for sufficiently large integer % ,

we have
n=[(2—=A""]—1>1.99",

which is the required conclusion.
Player A chooses T = {1, ..., n +1}, and chooses any x €

T. Denote the maximum number of consecutive lies by m; when

n+l1

x =1i. And define ¢ = 21;1/1'”". The strategy of A is to choose

to lie or not such that ¢ takes the smaller value. We will show
that ¢ < A*'' at any time with the strategy stated above. Thus
m; <k foreach: € T. So B cannot determine whether: = x or

not. Thus, player B cannot guarantee a win.

6 = min(g . ¢ <%(¢1 tg) = %(Ms ta+D

< %(AH + (2 =02 =,



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

International Mathematical Olympiad 315

At the beginning, m; =0,s0¢ =n +1 <<A""'. Suppose that
after several answers, ¢ < A*"', and B asks: Is x € S? The

answer “yes” or “no” corresponding to two numbers of 4,

respectively, is as follows: ¢, = 21,651 + Z,ES/\’”'*1 and ¢, =

D0 .o+ 20, A" By definition,
o 1 1
¢ 7m1n(¢” ¢2) <?(¢] +¢g) *?(Agﬁ +7’l +1)

< %(xk” + (2 -0 = A []

Second Day
9: 00~13: 30, July 11, 2012

@D Find all functions f : Z— Z such that, for all integersa, b,
¢ that satisftya +6 +¢ = 0, the following equality holds:

fila) + f2b) + (o)
=2Ffa)fb) +2F£W)fc) +2FC)fla).

(Here Z denotes the set of integers. )

Solution. Leta =56 = ¢ = 0yield 3f%(0) = 6f%(0). Hence,
£ =o. @

Letb =—a, ¢ = Oyield (f(a) — f(—a))* = 0. Hence, f
is odd, that is,

fla) = f(—a), Va € Z. ©)

Letb = a, ¢ =— 2a yield 2f(a)* + f(2a)* = 2f(a)* +
4f(a)f(2a). Hence,

f(Q2a) =0o0r f(2a) =4f(a), Ya € Z. @

If f(r) =0forsomer =1, thenletb =r, c =—a —r yield



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

316 Mathematical Olympiad in China

(fCa +7r) — f(a))* = 0. That is, f is a periodic function of

period 7 :
fla+r)=Ff), Ya € Z.

Especially, f(a) =0, Ya € Z, if f(1) = 0. And in this
case, function f(a) =0, Ya € Z, satisfies the condition .

Now suppose that f(1) =% 7 0. Then by @, f(2) =0, or
f(2) =4k. If f(2) =0, then f is a periodic function of period
2

fC@Cn) =0, fCn+1) =k, Vn € Z.

If f(2) =4k # 0, then by @, f(4) =0, or f(4) = 16k.
If f(4) =0, then f is a periodic function of period 4, and
f@) = f(—=1) = f(1) = k. Hence,

fln) =0, fUn +1) = f4n +3) =k,
fldn +2) =4k, Yn € Z.

If £(4) =16k £0.lcta =1, b =2, ¢ =—3yield £(3)* —
10k£(3) + 9k =0
Thus,

f(3) € {k, 9k}. ®)

Leta =1, b6 =3, c =—4yield £7(3) —34kf(3) +225k" = 0.
Thus,

f(3) € {9k, 25k}. ©

Hence, by ® and ©, f(3) = 9k.

Now we show that f(x) = kx®, Va € N, by induction.
Forx =0, 1, 2, 3, 4, we have f(x) = kx®. Now suppose that
f(x) =kx*forx =0,1, ..., n(n =4), then leta = n — 1,
b=2,c=—n—1in D yield
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fn+1) €k +D? k(n — 1)),
Andleta =n —1,b6 =2, ¢c =—n —1in @ yield
fn+1) € {kn+D?2*, F(n —3)%).

Thus, f(n +1) =k (n +1)° forn = 4. Therefore, f(x) =
kx’ for allx € N. By @, f(x) = kx’ forallx € Z.
To sum up all the above cases, we now check the final

result:
fl(l') =0, fg(l) = k_’l'zv

Oy X EO(mOd2)9
bk, x =1(mod 2),
0, x =0(mod4),
fi(x) =<k, 2 =1(mod 2),

4k s x = 2(mod 4).

Obviously, f,, f, satisfy . For f,, if a, b, ¢ are even,
then f(a) = f(b) = f(c) = 0 satisfy @; if there are two odd
and one even in a, b and ¢, then both sides of D are equal to
2k*.

For f,,sincea +b +c =0, (f(a), f(b), f(c)) has only
four cases: (0, &k, k), (4k, ky k), (0, O, 0) and (0, 4k, 4k),
obviously, they all satisfy . []

@D Let AABC be a triangle with Z/BCA = 90°, and let D be

~

the foot of the altitude from C. Let X be a point in the
interior of the segment CD. Let K be the point on the
segment AX such that BK = BC. Similarly, let L be the
point on the segment BX such that AL = AC. Let M be the
point of intersection of AL and BK.

Show that MK = ML.
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Solution. Let points C" and C be symmetric over the line AB,
and w, and w, be circles with centres A and B, radius AL and
BK , respectively. Since AC" = AC
= AL and BC' = BC = BK,

points C and C” are both on circles Lo
w, and w,. Since /BCA = 90°,

lines AC and BC are tangent to

circlesw, and w,  respectively, at A

point C. Let K, be another

intersection point of line AX and

circle w, different to K, and L, be

another intersection point of line
BX and circle w; different to L.

By the Circle-Power Theorem, we have
XK « XK, = XC « XC" = XL « XL,

hence K;, L, K, L, are four concyclic points at circle denoted
by w 3.

By applying Circle-Power Theorem to circle w,, we have
AL? = AC* = AK « AK,.

This implies the line AL is tangent to circle w; at point L. By
the similar argument, line BK is tangent to circle w; at point K.

Therefore, MK and ML are two tangent lines from point M
to circle w;, thus MK = ML. []

@ Find all positive integers n for which there exist non-

negative integersa,, a»s azs ... a,, such that

1,1 1 1,2 n
R e -
2((1 2&2 2(1” 3&1 31(2 31171 @
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Solution. Suppose that n satisfies condition D, that is, there

exist non-negative integersa; < a, < aj; < *** < a, , such that

i=1

i=1
Multiplying both sides of the second equality by a,, and

then taking mod 2, we have

n

E i = %n(n +1) =1(mod 2),

i=1

hence, n =1, 2(mod 4). In the following, we shall show that
this is also a sufficient condition. That is, n are all integers such
thatn =1, 2(mod 4).

We call a set of finite repeatable positive integers B = {6, ,
bss ...s b, )} as “feasible”, if the elements of B can correspond

to non-negative integersa;, a»» ... a, such that

22*« — 2 b3 =1,
i=1 i=1

Note an important fact that if B is feasible, replacing any
element b of B by two positive integers « and v withu +v = 30,
then the resulting set B’ is also feasible. In fact, if b
corresponds to non-negative integer a , we take both « and v
corresponding to a + 1, keeping others correspondence

unchanged. Since

27(171 + 27(171 — 2741 ,
w3 Fo 3T =b37,

B’ is feasible. If B’ can be obtained by such finite replacements
from B, we denote them by B ~» B’. Particularly, if b € B,
then we can replace 6 by b and 26, thus, B ~>B U {2b}.

We shall show that for each positive integer n = 1, 2(mod



Mathematical Olympiad in China (2011-2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.

320 Mathematical Olympiad in China

4), B, =1{1, 2, ..., n}is feasible. B, is feasible, since we can

take a, = 0. B, is feasible, since B, ~> B,. If B, is feasible for

n = 1(mod 4), then since B, ~~>B,,,, B, is also feasible.
Thus., it suffices to show that B, is feasible for n = 1(mod

4). B; is feasible, since
B, ~>{1, 3, 3} ~>{1, 3, 4, 5} ~> B;.
B, is feasible, since
B; ~~{1, 2, 3, 4, 6, 9) ~>{1, 2, 3, 5, 6, 7, 9} ~> B,\{8}) ~> B,.
B; is feasible, since
By~>{1,2,3,4,5,6,7,9, 11, 13} ~B,;,

The last step is obtained by appending 2b several times.
Appending 8, 10 and 12 successively, we get that By, is feasible,

since

Bs~>B; U {7, 11} ~» By U {11} ~> B, U {9, 11, 15}
~~> B, U {15}~ B;;\{10, 14, 16} ~> By;.

Lastly, we show that B, ~ B,,;1; for any integer 2 = 2,
and complete the proof.
By successively appending 4% +4, 4k +6, ..., 4k +12, we

note that
(4k +12)/2 < 4k + 2.

In the remaining six odd numbers 4k +3, 4k +5, ..., 4k +
13, denote the numbers that are multiples of 3 by u;, v;, the

sum of two of which is a multiple of 3 by ., v, and u;, v;.
Then substitute b, :%(ul +v,)byu;, v;fori =1, 2, 3. Note

that o; is even, so we append ;/2 and get B,113. D
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AR (Santa Marta, Colombia)

First Day
9: 00~13: 30, July 23, 2013

@D Prove that for any pair of positive integers £ and n , there
exist k positive integersm s m,s ..., m, (not necessarily

different) such that

ko
142 1=(1+i)(1+ij---(1+i)_ 0
n m, m, m,

(posed by Japan)

Solution. Method 1. By induction on £, the case of £ = 1 is
trivial. Suppose that the proposition is true fork =j; — 1, we
show that the case of £ = j is also true.

If n is odd, that is, n = 2¢ — 1 for some positive integer ¢,

note that
22 —1 2 +27"—1 2t
Phor—1 2t T2 —1
27 —1 1
-1 7).
and by the hypothesis of induction, we can findm,, ..., m,,
such that

=1
J— 1=(1+ij[1+ 1)---(1+ ! )
t m m m

Thus, we need only to take m; = 2t — 1.
If n is even, that is, n = 2¢ for some positive integer ¢, note

that
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Qa2 Tl 242 -1 2042 —2
2t 20 +27 —2 2t

B 1 27 —1
N (1+21‘, + 2 —2)(1+17)

and 2t +2/ —2 >0, by the hypothesis of induction, we can find

mys ...s m; such that

j—1
[ A— 1:(1+ij(1+ 1)---(1+ 1 )
t m m m;—

Thus, we need only to take m; = 2t +2/ — 2.

Method 2. Consider the binary expansion of the remainders

of mod 2" of n and — n ;

n—1=24+2% 4+ +2%(mod 2"),
where 0 <a, <a, <+ <a, <k —1,and

—n =2" +2" + -+ 4+ 2" (mod 2*),

where 0 < b, <b, <+ <b, <k —1.

Since
—1=2"+2"+-+ 42" (mod 2°),
we have
{arvsass voosa, ) U{bisbys ...s b}
={0,1,...,k —1}),andr +s5 = k.

Forl <p <r, 1 <q <s, we denote

S,J = 29 4 2%+1 4 oo 4 24,
T([ - 2/)] +21)2 4 .o +2/'(1.

And define S,,, = T, = 0. Note that
51 + T\- = Zk - 1

andn + T, = 0(mod 2*). We have
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ko
1+2 1 _n +S, +T,

n n

n+S, +T, L + T,
n+ T, n

_ﬁ n+S, +T, ﬂnJrTq
p=1 n JFSp.[ 4”1ﬂS n +T,171

r 2:1/) S 2(1([
- H(l +7’l +S/}}l +T_\)' H(l +n _._Tq*l).

p=1 g=1

q=1

Thus, if for 1 < p < r, 1 < g < s, define m, =
n+S,, +7T, n+7T, .
+ and m,,, = qu’ then we get the required

P q

equality. We need only to prove that all m, are integers. For 1

< p <r., we know that
n+S, +T, =n+7T, =0(mod2%).
And for1 < ¢ < s, we have
n+T,, =n+T, =0(mod2%),

which obtains the conclusion.

Method 3. For anya(# 0, —1), we have

1
IR [ PREN— ®
a a +1 -
2
We rewrite the left-hand side of @O in the form of the

product of 2* — 1 fractions:

n+2t -1 _ 1 1 1
n _(1+nj(1+77+1j(1+77+2)

1 1
(1+n + 2* —3)(1+n + 2F 72)

For the even n, grouping successively the right-hand side of

&)

@ in pairs from the left to the right and by using @ we get the
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form of product of 27" fractions:

e e —— ),
o 5l o2 -2 nt2t —2)

@

For the even n, grouping the right-hand side of 3 in pare
from the right to the left and by using @, we get the form of

product of 27" fractions:

1 1
1+i 1+n+1 1+n+1
n 2 2 +1

1
1+ 1
1
[ ntl g %]( NCES W T 2)]

®

2

Repeating the above grouping process to the fractions in
big parentheses of @ and ® & — 2 times, respectively, we will
get the form of the right-hand side of . []

@D A configuration of 4027 points in the plane is called
Colombian if it consists of 2013 red points and 2014 blue
points, and no three points of the configuration are
collinear. By drawing some lines, the plane is divided into
several regions. An arrangement of lines is good for a
Colombian configuration if the following two conditions
are satisfied:
® No line passes through any point of the configuration.
® No region contains points of both colours.

Find the least value of £ such that for any Colombian
configuration of 4027 points, there is a good arrangement

of £ lines. (posed by Australia)
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Solution 1. The answer is # = 2013.

Firstly, we show that # = 2013 with an example. We mark
2013 red points and 2013 blue points on a circle alternatively.
Then there are 4026 arcs on the circle with different endpoint
colours. Mark another point in blue on the plane. If £ lines is
good, then each arc intersects with some line and any line
intersects the circle at most two points, hence there are at least
4026/2=2013 lines.

In the following, we show that there exists a good
arrangement of 2013 lines.

First, note that for two points A and B with the same
colour, we can separate these two points with others by drawing
two sufficient near parallel lines to AB on cach side of AB.

Let P be the convex hull of all coloured points. Take two
adjacent vertices of P, say points A and B. Then other points
are located on one side of line AB. If one of them is red, say A.
Then we can draw one line to separate A with other points. The
remaining 2012 red points can be grouped in 1006 pairs; each
pair of red points can be separated by two lines. So all together
2013 lines meet the requirement. If A and B are all blue, then
they can be separated with other vertices by using a line. The
remaining 2012 blue points can be grouped in 1006 pairs; each
pair of blue points can be separated by 2 lines. So all together
2013 lines meet the requirements.

Solution 2. We have a more general result as follows.

Suppose there are n points in red or blue on a plane, and no
three of them are collinear. Then there exist [7/2] lines that
meet the requirements.

Proof. We prove by induction. The conclusion is obvious if n <

2. Forn = 3, consider a line ¢ passing points A and B, such
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that the remaining points are on one side of line ¢ . By the
hypotheses of induction, the remaining points have [n/2] — 1
lines that meet the requirements.

If A and B have the same colour or in different colours but
are separated by a line, we can separate A and B with other
points by a line parallel to ¢ . Thus, [n/2] lines meet the
requirements. If A and B are in different colours but both in a
region R, then the remaining points in the region R do not have
a colour, say, blue, we can draw a line to separate the blue
point of A or B with other points. Thus, the [n/2] lines meet
the requirements and complete the induction. []

Remark : We can ask a general problem that substitutes
2013 and 2014 by any positive integers m and n, respectively,
m < n. Denoted the solution to the general problem by f(m, n).

We can obtain that m << f(m, n) <m + 1 by the idea of
Solution 1. And if m is even, then f(m, n) = m. On the other
hand, for the case thatm is odd, then there is an N, such that
for anym <n < N, we have f(m, n) =m, and for anyn > N,

we have f(m, n) =m + 1.

@D Suppose that the excircle of
AABC opposite the vertex A
touches the side BC at the
point A,. Define the points
B, on CA and C, on AB
analogously by using the
excircles opposite to B and C,
respectively. Suppose that the

circumcentre of AA,B,C, lies

on the circumcircle of

Fig. 3.1
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ANABC. Prove that AABC is right-angled. (The excircle
of AABC opposite the vertex A is the circle that touched
the line segment BC to the ray AB beyond B and to the ray
AC beyond C. The excircles opposite B and C are similarly
defined. ) (posed by Russia)

Solution. Denote the circumcircles of AABC and AA,B,C, by

Q and I', respectively. Let A, be the midpoint of arc B/E on Q)
containing point A. Points B, and C, are defined analogously.
Let Q be the centre of circle I's then Q is on by the hypothesis
of the problem. First, we give the following lemma.

Lemma. AyB, = A,C,. Points A, A,, B, and C, are
concyclic.

If points A, and A coincide, then AABC is isosceles
triangle, thus AB, = AC,. Otherwise, AcB = A,C by the

definition of A,. It is evident that
. . 1
B(/] :(/Bl 7?(!) +(‘_a) ’

and
/CBA, = ZABA, = ZACA, = /ZB,CA,.
Thus, NABC, 2 NA,CB,. @

So, we have A,B, = A,C,.

Also, by @. we have ZA,C,B = /A,B,C, hence
A CA = ZAB,A. Thus, points A, A,, B, and C, are
concyclic.

Obviously, points A,, B, and C, are on a semi-arc of I',
thus AA,B,C, is an obtuse-angled triangle. Without loss of
generality, we may suppose that <A, B,C, is obtuse angle, then
points Q and B, are on different sides of A,C,. Obviously, so
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are points B and B, hence, points Q and B are on the same side
of A\C,.

Note that the perpendicular bisector of A,C, intersects with
I' at two points which are on different sides of A;C,. By the
above argument, B, and Q are among the intersection points,
and B, and Q are on the same side of A,C,. So B, = Q. as
shown in the diagram.

By the lemma, lines QA, and QC, are perpendicular
bisectors of B,C, and A,B,, respectively, and A, and C, are
midpoints of arcs CB and BA , respectively. Therefore,

~C,B,A, = AC,BB, + /B,BA, =2/A,B,B, +2/B,B,C,
=2/A,B,C, =180° — ZABC.

On the other hand, by the lemma once more, we have
/C,BA, = Z/C,BA, = ZABC.

Hence, ~ABC = 180° — ~ZABC, so ZABC = 90°. This
completes the proof. []

Second Day
9: 00~13: 30, July 24, 2013

@D Let AABC be an acute-angled triangle with orthocenter
H, and let W be a point on the side BC, lying strictly
between B and C. The points M and N are the feet of the
altitudes from B and C, respectively. Denote by w; the
circumcircle of ABWN, and let X be the point on the w,
such that WX is the diameter of w,. Analogously, denote
by w, the circumcircle of ACWM, and Y be the point on
w, such that WY is a diameter of w,. Prove that X, Y and
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H are collinear. (posed by
Thailand)
Solution. Let AL be the
altitude to side BC, and Z be the
intersection point of circles w,

and w, other than W. We show

that points X, Y, Z and H are
collinear.
Points B, C, M and N are
concyclic (denote the circle by Fig. 4.1
w3) since /BNC = /BMC =
90°. WZ, BN and CM intersect at a point since they are the
radical axis of w; and w,, w; and w;, w, and w;, respectively.
And since BN and CM intersect at A, WZ passes through A.
A/WZX = ZAWZY = 90° since WX and WY are the diameters
of w, and w, , respectively. Thus, points X and Y are on the line
[ perpendicular from Z to WZ.
So, points b, L, H and N are concyclic since /BNH =
Z/BLH = 90°. By the Circle-Power Theorem,

AL + AH = AB + AN = AW « AZ. @)

If point H is on the line AW, then H and Z coincide.
Otherwise, by @, we have
AZ _ AL
AH AW’
Thus, ANAHZ «» AAWL , consequently, ~HZA = /WLA =
90°, hence, point H is also on line /. []

@D Lct Q' be the set of all positive rational numbers. Let f

Q — R be a function satisfying the following three
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conditions:

(1) forallx, y € Q°, we have f(x) f(y) = f(xy);

(ii) forallz, y € Q", we have f(x +y) = f(x) + f(y);
(iii) there exists a rational number @ > 1 such that /' (a) = a.

Prove that f(x) = x for all x € Q'. (posed by

Bulgaria)

Solution. Letx =1, y = a in (i), we have

F(D =1.

By (ii) and induction on n, we have

S(x) =nf(zx), Vn € Z* (the set of all positive integers) ,

Vr € Q.
Taking x = 1in @, we have
) =Znf(l) =n. Vn € 1.

By (i) once again, we have
[ m . . .

Hence, by @ and @, we have
S(g) >0, Vg € Q.
Then by (ii) and & . f is strictly increasing, and
f(x) = fah) =la]l>ax -1,V € Q", = > 1.
By (i) and induction on n, we have
") = f(&"), Vn €Z2Z" , Vxr € Q",

Thus, by ® and @, we have

f() = fG") >a" =1, Ve € Q' ,x > 1.

Then by ®, we have

@

©)
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f(x) > Jz" —1,Vn €2 . Vxr € Q" , x > 1. ©)
Taking the limit as n tends to the infinity in @, we have
f(x) =ZxVxr €Q ,x > 1. ()

By (iii), @ and @, we havea” = f"(a) = f(a") =a".
Thus,

fa") =a". 1D

Forallx € Q", x > 1, we may choose n € Z", such that
a" —x >1. By (1), (iD) and @, we have

a" = f") = f(x) +f@" —x) =Z2x +@" —x) =a".
Therefore,
f(x) =xforallx € Q", x > 1. (12)

Lastly, for allx € Q", and for alln € Z", by (12), (i) and

@, we have

nf(x) = f)f(x) = fnx) Znf(x),
Vn € Z",n >1. Vx € Q", (13)

that is,
fix) =nf(x), Vn €2, n >1, Vxr € Q°, (14

Takingx = m/n forallm <n € Z', n > 1, we have

f(ﬂ) _ S m

n n n

That is, f(z) =z forallx € Q", x < 1. []
Remark. The condition f(a) = a > 1is essential. In fact, for

b =1, function f(x) = bx? satisfies (i) and (ii) forallz, y €

Q" , and f has a unique fixed point % < 1.
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e Suppose that integer n = 3, and consider a circle with n +

1 equally spaced points marked on it. Consider all
labellings of these points with the numbers 0, 1, ..., n
such that each number is used exactly once; two such
labellings are considered to be the same if one can be
obtained from the other by a rotation of the circle. A
labelling is called beautiful if, for any four labelsa <6 <
¢ <d witha +d = 0b + ¢, the chord (a, d) does not
intersect the chord (b, ¢) .
Let M be the number of beautiful labellings, and let N be
the number of chords (x, y) such thatx <y, x +y <=
and ged (x, y) = 1. Prove that M = N + 1. (posed by
Russia)

Solution 1. Note that the distance between marked points does

not matter. The intersection of the chords only depends on the

order of the points. For a circulation of permutation of [0, 7]

=1{0,1,....n},wecall achord(x, y)ak-chordifx +y =

k. If x = y, then the chord degenerates.

We call three disjoint chords are in order \

if a chord parts other two chords, e. g. , “

in Fig. 6.1, chords A, B and C are in

order but chords B, C and D not. We call /

m = 3 disjoint chords are in order, if any \

three chords are in order. Fig. 6. 1

Auxiliary Lemma. In a beautiful labelling, all .-chords are in

order for any integer k.

Proof. We prove it by induction on n. The lemma is trivial for

n < 3. Forn =4, suppose that there were a beautiful labelling

S, such that three £-chords A, B and C were not in order. If n

is not the end point of chords A, B and C, we can delete the
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point » and obtain a beautiful labelling S\{n} of [0, n —1]. By
the hypothesis of induction, chords A, B and C are in order.
Similarly, If 0 is not the end point of chords A, B and C, we
can delete the point 0, and minus each labelling by 1, so we
obtain a beautiful labelling S\{0}. By the hypothesis of
induction, chords A, B and C are in order, which is a
contradiction. Thus, 0 and » must appear among the end points
n-chords of A, B and C. Suppose that chords (0, =) and (y, n)
are among A, BandC. Thenn =20+x =k =n +y =n, thus
x =nandy = 0. Thatis, (0, n) is one of n-chordsof A, B and
C. Without loss of generality, suppose that C = (0, n).

Let chord D = (u, v) be adjacent
and parallel to chord C, see Fig. 6. 2,
and denote ¢t = u +v. If + = n, then
n-chords A, B and D are not in order
in the beautiful labelling S\{0, =},
which contradicts the hypothesis of

induction. If ¢ <n, then#chord (0, ¢) Fig. 6. 2
does not intersect D, then chord C is
apart point ¢ and chord D. And n-chord E = (¢, n —¢) does not
intersect chord C. So, pointstz and n —¢ are on the same side of C.
But chords A, B and E are not in order, which is a contradiction.
Lastly, since the mapping of x to n — x conserves the
beautifulness of a circular permutation, a 7-chord maps to (2n —
t)-chord, that is, ¢ > n equivalents to + << n. Thus, we have
proved the auxiliary lemma.
In the following, we prove the problem by induction on n.
The case of n = 2 is trivial. Let » = 3, and S be a beautiful

permutation of [0, n]. T is obtained by deleting » in S. All
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n-chords in T are in order, their end points include numbers [0,
n —1]. We call such T is of first kind if 0 is located between two
n-chords, otherwise, we call such T is of second kind. We shall
show that each first kind of beautiful permutation of [0, n —1]
corresponds to exact one beautiful permutation of [0, »n]. And
each second kind of permutation of [0, n — 1] corresponds to
exactly two beautiful permutations of [0, n ].

If T is of the first kind, suppose that 0 locates on the arc
between chords A and B. Since chords A, (0, n) and chords B
in S are in order, n must locate on the other arc between chords
A and B. Thus, we can retrieve S from T uniquely. On the
other hand, for each T of the first kind, we can add » in the
above manner to obtain S. We shall show that cyclic
permutation S must be beautiful.

For0 <k <n, the k-chord of S is also the 4-chord of T, so
k-chords are in order.

If T is of the second kind, then the position of n to the
corresponding S has two possibilities, that is, n adjacient to 0 on
either side. Similarly, we can check that S is a beautiful
permutation of [0, n].

Denote the total number of beautiful permutation of [0, 7]
by M, the total number of the second kind of beautiful
permutation of [0, » — 1] by L,. Then we have

Mn = (M7,71 71‘7171> +21‘71*1
= Mnﬂ +L1171‘
It suffices to show that L,., is the number of positive

integer pairs (x, y) with the constraints x +y = n and ged (&,
y) = 1.

Forn = 3, define
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en) = #l{z: 1 <x <n, gedlx, n) =1}.

We shall show that L, = ¢(n). Consider a second kind of
beautiful permutation of [0, » — 1], mark numbersO, ..., n —
1 clockwise on the circle such that number O coincides with the
position 0. Denote the number of position i as f(i). Suppose
that f(a) =n — 1.

Since each number of [1, ..., n — 1] is at an end point of
n-chord, and all n-chords are in order, by the definition of the
second kind, (1, » — 1) is an n-chord. Thus, all n-chords are
parallel. Thatis, f() + f(n —¢) =nfori =1, ..., n — 1.

Similarly, since all (z —1)-chords are in order and each point is
an end point of an (n — 1)-chord, all (n — 1)-chords are parallel.
Thus, f(Z) + f(mod(a —i, n)) =n —1fori =1, ..., n —1.

Therefore, f(—i¢) = f(mod(a —i, n) +1. Consequently,
by takingi =a, 2a, ..., (n —1)a successively, and f(0) =0,

we have
f(—ak) =mod(k, n), k =0, 1,2, ..., (n — D). D

Since f is a permutation, we must have ged (a, n) = 1.
That is, L, 1 < ¢(n). To show that the equality holds for @,
we need only to show that the permutation f given by D is
beautiful. To see this, we consider four numbers w, x, y and 2
on the circle satisfying w + y = x + z. Their corresponding
positions on the circle satisfy (—aw) + (—ay) = (—ax) + (—
az) mod (n), that is, the chord (w, y) and chord (x, 2) are
parallel. Thus, the permutation D is beautiful, and is of the

second kind by construction. []
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(Cape Town, The

2014 Republic of South
Africa)

First Day
9: 00~13: 30, July 8, 2014

@D Leta, <a, <a, < - be an infinite sequence of positive
integers. Prove that there exists a unique positive integer

n such that

a, ta, ++ +a,
a, < 0 ! <an+1.
n

(posted by Austria)
Solution. Defined, = (ay, +a, +++ +a,) —na,,n =1, 2, ....
Note that

na, — (ay, +a, +++ +a,)
= +Da, —(ay +a, + +a, +a,1)
:_d11+1-

So, the problem is equivalent to prove that there exists a
unique positive integer n such thatd, >0 =d ..

We see thatd, = (ay +a,) —1+a, =a, >0, and

d,,, —d, = ((lay, +a, +++ +a,) —na, ) —
(Cay +a; ++ +a,) —na,)
=nla, —a,) <0,

that is, {d,} is a strictly decreasing sequence of integers with
the first term being positive. Hence, there exists a unique

positive integer n, such thatd, >0 =>d .. []
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Remark. It is essentially an intermediate theorem in discrete

form.

@D Letn = 2 be an integer. Consider an n X n chessboard
consisting of #n” unit squares. A configuration of n rooks
on this board is peaceful if every row and every column
contains exactly one rook. Find the greatest positive
integer £ such that for each peaceful configuration of n
rooks, there is an empty £ Xk square without any rooks on
any of its £° unit squares. (posed by Croatia)

Solution. We shall show that the answer is k.., =[ +/7 —1]by

two steps. Let/ be a positive integer.

(1) If n >1*, then there exists an empty / X/ square for any
peaceful configuration.

(2) If n < [*, then there exists a peaceful configuration,
such that each / X/ square is not empty.

Proof of (1). There is a row R with first column has a rook.

Take successively [ rows containing row R, which are denoted

byU. If n > [*, then/®* +1 < n, and from column 2 to column

/> +1inU, containing / [ X [ squares which have at most / — 1

rooks. So, at least one / X [ square is empty.

Proof of (2). For » = [*, we shall find a peaceful

configuration which has no empty / X [ square. We label the

rows from bottom to top and the columns from left to right both
by 0, 1, ..., /" —1. So denote by (r, ¢) the unit square at the

row r and column c.

We put a rook at (il +j, ji +i) fori, j =0, 1, 2, ...,

[ —1. The figure below shows the case for /[ = 3. Since each

number between 0 to /> — 1 can be written uniquely in the form
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ofil +5, (0<i,j; </ —1),sucha

configuration is peaceful.

For any [ X [ square A, suppose

that the lowest row of A is row pl +

g, 0<p,q <[ —1C(since pl +q <

¢

O =N W s X
>

[ —0). There is one rook in A by the .

configuration, and the column labels 0123456738
of the rook may beql + p, (¢ + 11 + Fig. 2.1

Py U —DIl+p,p+1,1+(p+

D, ....(g =1 +p+1. Rearrange these numbers in increasing

order to

p+1,l+(i) +1)9 cee s (Q*l)lJr[) +1, ql+p7
g+l +p,..., U —DIL+p.

Then the first number is less than or equal to [, the last is
greater than or equal to (! —1)/ and the difference between two
adjacent numbers is /. Therefore, there exists one rook in A.

For the case of n < [*, consider the configuration above,
but delete /* — n columns and rows from the right and from the
bottom, respectively, we get an/ X [ square. Thus, we obtain
ann X n square, where there is no empty / X/ square. But some
rows and columns may be empty. We can put rooks at the cross
squares of empty rows and columns to obtain the desired

peaceful configuration. []

Remark. The answer could also be in the form of [n | — 1.

@D A convex quadrilateral ABCD has ZABC = ~ZCDA = 90°.
Point H is the foot of the perpendicular from A to BD.
Points S and T lie on sides AB and AD, respectively, such
that H lies inside ASCT and ~CHS — ZCSB = 90°,
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/THC — ZDTC = 90°,
Prove that line BD is tangent to the circumcircle of
ATSH. (posed by Iran)
Solution. Suppose that the line passing C and perpendicular to
line SC intersects line AB at point Q, see the figure below. Then
Z/SQC = 90° — /BSC = 180° — /SHC.
Hence, points C, H, S and Q are concyclic with SQ its
diameter. Therefore, the circumcentre K of ASHC is on line AB. In

the same manner, the circumcentre L. of ACHT is on line AD.

To show that line BD is tangent to the circumcircle of
ATSH , it suffices to show that the intersection point of
perpendicular bisectors of HS and HT is on line AH. But the
perpendicular bisectors are just the angle bisectors of ~AKH
and SZALH, respectively. By the Internal Angle Bisector
Theorem, it suffices to show that

ax _AL ®

In the following, we will give two proofs of D.

Proof 1. Let M be the intersection point of lines KL and HC,
see Fig. 3. 2.
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Since KH = KCandLH =
LC, points H and C are
symmetric over line KL. Thus,
M is the mid-point of HC. Let
O be the circumcentre of the
quadrilateral ABCD. Hence, O is
the mid-point of AC and

consequently OM | AH , therefore
OM 1 BD. Further by OB =
OD, we see that OM is the
perpendicular bisector of BD, thus BM = DM.

Since CM 1. KL, points B, C, M and K are concyclic with KC,

the diameter. Similarly, points L, C, M and D are concyclic with

LC, the diameter. So, by the Sine Theorem, we have

AK _sin/ALK DM CK _CK _KH

AL sin/AKL CL BM CL LH

b

that is, @D.
Proof 2. If points A, H and C are collinear, then AK = AL, KH
= LH, thus @ follows. Else. let w be the circle passing A, H

and C. Sine points A, B, C and D are on a circle
/BAC = Z/BDC = 90° — Z/ADH = ZAHD.

Let N # A be the other intersection point of the circle w
and the bisector of LCAH, then AN is also the bisector of
/BAD. Since points H and C are symmetric over line KL , and
HN = NC, we see that point N and the centre of w are both on
line KL. That is, the circle w is the Apollonius circle of points
K and L, thus @ follows. []

Remark. Problem 3 has an extension by the problem selection
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committee as follows.

For a convex quadrilateral ABCD, points S and T are on
sides AB and AD, respectively. And point H is located in the
inner part of ASCT, satisfying /BAC = /DAH, ZCHS —
Z/CSB =90°and /THC — /DTC = 90°.

Then the circumcentre of ATSH is on AH and the
circumcentre of ASCT is on AC. []

Second Day
9: 00~13: 30, July 9, 2014

@D Points P and Q lie on side BC of acute-angled AABC so that
/PAB = /BCA and LCAQ = ZABC. Points M and N lie on
lines AP and AQ, respectively, such that P is the midpoint of
AM, and Q is the midpoint of AN. Prove that lines BM and CN
intersect on the circumcircle of AABC. (posed by Georgia)

Solution. Let S be the intersection point of lines BM and CN ,

see the figure below. Denote 8 = ZQAC = ~CBA., v = /PAB

= /ACB, then we can see that NABP «» ACAQ, thus

BP _ BP _ AQ _ NQ

PM PA QC QC°

By /BPM =8 +7y = ZCQN, ABPM « ANQC, thus
ZBMP = ANCQ. Consequently, ABPM < ABSC, thus
/CSB = /BPM =8 +7y =180° — /BAC. []

@D For cach positive integer n» the bank of Cape Town issues
coins of denomination --. Given a finite collection of such
n

coins (of not necessary different denominations) with total
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value at most 99 + %, prove

that it is possible to split this

collection into 100 or fewer

groups, such that each group

has total value at most 1.

S
(posed by Luxembourg)
Solution. We shall prove a N M
general conclusion: for any Fig. 5. 1

positive integer N, given a finite

collection of such coins with a total value at most N — % ,» prove

that it is possible to split this collection into N or fewer groups,
such that each group has a total value of at most 1.

If some coins have total value of 1/k (k& is a positive
integer), we replace these coins by one coin of value 1/£, which
does not affect the problem. In this way, for each even integer
k, at most one coin has value of 1/ (otherwise, two such coins
may be replaced by one coin of value 2/%); for each odd integer
k. at most (¢ — 1) coins of value 1/k, (otherwise. £ such coins
can be replaced by one coin of value 1). So, we may suppose
that there is no more replacement can be make for the coins.

First we take each coin of value 1 as a group. Suppose there
are d << N such groups. If there are no other coins, then the
problem is solved. Otherwise, take coin of value 1/2 as a group
(d +1) if there is any. Let m = N —d = 1. Then for each
integer £ in 2, ..., m, take coins of value 1/(2k — 1) and value
1/(2k) in group (d + k) if there are any, in which the total
value does not exceed (2& —2)/(2k —1) +1/(2k) <1. For coins

of value less than 1/(2m), if there are any, we can put them in
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some group (d + j) such that the total value is less than 1(since
if each group (d + j) has value greater than 1 — 1/(2m), then
the total value will be greater thand +m (1 —1/(2m)) = m +
d —1/2 =N — 1/2). Repeat this procedure finite times, all
coins are put in N or fewer groups with each group of value at

most one. D

0 A set of lines in the plane is in general position if no two
of them are parallel and no three of them pass through the
same point. A set of lines in general position cuts the
plane into regions, some of which have finite area; we
call them finite regions. Prove that for all sufficiently
large n, in any set of »n lines in general position, it is
possible to colour at least +/» of the lines in blue such that
none of its finite regions has a completely blue boundary.
(posed by Austria)

Solution. Let B be the maximal set of lines such that no finite

region has completely blue boundary. Let | B | = &, and colour

the other n — % lines in red. For each red line ¢, there is as
least one finite region A whose unique red side lies on ¢ . We
say a point is red if it is the intersection point of red and blue
lines. And we say a point is blue if it is the intersection point of
two blue lines. Denote the vertices of A clockwise by (p,, p2»

. » p,) with point p, in red and p. in blue. Then we say the
red line ¢ corresponds to the red point p, and blue point p,.

Now we are to show that any blue point can be corresponded to
at most two red lines. (If this is true, thenn —k < 2(2j<:>n <

k*.)

We prove it by contradiction. If not, suppose that there
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are three red lines ¢, ¢, and ¢, correspond to a blue pointéd,
and the corresponding red points on red lines ¢,, ¢, and ¢,
arer;, r, and r; s respectively. Let b be the intersection point of
two blue lines. Without loss of generality, we may suppose that
sides ( 7,5 ) and (r;, b) are on one of the two blue lines, and
(r1 b) is the side of region A on the other blue line. Since A
has only one red side, A must be a triangle /\r,br,. But then
red lines ¢, and /¢, passr,, and a blue line also passes r, , which

is a contradiction. []
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