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Symbols and Basic Formulae

1 Greek Letters

o
B
Y
r
6
A

&

> ~

u
v
w
Q

alpha ¢ phi

beta @ capital phi
gamma v psi

capital gamma ¥ capital psi
delta & xi

capital delta n eta
epsilon { zeta

iota 2 chi

theta m™ pi

lambda o sigma

mu 3 capital sigma
nu T tau
omega p rtho
capital omega r kapha

2 Algebraic Formulae

@

(i)

(iii)
(@iv)

(v)
(vi)

Arithmetic progression a, a + d, a + 24, ...,

nthterm 7, =a + (n — 1)d

Sum of n terms = g 2a + (n—1)d]

Geometrical progression: a, ar, ar’,...,

nth term T, = ar" ™!

a(l1—r")

2=

Arithmetic mean of two numbers a and b is % (a+b)

Sum of n terms =

Geometric mean of two numbers a and b is vab
. . 2ab
Harmonic mean of two numbers @ and b is =+

a+b
If ax*> + bx + ¢ = 0 is quadratic, then
(a) its roots are given by _b—ih VIZIZ_W
(b) the sum of the roots is equal to — g
(c) product of the roots is equal to 5
(d) b*> —4ac =0 = the roots are equal
() b* —4dac >0 = the roots are real and distinct
(f)  b* —4dac <0 = the roots are complex

(g) if b* —4dac is a perfect square, the roots are
rational

3 Properties of Logarithm

®

(i1)
(iii)

log,1=0, log,0=—c0 fora>1,log,a=1
log, 2 = 0.6931, log, 10 = 2.3026, log,, e = 0.4343
log, p +log, ¢ = log, pq

log,p —log,q = logag

(iv)
™)

log, p? = qlog, p

_ _log, n
log,n =log,b . log, n = Tog, a

4 Angles Relations

®
(i)

180°
m

1°= 0.0174 radian

1 radian =

5 Agebraic Signs of Trigonometrical Ratios

(2)
(b)

(©

(d

First quadrant: All trig. ratios are positive

Second quadrant: sin 0 and cosec 0 are positive, all
others negative

Third quadrant: tan 0 and cot 6 are positive, all others
negative

Fourth quadrant: cos 6 and sec 6 are positive, all others
negative

6 Commonly Used Values of Triganometrical Ratios

. ™ ™
sin- =1, cos= =0, tan- = o0

2 2 2
cosecf =1 secz =0 cosE =0
20 T2 T T
i 7r7\/§ tnﬂ—* 1
s 6—2,c056—2, a6— 3
m 2
cosec— =2, sec—=—=, COt =3
. 1
smg - cosg—i, tan§:\/§
T 2 2 . 1
cosec— = —= , SeC— = cot—=—
3 3’ 3 ’ 3 V3
T 1 T 1 c |
in—=— —=-—, tan— =
sing 5 08y 7 any
m 1 T
—-—=—, —=V2, —=1
cosec4 7 sec4 V2 c0t4

] Trig. Ratios of Allied Angles

(a)

(b)

sin(—0) = —sin 6, cos(—0) = cos 0
tan(—0) = —tan
cosec(—0) = —cosec 0, sec(—0) = secO
cot(—0) = —cot

Any trig. ratio of

(n.90 + 0) =

+ same trig. ratio of § when 7 is even
+ co-ratio of 6 when 7 is odd



For example: sin
= —sin60° = —

Similarly, cosec(270° — ) = cosec(90°(3) — 0) = —sec .

l\)‘ —
S

8 Transformations of Producs and Sums

(2)
(b)
©
(d
(e)

®

(8
(h)

()
0
(k)
o
(m)
()
(0)
@
(@
(1)
(s)

®

sin(4 + B) = sin4 cos B + cos Asin B
sin(4 — B) = sin4 cos B — cos Asin B
A+B
A—B

( ) = cosAcos B — sin4 sin B

( )
tan(4 + B)

( )

= cosAcosB+sindsinB

tand 4 tan B
~ 1—tandtanB

_ tan4 —tanB
“ l+tanAtanB

; — 2 _ _2tan4
sin24 = 2sinA4cos4 = T tan? 4

c0s24 = cos’ A —sin’ A =1 — 2sin’* 4
_ 24 1_1—tan’4
=2cos“ 4 1_1+tan2A

_sin24 _ _2tanA4
tan 24 =cos A~ T —tan’ 4

sin34 = 3sind — 4sin> 4
cos34 =4cos’ A —3cosA

_3tand —tan’4
fan 34 = = a4

sind + sinB = 2sinA—2+—Bcos#
A5 Bgnd =B

sind —sinB = 2cos

cosd +cosB = ZCOS#COSA—E—B

cosA —cosB =2 sin‘#sin%
. 1. .
sind cos B = 7 [sin(4 + B) +sin(4 — B)]
1
cosAsinB = 3 [sin(4 + B) —sin(4 — B)]
1
cosAcosB = 3 [cos(4 + B) + cos(4 — B)]

1
sindsinB = 3 [cos(4 — B) — cos(4 + B)]

9 Expressions for sin4; cos4 and tan4
P 7 7 i

(2)
(b)
©

(d)
(e

sin‘%::t,/il _SOSA
cos%‘:i /1 +§osA

4 _ 1 —cosd
tany = i\/ I +cosd
sind + cos4 = +v/1 + sin4
sind — cos4 = +v/1 —sin4

10 Relations Between Sides and Angles of a Triangle

(2)

(b)

a b
— = = sine formulae
sind sinB smC( ulae)
_ P+ —d
cosd = 2be
cosB = Etd b cosine formulae

4620) = sin[90°(52) — 60°] = sin(—60°)

Symbols and Basic Formulae

(¢) a=bcosC+ccosB

b=ccosd+acosC } Projection formulae.

c=acosB+bcosA

1T Permutations and Combinations Formulae
np M !
"n—r)V
n n ! n
C = m ="Cyr,

"Co="Cp =1
12 Differentiation Formulae

d . d .
(a) a(smx) =cosx (b) i(cosx) = —sinx

(¢) —(tanx) =sec*x (d) 4 (cotx) = —cosec? x

dx dx

Xi

d
(e) —(secx)=secxtanx (f) o (cosec x) = —cosec x cot x
x

dx
d . d
@ S ()=¢ ) -
Lo 4

. d .
() g8, = oo () 4

(a*) = a*log, a

1
(log. ) =~

(k) %(ax + b)"= na(ax + b)"""

n

Q) d—(ax-‘rb)m:m(m— )(m—2)...(m—n+1)(ax+b)"™"

dx"

(m) in”"

(cos'x) =—

)_ 1
VT2

2
=]
=

4
dx
d
(0) o

-
o0
=}

|
=
=

COSCCilx =—
( )

—_
7]
[
[g]
=

(@
(s)

Fla g s BB~

(sinhx) = coshx (1)

W  D"(uv) = D"u+ ne,D"'uDv + ne, D" *uD*v

+. - +"CD"TuD"v + - - - +"CyuD"v
(Leibnitz’s Formula)

13 Integration Formulae

(@) [ sinxdx= —cosx

(e) [ secxdx =log(secx + tanx)

(f) [ cosecxdx = log(cosecx — cotx)
(g) [ sec’xdx =tanx
() [e'dx=e"

0] fa"'dx:l @

0g, a
n+1

X

1) [x"dx =
() [x"dx pa—
1

& [ )lfcdx = log, x

dx 1 X
(m) fa2+x2 B
xX—a

X

dx - X
(q) f\/ﬁ:smhlg (r)f\/%:coshl;

((:ot’1 x) =—
4
dx X
d

o (coshx) = sinhx

(b) [ cosxdx =sinx
(¢) [tanxdx=—logcosx (d) [ cotxdx = logsinx

dx
2 () fiaz ) leogg
dx dx X
(0) fmfﬂl()g"x-s—a ® T

1—x2

1

1 +x?

vV 1

X2 —

(h) [cosec’xdx = — cotx

,n#—1
a—+x
a—x




Xii

Symbols and Basic Formulae

/22 2
(s) f\/a2+x2dx:$+%sinhqf
a
Ve 2 2
(t) j\/xzfazd :%,% h‘
VEZ_2 2
W [Va —dx =YL T +”—sin*15
2 2 a
v) fe‘”‘sinbxdx:ﬁ(asinbx—bcosbx)
(W) [e™cosbxdx = azi 7 (acosbx + bsin bx)

) fg sin” xdx = jg cos” xdx

(n—1) (n=3) (n—5
_ { o

n(n=2) (n—4)...

D) (1=3) (n=5)... 2 if nis even

2 jg sin” x cos"xdx

(m—1)(m=3)...(n—1) (n=3)...
_ ) (m+n) (m+n=2)(m+n—4)...
(m—1)(m=3)...(n—=1)(n=3) ...
(m+n) (m+n—2) (m+n—4)... 2

if m and 7z are not
simultaneously even
if both 72 and n
are even

14 Beta and Gamma Functions

(a) f X " dx converges for m, n> 0
(b) = [, e*x"~dx converges for n >0
© T (m+1)=nT(n)andT (n+ 1) =n!ifnis positive
integer

(d T(1)=1=TQR)andT (}) =7

_T(mr (n)
(C) ﬁ(m7n)_ F(m+n)

-
O [ g xcoswae=p(P 1 471 LD (L)
sin” xcos?xdx= 2/3 ) ZF(”

tan 6 df = /smm@cos’l/z@d@

:TETE

rEre
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/
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1 Successive Differentiation and Leibnitz's Theorem
2 Asymptotes and Curve Tracing

3 Partial Differentiation






Successive Differentiation and Leibnitz's Theorem

1.1 SUCCESSIVE DIFFERENTIATION

Let f'be a real-valued function defined on an interval
[a, b]. Then, it is said to be derivable at an interior
point ¢ if limf—(x) —/(e)
X—C X —Cc

called the derivative or the differential coefficient of the
function at x = ¢ and is denoted by f'(c).

The above limit exists, if both the following
limits exist and are equal:

/&) —f(C)’

exists. This limit, if exists, is

@A) lirn0 called the Ileft-hand
derivative and denoted by f'(c — 0),

Gy tim L) =/

n , called the right-hand
x—c x—c
derivative and denoted by f'(c + 0).

The derivative /"(c) exists when f”(c — 0) = f'(c + 0).
If y = f(x) be a derivable (differentiable) function
of x, then f'(x) =% is called the first differential
coefficient of y with respect to x. If f'(x) is again
derivable, then % (%) is called the second differential
coefficient of y with respect to x and denoted by

S (x) or %. If f"(x) is further derivable, then

4 (4%), denoted by 4 is called the third differential

coefficient of y with respect to x. In general, tlc}% nth
differential coefficient of y with respect to x is ar_

dx"
d (d! . . .
I ( dx”Jl})' The differential operator % is also
denoted by D. As such, the nth derivative of y is
denoted by D"y. For the sake of convenience,
the derivatives Dy,D%y,...,.D"y are generally repre-
sented by Y1V25 445 Vne
EXAMPLE 1.1

Find the nth derivative of
(i) y=e=*h, (i) y = (ax+b)"

(i) y =1, (iv) y=a"

(v) y=sin(ax +b), and y = cos(ax + b)
(vi) y =e™sin(bx +c) and y = e™cos(bx + ¢)
(vii) y = log(ax + b).

Solution. (i) We are given that y = ¢®*?. Therefore

dy
+b
yle:aeax ,
2
_dy_ 2 ax+b
=5 =aet
y3:a3eax+b

and so on. Therefore the nth derivative D"y is
given by

Vp = aneax+b.

(ii) We have y = (ax + b)". Therefore

m—1
)

y1 = ma(ax + b)
y2 = m(m — 1)d®(ax + b)" 2,
y3 =m(m —1)(m — 2)a* (ax + b)" ",

and so on. Hence, in general,

Yo=m(m—1)(m—2)...(m—n+1)a"(ax+b)""".

Further, if m is a positive integer, then

mm—1)(m—=2)...(m—n+1)
(m—n)(m—n—1)...2.1
(m—n)(m—n—-1) ... 1
x d'(ax +b)""

Yn =

= (mﬂi!n)! a'(ax+b)"" (1)




1.4 Engineering Mathematics-1
From (1), it follows that the mth derivative of the
given function is

m ! m o m

Ym=—a (ax+b)° =m!d".

o!

In particular, takinga =1, b =0, we get
Y =m .

Thus, if m is a positive integer, the mth differential
coefficient of (ax + b)" is constant.

In case m is negative, then m = —p, where p is a
positive integer and so

=) (—p—1)(-p-2)...(-p—n+1)d"

X (ax+b) ™"
=(=D)"plp+1)(p+2)....0+n—1)d"
X (ax+b) ™"
_ I’t(p+n_1)' n —p—n
=(-1) Wa (ax+b)"7".

(iii) We have y = (ax +b)~"' and so

(—Da(ax +b)7%,

Y1 =
y2 = (=1)(=2)d*(ax +b) >,
y3 = (=1)(=2)(=3)d*(ax + b)~*

and so on. Hence, in general,

Yn = (_1)(—2)(—3) . (—n)a”(ax + b)*(nJrl)
= (=1)"n!d"(ax + b)_(”“‘l),

(iv) If is given that y = a*. Therefore

y1 =da"loga,
2 = d*(loga)’,

V3 = az(log a)z,

and so on. Hence, in general,

o = a*(loga)".
(v) We have y = sin(ax + b). Therefore

y1 = acos(ax + b) :asin(ax+b+g),

2sin(ax + b + ),

2 :azcos(ax—&—b—&—g) =a

. 3
y3 = @’ cos(ax + b + 7) :a351n<ax+b+7w),

and so on. Hence, in general,

. nw
Vn :a"sm(ax—l—b+7>.

In a similar fashion, we can show that if y =
cos(ax + b), then

nm
wm=a" cos(ax +b+ 7)

(vi) The given function is y = e™sin(bx + c).
Therefore

y1 = ae®sin(bx + ¢) + b €™ cos(bx + ¢)
= ¢%[a sin(bx+¢) + b cos(bx +¢)]. (2)

Let us choose a = rcos ¢ and b = rsin ¢. Then
b
r=1+va*+b*> and qb:tanl(—),
a

and (2) reduces to

y1 =re“sin(bx + ¢ + ¢).

Similarly, repeating the above argument, we have

vy = r*e™sin(bx + ¢ + 2¢),
y3 = rPe™sin(bx + ¢ + 3¢),
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and so on. Hence, in general, (i1)) We have
Vo =1"e"sin(bx +c+n ), y = cos?xsin® x
1 1 . .
where =5 (1 + cos2x) [Z (3sinx — sin 3x)}
b [, . . 3 ..
r=+va*+b and ¢=tan'(-). =3 3$1nx751n3x+§(251nxc052x)
a L
1 .
In a similar fashion, we can show that if y = — 5 (2sin3xcos 2x)}
e™ cos(bx + ¢), then 1T

. . 3, .
= —|3sinx — sin3x + = (sin 3x
yn = 1" cos(bx + ¢ + ng). 81 . 2
—sinx) — = (sin 5x + sinx)}
(vii) When y = log(ax + b), then 2

1
_a = —[2sinx + sin 3x — sin 5x].
b4 ax+ b )
o dy, o 2 -2 .
== (=Da“(ax+b)"", Therefore, using Example 1.1 (v), we have

= (=1)(=2)d* b)? 1
y3 = (=1)(=2)a’(ax + ), yn:E{zsin<x+%)+3”sin(3x+%)

and so on. Therefore, in general, w nmw
—5"s1n (Sx + —)} .
Vo= (=1)(=2)...(=(n—1))a"(ax + b)™"
=D ta (iiif) We are given that
(ax + b)"

y = COS X COS 2x cos 3x.
EXAMPLE 1.2

1
Find the nth derivative of T oSy [2 (cos 5x + cos x)}

. _ 2x 1 3 .. 2 -3
(1) y=e"sin’x, (i) cos”xsin’x (2 cosx cos 5x + 2 cos® x)

(iii) y = cosxcos2xcos 3x,

(iv) y = e™sinbxcoscx = —[(cos 6x + cos4x) + (1 + cos 2x)].

B -

Solution. (i) We have
Therefore, using Example 1.1 (v), we have
1 . .
3x =~ e*[3sinx — sin 3x]. | |
4 Vn :ZD”(I) +ZD”[c052x+cos4x+cos6x]

1
= 0+Z [2”cos(2x+n77r> +4”cos(4x+n77r)

y = ¢*sin

3
D

: 1 2x
—4 Sinx 46’

sin 3x.

Therefore, using Example 1.1 (vi), we have ni
+6" cos (6x + 7)}

3 n 1
_ = 2 2 2x 1 -1 1
Yn 4[\/2 +1 } e sm{x—i—ntan ] :Z[2ncos(2x—|—nz—ﬁ> —|—4nCOS<4x—|—’12—7T)

2

1 "o 3
—Z{\/22+32] ezxsm{Zx—i—ntan_lE} +6”cos(6x+%)}.
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(iv) We have
y = e**sin bx cos cx
1 .
=¥ 3 (2 sin bx cos cx)
1 . .
= Ee“x [sin(bx 4 ¢x) + sin(bx — cx)]

1 1
= Ee‘”‘ sin(b 4 ¢)x + Ee"“‘ sin(b — ¢)x.

Therefore, using Example 1.1 (vi), we have

Vu :%(\/az—&— (b—i—c)z) e

b
X sin{(b+c)x+ntan1:c}
1 n
—1-2( a2+(b—c)2> e
h—
X sin{(b —c)x+ntan1—c}.
a

EXAMPLE 1.3

Find second derivatives of the following functions
with respect to x:

(1) x =a(t+sint),
(i) x = acos® 0,

y=a(l +cost)
y = bsin® 0.

Solution: (i) For the given equations, we have

d. t
d—);:a(l+cost) :2ac052§,
d . .t t
j);: —asint = —2asm§cos§.
Therefore
dy —2asinicosi
_y:aizcosz: _tan£
dx 2acos?4 2
and so
d? 1
dy_ 1 otdt
dx? 2 2dx
It 1 I 4t
T §[2acoszé} T T35y

(iii) We are given that

x=acos’0, y=hsin’0.
Therefore
dx . 2
0= —3asinfcos” 0,
d
d—)é = 3bsin’ O cos 0,
and so
dy
Ay do
E E ——tan 0
do

1
= —“sec?)|—mM
a sec —3asin O cos? 0

= 3i cosec Osec 0.

22
EXAMPLE 1.4
Find the nth derivative of
. X2 —4x+1 . 1
M XB4+22—x-2 (ll)x2—6x—|—8’
Solution: We have
- X2 —4x+1 - X2 —4x+1
YTRad—x—2 (- D+ 1)(x+2)
13 3

1
- S rtial fractions).
3t2) x+l 3(x_q) Ppartialiractions)

Since D" {(ax + )™} = (—1)"n L (ax + )",
we have

13 _ 3
3(x+2)n+1 (x_|_ 1)Vl+]

Yn = (_l)nn !
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(i) We have

1 1
y:x276x+8:(x74)(x72)
1

= =4 - 2—2) ( partial fractions).

Therefore, using D™{(ax+b) "'} = (=1)"n! "
(ax + b) """V we have

EXAMPLE 1.5
If x = sin¢, y = sinpt, show that

d*y  dy
1 —x*)—= —x—+p’y=0.
(I=x) g —x 4Py
Solution: We have
x=sint and = sinpt
Therefore
dx ; dy ;
— = cost, — = pcospt,
dt dt
and so
dy
@ _ E _ cospt
dx dx cost
dt

Differentiating once more with respect to x, we get

d’y  [cost(—psinpt) — cospt(—sint)| dt
a F cos? ¢ dx

. . 1
= p2 [sintcospt — psinpt cost] - —.
cos“ ¢t cost

Therefore
(1—x%) & - xﬂ +p?
dx? PR
. d’y  pcospt .
= (1 — sin? t)ﬁ X + p*sinpt

. . 1
= SInfcospt — psSmptcost| - ——
Pl pt—psinp ] -

psintcos pt

2 .
+ p” sinpt
cost p P

1 . 5 .
= ——|pSIntcospt — p°~smpt cost
o P pt—p-sinp

—psint cospt — p*sinpt cost] = 0.

EXAMPLE 1.6
If y = acos(logx) + bsin(log x), show that
d’y dy
2 —_— —_ =
dx? tx dx Ty=0

Solution: We have

y = acos(logx) + bsin(logx).

Therefore
d . 1 1
Y= d_ic} = —asin(logx) < + beos(logx). <
or

xy1 = —asin(logx) + bcos(logx).
Differentiating again with respect to x, we get

1 1
xy2 +y1 = —acos(logx) P bsin(logx). x

1 . _ Yy
—;[a cos(logx) + bsin(logx)] = =

Hence

Xy +axy +y=0.
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EXAMPLE 1.7
If ax? + 2hxy + by* = 1, show that

&y W —ab
dx*  (hx+by)*

Solution: We have
ax* 4+ 2hxy + by* = 1. (1)

Differentiating with respect to x, we get
d d
2ax + 20 |x 2+ y| + 209y = 0
dx dx

or

dy  ax+by
dx  hx+by’

Differentiating again with respect to x, we have

d?y  (h* — ab)(ax* 4 2hxy + by?)
dx? (hx + by)*
h* —ab

EXAMPLE 1.8
Find the nth derivative of tan™! (f)
a
Solution: We have
1 (X
y=tan (—)
a

Therefore
_a a
N=2 e (x + ia)(x — ia)
1 1 1
== - . 1
21’Lcia x+ia} M

Since D" {(x—ia) Y =(=1)""'(n—1)! (x—ia) ",
differentiating (n—1) times the expression (1) with
respect to x, we get

()" '(n—1)!

o =t ()" = (x+ ia) .

Putting x = rcos ¢ and a = rsin ¢, we get

yu=(=1)""(n—=1)1a"sin" ¢ sinng,

where ¢ = tan™! (ﬁ)'
X

1.2 LEIBNITZ'S THEOREM AND ITS APPLICATIONS

This theorem determines the nth differential coef-
ficient of the product of two differentiable func-
tions. The statement of the theorem is as follows:

Theorem 1.1. (Leibnitz’s). Let u and v be two func-
tions of x such that nth derivatives D"u and D"v
exist. Then the nth differential coefficient of their
product is given by

D"(uv) = (D"u)v +" C; D" 'u.Dv +" C,D" " *uD?v
+...+"C.D"7"uDv+ ... +" CouD" .

Proof: We shall prove the theorem using mathema-
tical induction. For n = 1, we have

D(uv) = (Du).v + u.Dv.
Therefore, the theorem holds for » = 1. Let us
assume that the theorem holds for n = m. Thus,

D" (uv) = (D™u).v +" C; D" 'u.Dv
+" D" 2uD*y + .. 4" C.D" D"y
+ ... +" CuuD™v.

Differentiating with respect to x, we get

D" (wv) = [(D"'u)v + D" u.Dv)

+™ C{(D"u.Dv + D" 'uD?v)
4+ Cy(D"'u.D?v + D" 2uDv) + . ..
+M C(D" " D'y 4+ D" u DY)
+ ...+ (Du.D™v + uD"™ ")

= (D" u)v 4 ("Cy +™ Cy)D"u.Dv
+("Cy +™" Cz)Dmflu.D2v+ e
+ ("C +" Cpy) D" "u.D' Ny
+ .. 4 uD"y
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= (D" u)y 4" C\D™u.Dv
_|_m+1 CzD'"*lu.Dzv
+.. 4" e D" Tu Dy

+ ... 4uD" .
Thus, the theorem holds for » = m + 1 also. Hence,
by mathematical induction, the theorem holds for
all positive integral values of n.
EXAMPLE 1.9
Find the nth derivative of x"' log x.
Solution. We have
y=x""logx.
Therefore,
1
yr=x""1 (—) —(n—1x"?logx
X
or
xyp =x"1 4 (n—1)y.
Differentiating both the sides by (n — 1) times, we get
D" ayy) = D" (@) + D' (n - 1)y
or
(D" 'y )x+" 1D 2y Dx=(n—1)!4-(n— 1)y,
or
xyn+(n_ l)ynfl :(I’l— 1)'-1—(11— 1)Yn71
or
xyn=n—-1),
which yields

(n—1)!

Yn=

EXAMPLE 1.10
If y = a cos(log x) + b sin(log x), show that

Xy +xy+y=0
and
2 _
XYz + 2n+ Dx yuy + (n° 4+ 1)y, = 0.

Solution. We are given that
y = acos(logx) + bsin(logx).
Therefore,

y = —Esin(logx) —l—écos(logx)
X X

or
xy1 = —asin(logx) + b cos(logx) (1)
Differentiating (1) with respect to x, we get
a b .
xy2 +y1 = ——cos(logx) — —sin(log x)
X x
or
Xyr+ayr =~y (2)
Differentiating (2), with respect to x, n times by
using Leibnitz’s Theorem, we obtain

D"(¥*y2) + D"(xp1) = =Dy
or
(D'y2)x* +" CLD" 'y, Dx* +" CoD" 2y DX
+ (D'y1)x+" C\D" 'y Dx + D'y = 0

or
) 2n(n—1)

X Vg2 20XV 041 t Yt s Y = 0

or

xzyn+2 + (21 + Dxypn + (”2 + Dy, =0.

EXAMPLE 1.11

Ify = e®in % show that (1 — ), 0— (21 + 1)V
— ("’ + a®)y, = 0.

Solution. We have

y = easin (1)
Therefore,
_ asin'x a
el [\/1_—}
or
V1 =22 = ae™"
or

ylz(l —x?) = a*y?, using (1).
Differentiating with respect to x once more, we get
2y (1 =x%) +yi(-20) =2y y

or
n(l=x*) =y x—da y=0. (2)

Using Leibnitz’s Theorem, we differentiate (2),
n times with respect to x, and get
D'[y2(1 —x*)] = D"(y1x) — a*D"y = 0
or
Yur2(1 =) +" Crypsr (=2%) +" Coya(-2)

_yn+1(x) +n Clyn - azyn =0
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or
(1 =x)ypi2 — 2n+ Dxyupy — (0 4 a*)y, = 0.

EXAMPLE 1.12

If y = ¢ '* show that

(1 +x2)yn+2+ [2(1’1—‘1- l)x_ l]ynJrl +n(n+ 1)yn =0.

Solution. It is given that

y — etan’l X.
Differentiating with respect to x, we get
_ tan'x 1 _ Y
r=e Tl4x2 142
or
(1+x)y1 =y

Differentiating (n+ 1) times by using Leibnitz’s
Theorem, we get

Dn+1[(1 +x2)y1] :DnJrly
or

(14X )pi2 7 Cr pui1 (2¢) 771 Cr 322 = Vi
or

(1 +x2)yn+z +2(n+1)x—1]y,p1 +nn+1)y,=0.

EXAMPLE 1.13
If cos™! (3) = log(%)", show that

*2 Yo + 204 Dx ypy1 420 y, = 0.

Solution. We have

cos™! (%) =log G) "—n log (%) =nllogx — logn].

Differentiating with respect to x, we get

I
2 b
1-% x
or
N n
/b2_y2 X
or

yl2 K =n? (b —y?).
Differentiating once more, we get

2y1y2x2—|—2xy12:2n2yy1
or

yox® +y x+n? y=0.

Differentiating n times by Leibnitz’s Theorem,
we get

Yny2 x2 +"C yn+1(2x) +" G Yn 2 + Vn1X
+" Ct yul +1°yy =0

or
X Ypin + (2n+ 1)x yui1 + 2n* y, = 0.

EXAMPLE 1.14
Ify = tan ' x, find (,)o.
Solution. Since y = tan~! x, we gety; = ﬁ and so,
1+ —1=0
Differentiating once more, we get
(1 4+x*)y, +2x y; = 0.

Now differentiating » times using Leibnitz’s Theorem,
we obtain

nn+1)
2
42X yyr1 +2ny, =0

Vuia(1+x%) + ny, 1 (2x) + V-2
or
(142 )yni2+2(n+ Dxyys 1 +n(n+1)y, =0. (1)

Substituting x= 0 in the expression for y, y;, and y,,
we get

(y)O =0, (yl)O =1, (yZ)O =0.
Also substituting x = 0 in (1), we get

Wni2)o = =[n(n + 1)) (2)

Putting n — 4 and n — 2 in place of n, respectively,
in (2), we get

n-2)o=—[(n—4)(n=3)](ys-4)pand
mo=—[(n=2)(n=1)](rn-2)o
==[n=1)(n=2)][=(n=3)(n=H)](n-4)o-
If n is even, we have
0)o = [(n = D)(n = 2)
X [~(n = 3)(n—4)] -
= 0 since (1), = 0.

[=(3)(2)]k2)o
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If n is odd, then

- [=#)3)]

EXAMPLE 1.15

If y= [x+VI+x2]", find the value of the nth
differential coefficient of y for x = 0.

Solution. We have

m
y:[x—l— 1—|—x2} . (1)
Therefore,
m—1 1 2x
=m \/l—i—xz] [1—5—— ]
4 { 2 V1+x2
m m my
=—|x+ 1—|—x2} = . 2
\/1—|—x2[ V1+x2 @)
Squaring, we get
i1 +x7) —m*y* =0.

Differentiating once again, we get
29132(1 + %) + 2xp2 — 2m*y y1 = 0
or
ya(1 4+ x%) + xp; —m*y = 0. (3)
Differentiating (3) n times by Leibnitz’s Theorem,
we get
Y2 (142%) 4" Ciyner (22) +" Coya(2)

+xyn+1 +nC1yn - m2yn =0
or
Yuia(1 +x2)(2n + D)xyp + (n2 — mz)y,, =0. (4)

Substituting x = 0 in (1), (2), (3), and (4), we get

(V)o =1,
i)y =m
(12), = m*, and
(as2)o = (m* = n?) (). (5)
If n is odd, that is, if n = 1,3,5,..., then(5) yields
(y3)o = (m —1° Y1) = (m2 - 1)
s)o = (m* — 32)()’3)0 (m* = 3%)(m* = 1%)m,
(7)o = (m* = 5%)()g = (m’ — 5%)(m* — 3%)
x (m* — 1%)m,

and so on. Hence, when #n is odd, we have
2
a)o = [m* = (n = 2)7]

x [m* = (n—4)?...(m* = 3*)(m* = 1%)m

If n is even, putting n = 2,4,6,...in (5), we get
)y = (m* = 2%)(32)y = (m* = 2%)m?,

(v6)o = (m* — 4 () = (m* — 4%)(m* — 2% )m?
8)o = (m* — 6)(y6)y = (m* — 6°)(m” — 4%)

x (m* —2%)m*
and so on. Hence, when n is even, we get

(Ya)o = " = (n = 2)’]

X [m? — (n—4)]...(m* —4%)(m* = 2})m*.

1.3 MISCELLANEOUS EXAMPLES

EXAMPLE 1.16
Find the nth derivatives of
(1) e Sil’l2 x. and (11) m

Solution. Let y = e~ sin” x. Then
e ¥ (2sin’*x) = e *(1 — cos 2x)

[e™ — e cos2x].

But D"e™ = g"e™ and
D" (e™ cos(bx + ¢))

. b
= (a* + b*)’e™ cos (bx +c—ntan! > .
a

Therefore
1 n_— I
D'y = 5[(—1) e —(5)e *cos(2x +n
X tan’l(fZ))].

(ii) Let y = (ax + b)_l. Then y; = —a(ax + b)_Z’
y2 = (—1)(=2)a*(ax + b)_3, and in general
yo=(=1)(=2)...(—n)d"(ax + b)f(”+1>_

Thus

D'y = (—l)"n!a"(axer)ﬂh1 (1)
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C (x—2)(2x +3)
2 3

“5e—1) T2 13)

Using (1), we have

D'x—1)"'=(=1)nlx-1)"",
D'(2x+3) = (=1)"n!2x+3)"".

Therefore

DI(f) =4 (~1)"n 1l 1)

+3{2"(2x+3)"1Y]

EXAMPLE 1.17
Prove that

_1\'n!
Dn{loﬁ}:( ”"-[ng_l_%—l ______ ,

x xhtl

Solution. By Leibnitz’s Theorem, we have,

D PO%} =D"[x 'logx]

:(_xlﬂn!logx—i—"Cl—(_l)n;n(n_l)!.l

+"c2—(1)nxj(’fz)!(_1).%

e g Ly
)" 'n=1)!1

L )xfn ) !

- 14

EXERCISES

(partial fractions).

Successive Derivatives

If x3 + 3* = 3axy, show that
d*y B 2ad’xy

a2 (2 —ax)

If y = ™ sin bx, show that

dy _dy 5
Y 2,2 —0.
7 adx—i—(a +b)y=0

If y = tan~!(sinh x), show that
¥ —yitany = 0.

Find the nth differential coefficient ﬁ

Ans. y,=(—1)"nla~"sin(n+1)¢sin"" ¢,
where ¢=tan™! (g).
X

2

Find the nth derivative of e* cos® x sin x.

1 n
Ans. y, =-{(13)2sin(3x + ntan™! 3
4 2

+(5) sin(x + ntan! (;)] .

Find the nth derivative of m

1 B (_3)7171
(x + 2)n+1 (2 o 3x)n+1 '

Find the nth derivative of m
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8. Find the nth derivative of sin® x cos® x

1 nm . nm
Ans. — [2 cos (x + 7) — 3" cos (3x + 7)

9. Find the nth derivative of tan~! %

Ans. (—1)""'(n—1)!sinngsin" ¢,

¢ = cot ' x.

10. If y = Asinmx + B cos mx, show that

vy +mPy = 0.

11. If p? = a® cos? 0 + b* sin” 0, show that
d’p a*h?
i
J2 P P

Leibnitz's Theorem

12. Find the nth differential coefficient of
e logx.

Ans. e[logx +ne,x ' —ne,x 2+ 1,2

e (=D = D).
13. Ify = (x* —1)", show that
(x2 = Dyni2 +2xp,01 —n(n+ 1)y, = 0.
14. If y = x%e*, show that

1
o = En(n — 1)y2 —n(n —2)y

+=(n—1)(n—2)y.

N —

15.

16.

17.

18.

19.

Hint: By Leibnitz’s Theorem y, = x*e*+
2nxe* +n(n—1)e*. Find y; and y,.
Substitute the values of x%¢* , 2xe* and €
from y,y; and y, respectively in y, and get
the required result.
If y = (sin"' x)?, show that
d’y  dy
i) (1 —x})==2—x——2=0
() (1-2%) 5 —x 2 ~2=0,

(i) (1 —xz)y,H_Q —2n+1Dxyp — nzy,, =0.

If y = sin”' x, show that

0o = (1 —=2)*(n = 4)* (a-a)o-
Deduce that
(i) ()= (n—2)"(n—4)*...523%1 for
odd n,
(ii) (yu), = 0 for even n.

Ify = "' % find (y,),.
Hint: From Example 1.11,we have (y,12), =
(n + @) (ya)o-
Ans. (1), =[(n—-2+d...3* +d%)
x (12 +a*).a if nis odd
Oy =[(n—=2)" +a’]... (4 + )

x (2> +a*) —d* if nineven

If yﬁ + y’i = 2x, show that
(o = Dyurz + 20+ Doy
+ (n* —m*)y, = 0.

If y = log[x + V1 4+ x2|, find (y,),.

n—1

Ans. (3)o = (=1)T (n=2)*(n—4)*...
x 32.1% if nis odd

(n)g =0 if nis even



2 Asymptotes and Curve Tracing

The aim of this chapter is to study the shape of a
plane curve y = f(x). For this purpose, we must
investigate the variation of the function £, in the case
of unlimited increase and absolute value and of x or
y, or both, of a variable point (x, y) on the curve. The
study of such variation of the function requires the
concept of an asymptote. Before defining an
asymptote to a curve, let us define finite- and infi-
nite branches of a plane curve as follows:
Consider the equation of the ellipse 2—2—%,‘)—2 =1.
Solving this equation, we get

[ x? x2
y=>5b 1_572 or y=-b 1—0—2.

The first equation represents the upper half of the
ellipse while the second equation represents the
lower half of the ellipse. Thus, the earlier equation
represents two branches of the ellipse. Further,
both these branches lie within the finite part of the
xy-plane bounded by x = + a and y = £ b. Hence,
both these branches of the ellipse are finite.
Consider now the equation of the hyperbola

2
X2 y

at b
b 5 3 b 5>
=—-—VX:—a or = ——VX:—a°.
Y Y
a a

Therefore, y tends to + oo as x — + oco. Hence, both
branches of this hyperbola extend to infinity and are
therefore called the infinite branches of the rec-
tangular hyperbola.

A variable point P(x, y) moves along a curve to
infinity if the distance of the point from the origin
increases without bound. In other words, a point
P(x, y) on an infinite branch of a curve is said to tend
to infinity along the curve if either x or y, or both, tend
to infinity as P(x, y) moves along the branch of the
curve.

Now we are in a position to define an asymptote
to a curve.

1. Its solution is

A straight line, at a finite distance from the ori-
gin, is said to be a rectilinear asymptote (or simply
asymptote) of an infinite branch of a curve if the
perpendicular distance of a point P on that branch
from this straight line tends to zero as P tends to
infinity along the branch of the curve.

For example, the line AB will be asymptote of
the curve in the following figure if the perpendicular
distance PM from the point P to the line AB tends to
zero as P tends to infinity along the curve.

Y B

A

2.1 DETERMINATION OF ASYMPTOTES WHEN THE
EQUATION OF THE CURVE IN CARTESIAN FORM
IS GIVEN

Let

y=mx+c (1)
be the equation of a straight line. Let P (x, y) be an
arbitrary point on the infinite branch of the curve
f(x, ) =0. We wish to find the values of m and ¢ so
that (1) is an asymptote to the curve. Let PM = p
be the perpendicular distance of the point P (x, y)
from (1). Then

_y—mx—c

g Vitm?

The abscissa x must tend to infinity as the point
P(x, y) recedes to infinity along this line. Thus,
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p — 0 as x — oo. Therefore,
lim(y —mx—¢)=0

or )HDO
lim (y — mx) = c.
On the other hand,
y 1
“—m=(y—mx)—
Therefore, *
) ) .1
lim X—m) = lim (y — mx) lim — = ¢(0) = 0
X—00 X—00 X—00 X
or
lim< = m.
X—00 X
Hence,
m=lim~ and c= lim(y— mx).

X—00 X X—00
Thus, to find asymptotes which are not parallel to

the y-axis, we find lim ¥ and hm (y mx). If these

‘CHOC

limits are, respectively, m and c, then y=mx+cis
an asymptote.

2.2 THE ASYMPTOTES OF THE GENERAL RATIONAL
ALGEBRAIC CURVE

Let f(x, ) = 0 be the equation of any rational
algebraic curve of the nth degree. Arranging this
equation in groups of homogeneous terms in X
and y, we get

(aox" + arx""ly + azx"‘zy2 +otay”)
o (DX by ...+bnx”*1)
+ (czx”’2 4oy + c,,y"’z)

+...+(k0x+k1y)+K:O.
This equation can be written as

x d),,( )-i—x” L 1( )+x" 20, 2(;/)
+...+x¢1(£)+¢o()—c>:0, (1)

where ¢,(¥) is a polynomial in ¥ of degree r.
Suppose y = mx + c¢ as an asymptote of the curve,
where m and c are finite. We have to find m and c.
Dividing both sides of equation (1) by x", we get
1 1
¢H(X) +7¢n71(z) +7¢n72(z) +...= 0.
x/ x7\x X x/

Proceeding to limits as x — oo so that lim ¥ = m,

X—0Q
we have

[ (2) ke (2) () ] -0

which yields
bn (m) =0. (2)
Solving the equation (2), we get the slope m of the
asymptote y = mx + c. But lim (y — mx) = c. Let
y — mx = p so thatx — 00, p — ¢. Buty — mx =p
implies * = m +£. Substituting this value of ¥ in
equation (1), we have
n p n—1 p
X ¢n(m+—> + X"y (m+—)
X X
+ X" 2,2 (m +§) +...=0. (3

Taylor’s Theorem expansion of equation (3) yields

2 ontm) 42 gy m) + 2ot .|
+x! {qb,,,l(m) —&—;gb;,l(m) + .. }

+xn—2 {¢n72(m) +§¢:172(m) + .. } +...=0.

Using equation (2), the said equation reduces to

2
V) + 6,1 (m)] + 2 B f )

+pg),_, (m) + ¢n—2(m):| +...=0
or

1 [p?

P (m) + s (m) + [2,¢< m) +pd,_1(m)

+¢n2(m)} +...=0. (4
Since x — o0, p — ¢, we have

ey, (m) + gu_1(m) = 0. (5)

Case (i): If ¢,(m) has no repeated root, then
¢/ (m) # 0. Hence, in that case, equation (5) implies
c= _¢n—l(m)' (6)

@), (m)
If my, my, ms,... are the distinct roots of ¢,(m) = 0
and ¢y, ¢y, c3,... are the corresponding values of ¢
determined by equation (6), then the asymptotes are

y=mx+c, y=mmx+c, y=mx+c3,...

Case (ii): If ¢/ (m) = 0, that is, ¢,(m) has a repeated
root and if ¢,_;(m) # 0, then equation (6) implies
that ¢ is undefined. Hence, there exists no asymp-
tote to the curve in this case.

Case (iii): If ¢/ (m) = ¢y_1(m) =0. Then equa-
tion (5) reduces to an identity and equation (4)
reduces to



P , 1
SO (m) + P,y (m) + dua(m) + [ ] +... =0,

As x — 00, p — ¢ we have

2
0 m) + ey (m) + b2 (m) = 0.
If ¢//(m) # 0, then this last quadratic in ¢ gives two
values of c. Therefore, there are two asymptotes
y=mx+c; and y = mx + ¢,
corresponding to the slope m. Thus, in this case, we
have two parallel asymptotes.

Remark 2.1

(1) Since the degree of ¢,(m) = 0 is n at the
most, the number of asymptotes, real or
imaginary, which are not parallel to y-axis,
cannot exceed n. In case the curve has
asymptotes parallel to y-axis, then the degree
of ¢,(m) is smaller than n by at least the
number of asymptotes parallel to y-axis.
Thus, the total number of asymptotes cannot
exceed the degree n of the curve.

(i) Asymptotes parallel to y-axis cannot be
found by the said method as the equation of
a straight line parallel to y-axis cannot be
put in the form y = mx + c.

2.3  ASYMPTOTES PARALLEL TO COORDINATE AXES
(i) Asymptotes parallel to y-axis of a rational
algebraic curve

Let f(x, ¥) = 0 be the equation of any algebraic
curve of the mth degree. Arranging the equation in
descending powers of y, we get

V" o(x) + "1 (x) + "o (x)
where ¢g(x), ¢1(x), ¢2(x),... are polynomials in x.

Dividing the equation (1) by y”', we get

do(x) + }m(x) + yiz 62(x)

1

If x = ¢ be an asymptote of the curve parallel to

y-axis then lim x = ¢, where (x, y) lies on the
y—00

curve (1). Therefore,
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}lirrolc do(x) +£¢1(x) —l—)%(bz(x) +.../=0

or ¢o(c) =0
so that ¢ is a root of the equation ¢g(x) = 0.
If ¢4, cs,... are the roots of ¢q (x) = 0, then (x —c¢),
(x —c»),...are the factors of ¢ (x). Also ¢g(x) is the
coefficient of the highest power of y, that is, of y" in
equation (1). Thus, we have the following simple
rule to determine the asymptotes parallel to y-axis.
The asymptotes parallel to the y-axis are obtained
by equating to zero the coefficient of the highest
power of y in the given equation of the curve. In case
the coefficient of the highest power of y is a constant
or if its linear factors are imaginary, then there will be
no asymptotes parallel to the y-axis.

(ii) Asymptotes parallel to the x-axis of a rational
algebraic curve

Proceeding exactly as in case (i) mentioned earlier,
we arrive at the following rule to determine the
asymptotes parallel to the x-axis:

The asymptotes parallel to the x-axis are
obtained by equating to zero the coefficient of the
highest power of x in the given equation of the curve.
In case the coefficient of the highest power of x is a
constant or if its linear factors are imaginary, then
there will be no asymptotes parallel to the x-axis.

24 WORKING RULE FOR FINDING ASYMPTOTES OF
RATIONAL ALGEBRAIC CURVE

In view of the mentioned discussion, we arrive at the
following working rule for finding the asymptotes
of rational algebraic curves:

1. A curve of degree n may have utmost n
asymptotes.

2. The asymptotes parallel to the y-axis are
obtained by equating to zero the coefficient
of the highest power of y in the given
equation of the curve. In case the coefficient
of the highest power of y is a constant or if
its linear factors are imaginary, then there
will be no asymptotes parallel to the y-axis.

The asymptotes parallel to the x-axis are
obtained by equating to zero the coefficient
of the highest power of x in the given
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equation of the curve. In case the coefficient
of the highest power of x is a constant or if
its linear factors are imaginary, then there
will be no asymptotes parallel to the x-axis.

If y = mx + ¢ is an asymptote not parallel to the
y-axis, then the values of m and c are found as follows:

(i) Find ¢,(m) by putting x = 1, y = m in the
highest-degree terms of the given equation
of the curve. Solve the equation ¢,(m) = 0
for slope (m). If some values are imaginary,
reject them.

(i) Find ¢,.,(m) by putting x =1, y = m in the
next lower-degree terms of the equation of
the curve. Similarly ¢,,.,(m) may be found
taking x =1, y = m in the next lower-degree
terms in the curve and so on.

@iit) If my, m,,... are the real roots of ¢,(m),
then the corresponding values of c, that is,
C1, C2,... are given by

c= _¢,,,1(m) m=my, mp
¢, (m) B
Then the required asymptotes are
y=mx-+cy, y=mx-+c,...

(iv) If ¢/, (m) = 0 for some m but ¢, ,(m) # 0,
then there will be no asymptote corre-
sponding to that value of m.

(v) If ¢/, (m) =0 and ¢, (m) = 0 for some
value of m, then the value of ¢ is deter-
mined from

2
Y/

21 n(m) + %‘?5271(’”) + Gu_2(m) = 0.

This equation will yield two values of ¢ and
thus, we will get atmost two parallel
asymptotes corresponding to this value of
m, provided ¢! (m) # 0.

(vi) Similary, if ¢!, (m) =¢),_, (m) = p,_2(m)=0,
then the value of ¢ is determined from

3 2
ST m) + 560 (m) 57, (m)
+ ¢n—3(m) =0.

In this case, we get atmost three parallel asymptotes
corresponding to this value of m.

EXAMPLE 2.1

Find the asymptotes of the curve
) (x2 - az) =x? (x2 — 4a2).
Solution. The equation of the curve is
e (x2 _ az) _ xz(xz _ 4a2)

VxE—xt —d®? +4dPx = 0.
Since the degree of the curve is 4, it cannot have more
than four asymptotes. Equating to zero, the coefficient
of the highest power of y, the asymptote parallel to
the y-axis is given by x> — &> = 0. Thus, the
asymptotes parallel to the y-axis are x = *a.

Since the coefficient of the highest power of x
in the given equation is constant, there is no
asymptote parallel to the x-axis.

To find the oblique asymptotes, we put x = 1
and y = m in the highest-degree term, that is fourth-
degree term y* x* — x* in the given equation and get
b4 (m) = m>— 1. Therefore, slopes of the asymp-
totes are given by

pa(m) =m* —1=0.
Hence, m = £1. Again putting y = m and x = 1 in the
next highest-degree term, that is, third-degree term, we
have ¢s(m) = 0 (since there is no term of degree 3).
Now c is given by

or

__¢sm) 0
¢y(m)  2m
Therefore, the oblique asymptotes are y = x + 0 and

y=—x+0.
Hence, all the four asymptotes of the given
curve are x = g and y = +x.

EXAMPLE 2.2

Find all the asymptotes of the curve

fey) =y -0 —xy+x> +x2 -y —1=0.
Solution. The given curve is of degree 3 and so, it may
have atmost three asymptotes. Since the coefficients of
the highest power of x and y are constants, the curve
has no asymptote parallel to the coordinate axes.

To find the oblique asymptotes, we put x = 1
and y = m in the expression containing third-degree
terms of f(x, y). Thereby we get

d3(m)=m> —m* —m+1=0.
This equation yields m = 1, 1,—1. Further, putting
x =1, y = m in the next highest-degree term, we get
ba(m) =1 —m?.



Therefore for m = —1, the expression
_ 1 —m?
o 3m2-2m—1

yields ¢ = 0 and the corresponding asymptote is
y=—-x+0ory+x=0.

For m = 1, the denominator is zero and so, ¢ cannot

be determined by the preceding formula. Putting

x = 1, y = m in the first-degree terms, we have

¢1(m) = 0 (since there is no first-degree term). Now

for m = 1, the constant ¢ is given by

2

c

?qb'z'(m) + cgh(m) + ¢1(m) =0

or (3m —1)c*> —2mec =0

or2¢> —2¢=0

orclc—1)=0.
Hence, ¢ = 0 and ¢ = 1. So the two parallel
asymptotes corresponding to m = 1 are y = x and
y =x + 1. Therefore, the asymptotes to the curve are

y+x=0,y=xandy=x+1.

form=1

EXAMPLE 2.3

Find the asymptotes of the curve

Y (x—2a)=x>—d’.
Solution. The degree of the curve is 3. So, there cannot
be more than three asymptotes. There is no asymp-
tote parallel to the x-axis. The asymptote parallel to
the y-axis is given by x — 2a = 0, that is, x = 2a.

To find the oblique asymptotes, we put x = 1,

y = m in the third-degree term and get ¢(m) = m > —1
and so, the slope m is given by

p3(m) =m* —1=0.
Thus, m = +£1. Further, putting x = 1, y = m in
the second-degree terms, we get ¢o(m)= —2am?>.

Therefore for m = 1 and m = —1, the expression
_ $a(m)  2am*
o gh(m) 2m

yields ¢ = a, and —a respectively. Hence, the oblique
asymptotes are
y=x+aand y=—x—a.
Hence, the three asymptotes of the curve are
x=2a, x—y+a=0,andx+y+a=0.

EXAMPLE 2.4
Find the asymptotes of the curve
X 4+3x%y -4 —x+y+3=0.
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Solution. There is no asymptote parallel to the
coordinate axes. To find the oblique asymptotes, we

have b3(m) = 14 3m — 4m®
and so, the slope m is given by
b3(m) =1+ 3m —4m’> = 0.

Therefore, m =1,—1, and —1 For m = 1, the
value of ¢ is given by
_Gm) 0

Ym)  —12m2+3
Thus, the asymptote correspondingtom = 1isy =x
orx —y=0.

For m = —3,¢4(m) =0. So we find ¢;(m),
which is equal to ¢;(m) = —1 +m.

Hence, c is given by,

CcC =

6‘2 " (m
B+ cghm) +61(m) =0
or
3 1 1
6c2—§:O or CZZZ or C:ii'
Thus, the asymptotes corresponding to m = —% are
1 1 1 1
y= —§x+§ and y = 35
or

x+2y—1=0andx+2y+1=0.
Hence, the three asymptotes of the curve are
x—y=0,x4+2y—1=0,andx+2y+1=0.

EXAMPLE 2.5

Find the asymptotes of the curve

(x—y)? (x2 —|—y2) —10(x —y)x? 4+ 12)* +2x+y=0.
Solution. The equation of the given curve is

(x =) (¥ +57) = 10(x —y)x* + 12* +2x +y=0.
The coefficients of x* and )" are constant.
Therefore, the curve has no asymptotes parallel

to the axes. Putting x = 1 and y = m in the fourth-,
third- and second-degree terms, we have

pa(m) = (1 — m)z(l +m*) =m* —2m’
+2m* —2m+1
$3(m) = 10(m — 1), and ¢y (m) = 12m?.
The slopes of the asymptotes are given by
¢a(m) = (1 —m)* (1 +m?) = 0.
Therefore, m = 1, 1 are the real roots. Further we have
By (m) = 4m® — 6m* + d4m — 2,
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so that ¢y (m) = 0 for m = 1. Therefore, values of ¢
are given by

2
= 0h(m) + gl (m) + 6 (m) = 0,
that is,

2
S (120 = 12+ 4) + 10c + 12m> = 0.

For m = 1, this equation yields
2¢* +10c+ 12 =0 or ¢* +5¢+ 6 = 0.
This equation gives c = —2, —3. Putting the values of
m and ¢ in y = mx + c¢, the asymptotes are given by
y=x—2and y=x—3.

EXAMPLE 2.6
Find the asymptotes of the curve

(x +y)2(x +2y)+2(x +y)2—(x+ 9y)—2=0.

Solution. Since the coefficients of the highest-degree
term of x and y are constant, the given curve does
not have asymptotes parallel to the axes.

To find the oblique asymptotes, we put x = 1
and y = m in third-, second- and first-degree terms
and get
d3(m) = (1 +m)*(1 +2m) = 2m> + 5m* + 4m + 1
Ga(m) = 2(1 +m)*=2m* + 4m + 1
¢1(m) =—(149m) =—-9m — 1.

Thus,
¢h(m) = 6m* + 10m + 4,
/)

Y(3) = 12m + 10, and
¢y (m) = 4m + 4.
The slopes of the asymptotes are given by
¢3(m) = (1 +m)*(1 +2m) =0,

which yieldsm = —1, — 1, and — ; The value of ¢ is
given by

¢ (m) 2m? 4 4m + 1

c= =— .

@ (m) 6m> + 10m + 4
Form = — 1, ¢4 (m) = 0 and so, ¢ cannot be found
from this equation. For m = — % we have ¢ = — 1.
Thus, the asymptotes corresponding to m = —% is

1
y:—zx—l orx+2y+2=0.

For m = —1, the value of ¢ is calculated from the
relation

2
5 03(m) + g (m) + 61 (m) = 0

or
2
S (12m+10)+c(Am+4) —9m—1=0
or 2
A6m+5)+c(dm+4) —9m—1=0
or
A(-1)+9-1=0
or

¢ = 8, which yields ¢ = +2v/2.
Thus, the two parallel asymptotes corresponding to
the slope m = —1 are
y=-x+2V2and y = —x — 2V2.
Hence, the asymptotes of the curve are
X+2y+2=0, y+x=2v2, and y+x = —2V2.

EXAMPLE 2.7
Find the asymptotes of the curve
6> +xy—207 +x+2y+1=0

Solution. Since the coefficients of the highest powers
of x and y are constants, there is no asymptotes
parallel to the axes. To find the oblique asymptotes,
we put x = 1 and y = m in second- and first-degree
terms and get

br(m) = 6 —2m* +m, ¢ (m) =2m+ 1
and

Py (m) = —4m + 1.
The slopes of the asymptotes are given by
br(m) =6 —2m* +m =0

and so, m = 2, —3. The value of ¢ is given by

C__qzﬁl(m)__ 2m+1
 gh(m) —Am+ 1
Form =2 and m = —%, the value of ¢ are%and%

respectively.

Therefore, the asymptotes are
2x + > d > + 2
=2x4+-andy=—=x+-
4 7 YT TR
14x — 7y +5=0and 21x+ 14y — 4 = 0.
EXAMPLE 2.8

Find the asymptotes of the curve o b,
2y

or

Solution. The equation of the given curve is
a P
———==1
P
or
A2 P 42 =0,
Since the curve is of degree 4, it cannot have more
than four asymptotes.



Equating the coefficient of the highest power of
x to zero, we get y* + b> = 0, which yields imaginary
asymptotes.

Equating the coefficient of the highest power of
y to zero, we get

¥ —a*=0or (x—a) (x+a)=0.

Hence, the asymptotes parallel to the y-axis are
x = a and x = — a. Thus, the only real asymptotes
arex —a=0andx + a=0.

2.5 INTERSECTION OF A CURVE AND ITS
ASYMPTOTES

We have seen that the equation of a curve of degree
n can be expressed in the form

X"y G) +x" G)
+x”*2¢,,_2© bo=0. (1)
y=mx+c (2)

be an asymptote to the curve (1). Eliminating y
from (1) and (2), we get

c C
x”qﬁn (m + 7) + x’171¢1171 (m + 7)
X X

Let

+ X" 2, (m +§) +...=0.

Expanding by Taylor’s Theorem, we get
2

x| $ulm) + 8, (m) + 5 Sm) + ..
o+ |

22"

! (B (m) + S, (m)

¢ 1
+ﬁ¢”71(m) +..]

#72 0n-2(m) + 6,4 m)

2

+W¢Z_2(m) +} =0, (3)
that is,
X'y (m) +x" ", (m) + 1 (m)]

2

2 S0l +odh,n) + 6ua(m)] + .=
But equation (2) being an asymptote of equation (1),
the values of m and ¢ are given by

¢n(m) =0and cqs;(m) + Qn—1 (m) =0.
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Hence, equation (3) reduces to

2
X725 6(m) + e,y (m) + da(m)| +... =0,
which is of degree n — 2 and so, yields (n—2) values
of x. Hence, the asymptote (2) cuts the curve (1) in
(n—2) points.

If the curve has n asymptotes, then they all will
intersect the curve in n(n—2) points.

Further, if the equation of the curve of the nth
degree can be put in the form F,, + F,,_, = 0, where
F,_, is of degree n—2 at the most and F, consists of
n distinct linear factors, then the n(n—2) points of
intersection of the curve F,+F,_,=0 and its
n asymptotes (given by F, = 0) lie on the curve
Fn72 = 0

EXAMPLE 2.9
Find the asymptotes of the curve
¥y—x+xy 4+ +x—y=0
and show that they cut the curve in three points that
lie on the straight line x + y = 0.

Solution. Equating to zero the coefficient of highest
power of x, we get y = 0. Thus, x-axis is an
asymptote to the given curve. Similarly, equating to
zero the coefficient of the highest power of y, we get
—x + 1 =0orx = 1. Thus, x = 1 is the asymptote
parallel to y-axis. To find the oblique asymptotes,
we put x = 1 and y = m in the third- and second-
degree terms and get
¢3(m) =m— mZ’ ¢2(m) =m-+ m2’ and
y(m) =1—2m.
Then the slopes of the asymptotes are given by
b3(m) =m —m* =0,
which implies m = 0 and m = 1. The values of ¢ are

given by bom)  m+ o

Tom) . T—2m’

Thus, the values of ¢ corresponding to m = 0 and

m =1 are ¢ = 0 and ¢ = 2, respectively. Therefore,

the oblique asymptotes are y = 0 and y = x + 2.

Hence, the asymptotes of the curve are

y=0,x=1,andx—y+2=0.

The joint equation of the asymptotes is

(x—=1Dyx—y+2)=0

Cc =

or
Xy —xp? +xy+y* =2y =0.
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On the other hand, the equation of the curve can be
written as

(y—x”+x+)* —2) +y+x=0,
which is of the form F,, + F,_, = 0. Hence, the
points of intersection which are n (n—2) =3(1) =3
in number lie on the curve F,,_, = x + y = 0, which
is a straight line.

EXAMPLE 2.10
Show that the four asymptotes of the curve
(x2 —y2) (y2 — 4x2) + 6x° — 5x%y

—3x% 42 — x4+ 3y —1=0
cut the curve in eight points which lie on the circle
¥ +yr =1

Solution. Substituting x = 1 and y = m in the fourth-
and third-degree terms, respectively, we get

¢a(m) = (1 —m?) (m* —4) and

d3(m) = 6 — 5m — 3m* + 2m°.
Thus,

By (m) = 10m — 4m’.

The slopes of the asymptotes are given by

pa(m) = (1 —m?) (m*—4) =0
and so, m = £ 1, and + 2. The value of ¢ is given by
the expression

~ ¢3(m) 6 —5m—3m?+2m’

 ¢(m) 4m3 — 10m '
The value of ¢ corresponding to m = 1, —1, 2,
and —2 are respectively 0, 1, 0,and 1. Hence, the
asymptotes are

y=x,y=-x+1, y=2x, and y = —2x + 1.

Since the degree of the given curve is 4, the
number of point of intersection is equal to n(n—2) =
4(4-2) =8.
The joint equation of the asymptotes is

=—x)y+x—-Dr-2x)y+2x—1)=0
r
(y2 —xz) (yz —4x2) — 6% 4 5x?y
+307 =2 +)* =3+ 22 =0

or
(* —»*) (P —4x%) +6x° —5x%

—30? +2 =) 3y -2 =0.

The given equation of the curve can be written as
(x2 — yz) (y2 — 4x2) +6x° — 5x%y — 302 +2)°
— 2 3y — 207 + (x2+y2— 1) =0,

which is of the form F,, + F,_, = 0. Hence, the
points of intersection lie on F,,_, = 0, that is, on the
circle x> + 3> — 1 = 0.

EXAMPLE 2.11

Find the equation of the cubic which has the same
asymptotes as the curve x’—6x%y + 11x)°—6y* +
x +y + 1 =0, and which touches the axis of y at the
origin and passes through the point (3, 2).

Solution. The equation of the curve is
-6’y + 1l — 62 +x4+y+1=0.
The curve has no asymptote parallel to the axes. To
find the oblique asymptotes, we have
¢3(m) =1 — 6m + 11m* — 6m*
=(1—m) (1 —2m) (1 —3m),
$2(m) =0, ¢5(m) = 10m — 6.
The slopes of the asymptotes are given by
¢3(m) = (1 —m) (1 =2m) (1 —=3m) =0

and so, m = 1, %, and % Further,

__%m)
¢ (m)
Therefore, the asymptotes are
X d X
=x,y==,andy=—-.
y ) V bR y 3

The joint equation of the asymptotes is

(x=y) (x=2y) (x—3y) =0.
The most general equation of any curve having
these asymptotes is

F,+F,,=0, thatis, Fs+F =0

or
(x—y) (x=2p) (x=3y)+ax+by+ k=0,
since F is of degree 1.

Since the curve passes through the origin, put-
ting x = 0, y = 0, in the preceding equation, we
get k = 0. Thus, the equation of the curve becomes

(x—y) (x—=2y) (x=3y)+ax+by=0. (1)
Equating to zero, the lowest-degree term in (1),
we get ax + by = 0 as the equation of the tangent at
the origin. But y-axis, that is, x = 0 is tangent at the
origin. Therefore, » = 0 and the equation of the
curve reduces to

(x—) (r—2v) (x = 3) +ax = 0.
Since the curve passes through (3, 2), we have
3-2)(3-4)3-6)+3a=0
and so, a = —1. Hence, the required curve is
(x=y) (x=2y) (x=3y) —x=0



or
X —6xty + 1lny? —6)° —x = 0.

EXAMPLE 2.12

Show that the eight points of the curve
s+t P - x4y +1=0

and its asymptotes lie on a rectangular hyperbola.

Solution. The equation of the curve is of degree 4.
Therefore, the number of points of intersection with
the asymptotes is n(n — 2) = 4(4 — 2) = 8. Further,
the equation of the given curve can be written as
22\ (.2 2 22 _
(=) (P =)+ =y +x+y+1=0
or

Fp+F, 2 =0,
where

F, = (x¥* —)%) (x> —4?) is of degree 4 and

Foy=x>—)y +x+y+1=0is of degree 2.
The asymptotes are given by F, = 0, that is, by
(x* — »») (x> — 4y*) = 0. Thus, the asymptotes are
x ==xyand x = £2y. The equation F,,_, = 0, that is,
x* —y* 4+ x4y + 1 = 0 is the equation of the curve
on which the points of intersection of the asymp-
totes and the given curve lie. The conic x* — y* +
x +y + 1 = 0is a hyperbola since the sum of the
coefficients of x* and y* is zero. Hence, the eight
points of intersection of the given curve with its
asymptotes lie on a rectangular hyperbola.

EXAMPLE 2.13

Find the asymptotes of the curve
Ca(l—¢) a1 —-£)
I TP G e

Solution. The equation of the curve is given in
parametric form. We eliminate ¢ by dividing and get

r_1 so that r =72
y t x o
Substituting this value of ¢ in x = a?;é ), we obtain
a(x® —»?)
or ¥+
(a+x) =¥ (a —x). (1)

Equating to zero the highest power of y in the
equation (1) of the curve, we have x + a = 0. Hence,
x + a = 0 is the asymptote parallel to the y-axis. To
find the oblique asymptotes, we putx = 1 and y = m
in the highest-degree term of f(x, y) to get

Asymptotes and Curve Tracing 2.9

3(m) =m* +1=0.
But the roots of the equation m”> + 1 = 0 are ima-
ginary. Therefore, there is no oblique asymptote.
Hence, the only asymptote is x + a = 0.

2.6  ASYMPTOTES BY EXPANSION

Let the equation of the given curve be of the form

A4 B C
y=mxt+ct+—+5+5+... . (1)
x x2 x
Dividing both sides by x, we get
y c 4 B C
—:m+—+—2+—3+—4+... .
X x xr X x

Taking limit as x — oo, we have

: y
lim () = m. 2
amly) = =
The equation (1) can also be written as

A B C
y—mx=ct+—-+5+5+....

x x* x

Taking limit as x — oo, we get

lim (y — mx) = c. (3)

It follows (see Article 4.1) from (2) and (3) that
y = mx + c is an asymptote of the curve (1). Hence,
y = mx + c is an asymptote of a curve, whose
equation can be expressed in the form (1) given
earlier.
For example, consider the curve
fny) =22 +2*2 —y) +x+1=0.
The given equation can be written as
¥y =20+ 2% +x+1
or
1 1
y=2x+2+-+.
X x
Hence, y = 2x + 2 is an asymptote of the given
curve.

2.7  ASYMPTOTES OF THE POLAR CURVES

If o is a root of the equation f(f) = 0, then
rsin(0 — o) :% is an asymptote of the polar
curve 1 = 1(0).

Thus, to find the asymptotes of a polar curve,
first write down the equation of the curve in the
form L = £(0). Then find the roots of the equation
f(0)=0. If the roots are 0y, 0,, 0,..., find f7(0) at
0 = 04, 05, 0s,... . Then the asymptotes of the curve
shall be
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rsin(0 — 0)) =

1
f’( D

rsin(0 — 0,) = , and so on.

f ’(92)
EXAMPLE 2.14
Find the asymptotes of the curve

rsin 0 = 2 cos 20.

Solution. The equation of the given curve can be
written as

1 sin 0
-=——=1(0).
r 2cos0 19)
Therefore, f(0) = 0 yields sin § = 0 and so, § = n,

where 7 is an integer. Since

71(0) = 1 [cos26 cos 0 — sin 6(—2 sin 20)

2 cos? 20 ’
we have
1 2 cos?(2nn)
f'(nm)  cos(2nm) cos nm + 2 sin nwsin 2nw
22
~cosnm (—1)"
Hence, the required asymptotes are
. 2
rsin(f — nm) = &
or
in(nm — 0) 2
—rsin(nm — 0) = -
(=1
or X
—r[(=1)" 'sin 6] = -
(=1
or

rsin0 = 2.

EXAMPLE 2.15

Show that the curve r = has no asymptotes.

1- os()

Solution. The equation of the given curve can be
written in the form

1 1—cosf

S =100,

r a
Then f(0) = 0 implies cosf = 1 and so, 0 = 2nr,

where n is an integer. Further,
f(0) = ésin 0
and so,
f'(2nm) = ésin(2n7r) =0.

We know that if « is a root of the equation f(6) = 0,
then asymptote corresponding to this asymptotic
direction « is given by
f(a).rsin(0 — o) = 1.

So for o = 2nm, the equation of the asymptote is

f'(2n7).rsin(0 — 2nm) = 1.
But, we have shown that /'(2n7) = 0. Thus, 0 = 1,
which is impossible. Hence, there is no asymptote
to the given curve.

EXAMPLE 2.16

Find the asymptotes of the curve
r = a(sec 0 + tan 0).

Solution. We are given that

B 1 n sin0  a(l +sin0)
"M os0 Tcos0) T cosO
Thus,
1 cos
= =£(0).

roa(l +sin0)

But f(0) = 0 yields - =0orcos § =0or

1+sm9
0=02n+1)I
Also,
_ 1 |(1+sin6) (—sinf) — cosfcosb
oy =L [ sin0) (sing)
a (14 sin0)
_ (sinf+1)
B a(l +sin0)*"
Therefore,
, T 1 sinn+1)Z+1
A {(2n+1)ﬂ = (. )3 2
[1+sin(2n+1)%]
_1 Y
all +(-1)")
and so, the asymptotes are
T 1
sin|0— Qn+1)o| =
"l [ (2n )2} Flen+1)3]
" 1+ (<17
) T all +(=1)"
_rSIIl(I’lﬂ'—‘rE—H) — s
or
. T all + (=1)")?
(=1) rsm(E—H) S



or
all + (=)
1+ (=1)"
Putting n = 0, 1, 2,..., the asymptotes of the curve
are given by
rcos = 2a and rcos 0 = 0.

Thus, we note that there are only two asymptotes of
the given curve.

EXAMPLE 2.17
Find the asymptotes of the curve r = a tan 0.

rcosf = =a[l +(-1)"].

Solution. The equation of the given curve may be

written as
1 lcosO

r asinf

f(0).

Therefore, f(6) = 0 implies cos 0 = 0 and so,
0= (2n+1)5 Also

f(0) = ! cosec” 0.
a

Therefore,

1 -1
rlensnl) =- -
[ ﬂ} a[sin(2n + 1)%]2 a(—1)*

Thus,
1
=a(-1)"""'= +a.

1 [(Zn +1) g}
The asymptotes are now given by

rsin(@— (2n+ l)g) = +a.

Proceeding as in the earlier example, we get the
asymptotes as
rcos =a and rcos = —a.

EXAMPLE 2.18
Find the asymptotes of the following curves:

i) rB=a

. _ 2
(11) r= 172gos0

(iii) rsin n0 = a.

Solution. (i) From the given equation, we get

1 0

—=2=7(0).

= 1(0)
Therefore, f(0) = 0 yields £ =0 or 6 = 0.

Also . .
f(0) =- and so,wza.
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Thus, the asymptotes are given by

1
1 0 — 0 = — 1 9 = .
rsin( ) 0) a or rsin a
(i1) From the given equation, we get
1 1-—2cosf
_—— = 0 .
r 2a ©)

Therefore, f(0) =0 gives 1 —2cosf =0 or cos § = %
and so, 0 = 2n7 £ %, where n is an integer. Further,
1 . in 0
1'(0) =5 (25in6) = %
This gives
1. 1.
f (2n7r + E) = —sm(2n7r + E) — 4+ -sin”
3 a 3 a 3
_sY3
2a
Hence, the asymptotes are given by

rsin[@— (anigﬂ :f’(anﬂ':tg): :I:Z—\/a§

or on simplification,
. 2 . 2
rsm(@ - E) =29 and rsm(@ + E) -

3/ 3 3 V3
(iii) The equation of the curve may be written as
1 sinnf
=T ().
r a

Therefore, f(0) = 0 implies that sin n0 = 0 and so,
n6) = mm, where m is an integer. Thus, 0 = "Z. Also,

ncos nl
! 0 —
1) ="=
and so,
, @) _ ncosmm
S ( n a
Hence, the asymptotes are given by

. mm 1 a
rsin (() — —) = = ’
n f (%) ncosmm

where m is an integer.

2.8 CIRCULAR ASYMPTOTES

Let the equation of a curve be r = f(0). If
olim f(0) = a, then the circle » = a is called the

circular asymptote of the curve r = f(0)

EXAMPLE 2.19
Find the circular asymptotes of the curves

(i) r(e”—1)=a(’+1).
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(i) #(0 +sin0) =20 + cos 0.
(iii) =L

Solution. (i) The given equation is
r(ee — 1) = a(ee + 1)

or
a(e(’—l)
"= —1 ©)
Now .
. a(e’—1) . l+e?
L

Hence, r = a is the circular asymptote.

(i1) The equation of the given curve is
20+ cost

"= 95sing O
Further, 1
) . 20+cos0 2 +4cos0
am SO0 = fim G0 ~ i T
2
== _=2
1+0

Hence, r = 2 is the required circular asymptote.

(iii) The given equation is

ab
=
0—-1
and
1
lim —— =a lim =a.
0—00 0 — 1 O—o0 1 — 3

Hence, » = a is the circular asymptote of the given
curve.

2.9 CONCAVITY, CONVEXITY AND SINGULAR
POINTS

Consider the curve y = f(x), which is the graph
of a single-valued differentiable function in a
plane. The curve is said to be convex upward or
concave downward on the interval (a, b) if all points
of the curve lie below any tangent to it on this
interval. We say that the curve is convex downward
or concave upward on the interval (¢, d) if all points
of the curve lie above any tangent to it on this
interval. Generally, a convex upward curve is
called a convex curve and a curve convex down
is alled a concave curve. For example, the curves

in figures (a) and (b) are respectively convex and
concave curves.

p Tangent at P i i
T T T ; Tangent at P
4 : i P i
i i ! !
i i !
i i H
i i
i i
a b " c d "

(a) Convex Curve (b) Concave Curve

The following theorems tell us whether the given
curve is convex or concave in some given interval.

Theorem 2.1. If at all points of an interval (a, b) the
second derivative of the function f(x) is negative,
thatis, /' (x) < 0, then the curve y = f(x) is convex
on that interval.

Theorem 2.2. If at all points of an interval (c, d) the
second derivative of the function f(x) is positive,
that is, f”(x) > 0, then the curve y = f(x) is con-
cave on that interval.

A point P on a continuous curve = f'(x) is said
to be a point of inflexion if the curve is convex on
one side and concave on the other side of P with
respect to any line, not passing through the point P.

In other words, the point that separates the con-
vex part of a continuous curve from the concave part
is called the point of inflexion.

The following theorem gives the sufficient con-
ditions for a given point of a curve to be a point of
inflexion.

Theorem 2.3. Let y = f(x) be a continuous curve.
If /"(p) =0 or f(p) does not exist and if the
derivative 1 (x) changes sign when passing through
x = p, then the point of the curve with abscissa
x = p is the point of inflexion.

Thus at a point of inflexion P, f”(x) is positive
on one side of P and negative on the other side. The
above theorem implies that at a point of inflexion

F"(x) =0 and £"(x) % 0.



For example, the point P, in the figure shown
below is a point of inflexion.

A point through which more than one branches
of a curve pass is called a multiple point on the
curve.

If two branches of curve pass through a point,
then that point is called a double point. If r bran-
ches of a curve pass through a point, then that point
is called a multiple point of order r.

If two branches of a curve through a double
point are real and have different tangents, then the
double point is called a node.

For example, the curve in the figure below has a
node at the origin.

»
»

(Origin as a Node)

If two branches through a double point P are real
and have coincident tangents, then P is called a cusp.

2.13
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For example, the curve in the figure below has a
cusp at the origin.

y

A

(Origin as a Cusp)

Let P(x,y) be any point on the curve

f(x,y) =0. The slope % of the tangent at P is

d
given by

of
& _ o of  of dy _
dc  Of o 8x+8y’dx_’
dy

which is a first degree equation in % Since at a

multiple point, the curve must have at least two

tangents, therefore % must have at least two
values at a double point. It is possible if and

only if

Hence the necessary and sufficient conditions
for the existence of multiple points are

(120 and

of
o oy =

EXAMPLE 2.20
Find the points of inflexion of the curve

y(@ +x*) =x.
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Solution. The equation of the given curve is

3

X
S SR
Therefore
dy (a*+x*)3x% —2x*  x*+3a’?
dx (a® +x2) (@ +x2)*

Differentiating once more with respect to x, we get

d’y _ x(6a* + 104’ 4+ 4x* — 12a°%* — 4x*)
dx? (a2 +x2)°
_ 2xa*(3d* — x?)
(@+x2)°

At the point of inflexion, we must have % =0and
so
2xa?(3a*> — x?)
(a +2)°
which yields x = 0, ++/3a. Further,

=0 and 2xa*(3a* —x*) =0,

dy  6a’(x* — 6a’x* 4 a*)
3 (a2 +x2)4

Ifx = 0, thenjxgzﬁ—;za%yéo.
Ifx = v3a, thenfh{: f%az #0.
If x = —/3a, thean{ = —%az #0.
Thus all the three values of x corresponds to the
points of inflexion.
When x = 0, the given equation yields y = 0.
When x = \/_ 3a, the given equation yields y = M
When x = —\/— 3a, the given equation ylelds
_33
y=—-"ya.
Hence the points of inflexion of the given curve are

(0,0), (\@a, ¥a) < V3a , i >

EXAMPLE 2.21
Does the curve y = x* have points of inflexion?

Solution. The equation of the given curve is y = x*.

Differentiating with respect to x, we have

dy 3, d’y 2 4y
=4x’, = =12x = 24x.
dx " dx? T dd
Then for the points of inflexion, we must have

Ly
dx?
which yields x = 0. But

=0, thatis, 12x>=0,

2
forx <0, d_J; > 0and therefore the curve is concave,
x

2

d
forx>0 d—); > 0and therefore the curve isconcave.

Since the second derivative does not change sign
passing through x=0, the curve has no points of
inflexion.

EXAMPLE 2.22

Find the points
¥ =x(x+ 1)2.

of inflexion on the curve

Solution. The given curve is symmetrical about x axis
and gives

y=+x(x+ 1).
So, we can proceed with

1

y=x2(x+1).
Then
3x+1

L —x4+—x2 1) =
RN G+ 1) 2

dy 1 l3x%—(3x+1)§ 51 C3x—1
-3 - .

dx? X 4x%

To determine the point of inflexion, We put equal

to 0. Therefore 3x — 1 =0 or x = Further
d2y 3 1
— 1-— 0atx=
dx? Sx% ( x) 7& ax= 3

Therefore the curve has point of inflexion corre-

sponding to x = 1. Putting x = § in the equation of



the curve, we have y = i;‘ﬁ' Hence the points
of inflexion on the curve are

OEA O]

EXAMPLE 2.23

Find the points of inflexion and the intervals of con-
vexity and concavity of the Gaussian curve
y= e,
Solution. The equation of the Gaussian curve is
y = e . Therefore

dy 2 d*y

—X _ —x? 2
dx——2xe ) ﬁ—Ze [2x° —1].

For the existence of points of inflexion, we must

have 2 = 0, which yields x = +-!

ﬁ.
Now, since
1 d?
for x < —, we have £2 <0
V2 dx?
1 d?
forx > —, wehave—y>0,
V2 dx?

therefore the point of inflexion exists for x = %

Putting x :\/LE in the given equation, y = e =.

Therefore (%, e’%) is a point of inflexion on the

curve.
Also
1 d?
forx < ——, we have £2 >0
V2 dx?
1 d?
for x > ——, we have 22 < 0.
V2 dx?

Thus another point of inflexion exists for the value
1 . 1 .
X=-15 Putting x = 5 10 the equation of the

. 1
Gaussian curve, we get y = e 2. Hence the second

point of inflexion is (— %, e‘%).
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EXAMPLE 2.24

Determine whether the curve y = €* is concave or
convex.

Solution. The given exponential curve is y = ¢'.
Then

& _

d’y
o e, —==¢" > 0 for the all values of x.
X

dx?

Hence the curve is everywhere concave.

EXAMPLE 2.25

Determine the existence and nature of the double
points on the curve

flxy)=y"—(x=2*(x—1) =0.
Solution. We have

fry) =y —(x -2 x-1)=0,

9

6—’): = —(x—2)(3x —4),
o

-

Now for the existence of double points, we must
have

o _of _,

o dy
Hence
(x—2)(3x—4)=0 and2y=0,
which yield

x=2

Wl

, and y = 0.

Thus the possible double points are (2, 0) and (%, 0).
But, only (2, 0) satisfies the equation of the curve.
To find the nature of the double point (2, 0), we shift
the origin to (2, 0). The equation reduces to

V=x+2-2 x+2-1)=x>x+1)

:x3 +x2.
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Equating to zero the lowest degree term, we get
3> — x> = 0, which gives y = 4x as the tangent at
(2, 0). Therefore, at the double point (2, 0), there
are two real and district tangents. Hence the double
point (2, 0) is a node on the given curve.

EXAMPLE 2.26

Does the curve x* — ax?y + axy* + a®>y> = O have a
node on the origin?

Solution. Equating to zero the lowest degree term in
the equation of the given curve, we have

a*y* = 0, which yields y =0, 0.

Therefore there are two real and coincident tangents
at the origin. Hence the given curve has a cusp or
conjugate point at the origin and not a node.

2.10  CURVE TRACING (CARTESIAN EQUATIONS)

The aim of this section is to find the appropriate
shape of a curve whose equation is given. We
shall examine the following properties of the curves
to trace it.

1. Symmetry: (i) If the equation of a curve
remains unaltered when y is changed to —y, then the
curve is symmetrical about the x-axis. In other
words, if the equation of a curve consists of even
powers of y, then the curve is symmetrical about the
x-axis. For example, the parabola y* = 4ax is
symmetrical about the x-axis.

(i1) If the equation of a curve remains unaltered
when x is changed to —x, then the curve is sym-
metrical about the y-axis. Thus, a curve is sym-
metrical about the y-axis, if its equation consists of
even powers of x. For example, the curve x* + y* =
a” is symmetrical about the y-axis.

(iii)) If the equation of a curve remains
unchanged when x is replaced by —x and y is
replaced by —y, then the curve is symmetrical in the
opposite quadrants. For example, the curve xy = ¢*
is symmetrical in the opposite quadrants.

(iv) If the equation of a curve remains unaltered
when x and y are interchanged, then the curve is
symmetrical about the line y = x. For example, the

folium of Descarte’s x° + y° = 3axy is symmetrical
about the line y = x.

2. Origin: (i) If the equation of a curve does not
contain a constant term, then the curve passes
through the origin. In other words, a curve passes
through the origin if (0, 0) satisfies the equation of
the curve.

(i1) If the curve passes through the origin, find
the equation of the tangents at the origin by
equating to zero the lowest-degree terms in the
equation of the curve. In case there is only one
tangent, determine whether the curve lies below
or above the tangent in the neighbourhood of the
origin. If there are two tangents at the origin, then
the origin is a double point; if the two tangents
are real and distinct, then the origin is a node; if
the two tangents are real and coincident, then the
origin is cusp; if the two tangents are imaginary,
then the origin is a conjugate point or an isolated
point.

(Origin as a Node) (Origin as a Cusp)

3. Intersection with the Coordinate Axes: To
find the points where the curve cuts the coordinate
axes, we put y = 0 in the equation of the curve to
find where the curve cuts the x-axis. Similarly, we
put x = 0 in the equation to find where the curve
cuts the y-axis.

4. Asymptotes: Determine the asymptotes of
the curve parallel to the axes and the oblique
asymptotes.

5. Sign of the Derivative: Determine the points
where the derivative % vanishes or becomes infi-
nite. This step will yield the points where the tan-
gent is parallel or perpendicular to the x-axis.

6. Points of Inflexion: A point P on a curve is
said to be a point of inflexion if the curve is concave
on one side and convex on the other side of P with



respect to any line AB, not passing through the
point P.

(Point of Inflexion)

0

There Wizll bea pointzof inflexion at a point P on
the curve if% =0 but ;% #0.

7. Region, Where the Curve Does Not Exist:
Find out if there is any region of the plane such that
no part of the curve lies in it. This is done by solving
the given equation for one variable in terms of the
other. The curve will not exist for those values of one

variable which make the other variable imaginary.

EXAMPLE 2.27

Trace the curve
azyz — 2 (az 7x2)'

Solution. The equation of the curve is
AP =2 (a2 _ xz).
We observe the following:
(i) Since powers of both x and y are even, it follows
that the curve is symmetrical about both the axes.
(i) Since the equation does not contain constant
terms, the curve passes through the origin. To
find the tangent at the origin, we equate to zero
the lowest-degree terms in the given equation.
Thus, the tangents at the origin are given by
@y —a*x* =0 or y = +x.
Since tangents are distinct, the origin is a node.
(ii1) Putting y = 0 in the given equation, we get
x = 0 and x = + a. Therefore, the curve crosses
the x-axis at (0, 0), (a, 0), and (—a, 0).
(iv) Shifting the origin to (a, 0), the given equation
reduces to
@ = (x+aPla® — (x+a)]
or
= (x+a)’ (—2ax —x%).
Equating to zero the lowest-degree term, the
tangent at the new origin is given by 4a*x> = 0
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or x = 0. Thus, the tangent at (a,0) is parallel to
the y-axis.

(v) The given equation can be written as

) x*(a* —x?)
a? '

When x =0, y =0 and when x = a, y= a. When
0 <x <a,y is real and so, the curve exists in
this region. When x > g, y* is negative and so, y
is imaginary. Hence, the curve does not exist
in the region x > a.

(vi) The given curve has no asymptote.
Hence, the shape of the curve is as shown in the
following figure:

’
N

(-4,0) @0 X
1

EXAMPLE 2.28

Trace the curve
x? = 4a*(2a — x)(Witch of Agnesi).
Solution. We note that

(i) The curve is symmetrical about the x-axis
because the equation contains even powers
ofy.

(i) Since the equation consists of a constant
term, 8a°, the curve does not pass through
the origin.

(iii) Putting y = 0 in the equation, we get
x = 2a. Therefore, the curve crosses the
x-axis at (2a, 0). When x = 0, we do not get
any value of y. Therefore, the curve does
not meet the y-axis.

Shifting the origin to (2a, 0), the equation
of the curve reduces to
(x + 2a)y? = 4a*(2a — x — 2a)

y2x + 2ay* 4 4a*x = 0.
Equating to zero, the lowest-degree terms
of this equation, the equation of the tangent
at this new origin is given by
4’°x =0 0or x=0.
Hence, the tangent at the point (2a, 0) to the
curve is parallel to y-axis.

or
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Equating to zero the coefficient of high-
est power of y, the asymptote parallel to
the y-axis is x = 0, that is, the y-axis.
Further, the curve has no other real
asymptote.

The equation of the given curve can be
written as
k. 4a*(2a — x) .

x
Therefore, when x — 0, y approaches oo
and so, the line x = 0 is an asymptote.
When x = 2a, y = 0. When 0 < x <24, the
value of y is real and so, the curve exists in
the region 0 < x < 2a. When x > 24, y is
imaginary and so, the curve does not exists
for x > 2a. Similarly, when x is negative,
again y is imaginary. Therefore, the curve
does not exist for negative x.
In view of the mentioned points, the shape
of the curve is as shown in the following
figure:

EXAMPLE 2.29
Trace the curve

¥*(2a — x) = x> (Cissoid).

Solution. We note that

(1)

(i)

Since the powers of y in the given equation
of the curve are even, the curve is sym-
metrical about the x-axis.

Since the equation of the curve does not
contain a constant term, the curve passes
through the origin. Equating to zero the
lowest-degree term in the equation, the tan-
gent at the origin is given by 2ay* = 0.
Thus, y = 0, y = 0 and so, there are two

(iii)

(iv)

V)

coincident tangents at the origin. Hence,
the origin is a cusp.

Putting x = 0 in the equation, we get y = 0
and similarly, putting y = 0, we get x = 0.
Therefore, the curve meets the coordinate
axes only at the origin.

Equating to zero the highest power of y in
the equation of the curve, the asymptote
parallel to the y-axis is x = 2a. The curve
does not have an asymptote parallel to the
x-axis or any other oblique asymptote.

The given equation can be written as
3
) X

y

T2a—x

When x — 2a, y* — oo and so, x = 2a is an asymp-
tote. If x > 24, y is imaginary. Therefore, the curve
does not exist beyond x = 2a. When 0 <x <24, y* is
positive and so, y is real. Therefore, the curve exists
in the region 0 < x < 2a. When x < 0, again y is
imaginary. Therefore, the curve does not exist for a
negative x.

In view of the said observations, the shape of
the curve is as shown in the following figure:

Yy

'y

=2a

X
|
|
|
|
|
]
|
|
|
|

EXAMPLE 2.30
Trace the curve

x> 4+ = 3axy (Folium of Descartes).
Solution. We observe that

(1)

The curve is not symmetrical about the
axes. However, the equation of the curve
remains unaltered if x and y are inter-
changed. Hence, the curve is symmetrical
about the line y = x. It meets this line at

(32_61732_“)'



(i)

(ii1)

(iv)

V)

Since the equation does not contain a con-
stant term, the curve passes through the ori-
gin. Equating to zero the lowest-degree
term, we get 3axy = 0. Hence, x = 0,
y = 0 are the tangents at the origin. Thus,
both y- and x-axis are tangents to the curve
at the origin. Since there are two real and
distinct tangents at the origin, the origin is a
node of the curve.

The curve intersects the coordinate axes
only at the origin.

If, in the equation of the curve, we take
both x and y as negative, then the right-
hand side becomes positive while the
left-hand side is negative. Therefore, we
cannot take both x and y as negative.
Thus, the curve does not lie in the third
quadrant.

There is no asymptote parallel to the axes.
Further, putting x = 1, y = m in the high-
est-degree term, we have

¢3(m) = m* 1

The slope of the asymptotes are given by m> + 1 = 0.
The real root of this equation is m = —1. Also,
putting x = 1, y = m in the second-degree term, we

have
¢2(m) = —3am
and further,
L(m) = 3m?.
Therefore,
_ $2(m) _ 3”_’” _a
dy(m)  3m>  m’
For m = —1, we have ¢ = —a. Hence, the oblique

asymptote is

y=—x—a or x+y+a=0.
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In view of the earlier facts, the shape of the curve is
as shown in the following figure:

y \\ .
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EXAMPLE 2.31
Trace the curve

y(a+x) =x*a—x).

Solution. We note that

(1)

(i)

(iii)

(iv)

The equation of the curve does not alter if y
is changed to —y. Therefore, the curve is
symmetrical about the x-axis.

Since the equation does not contain a con-
stant term, the curve passes through the ori-
gin. The tangents at the origin are given by
@ —ax* =0 or y = +x.
Thus, there are two real and distinct tangents
at the origin. Therefore, the origin is a node.
Putting y = 0, we have x*(a — x) = 0 and
so, the curve intersects the x-axis at x = 0
and x = a, that is, at the points (0, 0) and
(a, 0). Putting x = 0, we get y = 0. Thus,
the curve intersects the y-axis only at (0, 0).
Shifting the origin to (a, 0), the equation of
the curve reduces to
1*(2a+x) = —x(x* + 2ax + a*).
Equating to zero the lowest-degree term,
we get a’x = 0.Hence, at the new origin,
x = 0 is the tangent. Thus, the tangent at
(a, 0) is parallel to the y-axis.
The equation of the curve can be written as
), a—x)
a+x
Whenx lies in 0 < x < g, y* is positive and so,
the curve exists in this region. But when x >
a, y* is negative and so, y is imaginary.



2.20

V)

Engineering Mathematics-1

Thus, the curve does not exist in the region
x > a. Further, if x — —a, then y2 — 00 and
s0, x = —a is an asymptote of the curve. If
—a < x <0, y* is positive and therefore, the
curve exists in —a < x <0. When x < —a, y*
is negative and so, the curve does not lie in
the region x < —a.

Equating to zero the coefficient of the high-
est power of y in the equation of the curve,
we have x + a = 0. Thus, x + a = 0 is the
asymptote parallel to the y-axis. To see
whether oblique asymptotes are there or
not, we have ¢s(m) = m* + 1. But the roots
of m* + 1 = 0 are imaginary. Hence, there
is no oblique asymptote.

Thus, the shape of the curve is as shown in
the following figure:

1
| YA
1
N —
y=x
AN 7 X=a
[N , 1
| N Vi |
1 4 1
1 I
T ’X
T 0 |
nl \\ |
x| \ |
[/ \
1 y=-x
1
1

EXAMPLE 2.32
Trace the curve

x=-1)r-2)Kr-3)

Solution. We note that

(i)

(i1)
(iii)

(iv)

The equation of the curve has odd powers
of x and y. Therefore, the curve is not
symmetrical about the axes. It is also not
symmetrical about y = x or in the opposite
quadrants.

The curve does not pass through the origin.
Putting x = 0 in the given equation, we get
y =1, 2, and 3. Thus, the curve cuts the
y-axis at y = 1, 2, and 3. Similarly, putting
y = 0, we see that the curve cuts the x-axis
atx = —6.

The curve has no linear asymptotes since
y — £ 00, x — £ 00.

™)

When 0 < y <1, then all the factors are
negative and so, x is negative. When 1 <y <
2, x is positive. Similarly, when 2 <y <3,
then x is negative. At y = 3, x = 0. When
y > 3, x is positive. When y < 0, x is
negative. Hence, the shape of the curve is
as shown in the following figure:

Y4(3,0)

(2,0)

(1,0)
(-6, 0) 0

EXAMPLE 2.33
Trace the curve

X+ =dx

Solution. We note the following characteristics of the
given curve:

(i)

(i)

(iii)

(iv)

Since the equation of the curve contains
odd powers of x and y, the curve is not
symmetrical about the axes. But if we
change the sign of both x and y, then the
equation remains unaltered. Therefore, the
curve is symmetrical in the opposite
quadrants.

Since the equation of the curve does not have
a constant term, the curve passes through the
origin. The tangent at the origin is given by
ax = 0. Thus, x = 0, that is, y-axis is tan-

gent to the curve at the origin.

Putting y = 0 in the equation, we get
x(x*~a*) = 0 or x(x—a) (x+a) = 0.
Hence, the curve cuts the x-axis at x = 0,
x = a, and x = —a, that is, at the points
(0, 0), (a, 0), and (—a, 0). On the other hand
putting x = 0 in the equation, we get y = 0.
Therefore, the curve cuts the y-axis only at
the origin (0, 0).

The curve does not have any asymptote
parallel to the axes. But

¢s(m) =m’ +1,  ¢y(m) =0.



Thus, the slope of the oblique asymptotes is
given by m* + 1 = 0.Thus, the real root is

m = —1. Also
__$lm) _
¢3(m)
Therefore, the curve has an oblique

asymptote y = —x.
(v) From the equation of the curve, we have
VP =dx—x.
Differentiating with respect to x, we get

3 2@2512—3)62 or@:7a2—3x2‘

> 32

(@)
o - —00
dx (@,0)

and so, the tangent at (a, 0) is perpendicular to
the x-axis. Similarly, (%)(_aﬁ 0= —00 and
so, the tangent at (—a, 0) is also perpendi-
cular to the x-axis.

Also we note that % = 0 implies x = ﬂ:%.
Therefore, the tangents at these points are

parallel to the x-axis.

(vi) Alsoy® = a’x —x* = x(a* — x°) implies that

y? is positive in the region 0 <x < a. But * is
negative in the region x > a. The earlier facts
imply that the shape of the given curve is as
shown in the following figure:

Ya

y=-x

2.11  CURVE TRACING (POLAR EQUATIONS)

To trace a curve with a polar form of equation, we
adopt the following procedure:

1. Symmetry: If the equation of the curve does not
change when 0 is changed into —0 the curve is
symmetrical about the initial line.

Asymptotes and Curve Tracing 2.21

If the equation of the curve remains unchanged by
changing r into —r, then the curve is symmetrical
about the pole and the pole is the center of the
curve.

If the equation of the curve remains unchanged
when 0 is changed to —0 and r is changed in to
—r, then the curve is symmetrical about the line
0=7.

2. Pole: By putting » = 0, if we find some real value
of 0, then the curve passes through the pole which
otherwise not. Further, putting » = 0, the real value
of 0, if exists, gives the tangent to the curve at the
pole.

3. Asymptotes: Find the asymptotes using the
method to determine asymptotes of a polar curve.
4. Special Points on the Curve: Solve the equation
of the curve for r and find how r varies as 0
increases from 0 to oo and also as 0 decreases from
0 to —oo. Form a table with the corresponding
values of » and 6. The points so obtained will help in
tracing the curve.

5. Region: Find the region, where the curve does
not exist. If 7 is imaginary in o < 0 < f, then the
curve does not exist in the region bounded by the
lines ® = o« and 6 = f.

6. Value of tan¢: Find tan ¢, that is, r% , which will
indicate the direction of the tangent at any point. If
for 0 = o, ¢ = 0 then 0 = « will be tangent to the
curve at the point 6 = o. On the other hand if for
0 = o, ¢ =7, then at the point 0 = o, the tangent
will be perpendicular to the radius vector 6 = a.
7. Cartesian Form of the Equation of the Curve:
It is useful sometimes to convert the given equation
from polar form to cartesian form using the rela-
tions x = 7 cos 0 and y = r sin 0.

EXAMPLE 2.34
Trace the curve r = a sin 30.

Solution. We note that

(i) The curve is not symmetrical about the
initial line. But if we change 6 to —0 and
r to —r, then the equation of the curve
remains unchanged. Therefore, the curve is
symmetrical about the line 0 = 7.

(i) Putting » = 0, we get sin30 = 0. Thus,
30 =0, mor 0 = 0, 5. Thus, the curve passes
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(iii)

(iv)

V)
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through the pole, and the lines § = 0 and 6 =
% are tangents to the curve at the pole.

r is maximum when sin30 = 1 or 30 = J or
0 = ¢. The maximum value of r is a.
We  have % =3acos30 and so,
tan ¢ = 42 = Ltan 30. Thus, ¢ =% when
30 =73 or 0=¢, and the tangent is per-
pendicular to the radius vector 0 = .

Some points on the curve are given below:

. T T s 2w 5w
0: 0 % 5 3 5 %7
r. 00a 0 —a 0 a O

One loop of the curve lies in the region
0 <0 <35 The second loop lies in the
region T < 0 < £ in the opposite direction
because r is negative there. The third loop
lies in the region 2{ < 0 < masris positive
(equal to a) there.

When 0 increases from 7 to 27, we get
again the same branches of the curve.
Hence, the shape of the curve is shown in
the following figure:

y
_2rn -
6=27 4 053
0=\ g 6=

EXAMPLE 2.35
Trace the curve r = a (1—cos 0) (Cardioid).

Solution. The equation of the given curve is r = a
(1—cos 0). We note the following characteristics of
the curve:

(1)

(i)

The equation of the curve remains unchanged

when 6 is changed to —6. Therefore, the

curve is symmetrical about the initial line.
Whenr =0, wehave 1 — cosf =0or 0 =0.
Hence, the curve passes through the pole

(iii)
(iv)

V)

(vi)

and the line 6 = 0 is tangent to the curve at
the pole.

The curve cuts the line 0 = 7 at (2a, 7).

dr — gsi _d0_ - _
gp=asin0 and so, tan¢ =r§’ = L=

a(l—cos0) 0 0 __ _ .
g = tany. If 3=17, then ¢ = 90.

Thus, at the point 6 = m, the tangent to the
curve is perpendicular to the radius vector.

The values of 0 and r are:

. T T 27

0: 0 % 3 —33 T
. a a

r: 0 % a 3 2a

We observe that as 6 increases from 0 to m,
r increases from O to 2a. Further, 7 is never
greater than 2a. Hence, no portion of the
curve lies to the left of the tangent at
(2a, 0). Since | | < 2a, the curve lies
entirely within the circle » = 2a.

There is no asymptote to the curve because
for any finite value of 0,  does not tend to
infinity.

Hence, the shape of the curve is as shown
in the following figure:

EXAMPLE 2.36
Trace the curve » = a + b cos 0, a < b (Limacon).

Solution. The given curve has the following
characteristics:

(1)

(i)

Since the equation of the curve remains
unaltered when 0 is changed to —0, it fol-
lows that the curve is symmetrical about
the initial line.

0 when a + b cos 0 = 0 or
0=cos™! (—%). Since § <1, cos™! (—l“;) is
real. Therefore, the curve passes through the
pole and the radius vector 6 = cos ™! (—%) is
tangent to the curve at the pole.

r =



(iii) We note that r is maximum when cos 6 = 1,
that is when 0 = 0. Thus, the maximum
value of r is @ + b. Thus, the entire curve
lies within the circle ¥ = a + b. Similarly, »
is minimum when cos 6 = —1, that is when
0 = 7. Thus, the minimum value of ris a — b,
which is negative.

(iv) % = —bsinf and so, tang =ri =
__r _ _ atbcosl _ °
bsinf — bsin0 * ThuS, ¢ = 90° when 0

=0, 7. Hence, at the points = 0 and 6 = ,
the tangent is perpendicular to the radius
vector.

(v) The following table gives the value of r
corresponding to the value of 6:

0:0 g cos’l(—g) cos’1<—g)<6’<7r m

rra+b a 0 negative a—>b

(vi) Since r is not infinite for any value of 0, the
given curve has no asymptote:
Hence, the shape of the curve is as shown
in the follpwing figure:
A

> X

EXAMPLE 2.37

Trace the curve % cos 26 = d°.

Solution. The equation of the given curve can be
written as
1*(cos? 0 — sin’ 0) = @
or
2 2 2 _ o
X“—y  =a since x =rcosf, y=rsinf.
Therefore, the given curve is a rectangular hyper-
bola. We note that

(1) The curve is symmetrical about both the
axes.

(i) It does not pass through the origin.
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(iii) It cuts the x-axis at (a, 0) and (—a, 0). But it
does not meet y-axis.
(iv) Shifting the origin to (a, 0), we get
(x+a)?—? =d® or x¥* —)? + 2ax = 0.
Therefore, the tangent at (a, 0) is given by
2ax = 0 and so, the tangent at (a, 0) is
x = 0, the line parallel to the y-axis.

(v) The curve has no asymptote parallel to
coordinate axes. The oblique asymptote
(verify) are y = x and y = —x.
(vi) The equation of the curve can be written as
V=x*—a’.
When 0 < x < g, the »* is negative and so, y is
imaginary. Therefore, the curve does not lie in the
region 0 < x < a. But when x > a, y” is positive and
so, y is real. Thus, the curve exists in the region
x > a. Further, when x — oo,y2 — 00.
In view of the mentioned facts, the shape of the
curve is as shown in the following figure:

2.12  CURVE TRACING (PARAMETRIC EQUATIONS)

If the equation of the curve is given in a parametric
form, x = f(f) and y = ¢(¢), then eliminate the
parameter and obtain a cartesian equation of the
curve. Then, trace the curve as dealt with in case of
cartesian equations.

In case the parameter is not eliminated easily, a
series of values are given to t and the corresponding
values of x, y, and Zx—y are found. Then we plot the
different points and find the slope of the tangents at
these points by the values of % at the points.

EXAMPLE 2.38
Trace the curve

x=a(t+sint), y=a(l+cost).
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Solution. We note that

(1) Since y = a(l + cost) is an even function of
t, the curve is symmetrical about the y-axis.

(ii)) We have y = 0 when cost = —1, that is

when t = —m, m. When ¢ = 7, we have
X = ar. When t = —7r, x = —am. Thus, the
curve meets the x-axis at (am, 0) and
(—arm, 0).
(iii) Differentiating the given equation, we get
dx dy .
— =a(l +cost), == —asint.
dt ( ) dt
Therefore,
dy _ z _ . a sin ¢
dx & a(l+ cost)
2asintcos? t
=-—F—2_ 2= —tan_.
2acos* 5 2
Now

dy ™
— ] =—tan- = —oc.
(&), =3 =

Thus, at the point (am, 0), the tangent to the
curve is perpendicular to the x-axis.
.. . dy

Similarly, at the point (—am, 0), & =00
and hence, at the point (—am, 0), the tan-
gent to the curve is perpendicular to the
X-axis.

(iv) yis maximum when cost = 1, that is, t = 0.
When t = 0 x = 0 and y = 2a. Thus, the
curve cuts the y-axis at (0, 2a). Further,

A B
x/

and so, at the point (0, 2a), the tangent to
the curve is parallel to the x-axis.

(v) Itis clear from the equation that y cannot be
negative. Further, no portion of the curve
lies in the region y > 2a.

(vi) There is no asymptote parallel to the axes.

(vii) The values of x, y corresponding to the
values of ¢ are as follows:
t - -7 0 Z s
X —ar —a(g—f—l) 0 a(g—i—l) am
y 0 a 2a a 0

Hence, the shape of the curve is as shown in the fol-
lowing figure:

EXAMPLE 2.39

Trace the curve ,
3

X3+ =ar.

Rlu

Solution. (i) The parametric equation of the curve are
x=acos’t, y=asin’t.
Therefore,
|x| <aandy <a.
This implies that the curve lies within the square
bounded by the lines x = +a, y = + a.
(i1) The equation of the curve can be written as

N o\ %
3 3
a a

This equation shows that the curve is symmetrical
about both the axes. Also it is symmetrical about
the line y = x since interchanging of x and y do
not change the equation of the curve.

(ii1) The given curve has no asymptote.

(iv) The curve cuts the x-axis at (a, 0) and (—a, 0). It
meets the y-axis at (0, a) and (0, —a). For x = a, we
have cos> t =1 or ¢ = 0. Therefore,

dy &
(5) = % = (—tant),_,= 0.
=0 dt) 1=

Hence, at the point (a, 0), the x-axis is the tangent to
the curve.

Similarly, at the point (0, @), the y-axis is the
tangent to the curve.

Hence, the shape of the curve is as shown in the
following figure.
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EXERCISES

Find the asymptotes of the following curves:

1. Test the curve y = x* for concavity/convexity.
Ans. Concave for x > 0 convex for x < 0.

2. Find the points of inflexion on the curve

y(a® +x*) = a’x.
Ans. (0, 0), (\/ga, @), (—\/ga, —@).
3. Show that the points of inflexion on the
curve > = (x —a)*(x—b) lie on the line
3x +a=4b.
Hint: 4 = 0 yields 3x +a = 4b

4. Find the points of inflexion on the curve
x=a(20 —sin0), y = a(2 — cos 0).

Ans. [ (4n7ri2”$\/§>, 37"}

5. Show that origin is a node on the curve
2

g-b=1
6. V+xy+20° —y+1=0
Ans.y=0,y4+x—-1=0,y+x+1=0

7.5 4+ = 3axy =0

Ans.x +y+a=0

8. X -2 + 2%y — ) +xy — ¥ +1=0
Ans.x—y=0,x+y+1=0,x+2y—1=0

9. 3 + 2y — T +2)° — ldxy + 7V + 4x
+5r=0
Ans. 6x — 6y —7=0,y=3x — 1,
3x+6y+5=0
10. y3 =x 4 ax’
Ans.y =x+%
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11 ¥’ =3 +0° =30 +20° + 20+ 4x + 5y +6=0
Ans.y=x—-2, y=xV3—-1, y=—xV3 -1
12. x3? = a*(x* +)7)
Ans.x ==+a,y = +a
13. 5 + P =2 + 5
Ans.x ==£l,y=+1,y = —x
4. X+ +x0° —x>—xp+2=0
Ans.x=0,x4+y=0,x+y—-1=0
15. ° +xy —xp* =y —=3x—y—1=0
Ans.y =x,y=—x+Lx+y+1=0
16. (x> =»*) (x+2y+1)+x+y+1=0
Ans. x+y=0,x—y=0,x+2y+1=0
17. (i) y*(x—2) =x*(y - 1)
Ans.x =2, y=1y=x+1
(if) » = 4L,y =4,
Hint: Eliminating t, we get P+ = (=)D
Ans. No asymptote.
18. Show that the asymptotes of the curve
22 _az(xz erz) B4y +at =0
form a square and that the curve passes
through two angular points of that square.
Hint: The four asymptotes are x = +a, y = *a.
They form a square of length 2a. The angular
points are (a, a), (a, —a), (—a, a), and (—a, —a).
The curve passes through two angular points
(a,—a) and (—a, a).
19. Show that the points of intersection of the curve

2y3 —2xy — 4xy2 +4x — 14xy
+ 6 +4?+6y+1=0

and its asymptotes lie on the straight line
& +2y+1=0.

20. Show that the asymptotes of the cubic
¥ =2 Fxy2x—y) Fy(x—y) +1=0

cut the curve again in three points which lie on
the straight linex — y +1 = 0.
Hint: The asymptotes arey =x,y = —x —1,
and y= x +1 2 Their ] oint equation is
X =27 +2xy v +xy—y —x+y=0.
Subtracting this equation from the equation of
the curve, we getx —y + 1 = 0.

21. Show that the point of intersection of the curve
4(x4 +y4) — 173 — 4)6(4)/2 — xz)

+2(x*-2)=0
and its asymptotes lie on the ellipse x> 4 4y* = 4.
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22.

23.

24,

25.

26.

27.

Find the equation of the hyperbola passing

through the origin and having asymptotes x + y

—1l=0andx —y+2=0.
Hint: The joint equation of asymptotes is F, =
(x —y —1) (x — y + 2) = 0. Equation of the
curve is F,, + F,_, = 0, that is, F, + Fy = 0.
Thus, F is of a zero degree and so, is a constant.
Thus, the equation of the curve is (x +y — 1)
(x — y 4+ 2) + k =0. It passes through the
origin. So k£ = 2. Hence, the curve is (x + y —1)
x—y+2)+2=00rx—y* +x+3y=0.

Find the asymptotes of the curve xy (x*— 1°) +
x* 4+ y* = & and show that the eight points of
intersection of the curve and its asymptotes lie
on a circle with the origin at the center.
Find the equation of the cubic which has
the same asymptotes as the curve x’— 6x%y +
11xy° + 4x + 5y + 7 = 0 and which passes
through the points (0, 0), (0,2), and (2, 0).
Ans. The joint equation of the asymptote is
(x =) (r — 2) (x — 3y) = 0.
The cubic is x*— 6x%y 4+ 11x)° + — 6° —
4x + 24y = 0.

Find the equation of the straight line on which
lie the three points of intersection of the curve
4y -2+ 4P+ 2y +y—1=0
and its asymptotes.

Ans. x + 3y = 1.

Find the asymptotes of the following polar
curves:
(i) 70 cosf = a cos 260
Ans. rcos ) = (2,3%)”
(i) »r = a cosec 0 + b
Ans. rsin 0 = a
(iii) r = Togl
Ans.rsin (0 — 1) =a
(iv) r =asec 0 + b tan 0
Ans.rcos0 =a+b,rcos0=a—»b
WV r(-eé)=a

Ans. rsin 0 = —a
2a0
60 —72

vi)r =
Ans. rsin 0 = —a

Find the circular asymptote of the curves:
() r = 30°4+20+1
20°4+0+1

Ans.r =3

Y e — 6024501
(if) r = 20°-30+7

Ans.r =3

28. Trace the curve X3 = a* (x> + )%

Ans.

_J L

) .

29. Trace the curve y* (x* +1%) + a*> (x> —»?) =0

Ans.

Ans.

<
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31. Trace the curve xy = a*(a — x) Hint: 7? = %‘;‘29 =2 or X¥*4)2 =% or
y Y a—x)=x°
A
y
A
X=a

Xi: a |
H 1
Ans. !
0 i(a,0) X :
: Ans. |
! 1

t » X

0 |(a, 0)

|
I
|
1
32. Trace the curve y*(a — x) = x°(a + x) !

35. Trace the curve » = a cos 20.
Ans.

a0 |

Ans.
33. Trace the curve r = a(cos 0 + sec 0)
Hint: * = ar(cos 0 + sec 0). Therefore,
cartesian form is y?(x — a) = x*(2a — x)
y . 36. Trace the curve x = a (0—sin 0), y = a
A (14 cos 0).
=2a X
Ans. : R ar ar 0=27
0 (2a,0) X N T TN
Ans. [
12a
: > X
0 O=r

-2
__asin” 0
34. Trace the curve r = 4257,



Partial Differentiation

Let n be a positive integer and R be the set of real
numbers. Then, R" is the set of all n-tuples
(x1,%2,...,%n), Xy € R. Thus,

R is the set of all real numbers called, the

real line,

RE=RxR={(x,y):x,y €N} is a two-

dimensional Cartesian plane,

RI=RxRxR={(x,y,2):x,,z€E R} is a

three-dimensional Euclidean space.

Let A be a nonempty subset of R". Then, a function
f: A — Ris called a real-valued function of n variables
defined on the set A. Thus, f maps (x1,x2,--.,%,),
x; € R into a unique real number f(x1, X, . . ., X,,).

A function f'of n variables xy, x,,. . ., x, is said to
tend to a limit A as (xq, xo,. . .X,)— (a,, as,. . .a,) if
given ¢ > 0, however small, there exists a real
number 6 > 0 such that

|f (x1,%2,...,x,) — 4] <& whenever

[(x1,%2, .-« x0) — (a1,a2,...,a,)| <&
or

|.f(x17x27' .. ,x,,) - j“ <&,
whenever

0< \/(xl —a) =)+ ..+ (X —an)’ <6.
In this case, we write

f(xlv-XZa"'a

(%1% X )= (a1,a2,..ay)
In what follows, we shall generally deal with func-
tions of two variables.

X)) = A

3.1  CONTINUITY OF A FUNCTION OF TWO
VARIABLES

A function f (x,y) is said to be continuous at the
point (a, b) of its domain if for every ¢ > 0 there
exists a positive number ¢ such that

If (x,y) = f(a,b)| <& whenever

|x —al <6, |y—>b|<é.

Thus, f (x, y) is continuous at a point (a, b)if

m  f()=fab).

li
)—(a,

(x.y

3.2 DIFFERENTIABILITY OF A FUNCTION OF TWO
VARIABLES

Let u(x, y) be a function of two variables and let Ax
and Ay be the increments given to x and y,
respectively. A function u(x, y) is said to be dif-

ferentiable at the point (x, y) if it possesses a

determinate value in the neighborhood of this point
and if

Au = AAx + BAy + ¢p,
where p=| Ax|+| Ay|, e > 0asp - 0and 4, B
are independent of Ax and Ay.
In the preceding definition, p may be replaced by ,

where 77 = 1/ (Ax)* + (Ay)*.
If the increment ratio
u(x + Ax,y) —u(x,y)
Ax
tends to a unique limit as Ax— 0, then that limit is
called the partial derivative of u with respect to x
and is written as g—)’; Or U,.

Similarly ’g—“ can be defined. Thus, if a derivative
of a function of several independent variables is found
with respect to any one of the independent variables,
treating the other as constant, it is said to be a partial
derivative of the function with respect to that variable.

3.3  THE DIFFERENTIAL COEFFICIENTS

If in the equation
Au=A4 Ax+ B Ay + ¢p,
we suppose that Ay = 0, then on the assumption that
u is differentiable at the point (x, y), we have
Au=u(x + Ax,y) — u(x,y) = 4 Ax + ¢|Ax|.
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Division by Ax yields
u(x + Ax,y) — u(x,y)

Ax =A4d+e
Taking the limit as Ax— 0, we get
@:A,since e— 0as Ax — 0.
Ox

Similarly, we can show that % — B Thus, if u=u
(x, ) is differentiable, the partlal derivatives 3 u - and

g—; are respectively the differential coefﬁments A

and B. Hence,

u u
Au=—Ax+—
T + Oy

The differential of the dependant variable du is

defined to be the principal part of Au. Hence,

Au = du + ¢p.
Now as in the case of functions of one variable,
the differentials of the independent variables
are identical with the arbitrary increments of
these variables, that is, dx = Ax, dy = Ay. Therefore,
du =94 dx + g—;’,dy.

Ay + ep.

3.4 DISTINCTION BETWEEN DERIVATIVES AND
DIFFERENTIAL COEFFICIENTS

We know that the necessary and sufficient condition
for a function y = (x) to be differentiable at a point
x is that it possesses a finite derivative at that point.
Thus, for functions of one variable, the existence of
derivative f”(x) implies the differentiability of /'at that
point. But for a function of more than one variable
this is not true. We have seen earlier that if f(x, y) is
differentiable at (x, y), then the partial derivative of f
with respect to x and y exist and are equal to the
differential coefficients A and B, respectively.
However, the partial derivative may exist at a point
when the function is not differentiable at that point.
In other words, the partial derivatives need not
always be the differential coefficients.

EXAMPLE 3.1
Show that the functionf'(x, y) = xl +)2’ where x and y
are not simultaneously zero and f(0, 0) =0, is not
differentiable at (0, 0) but the partial derivatives at
(0, 0) exist.

Solution. Suppose that the given function is differ-
entiable at the origin. Then, by definition,

where 7 = Vh* + k? and ¢ — 0 as § — 0. Putting
h=ncos 0, k=nsin 0 in (1) and dividing throughout
by 1, we get

sin® @ = A cos 0 + Bsin 0 + ¢.

Since ¢ — 0 as n — 0, we take the limit as # — 0 and
get

cos® 6 —

cos’0 —sin>0 =4 cosO+b sin,

which is impossible since 0 is arbitrary. Hence,
the function is not differentiable at (0,0). On the other
hand,

o S(,0)—f(0,0) . h—0
MO0 = =y e

o f0E)—f(0,00 . —k—0
£(0,0) = lim————-""——=lim - 1.

Hence, the partial derivatives at (0,0) exist.

3.5 HIGHER-ORDER PARTIAL DERIVATIVES

Partial derivatives are also, in general, functions of x
and y which may possess partial derivatives with
respect to both independent variables. Thus,

() (%) = lim MEAREAEN  and

Ox \Ox Ar—0 X
SN D (U i Wy HAY)—u(xy)
(11) dy (ﬁx) - AI;TO Ay ’

provided that each of these limits exist. The second-
order partlal derivatives are denoted by gé‘ Of Uy,
and 3 5c or u,.. Similarly, we may define higher-

order part1a1 derlvatlves of

EXAMPLE 3.2
If , ,
e =)y _
f(xay)_ X2+y2 7f(050)_07
show that f,,,(0,0) # £,.(0,0).

Solution. When (x, ) is not the origin, then

af x> —y? 4x%y?

R 2 1 42)2 (1)
Yoo (24

0, x2—y)? 4x%)?

a—f:x b SN L @)

oo (2 +)?)




On the other hand,

f(h70) —f(0,0)

/:(0,0) = lim - =0,
_ £(0,k) —£(0,0
50,0 = lin/ ORS00 _,

From (1) and (2), we have

f(0,y) ==y (v #0) and f,(x,0) =x (x #0).
Therefore,

15(0.0) =iy PERERE — i -
and
jg/x(070) _IICE%T llc~>0 k = —1.
Hence,

S (0, 0) # £y, (0, 0).
The question arises: Under what conditions, f(a,
b)=f,.(a, b)?. The following theorems answer this
question:
Theorem 3.1. (Young). If (i) £, and f, exist in the
neighborhood of the point (@, b) and (ii) £, and £, are
differentiable at (a, b), then f,,(a, b) =f,.(a, D).
Theorem 3.2. (Schwarz). If (i) £, £, and f, all exist in
the neighborhood of the point (a, b) and (ii) £, is
continuous at (a, b), then f,,, also exists at (a, b) and
Jula, b)=F,.(a, b).

In this chapter, we shall assume in the examples
involving f,, and f,, that the partial derivatives of
the first two orders of the given function are con-
tinuous so that f,,, = f,,.

EXAMPLE 3.3
If z=xlog y, show that
0%z B 0%z
oxdy — dydx’

Solution. The given function is z = xlog y. Differentiating
z partially with respect to x, taking y as constant, we get
% — logy and then,

0%z 0 [0z 0 1

dyox Oy <8x> 8y( 0g) =
Differentiating z with respect to y, taking x as constant,
we get g—; = i and so,

F: 0 (o) _ 0 (x) 1
oxdy ox\ody) ox oy

Partial Differentiation 3.3

Hence,
0z B 0z 1
Oyox  OxOy y’

EXAMPLE 3.4

If L= /x> +)? + 22, show that
Pu  Pu  Fu
@ + 5_)/2 + @ ==

Solution. We are given that
u=(x*+y*+7%)

1
2
Therefore,

Ou 1,5, 5 53
5= E(x +y +z) 2(2x)
= x(*+y*+2) ;.
Differentiating partially once again with respect

to x, we get

82u 3x s _3

a5 VD)2 - (P )
= (P +2+2) B - (P 4y + D)

=1’ (26 — y* — 2.
Similarly, by symmetry in the given function, we have

u
8_y2 = u5(2y2 -7 —x2)7
Pu
92 w222 — x* — ).
Adding, we get
Pu  u  Ou

52 2 2 2
L S — P -2
8x2+8y2+822 w(2x" —y" —z+2p

_2 422 2P

=u’(0)=0
EXAMPLE 3.5
If x=r cos 0, y=r sin 0, show that
%0  0%*0
) s +55 2 =0, x,y #0.

Solution. We have
x=rcos0, y=rsin0.
Therefore,

? =x*+y? and 0 = tan ! Y
x

Differentiating partially with respect to x, we get
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and

20 0 -y ) 2wy
ox2  Ox\ x2+32) (x2 +y2)2 .
Similarly differentiating partially with respect to y,

we get
1 1
@ — 2 ( an71 ')_}) — 3 —
dy Oy X 1+ ({) X
X
X2 +?
and
#o_o (o)
N oy \dy) (242
Hence, ) 5
20 P,
oxr Oy

The result holds for x £ 0, y # 0, otherwise % and
20 are of the form (9).

7 0
EXAMPLE 3.6
Ifu=sin"'*+ tan~!% show that
y X
x% + @ =0
ox Y dy

Solution. We have

R B
u=sin"'%+tan'2.

y X
Therefore, differentiating partially with respect to x,
we get

Ou 1 1+ 1 ( y)
o 3 2\ 2
Ox /1_()_{)2 Yo+ X
¥
/yz_xz x2_|_y2
and so,
@_ X xy

= - . 1
xax yz_x2 )C2+y2 ( )

Now differentiating partially with respect to y, we get

—X X
= +
W= 2y

and so,
Ou —Xx Xy

= . 2
yay yz_x2+x2+y2 ()

Adding (1) and (2), we have
ou_ ou_
* o Yy dy
EXAMPLE 3.7
Ifu=x*tan"'Y — )2 tan~' ¥, show that
x ¥
Pu X2 —y?
Oxdy x4+’
Solution. Differentiating partially the given function
with respect to y, we get

ou 1 1 X 1 —x
a—y:x W ; nytan ; 3 yT
: 1+(;)
3 2
X _1 Xy
_xz +y2—2ytan -+ 2152
=x—2ytan d

Now differentiating partially with respect to x, we get

0? 1 1
gy b)

2

2y _xz—y2
x2+y2_x2+y2'

EXAMPLE 3.8
If u = log(x* + 1 4+ z* — 3xyz), show that

<ﬁ+2+2>2u: L
ox Oy Oz (x+y+2)>
Solution. We are given that

u=log(x> +y* +2° — 3xy2).

Differentiating partially with respect to x, y, and z,
we get

ou 3x? — 3yz

Ox B +)3 4+ -3z’

@ _ 3y? — 3xz and

dy X4y +3-—3xz

ou 322 — 3xy

9z B+ 45 —3nz
Therefore,

9 9 0\
(Gt )

(9,0, 0\(2.90 0
“\ox oy oz) \ox oy az)"



+ 0 +4 0 %-l-%—&-@
dy 0z)\Ox 0Oy Oz
0

0

0 L9 0 L9 ) [ (24?422 —yz—zx—xy)}
0z

0

dy X3 +)y34+23—3xyz

RS
6y 0z) \x+y+z

(5
(5
(o

-1 1 1

(x+y+2)> (x+y+2)* (x+y+2)°

C(etytz)’

=3

EXAMPLE 3.9

If u=1(r), where r* =x* 47,
0*u 82 "
pe) ﬁ =f"(r) + f( )-

show that

Solution. We have 7> =x”+)?. Therefore, partial
differentiation with respect to x and y yields

Zr% = 2x and 2;’2—; =2y

or
o _x q9_»
ox dy r’

But u = (7). Therefore,

Ou Ou Or or x,
o or ox =f'(r )8x ;f(’”%
Pu 0

=L () =1
Lor\ «x or
() =550 ) T (5
l (xz 2 8x> - r Ox
“ L) S0 e )

Similarly, due to symmetry, we have

Pu 1 / y2 / yz 1
6_y27;f( )*r—3f(r)+r—2f r). (2
Adding (1) and (2), we get
821/{ 82 x2+y2 / X2+y2 7
o= () =)+ )
2

=210 = ) +S0)

=S+,

1 +g 1 +g 1
8x x+y+z) Oy\x+y+z) O0z\x+y+z

Partial Differentiation 3.5

EXAMPLE 3.10

If z=f(x + ct) + ¢ (x—cf), show that
0z 82
2~ ¢ o

Solution. We are given that

z=f(x+ct) + o(x — c1).
Therefore,

& St
=[x +et) +

and

x —ct)

)g(x-i-xt)—kqﬁ (x—ct)ag(
¢'(x — ct)

8227 " I

wff (x+ct) + ¢"(x — c1).
On the other hand,

%—f (x+ct). g(x—l—ct)—l—qﬁ’(x—ct
=cf'(x+ct)—co'(x—ct)
and so,
g—jj =" (x+ct) + Fp" (x — ct)
, 0%z

=[x +et)+¢"(x—ct)] =c o

)2 (x et

EXAMPLE 3.11
If x=r cos 0, y =sin 0, show that

82r+82r_1 or 2+ or\?

oxr 02 r|\ox ay) |
Solution. If x =7 cos 6, y=sin 0, then * =x* + ).
Therefore, partial differentiation with respect to

x yields
or _x O*r r—xg; 2 —x2

ox rloxr 2 r
_ Py -2y
3 73
Similarly, partial differentiation with respect to y
gives
or y
o
9r r—yg; rz_yz _x2+y2—y2 _xz
8_)/2 2 B & T
Therefore,
Pr PFr XP+yr 21
ox? o o n TR
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On the other hand,

1 /or\?> [or\? 1[x* 2
- — ) +[= = =4
r | \Ox Oy rlr: 2

Hence,
&r o 1 8r2+ or\’
ox2 o r x ay) |
EXAMPLE 3.12
If x* y¥ z2=¢, show that at x=y =z,
2
0 —[xlogex]™"
8x8y

Solution. We have x* y” z* = c. Here z can be regarded
as a function of x and y. Taking logarithm of both
sides, we get

xlogx +ylogy + zlogz = logc. (1)
Since z is a function of x and y, differentiating (1)
partially with respect to x (taking y as constant),
we get

1 1 0z
x.—+logx+ |z—+logz| — =0
X z Ox

or

17)
1 +logx+ (14 logz)a—z =0.
Therefore, X
Jdz _ 1+logx

—=— 2

Ox 1+ logz @)
Similarly, differentiating (1) partially with respect to
y we get

1+logy+(l+logz)g—;:0

0z 1+logy 3)
dy  1+logz’
Differentiating partially (3) with respect to x, we get

0%z _ 0 ( 1l+logy
Ox0y  Ox 1+ logz
0 1
==+ low) 3 (7ep2)
—(141logy)|[—(1 +lo y?lﬁ
gy gz "2 Ox

1 +logy [_
 z(1+logz)?

or

1 + logx
1 +logz

] , using (2).

Taking x =y =z, we get

0z (I+logx)® 1
My x(1+logx)®  x(1+logx)
oo s~ ogs——rloge”
~ x(loge+logx)  xlogex rlogex
EXAMPLE3|3

aeru + b2 + 62+u = 1 ShOW that

% + @ + @ =2 %+ %_’_ @
Ox Oy az) —“\Mox y@y “oz)

Solution. Here u is a function of three variables x, y,
and z. Differentiating the given equation partially
with respect to x, we get

(@® +u)2x — x> ¥ Ou 2 Ou

(@+u? (PP +u)ox (2 +u) Ox
or
2x x? »? 22 Ou
2 - 2 2 3| 7. =0
a+u |(a@4u) (P2 +u)” (24u)|Ox
or
@ B 2x
Ox (2
(a + u) [(02—0—1 ) + (b’#—u)2 + (cz+u) ]
Thus,
<8u> B 4x?
) = : z
(a2 +u)’ [(az\:‘ruf + (b2+u)2 e +u) }
4x2

= R (1)
2 2 x2
(a + u) [Z (a2+u)2}
Similarly, due to symmetry,
ou\* 4?2
) = ; FESEE (2)
(6% +u) {Z (b2+u)2}
ou\* 472
& - 2 2 2 2" <3>
(C + l/l) |:Z (cziu)z:|

Adding (1), (2), and (3), we get

FRGECE==

On the other hand, (a+u)
o ou 4x?
8)6 (a2 + u) Z (aZinu)z



Since > a2+u = 1 (given), we have
ou 4 4
>oax - Z“?“ —e— (5)
Z (a+u)? Z (a®4u)*
From (4) and (5), we get
ou 2+ Oou 2+ ou\? 5 x8u+ 8u+ Ou
= = — | = —+ty=—+z—|.
x 8y oz ox Yoy %
EXAMPLE 3.14
If ¥ =x*> +)* +z% and V=", show that
Vie + Vi + Ve = m(m + 1) 2.

Solution. We have * =x +)? +z°. Differentiating

gartially with respect to x, we get 2r% =2x or
or _x

ox
It is given that V'=r". Therefore,
oV oV or X
D rmfl i m—2
Ox Or Ox " (r) mr
and
a4 ’ n_3 Or
52 =" {r’" +x(m —2)r g

Similarly, due to symmetry, we have

2
8672/ _ m[rmfZ + (m o 2)y2 rm74]’
2
%—12/ = m[r'm72 + (m— 2)221""74].
)z
Hence,
v PV 0PV
= i —2)
% (x2 +y2 +22)rm—4
= 3mr"™ 2 + m(m —2)r" 2
= "2[3m 4+ m* — 2m]
= m(m+ 1) 2.

3.6 ENVELOPES AND EVOLUTES

Let o be a parameter which can take all real values
and let f (x, y, ®)=0 be a family of curves.
Suppose that P is a point of intersection of two
members f(x, y, «) =0 and f(x, y, « + 6o) = 0 of this
family. As do —0, let P tends to a definite point Q on
the member «. The locus of Q (for varying value of
) is called the envelope of the family. Thus,

Partial Differentiation 3.7

“The envelope of a one parameter family of
curves is the locus of the limiting positions of the
points of intersection of any two members of the
family when one of them tends to coincide with
the other which is kept fixed.”

The coordinates of the points of intersection of
the curves f (x, y, ®)=0 and f (x, y, a4+ 6a)=0
satisfy the equations

f(xvyv (Z) =0 andf(xayva—’_ 60‘) _f‘(x?yﬂ O() =0
and therefore, they also satisfy
f(X,y, OC) —0 and f(x,y,oc—i— &Z) _f(xay7 OC) = 0.

ool

Taking limit as o —O0, it follows that the coor-
dinates of the limiting positions of the point of
intersection of the curves f'(x, y, 2) =0 and f'(x, y,
o+ 6a) satisfy the equations

f(x,, )_Oand f

Hence, the equation of the envelope of the family
of curves f(x, y, ) =0, where a is a parameter, is
determined by eliminating o between the equa-
tions f(x, y, ) =0 and axf(x7y, o) =0.

The evolute of a curve is the envelope of the nor-
mals to that curve.

EXAMPLE 3.15

Find the envelope of the family of straight lines
y = mx + £, the parameter being m.

Solution. We have
a
=mx+—. 1
y=mitt (1)
Differentiating with respect to m, we obtain
1
Ozx—i2 or m= (g)z’
m X
Putting this value of m in (1), we get
ayz o xa  ax L1
y= (7) x+a(f> =—+—=2a2x,
X X X2 az
and so, the parabola y* = 4ax is the envelope of the
family.

EXAMPLE 3.16

Find the envelope of the straight lines x cos o + ysin
o =1 sin o cos o, where the parameter is the angle a.
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Solution. Dividing throughout by sin « cos « we have

x cosec o+ yseca =/ (1)
Differentiating partially with respect to o, we get
x(—cosacota) + y(secotano) =0

or
1

X
tano = f
This yields

coses o =/ 1+ cot2o = \/

and

seco = \/ 1 + tan? —\/1+

Putting these values in (1), we get

2 2 2 2
x\/xs + )3 \/xs + )5
T +y T =
X3 y3

x% —|—y3

xs —|—y3

or
¥4y =0 (astroid).

EXAMPLE 3.17
Find the envelope of the family of straight lines
y = mx + v a*m? + b?, the parameter being m.

Solution. The given family of straight lines is

y =mx + \ a?m? + b?
or
(y — mx)* = a*m® + b*. (1)
Differentiating partially with respect to m, we get
2(y — mx)(—x) = 2a*m
or
—2xy 4 2mx* = 2d’m
or
m(a* — x*) = —xy
or
Xy Xy
M= _2 2_a

Putting this value of m in (1), we get
2y 2 , xYP
T =L L
(y X2 — az) ¢ (x2 — a2)? M

2)2

or

a4y2 _ a2x2y2 +b2()€2 —a

or
0= a2y2(x2 . a2) + b2(x2 . a2)2
or
0 = a®y* + b*(x* — @*) = d** + b*x* — a*b*
or
P2+ dy? = b
or

1 (ellipse)

EXAMPLE 3.18
Find the evolute of the parabola y = 4ax

Solution. The equation of parabola is y* = 4ax. Any
normal to the parabola is

y = mx — 2am — am’. (1)
Differentiating partially with respect to m, we get

0 =x —2a — 3am?,
which yields
x—2a
3a

Putting this value of m in (1), we have

x—Za[x_za_a(x—%l)}
3a

m =

or
27ay* = 4(x — 2a)’.

EXAMPLE 3.19
Find the evolute of the ellipse Z—i + 2—2 =1.

Solution. The parametric equation of the ellipse is

x=acosf, y=bsinf, where 6 is a parameter.

Therefore,
d. i d
d_); = —asin0 and d_)(; = bcos0.
Thus,
d_y B % _ bcos0
dx % T

Therefore, slope of the normal to the ellipse at
(a cos 6, b sin 0) is
dx asinf

dy  bcosO



Hence, the equation of the normal to the ellipse at
(a cos 0, b sin 0) is

. asinf
y—bsm@-bcos()(x—acosB)
or
a by,
———=a )" 1
cos0 sin0 M

Differentiating (1) partially with respect to 0, we get
axsinf  bycosf

=0. 2
cos?0  sin’0 @
The equation (2) gives
b 3
tan’0= -2 or tanf=— (by)l .
ax (ax)?
Therefore,
sinf = (bf) = and
(ax)’+(by)*
cosf) = — (azx)- :
(ax)’+(by)*
or
sinf) = — (bf) - and
(ax)i+(by):
cosl = %.
(ax)*+(by)*

Substituting these values of sin 6 and cos 0 in (1) we
get

or

3.7 HOMOGENEOUS FUNCTIONS AND EULER’S
THEOREM

An expression of the form

aox" +a1xn71y+a2xn72 2

Vv + .ot a)!

in which every term is of nth degree is called a
homogeneous function of degree n. This can also be
rewritten as

X" [ao ta G) +a G)2+...+an_1 e)n_l+an G)n]

3.9

Partial Differentiation

or x"¢(%). Thus, we can define a homogeneous
function as follows:

A function f{x, y), which can be expressed as x"¢(2),
is called a homogeneous function of degree n in x
andy.

To check whether a function f (x, y) is homo-
geneous or not, we put zx for x and #y for y in it. If
(tx, ty)=1" f (x, y), then the function f (x, y) is a
homogeneous function of degree n which is other-
wise a nonhomogeneous function.

Let u = x"f (X) be a homogeneous function of x
and y of degree n. Then,

o= i)+ G)(3)

—e ) - Q)] ¢ ).

which is a homogeneous function of degree n — 1.
Similarly,

s (e )= o).

which is a homogeneous function of degree n — 1. It
follows, therefore, that “If u is a homogeneous
function of x and y of degree n, then u, and u,, are also
homogeneous functions of x and y of degree n — 1.”

Theorem 3.3. (Euler’s Theorem). If u is a homo-
geneous function of x and y of degree n, then

ou Ou

X—+y-—=nu.
Ox dy
Proof: Since u is a homogeneous function of x and y
of degree n, it can be expressed as

u :x"fe).

Differentiating partially with respect to x, we have

e () eer) (1)
) ).

Similarly, the differentiation with respect to y yields

e () () =)

Therefore,
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Remark 3.1. Euler’s theorem on homogeneous functions
also holds good for functions of n variables. Thus,
“If u(xq, X2, . .X,,) 1s @ homogeneous function of x;,
Xs,. . X, of degree n, then

6u+x Ou —i—x%—nu”
Mow TG T gy, T
EXAMPLE 3.20
Ifu =tan™ (xxiy ) show that
3u

+ Ou sin 2u.
*ox yayi

Solution. The given function is

3 3
u=tan"' (x ) )
xX+y
Therefore,

3 3 1 73
tanu = (x +y) =x2 +(X) =z

x+y 1+
Therefore, z is a homogeneous function of degree 2
in x and y. Hence, by Euler’s theorem,

But,
0z 5 Ou Oz , Ou
a—sec uf)x and ay—sec uay.

Therefore, (1) reduces to

5 Ou , Ou
xsec’u—+ysec u—=2tanu
Ox dy

or

Ou Ou 2tanu 2 12
X—+y—=—"———=2sinucosu = sin2u.
Ox y(‘)y seczu

EXAMPLE 3.21

—1 a7 +v
x+y;,

show that

Ou Ou
X—+y—=tanu.
dy

If u = sin

Ox

Solution. We have
2 .2

u=sin_ .
x+y

Therefore,

Thus,

and so, z is a homogeneous function of degree 1 in x
and y. Hence by Euler’s theorem, we have

0z 0z
xa——i— B =z. (1)
But
%—cosu% and %—cosu%
ox Ox dy oy’

Therefore, (1) reduces to

u u .
XCOSM—+yCOSM— =Ssinu

Ox dy
or
x% + @ =tanu
ax Y dy '
EXAMPLE 3.22
Ifu=xf() +g(), show that
2 2 pe
2ol oy S 20
Ox? Ox0y 0y?

Solution. Let u; =x f (%) and u, = g(¥) so that u
u; +up. Then u; is a homogeneous function of
degree 1 and u, is a homogeneous function of
degree 0. Therefore, by Euler’s theorem, we have

6141 (‘)u]_ 6142 al/lz
xa—i—ya ulandxa —|—ya =0. (1)
But
@4— Ou xg(u +up) + 2(u + up)
ax gy T Tax M T TG T

N e S T
T Ox Ox y@y yay

_ <X%+y%> n ( Ouy n auz)
Ox dy Ox ay
=u; + 0 = u; [using (1)]. (2)
Differentiating (2) partially with respect to x and y,
we get
O*u  Ou u ~ Ouy
Yo T ox ooy T ox

(3)
and
u  Ou Ou O
— 4 y—=—. 4
* Oyox + Ox ty oy: Oy “)
Multiplying (3) by x and (4) by y and then adding
both, we get

pPu o 82u+ 2 Pu ., u O
Yo T Y oaay Y 92 T e TV oy
__Oup  yOu
_x8x+ dy



Using (1) and (2), the last expression reduces to

xi+2 O +232 +u=u
a2 Voxay Y g T TH
or
*u &u O%u
27 % e 2_:
Y o + 2 8x6y+y 0y?
EXAMPLE 3.23

Ifu is a homogeneous function of x and y of degree n,
show that
&u &u 0u
2 2
4 2xy—+) —=n(n— u
X gt 2ya » > =n(n—1u

Solution. By Euler’s theorem, we have

Ou u
. 1
0x+ 8y - (1)

Differentiating (1) partially with respect to x, we get
Pu  Ou & u Ou

Yo Tox Voxay "o
or
0%*u ou ou Ou ou
e e " Ve @

Again differentiating (1) partially with respect to y,
we have

o%u Pu  Ou  Ou
“oyor o oy Ty

or
u 0%u Ou
— =n-1)=. 3
Ky = (=) G)
Multiplying (2) by x and (3) by y and then adding
both, we have

&u 0u 0u
27 Xy ——— 277
T o e 8x8y+y 2

o ()

= (n — 1)nu [using (1)].

EXAMPLE 3.24
If sinu = x_f , show that
x% — =3tanu
Ox yay B '
Solution. We have
2
50

sinuy =

Partial Differentiation 3.11

We observe that v is a homogeneous function of

degree 3. Therefore, by Euler’s theorem,
c’)v v

A +y8y 3v. (1)
Since v =sin u, we have
v Ou v u
o COSUS and e cosua—y
Hence, (1) reduces to
xcosua +ycosug$ =3sinu
or
Ou Ou
xa +y8_y =3tanu
EXAMPLE 3.25
If u=sin! e+ tan™! 7, show that
' x@ +y Ou =0
Ox ay '

Solution. We have

.1
l)—C—i—tan’lx =sin 17+tan’l)—/ :x9f<X).
y X . x X
Therefore, u is a homogeneous function of degree 0

in x and y. Hence by Euler’s theorem, we have

Ou Ou
8x+y8 =0u=0.

For verification of the result, see Example 3.6.

u=sin"

EXAMPLE 3.26

Ifu =tan! xx” show that

2 82 62
8 53 +2 W au +y28—yz: sin 4u — sin 2u.
Solution. We have

3.3 1+ ©)°
tanu =21 _ 2 ()}) =v
xX—y -
Then v is a homogeneous function of degree 2 in x
and y. Hence, by Euler’s theorem,
8\/ ov

=2
o Yy T
But
@ = sec’ u@ @ = sec? u@
ox ox' oy dy’
Therefore,

, Ou 5 Ou
xsec"u— +ysec-u— =2tanu
Ox dy
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or

8u Ou
Yox oy
Differentiating (1) partially with respect to x and y,
respectively, we get

O*u  Ou *u

o2 T ox

=2sinucosu =sin2u. (1)

Ou
=2 2u— 2
Y OxQy €08 “ox @)

and
. Pu  Ou @
Oyox ~ Oy
Multiplying (2) by x and (3) by y and then adding
both, we get

= 2cos2u s . (3)

XZ@J’_ZX Ou + 2@-1-)6%4— %

Ox? Y Ox0y Y 02 Ox y@y

0 0
_2c082u(xa—u+ya;>

or using (1), we have

82 82 2

6‘ 2+2 ya y +5? ﬁ—l—sm2u—2c052usm2u
or

92 2 2

" —|—y2—u: 2cos2usin2u — sin2u

2
—+2
o 6x2+ Y Ox0y N?

=sin4u —sin2u.

EXAMPLE 3.27
Ifu =5 + =5 + 55, show that
Bu +y Ou 4 ou
8x ay oz
Solution. Replacing x by £x, y by #y, and z by 1z, we get
tx ty iz
u(tx, , ty,tz) =
41z tz+ix tx+ty

= Lu(x,y,2) = Lu(x,y,z).
Hence, u(x, y, z) is a homogeneous function of degree
zero in x, y, and z. Hence, by Euler’s theorem,

@Jr @Jr @—nu—Ou—O
Ox 8y “ oz
EXAMPLE 3.28
If u=e""", show that
Ou

Ou
xa—era = 2ulogu.

o 2 2
Solution. We have u=¢" ™ and so,

zp+gy]_w

Thus, v is a homogeneous function of degree 2 in x
and y. Hence, by Euler’s theorem,

logu = x>+ =x

x@ + @ =2
Ox yay T
But
ov_1ou ov_1o0u
Ox udx’ Oy udy’
Therefore,
x Ou y o
=21
u 8x udy oB¥
or
x?—kyg = 2ulogu.
EXAMPLE 3.29
Ifu =sin! \/f—iyﬁ, show that
814 Ou Ou _Ln
Yoy T2

Solution. We have

, p141
sinu = Xty =x =y,

VE+ Y 1+ﬁ

Therefore, v is a homogeneous function of degree %
in x and y. Hence, by Euler’s theorem,

v . ov 1
—+y— ==
*ox yay 2
But
o _ cosu% and o _ cosu@
ox Ox dy oy’
Therefore,
cos ! + ycos u ! sin
XCOSuU— Uu— = —sinu
ax Y ay 2
or
x% + @ = ltan u
Ox yay 2 '
EXAMPLE 3.30
1 1]2
If u = cosec™! {xi”i} , show that
x3+y3
2 2 2
x2%+2x O u +y 2 Ou tanu(l?ﬁ—&—tanzu).

a2 Y oy T 92 T 144



Solution. We have

IRk
X2+ y2 .
x31+y% B

1
1+ (2)?
e,
1+ ()
Therefore, v is a homogeneous function of degree %
in x and y. Hence, by Euler’s theorem,

o 1
o Yoy 12"

cosec u =

S

= X!

But
ov .
— = —cosec ucotu—,
Ox Ox
0 u
— = —COSec U Cot U — .
dy
Therefore,
u 1
—X COSEC UCOt U—— — ) COSEC UCOL U—— = —— COSEC U
ox ay 12
or
. ou n " u 1
X cotu— coty— = ——
ax My T T2
or
0 0 -1
! Y tanu (1)

*ox Yy oy 12
Differentiating (1) partially with respect to x, we get
O*u  Ou 0*u 1 , Ou
Yoo T oy T 2% o
or

@+ﬂ__i 2, 1) 2)
Yo yaxay N % ox

Similarly, differentiating (1) partially with respect

to y, we get
1, Ou
—( 1o sec U= ) o (3)

0*u 0*u
y a—yz +x %

Multiplying (2) by x and (3) by y and then adding

both, we get

& u
e
du u
C5+a)
1
(- L)

0*u 2
ltn
[ tanu

Ox0y

82
a5 T 2xy +y

T ox

= <—%sec2 1>
= (—ll—zseczu—l)
= <%sec2u— 1) (

u—

3.13
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le (1 + tan?u) - 1} (%tanu)

1
= —tanu(13 4 tan® u).

144
EXAMPLE 3.31
Ifz=x"(%) +y"H (x) show that

2 0z 0%z , &z 0z 0z,

82+2y88 +y 82+xa+y8—y—

Solution. Let uy = x"f; (2) and u, = y™"f3 (ﬁ) so that
z=uy +up Then, u; is a homogeneous function of

degree n and u, is a homogeneous function of
degree n. Therefore, by Euler’s theorem, we have

Ou Ou Ou,  Ou
xa—xl—f—ya—yl—nul andxa—-i-y ay2 —nuy. (1)
But

82+8z 2(+)+2(+)

Tox Yoy T Tax 1 TR T g e

ouy Ouy duy Ouy

( o Y ay)*( Tox Y ay)

= n(u — up), using (1). (2)
Differentiating (2) partially with respect to x and y,
we get

&z Oz 0z Ou;  Oup
o2 T P axgy T (W‘E) 3)
and

xazz _A'_%_A'_ 8_22— %_% (4)
Oxdy Oy y@y dy Oy

Multiplying (3) by x and (4) by y and then adding

both, we get
202 0y O +y 02 B O
Yo T Vaxay TV 52 TV ax oy

(D) (20

Ox  Ox dy Oy

() ()
Ox dy Ox oy

= nlnuy + nup) = n*(uy +up) = n’z.

3.8  DIFFERENTIATION OF COMPOSITE FUNCTIONS

Let x=¢(t) and y=w(t). If u=f(x, y), then u is
called a composite function of the single variable t.
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Similarly, ifx=¢ (4, v),y=w(u, v),and F =f(x, y),
then F is called a composite function of two vari-
ables u and v.

Theorem 3.4. If u =/ (x, y), where x = ¢(f) and y =

(1), then
du_ou dx ou dy
dt  Ox'dt Oy dt’
% is called the total differential coefficient or total

derivative of u with respect to f).

Proof: Let 67 be the small increment given to ¢ and
ox, by, and éu be the corresponding increments in
x, y, and u, respectively. We have

u=f(xy), (1)
u+ou=f(x+ox,y+oy). (2)
Subtracting (1) from (2), we get
bu=f(x+ bx,y + 6y) — f(x,»)
= [f(x+ 6x7y+ 6)/) _f(xay+ 6)/)]

+ [y +8y) —f(x,»)].
Thus,
du _ fx+6bx,y+8y) —f(x.y+8y)
6t 5t
+f (x,y +6y) = f(x,»)
St
f(x+5x,y+ 5)/) _f(x7y+5y) (5_)(
dx "t
LSyt &) —fxy) b
oy ot

If 6t —» 0, 6x and Sy both tend to zero and so,
[f(x—i—éxy—i— oy) —f(x,y—&-éy)} lim ox

lim 6_14: lim

5t—0dt  6x—0 ox 810 6t
+ hm |:f(x7y+5y) _f(xvy)] llméj
5y—0 oy o100t
L Of . ox Of . Oy
R TRy
or
du_0f de ofdy_ouds oudy
dt  Ox'dt Oydt Oxdt Oydt’

Corollary 1. If u is a function of x and y and y is a

function of x, then
du Ou Ou dy
dx Ox Oy dx’
The result follows taking ¢t =x in (3).

Corollary 2. If z =/ (x, ¥), x = (u, v), and y = w(u, v),

then
o0z ox 0 0y
Ou Ox Ou 0Oy Ou
and
0 ok ox 0 0y
dv  Ox Ov Oy ov’
Corollary 3. If u = f(x, y) = ¢, then by Corollary 1, we
have
o o dy
0=2 42 Y
8x+8y dx
or
d_
=-Z
dx a_g

Differentiating once more with respect to x, we get

Ay feli = S HSnf?
x> 5 .

EXAMPLE 3.32
Ifx' +y =a’, find 2.
Solution. Let
fley) =x"+y*—a".
Since from the given relation x” +y* — a” =0, it
follows that f'(x, y) = 0. Therefore,

dy % w4 ylogy

dx ‘% - wlogx +xp 1

EXAMPLE 3.33
Iff(x, y)=0 and ¢ (v, z) =0, show that
o 06 dz_of 96
oA o by
Solution. Since f (x, y) =0, we have
&

dy 2
dy
Again, since ¢ (y, z) =0, we have
8
E__3 )
T 99
dy s
Multiplication of (1) and (2) yields
of 9
b dz_oc o
' of * 9¢
dx dy 5 &



or
I 0
dz g_{r a_fé
T 9¢
dx 3§ d:
or
& o 96 _of 0
dx 8y 0z 0x 9y’
EXAMPLE 3.34

If z is a function of x and y and x=¢" +¢” and
y=e"“—e", show that

o 0:_ o o

ou v~ Ox yay'

Solution. The function z is a composite function of u
and v. Therefore,

0z 0z Ox 0z Oy 0z o oz _,
Bu Oxou oy o oxt oyt W
and
0z 0z Ox Oz Oy 0z _, 0z ,
= x By a—y.az—a.e —8—y.e. (2)
Subtracting (2) from (1), we have
0z Oz PN N 04
a—a:(e —e )a‘F(e +€)a—y
0z 0z
xantya—y.
EXAMPLE 3.35
Prove that ngJr% = g%’zur%, where

x=¢&cosa —nsina, y = Esino + 1 cos .
Solution. We have
x=¢&cosa—nsina, y = Esino + 1 cos .

Now
Ou % @—t—@ @—Cosoca——ksmocau
o6 oxoe ayae O Mox 3’

which yields
(%(u) = <cos ocagx + sin oc(%) (u)
and so,

— = COSO— +sino—.

o0& Ox oy

3.15

Partial Differentiation

Thus,
Pu O (Ou 0 0
8—52:8_5 (8_5) (cosaa——&-smaa—y)
ou . Ou
X <cos oca +sin a(‘?)})

8( ou . au)
=COS0— | COSo—+sino—

Ox Ox dy
+sin oc2 <cos ot@—&— sinoc@>
Oy Ox oy
2 2 2
_c052a%—stmacosaaxgy—ksinzag—;. (1)
On the other hand,

Ou  Ou Ox  Ou 8y . Ou Ou
577 E 817+6y 577 smota—i—cosoca—y,

which gives

é— —smocg—i-cosoc2
o Ox ay

Therefore,
0 u 0 (Ou
P o (87)
.0 0
= ( smotaJr cos oca—y>
X (— sin a%—i— cos oc%>
Ox dy
ou
= —smoc— — smoc—+coso<—
( 3y>

Ou
+ cosua a— —smac——i—cosoc—
Pu

dy
=sina—— = —2sinacos o u
P Oxdy
*u
2
—. 2
+ cos” a e (2)

Adding (1) and (2), we get
Pu Pu_0u P
082 ot oxr 2’
EXAMPLE 3.36
If y* —3ax? + x> =0, show that

d’y  2a°x*
) 2

dxr  y
Solution. Let

fx,y) =y =3ax* +x* = 0.
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Therefore, by Corollary 3 of Theorem 3.4

Q _ Sl - 2fxf3 oy +Inf "

But in thed;resent case, <
folx,y) =—6ax+3x%, f;(x,y)
S (x,y) = —6a+6x, and f;,(x,y) = 6.

Therefore, (1) reduces to

d’y  6(x—a)9*+ (3xF — 6ax)*6y _ a*x?
dx? 270 »
Hence, dzy 22

a0
EXAMPLE 3.37
fu=f(y -z z—x, z—y), show that

Ou  Ou  Ou —o.

+
ox  dy 0
Solution. Substituting y - ZZ—A z— x=B, and

x —y=C, we have
u=f(4,B,0C).
Thus, u is a composite function of A, B, and C.
Therefore,
Ou Ou 04  Ou OB  Ou OC
O 04'0x 0B Ox 0C ox
u Ou du Oou Ou
—87(0)+a*3(—1)+%(1)——afBJr%a(l)
Ou_0u 94 0u 0B 0w OC_0u_ou
dy 040y OB dy 0OC 0y 04 0OC’
Ou Ou 04 Ou OB Ou 0C  Ou Ou
% od 0: 9B oz 9C 0z o4 9B
Adding (1), (2), and (3), we have
Ou Ou Ou
oy oz

3)

=0.

EXAMPLE 3.38
fu=f(@,s,1) andrzf, s=% 1=
Oou u u

AR TR

Z, show that

=0

Solution. The function u=f (r, s, f) is a composite

function of r, s, and . We have
Ou  Ou Or Ou Os Ou Ot

Ox or'ox 05 ox Of ox
ou (1 Ou Ou z
:5@*9 0+% ()

=3y, fiy(x,3) =0,

Ou Ou Or Ou Os Ou Ot
O Orox 05 Ox Oox
Ou (1 Ou Ou z
~or _)+a 0 +5 (-3)
_Ou  z Ou
T yor X2 ot
Ou Ou Or Ou Os Ou Ot
Rl P Y R s i
xOu 10u
T aﬂLEE’ and
Ou Ou Or Ou Os Ou Ot
% 00z B0z ooz
you 10u
C209s  xot
Therefore,

D 0w Ou_x0u_z0u_xiu
Ox y@y o yor xO0Ot yor
yau yOou zOu

z0s z0s  xOt

EXAMPLE 3.39
If f(x, y) = O(u, v), where u=x* — y* and v=2xy,
show that

>Pf P

70 0\
o 92

2
=40ty )<8u2 T on?

Solution. Here f(x, y) is composite function of u
and v. Therefore,

of 8f ou Of Ov 00 00
& Ou 8x+8v Ox %(X)J“%(zy)

0 0
=2 (x% +y E) 07
which yields
0
o ( ou av)
Therefore,
o} 9 (of 00 00
3 (o0) =255 00

=4 2_;’_ 8_+_
BN TR AN TR

» 829+ >0, P o , &0
T\ 52TV uav TV vou T a2
, %0 20 L0
_4< o T2 guaw T av2> ()



Further,
8f 8f ou Of ov 90 @

- 2
dy ou 8y+8v 8y 8u( y)+

Therefore,

IO (0 (0 0)(,00_
o2 oy\dy) You “ov) \Vou Tow
(PO B0 P00
T\ a2 Y ouy ™ Vovou T a2
, 070 820 , %0
_4< e " gy av2> @)
Adding (1) and (2), we get

Pf O ., 020 020
g T T +y){W+W}
EXAMPLE 3.40

Let u(x, y) be a function possessing continuous
partial derivatives of the first two orders and let
x+y=2¢" cos ¢ and x — y = 2ie” sin ¢. Show that
82 32 82

u — 4

a7 "o~ axay

Solution. The function u is a composite function of 0
and ¢. We are given that

x+y=2¢" cos ¢ and x — y=2ie’sin ¢. Solving
these equations, we get

x =e’(cos ¢ + isin¢) = e’e” and

y=¢é(cos ¢ —isingp) = ee™?.
Therefore,
Ou  OuOx

Ou dy — o i Ou + e i Ou
20 ox 00 8y a0 Ox dy

0 0
_ 0 i —i¢
e (e g +e _8y> (u),

and so,

3.17
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Therefore,

@—2 au €2¢ @ 8+e_i<’>2
00> 90 \90 Ox Jy

i Ou Ou
ip 77 —ig
(e Ox e 8y)

2
_ 0 [ezma u+2 0“u 72108 u]

o2 oy ¢ o

Similarly,
Pu_ ol pi@u_ ) Fu + o0 4]
O¢? Ox2 Oxdy 0?2
Adding the earlier two expressions, we get
Pu  u u 0*
— 4= =4 =4 :
2 ag = (axay> Y oxdy

3.9 TRANSFORMATION FROM CARTESIAN TO POLAR
COORDINATES AND VICE VERSA

In this section, we deal with some important trans-
formations of relations from one coordinate system
to another coordinate system.

EXAMPLE 3.41

Transform the Laplace equation
v o
oxr  0y?

into polar coordinates.

Solution. The function V is a function of x and y,
where x and y are expressed in polar coordinates as
x=rcos 0 and y=rsin 0. Thus, V is a function of
r and 0 also. We have

r= VAT and 0 = an”! ().

Therefore,
or X rcos 0 0
— = = = cos
8)( A /xz +y2 r '
or y rsinf |
— = = =sin 6,
Iy \/x2+)? r
a0 1 ( y) B y
8x71_~_i’_§ x2)  x2 42
rsin 0 sin 0
=——5—=——, and
r r

@_ 1 1 x rcosO cos 0
8y_1+¥i x) W2 4+yr n ro
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Now,

oV _ovor ovoo_ - OV sinbov. .
ox  orox 00 ox Vo s a0 ™
8V_8V or cos 0oV

W _OV Or o7 00 _ g0V 4 cos0OV
dy Or'dy 00 0y or r 060"

Therefore,

ﬂ Og_sme 0 08_V sin0ov
or r 00 or r 00

BV sin6oVv
o r 80)
sm98 dV  sinfoV
r 80( o 80)
sinf 0?V
r 6r89)

=cost gr (cos 00—

OV sin0oV
o7 2 00
sin 0 v . oV
a ( 000r " or
_cos0dV  sin0V
00 r W)
— cos? ei_zsinecos(J a4
or? r2 oroo
sin0dv  sin00V  2sin0dV
r? W—i_ r 8r+ 290

8271/7 in0g+c0508 681 cos 0oV
a2 e a0 o 00

—sm02 <51 08_V cos()8V>
or or r 00
cosf 0 < 68_V cos@@_V)
a0 or r 00

cos O*V
r Orod

=cosf <cos 00—

(1)

and

PV _cos()@_V+
or? r2 00

cos@( 24 ov
+ in6

=sinf (sm 0——

sin 200" +cos(98—

_sin0V cos09*V )

0 o

_in? ei+sin9cos(9 82V+c0505in08_V

or? r orol r2 00

cosOsin0 0’V cos?0 O?V  cos> 00V
r 898r+ 72 'ﬁ—’_ roor

sinfcosHIV

- ) % (2)
Adding (1) and (2), we obtain
oV PV oV 19V 10V
w it~ e Trae

which is the required result.

EXAMPLE 3.42
Transform the expression

8_V+8_V2+(2_2_2) 6_V2_|_8_Vz
Y ox y@y @y Ox dy

by substituting x =7 cos 0 and y = rsin 0.

Solution. If V is a function of x, y, then
oV oV Ox % @_x@_V X@_V

Or  Ox Or Oy Or rox

ov 6‘V ov < 0

0
"or = Yox Ty xax”ay) V-

r dy
or

Thus,
0 0
ra—— a—&—ya—y.
Similarly,
0 0 0
20 By Vo
Now,
ov. oV or 9V 00 av s1n06V
R T N e T M
oV 0% cos@@V
8y or r 00’
Therefore,

ARG NCIA%
Ox ay) \or r2\00) "’
and the given expression is equal to
avN® L, L o\t o1 far\?
(%) e ‘”[(E) v (a0)
— 2 al 2+ 12_1 % ’
~\or) T\ 20)



EXAMPLE 3.43
If x=7r cos 0 and y = rsin 0, prove that
Pu  Ou u
22
— — - 4
(=) <8x2 8y2) + Ox0y
2 Pu  Ou  u
="
o or 90*
where u is any twice-differentiable function of x
and y.

Solution. We have

ou_ouds  ou oy
or  Oxor Oy ar
Ou x0u you
— cos 0 — gt _xon YU
- o Ox +Sl oy r8x+r8y
and so,
Ou 8u+ Ou ()
Fr—=Xx—+y—.
Therefore, or Ox Oy

0 [ Ou
rar <r8r)
0 0 ou Ou
( ey )(xax”ay)

L0 (Du o\ 0 ou o
CTox U ox yay y(?y Ox 8y

,u 0u Pu  ,0'u  Ou  Ou
=2t Yan; +yaax+yaz+ ox Yoy
=x? i‘i’z Xy O +y2@+ @er@
Ox? Ox0y o2 T Ox Oy
Therefore,
pPu_ ou 0w

"o Yo 8x8y

2
+y2%7using 1. ()
Again, Y
Ou  Oudx  Oudy 6u Ou
90 ax90  ayos oy T ox
Therefore,

Pu_ (0 ON( u Ou
AN R AN

_ 9 (Ou_ 0wy _O( Ou_ Ou
oy \Uoy y@x yax dy y@x

O%u *u Pu  Ou  Ou

x> —2x 2 —y—. (3

2 ot o Y Yo O
Subtracting (3) from (2), we get the required result.
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EXAMPLE 3.44

If x=rcos 0,y = rsin 0, and z=f(x, y), prove that
0z Oz 10z
e ECOS@ — —%smﬁ

Solution. Since x =7 cos 0 and y =r sin 6, we have

r= /x> +y* and 0 = tan~' (£). Therefore,

or x rcosf
—=-= = cos0,
ox r r
@:Xfrsmezsin&
dy r r
a0 y —rsinf —sin0
o x4+ 2 r , and
00 y rcos@ cos 0
8y x2—|—y r2 ro
Now,
0z 0z 3r+8z a0 0z sinf Oz
ox orax a0 ox  Var T a0

3.10  TAYLOR'S THEOREM FOR FUNCTIONS OF
SEVERAL VARIABLES

In view of Taylor’s theorem for functions of one
variable, it is not unnatural to expect the possibility
of expanding a function of more than one variable
fOx+h, y+k, z+ [...) in a series of ascending
powers of A, &, I,.... To fix the ideas, we consider
here a function of two variables only, the reasoning
in the general case being precisely the same.

Theorem 3.5. (Taylor). If f(x, y) and all its partial
derivatives of order n are finite and continuous for all
points (x,y) in the domain a < x < a+h and b <

y<b+k, then f(a+h b+k) =f(a,b) +
+R,, nd’f(a,b) + ...+ 5Lyd" " f(a,b) + Ry,
where

:l'd"f(aJrBh, b+6k), 0<6<1
n
and o o
k=
ox oy

Proof: Consider a circular domain of center (a,b) and
radius large enough for the point (a + 4, b +k) to be
also with in the domain. The partial derivatives of
the order n of f(x, y) are continuous in the domain.
Write

df =h2-

x=a+htandy=>b+kt
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so that as t ranges from O to 1, the point (x, y) moves
along the line joining the point (a, b) to the point
(a+h, b+k). Then

fy)=fla+ht,b+kt)=o(r). (1)
ow,
of dx Of d 10) %)
¢'(t) = aj; e aj; a :ha_f+k =
Similarly,

" (t) =d*f,..., 6" (1) = d"f.
Thus, ¢(¢) and its n derivatives are continuous
functions of ¢ in the interval 0 <¢<1 and so, by
Maclaurin’s theorem for function of one variable,
we have

2
() = ¢(0) + 1 6'(0) +2;6"(0)
t}’l
+ ..+;¢<n>(e ), (2)
where 0 <0< 1. Further, the relation (1) yields

o(1)=f(a+hb+k),
¢(0) =f(a,b),
(
(

¢'(0) = df (a, b),

¢"(0 f(a,b), and

OO0 t) =d"f(a+0hb+0k).
Hence, (2) yields

fla+hb+k)=f(a,b)+df(a,b)+ l,dzf(a, b)

df
d*f

)
)
)
1) =

b
T

where

:l'd"f(awh, b+0k),0<0<1.
n.

Remark 3.2. Taylor’s expansion does not necessarily
hold if the partial derivatives of the order n of the
function are not continuous in the domain. The
theorem can be extended easily to any number of
variables.

Theorem 3.6. (Maclaurin). Under the conditions of
the Taylor’s theorem

F06,9) = £(0.0) + d1(0,0) + 3%/ (0,0)

+...F d"'£(0,0) + R,

1
(n—1)

d"'f(a,b) + R,,

where

1
Rn:;d”f(()x,(iy), 0<f<l.

Proof: By Taylor’s theorem, we have
1
fa+h,b+k)=f(a,b)+df (a,b) +—'d2f(a,b)
1
LT )d” 'f(a,b) + Ry,
where
1
R, :;d"f(a+0h,b+0k), 0<0<1.

Putting
a=b=0, h=x, and k =y, we get

£r.y) =(0,0) +df(0 0) +5,/(0,0)

Tt )d” '£(0,0) + R,
where .
=—d"f(0x,0y), 0<0<1.
n!
EXAMPLE 3.45
If f(x,y) = (|xy|)%, prove that the Taylor’s expan-

sion about the point (x, x) is not valid in any domain
which includes the origin. Give reasons.

Solution. We are given that

fx,y) = (kv
Therefore,
. f(h,0)=f(0,0) . 0
1740, = g2 E R0 im0
. f(0,k)—f(0,0) . 0
£(0,0) = i S fim =0
Also,
12
filey) = 5(15‘)’1 0
Y[\ 2
‘5(’;()7 x<0
and
1 3
X
=, >0
filx,y) = 2<y> ’




Thus,
1 x>0

Si(x, x) :fv(x’x) = {2_7_ x <0.

2

If Taylor’s expansion about (x,x) for n=1
were possible, then we should have
fOx+hx+h) =f(x,x) + hlf.(x + Oh,x + 60h)

+£,(x + O, x + Oh)]
or

|x| +h ifx+0n>0
x+h =< |x|—-h ifx—0h<0,. (1)

| x| ifx—0nh=0
Now if the domain (x, x; x + /4, x+ h) includes the
origin, then x and x 4 A are of opposite signs. Thus,
either | x+h |=x+h, | x |=—xor x+hl=—(x
h), |x| =x. But under these conditions, none of the
inequalities (1) holds. Hence, the expansion is not
valid.

EXAMPLE 3.46
Expand x%y + 3y -2 in powers of (x — 1) and(y + 2)
using Taylor’s theorem for several variables.

Solution. For all points in the domaina <x < a+h
and b <y < b+ k, the Taylor’s theorem asserts that

F) = fla+h, b+k) = f(ab) +df(ab)
o @ (a,b) + 3@ (@,h)
+ %d“f(a, b) +

In the present example, a =1 and b =-2. Thus,

fi(x,y) =x*y+3y—2 whichyields £(1,-2)=—10,
Sr(x,y)=2xy which yields f(1,-2) =—4,
SHxy)=x*+3 whichyields £,(1,-2) =4,
Sa(x,y) =2y which yields f.(1,—2)=—4,
So(x,y)=2x which yields f£,,(1,-2) =2,
Sw(x,y)=0 which yields f,,(1,—-2) =0,
o (x,7) =0 which yields f.(1,—2) =0,
Sow(x,9) =0 which yields f£,,(1,-2) =0,
and

Jixr(1,=2) = fran(1,=2) = 2.
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All other higher derivatives are zero. Hence,

) =F(ab) + [(x—l) U (19

+(y+2)a—£(1,—2)}
1
o
3
+31, [(x— 1) Bx+(y+2)§/} f(1,-2)
=—10—4(x—1)+4(y+2)

[—4(x—1)2 +4(x—1)(y+2)]

tale=1) 20)+3(x -1’ (v +2)(2)
+3(x—1)(¥+2)%(0) + (y+2)*(0)]
= —10—4(x—1)+4(y+2)—2(x—1)?
+2(x—1)(y+2) +(x—1)°(y+2).
EXAMPLE 3.47

Expand sin(xy) in power of (x— 1) and (y — 3) up to
and including second-degree terms.

2
=Dt 0425 701,-2)

1
21
1

Solution. We want to expand sin(xy) about the point
(1,%). By Taylor’s theorem, we have
fxy)=f(a+h, b+k)

0 0

2
+;[ha+ka} fla,b)+

0. Oy
But
f(x,y)=sinxy impliesf(l ,g) =1,
o T
Se(x,y)=ycosxy impliesf, (1,5) =0,
fy(x,y) =xcosxy impliesfy( ,g) =0,

SE
N—
||

fur(x,y) = —y*sinxy implies f; (1 ,

N2
~
Il

( ——)

Sfo(x,y) = —xysinxyimplies f;, (1 ,

and

)=-

SE

fw(x,y) = —x*sinxy implies f;,, (1 ,
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Hence,
2
Y 2 e
fley) =1-T =17 =2 =1)(y-3)
1 ™\ 2
-46-

EXAMPLE 3.48
Expand ¢™ at (1,1) in powers of (x — 1) and (y — 1).

Solution. We have f(x, y) = ¢™. By Taylor’s theorem,
we have

fx,y)=f(a+h, b+k)
0 0
1/ 0 a\
But,
) = implies £(1,1) =
Jelx,y) = ye® implieSfx(l,l): ,
fi(x,y) = xe” implies f,(1,1) =
fulxy) = e implies f.(1,1) =
So(x,3) =xye” + € implies f,,(1,1) =e+e
= 2e, and
Fi(x,p) = x*e” implies f,,(1,1) = e
Wehaveh=x—-a=x-landk=y-b=y-I.
Hence,
f(x7y) :f(1> 1) + (X— a)ﬁr(L 1) + (y_ k)
1
x f,(1, 1)+ﬁ[(x—1)2j§x(1,1)
+ = DL ) +26r = 1)y — 1)
X foo(1, 1)
—e+(x—l)e—|—(y—l)e—|—21'[(x—1)2e

+4x -1y —e+(—1) e +...
:e{l+(x—1)+(y—l) ;'[(x—l)

- D —1)+ @ —1) }+

EXAMPLE 3.49

Expand ¢ sin by in power of x and y as far as terms
of third degree.

Solution. We have f(x, y) =™ sin by. By Taylor’s
theorem for function of two variables,

f(xay) :f(a +h7b+k)
0 0
—rtab)+ (kg )r(an)

1/ 0 o\?

1/ 0 o\’

We wish to expand the function about (0, 0).
Soh=x—-0=xand k=y—0=y.

Se,y) =f(0+h,0+k)
—10.0)+ (x5 +75)7(0.0)
2
t3 (v tvgy) 100
3
e G% +y(,%> 7(0,0) +
But,
f(x,y) = e™sin by implies £(0,0) = 0,
Jfi(x,¥) = ae™ sin by implies £,(0,0) = 0,
Jy(x,») = be*™ cos by implies £,(0,0) = b,
fur(x,y) = a*e™ sin by implies £,,(0,0) = 0,
Jfo(x,») = abe™ cos by implies f,,(0,0) = ab,
Jyw(x, ) = —b*e™ sin by implies f;,(x,y) = 0,
Sr(x,p) = @’e™sin by implies f1x(0,0) = 0,
S (,3) = a*be™ cos by implies
fin(0,0) = a?b,
Soy(x,¥) = —b*ae™ sin by implies f,,(0,0) = 0,
Sy (x,y) = —b*e™ cos by implies

fW,V(OvO) = _b37
and so on. Hence,

1
flx,y) = by#—abxy—l—3 (3a’bx*y — b*y®) +

EXAMPLE 3.50

Expand f(x,y) = tan"'% in the neighborhood of
(1,1) up to third-degree terms. Hence, compute
£(1.1,0.9) approximately.



Solution. We note that

f(xd/) - tanfli lmpllesf(l, 1) = Z
. - . . 1
Selxy) = . implies £(1,1) = —5
X . .
£ (%) a7 implies £,(1,1) = T
2xy . . 1
See(x,y) = m implies f,(1,1) =5
Y-
So(x,p) = m implies £, (1,1) =0,
2xy . ) 1
Sw(x,y) = —m implies f;,(1,1) = — =,
s R
ﬁocx(xay) = W lmphesfxxx(l, l) = —57
2x(x* =3y . . 1
Seo(x,y) = W implies fi,, (1,1) = -5
2p(3x% —y%) 1
Sor(x,y) = W implies fy,,(1,1) =5
2(3y* %) . 1
Sow(x,y) = W implies f;,,(1,1) = 5
Therefore, by Taylor’s theorem, we have
1Y
f(x,y)—tan :

(1) | =D 0= 1) 1)

| =

+

" o

|- (=5)+0-0(3)]

R =

% (x—1) (;) +2(x—1)(y—1)(0)

202 0

[(x—l)aax+(y—l) 8]3f(1,1)+...

and
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T 1

[ D= = D= 1P+ 1))
e 1)
3= D=1 = =1)"] +..

Putting x=1.1 and y=0.9, we get
f(1.1,0.9) = 0.6857.

3.11  EXTREME VALUES

A function f(x, y) of two independent variables x and
y is said to have an extreme value at the point (a, b)
if the increment
Af =fla+hb+k)—f(a,b)

preserves the same sign for all values of 4 and &
whose moduli do not exceed a sufficiently small
positive number 7.

If Afis negative, then the extreme value is a
maximum and if Af is positive, then the extreme
value is a minimum.

Necessary and sufficient conditions for extreme
values

By Taylor’s theorem, we have
Af =fla+b,b+k)—f(a,b)
2 o

Ox dy

+ terms of second and higher order.

(a,b) + k= (a,b)

Now by taking h and k sufficiently small, the first-
order terms can be made to govern the sign of the
right-hand side and therefore, of the left-hand side of
the previous expansion. Hence, the change in the sign
of'h and k would change the sign of the left-hand side,
that is, of Af. But if the sign of Af changes, 1 (x, )
cannot have an extreme point at (a, b). Hence, as a
first condition for the extreme value, we must have

h%(a,b) Jrk%j(a,b) =0.
Since the arbitrary increments ~ and k are inde-
pendent of each other, we must have

%(d,b) =0 and Z—J;(a,b) =0,
which are necessary conditions for the existence of
extreme points. However, these are not sufficient
conditions for the existence of extreme points.
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Further, a point (a, b) is called a stationary point if
fx (a, b)=f, (a, b) =0. The value f(a, b) is called a
stationary value.

To find sufficient conditions, let (a, b) be an
interior point of the domain of f'such that f admits
the second-order continuous partial derivatives in
the neighborhood of (a, b). Suppose that f, (a, b)
Jy (a, b)=0. We further, suppose that

o*f *f

V—@, S——axay,and
2

t:%, when x = @ and y = b.
V

Thus,

Sfola,b) =r, fiy(a,b) =s, and f,(a,b) =t.

If (a + b, b+ k) is any point in the neighborhood of
(a, b), then by Taylor’s theorem, we have

Af =f(a+b,b+k)—f(a,b)
= hfy(a,b) + kfy(a,b) + % [W*fre(a,b)
+ 2hkfy (a,b) + K,y (a,b)] + Rs
= % [rh* + 2hks + th*] + Rs,

where R; consists of terms of third and higher orders
of small quantities. Thus, by taking h and k suffi-
ciently small, now the second order terms can be
made to govern the sign of the right-hand side and
therefore, of the left-hand side of the previous
expansion. But

% [rh* 4 2hks + th*] = % [F2h* 4 2hkrs + rtk?]

1
=5 [2h* + 2hkrs

r
+ rtk? + k*s* — h?s?)

P
Since (rh + sk) 2 is always positive, it follows that
Afis positive if 7t — s? is positive. Now 77 — s > 0 if
both r and t have the same sign. Thus, the sign of Af
shall be that of 7. Therefore, if 77 — s> is positive, we
have a maximum or a minimum accordingly, as
both » and ¢ are either negative or positive. This
condition was first pointed out by Lagrange and is
known as Lagrange’s condition. However, if rt = 52,

_ Zi ((h + k) + It — 7).

then ri” + 2hks + tk > becomes L (hr + ks)* and is,

therefore, of the same sign as r or t unless
h
=" E, say, for which (hr + ks)* vanishes.
-
In such a case, we must consider terms of higher
order in the expansion of f'(a + &, b + k). Thus, we

may state that
1. The value f (a, b) is an extreme value of
S, p)iffi(a,b)=f, (a,b)=0and ifrt—s?>
0. The value is maximum or minimum
accordingly as f.{a, b) or f,(a, b) is
negative or positive.

2. If rt —s*< 0, then f (x, y) has no extreme
value at (a, b). The point (a, b) is a saddle
point in this case.

3. If rt — s*=0, the case is doubtful and
requires terms of higher order in the
expansion of the function.

EXAMPLE 3.51

Show that the function f'(x, y) =y * 4+ x > y 4+ x * has
a minimum value at the origin.

Solution. We have
flx, y) =y +xy+xt
Therefore,
fi = 2xy + 4x> which yields £(0,0) = 0,
fy = 2y +x* which yields £,(0,0) = 0,
fie = 2y + 12x* which yields £,,(0,0) = 0,
Jww = 2 which yields f£,,(0,0) = 2, and
S = 2x which yields £,,(0,0) = 0.

Hence, at the origin, we have rt — s*=0. Thus,
further investigation is needed in the case. We write

2
_ 2 2 4 _ 12 3x*
fley) =y +xy+at=y+ox" |+

Then,
2\ 2 2
A7 =) 10,0 = (k45 ) + 7

which is always greater than zero for all values of
h and k. Hence, f'(x, y) has a minimum value at the
origin.



EXAMPLE 3.52

Show that the function

@

U=xy+-—+—
x oy
has a minimum value at (a, a).

Solution. We have

@ &
u= xy—i—;-f-;-
Therefore,
ou a’ .
Dy~ yields fila.a) =0,
ou a
—_— =X —— leldS a,a :0’
% 27 Hla,a)
Pu 24 .
a_x'; = xi3 yleldsf;;x(aa a) = 2’
? .
8 au =1 yleldsﬁcy(ava) = 1’ and
xXoy
Pu 24’
— = —— and so, a,a) =2.
= fila.a)

We observe that 77 — s> =4 — 1= 3 (positive) and r
and ¢ too positive. Therefore, u has the minimum at
(a, @). Thus, the minimum value of u is

u(a, a)=a’+a* +a* =3a°.

EXAMPLE 3.53

Show that the function f (x, y) =2x* — 3x* y+)?
does not have a maximum or a minimum at (0, 0).

Solution. The given function is

flx y) = 2 =3y 47
Therefore,

9
8—f = 8x° — 6xy, which implies £;(0,0) = 0,

X

g = —3x% + 2y, which implies f;(0,0) = 0,
)y

>f > o
ph 24x° — 6y, which implies f;,(0,0) = 0,
o’f
OxQy
0*f S
6_)/2 = 2, which implies f;,(0,0) = 2.
Thus, rt — =0 and so, further investigation is
required. We have

flx,y) = (& —y)(2x* —y), f(0, 0) =0.

= —6x, which implies f;,(0,0) = 0, and
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Therefore,

Af =f(x,y) =f(0,0) = ( —y)(2* —y).
Thus, Afis positive, for y <0 or x* >y >0 and Afis
negative, for y > x* > > 0. Thus, Af does not
keep the same sign in the neighborhood of (0, 0).
Hence, the function does not have a maximum or a
minimum at (0, 0).

EXAMPLE 3.54

Examine the function sin x + sin y + sin(x +y) for
extreme points.

Solution. The given function is f (x, y) =sin x -+ sin
y+sin (x +y). Therefore,
Jfx = cosx + cos(x + ),

Jfy =cosy+cos(x +y),
S = —sinx — sin(x + ),
fo = —sin(x+y), and
Sy = —siny —sin(x + ).
For extreme points, we must have f. = f, = 0 and so,

cosx+cos(x+y) =0 (1)
and

cosy+cos(x+y)=0 (2)
Subtracting (2) from (1), we get cos x=cos y
and so, x=y. Also then, cosx + cos 2x =0 which

yields cos 2x=- cos x=cos (7 — x) and so,
2x=m —x or x = 5. Thus, (g,gi) is a stationary
point. Now

T V3 V3 :
r *fxx(g;g) T S S -3 (negative),

T V3
5G4

3°3 2

T V3 V3 :
t—fyy(g,§> =-—5 5= —/3 (negative).
Thus, 3

rt—s =3 — 1=1 (positive)

and r is negative. Hence, the given function has a
. .o
maximum value at (3,5) given by

T .T o .m .27

f(g,g) = s1n§+sm§+sm?
_V3 V3 V3 33
22 2 2
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EXAMPLE 3.55

Examine the following surface for high- and low

points: 5
z=x"+xy+3x+2y+5.

Solution. We have

0z 0z
a—2x+y+3,a—y—x+2,
0%z &z 0%z
T2 _, 72 4 < o
Ox? " OxOy » and 02

z __ Oz

For an extreme point, we must have % == 0
and so,

2x+y+3=0and x+2=0.
Solving these equations, we get x=-2, y=1.
Thus, z can have a maximum or a minimum only at
(-2, 1). Further,

0z
r=s5(-21)=2,
0%z
s = 8x8y( 2,1)=1, and
0z
(=GR 2N =0

Therefore, rt — s> =— 1 (negative) and so, the sta-
tionary value of z at (—2, 1) is neither a maximum
nor a minimum. Hence, the surface has no high- or
low point.

EXAMPLE 3.56

Locate the stationary points of x *+y 4 — 2x
2+ 4xy — 2y? and determine their nature.

Solution. We have
Fle,y) =x* +% — 207 +duy — 27
Therefore,
fr=4F —dx+4dy and f, = 4° + 4x — 4y.
The stationary points are given by
fi=4x—4x+4y=0 (1)
fr=4+4x—4y =0 (2)
Adding (1) and (2), we get
Xy =0o0r (x+y)(x* —xy+)?) =0.
Therefore, either y=— x or x 2 — xy + > = 0. Putting
y=-x in (1), we get x(x*> —2) = 0, which yields
x =0, V2, or —/2. The value of y corresponding
to these values are 0, —v/2, and v/2. Thus, the
points (0,0), (v/2,—v2), and (—v/2,/2) satisfy

(1) and (2). On the other hand, from equation (1)
and x % — xy +1* =0 we get (0, 0) as the only real
root. Thus, the stationary points are
(0,0), (v2,-v2), and (-v2,V2).
Also,
fu=124"—4, f,, =4, and f;, = 12)* — 4.

At (0,0), we have

r=fx(0,0) = —4,

s =fy(0,0) =4, and

t = f£,,(0,0) = —4,
and so, 7t — s°=0. Thus, at (0, 0), the case is

doubtful. The given equation can be written as
S flry) =24yt =20 =)
0,

£(0,0) =0 and f(h, k) = h* + k* — 2(h — k).

We observe that for small quantities of h and k,
Af = f(h,k) = £(0,0) = h* + k* — 2(h — k)*

is greater than 0, if 2=k and less than 0, if h / # £.
Since Af does not preserve the sign, the function
has no extreme value at the origin.
At (\/f, —\/2), we have r=20, s=4, and t=0
so that rt — s> = 384 (positive). Since r is positive,
f(x, ) has a minimum at this point.
At (=2, V/2), we have r=20, s =4, and t=20.
Thus, 7t — s* is positive. Since 7 is positive, f (x, y)
has a minimum at (—\/Z \/E) also.

EXAMPLE 3.57
Find the minimum value of x> + y* + z* when ax +
by +cz=p.

Solution. Let /' (x, y, z) = x*+)*+z°. From the
relation ax+by+cz=p, we get z= ’%Pby
Putting this value of z in f'(x, y, z), we get

— ax — b\ 2
fm%nf+ﬁ+clﬁ§—§

as a function of two variables x and y. Then,

fx:2x——(p—ax—by) and

2b
5 :2y——2(p—ax—by).
For extreme pomts we must have f, =f, =
2x——(p—ax—by) =0 and

0. Thus,



Solving these equations, we get

ap bp
R ISR Bl R Ry & R
Now,
2a? 2ab 2b%
ﬁo(:2+?,ﬁ;y:c—2, andfyy:2+c—2,
so that
2 2 252
) a b 4a°b
rt — s _4<1+C2>(1+C2)_C4

a b .
=4 <1 + 2 + c_2> (positive).
Also r=f,, is positive. Therefore, f(x, y) has a

minimum at (
value is

ap bp ..
77 7 ) and the minimum

2

. 14
Min. f(x,y,z) = m .

EXAMPLE 3.58
Show that the function
Sy) =2 =2+ +2° =) +5°
has neither a maximum nor a minimum at (0, 0).

Solution. For the given function,
Sfo=2x—2y+3x* +5x* and f;, = —2x + 2y — 3.

S =2+6x+20x° and £, = =2, f,, =2 — 6p.
For a stationary value of f (x, ), we must have f,
Jf,=0. Thus,
2x—2y+3y*+5x*=0and —2x+2y -3y =0.
The origin (0,0) satisfies these equations. Further,
r=/f«x(0,0) =2, 5=£,(0,0)=—-2, t=,,(0,0) =2,
and so, 7t — s> = 0. Hence, further investigations are
required. We rewrite the equation as
fEy) =@ =y + (= 2@ +xy+07) + 2.
We note that £ (0, 0) =0. But,
Af =f(h, k) = f(0,0) = f(h, k)
= (h—k)? + (h—k)(W® + hk + k*) + °.

In the neighborhood of (0, 0), if A =k, then Af= K
which is positive, when k& > 0 and negative, when
k < 0. Thus, Af does not keep the same sign in the
neighborhood of (0, 0). Hence, f(x, y) cannot have a
maximum or a minimum at the point (0, 0).

EXAMPLE 3.59

Find the dimensions of the rectangular box, open at
the top, of maximum capacity whose surface is
432 sq. cm.

3.27

Partial Differentiation

Solution. Let x, y, and z cm be the dimensions of the
box and S be its surface. Then

S =xy + 2yz + 2zx = 432 (given) (1)

and
V = xyz. (2)
We have to maximize V. From (1), we have
432 — xy
= —— 3
Ty 3)
Therefore, (2) reduces to
432 — xy 432xy — x3?
V =xy = .
2y +2x 2y +2x
Now,
AV (2y +2x)(432y — 2xp°) — 2(432xy — x%)?)
Ox (2y 4 2x)*
- 864y2 — 4xy3 — 2x2y2
(2x +2y)° ,
OV (2x+ 2y)(432x — 2x%y) — 2(432xy — x%)?)
dy (2y + 2x)°
_ 864x? — 4x3y — 2x%)?
(2x + 2y)2

: : v _ v _
For stationary points, we must have 8—)’? = ayV = 0. So,
864 —4xy —2x* =0 (4)
864 — 4xy — 2> = 0. (5)
Subtracting (5) from (4), we get y = £ x. Substituting

x=y in (5), we get

864
864 — 42 — 2> =0 or )? e 124.

Thus, x=y=12 and (3) implies z=6. It can be
verified that 7¢ — s* > 0 and that r is positive for these
values. Hence, the dimensions of the box are x =
y= 12c¢m and z = 6¢m.

EXAMPLE 3.60
Examine x°y*(1 — x — y) for extreme points.

Solution. We have
flx,y) =xy(1—x—y).

Therefore,
o
oy = V(L —x =) + X (=1)
= 3x%? — 4x’y? — 3x%)* and
o
% =20°y(1 —x —y) +xH%(~1)

= 2%y — 2x%y — 3%
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For a maximum or a minimum of f, we must have
I — & — (. Therefore,

ox — 9y
*y*(3 —4x —3y) = 0 and x’y(2 — 2x — 3y) = 0.

Solving these equations, we get the stationary points
(0, 0) and (2 , 3) Further,
>f

r=o3 = 6% — 126%)% — 63y = 6xp* (1 — 2x — y),
82
= 6xgy = x?y(6 — 8x — 9y), and
o*f
t= a2 =23 (1 —x—3y).
Therefore,

(i) at (0,0), 7=0, 7=0, and s = 0, and so, rt — s> =0.
But,
Af =f(h k) —£(0,0) = Pk*(1 — h — k).

Sign is governed by A*k* which is positive, if 4> 0
and negative, if #<0. Since Af does not keep the
same sign in the neighborhood of (0, 0), the given
function does not have a maximum or a minimum
value at (0, 0).

(i) at (},1), we have
(11 1
T ox? ( ) 9’
Pf -1
= oxdy (2 3) T and
_Pr (11 1
T ( ) 8
Therefore,

) 1 1 -1\* 1 1
rt—ss=(—=l-s)—(-—= ———
9)\ 8 12) " 72 144

=114 (positive).
But r is negative. Hence, f (x, y) has a maximum
1

at (%,%) The maximum value is f (2,3) =3-

é(l _%_%) _4;.2'
EXAMPLE 3.61

Find the points where the function x° + *
has a maximum or a minimum.

— 3axy

Solution. We have
fi= 3x — 3ay, f, = 3y2 — 3ax,
S = 6x, f,,, = 6y, and f,, = —3a.

For extreme points, we have f, =f,= 0 and so,

3x? —3ay = 0 and 3y? — 3ax = 0.
Solving the earlier equations, we get two stationary
points (0, 0) and (a, a). Further,

rt — s* = 36xy — 9a’.
At (0, 0), 71— s 2 =—9a ? (negative). Therefore, there
is no extreme point at the origin.

At (a,a), we have rt — s* =364 — 9a*> =274 > 0.
Also r at (a, a) is equal to 6a. If a is positive, then
is positive and f'(x, y) will have a minimum at (a, ).
If a is negative, then r is negative and so, f'(x, y) will
have a maximum at (a, a) for a < 0.

EXAMPLE 3.62

Prove that the rectangular solid of maximum
volume which can be inscribed in a sphere is a cube.

Solution. Let x, y, and z be the length, breadth, and
height of a rectangular solid. Then, the volume of
the solid is

V = xyz. (1)

Now each diagonal of the rectangular solid passes
through the center of the sphere. Therefore, each
diagonal is the diameter of the sphere, that is,

X2+y2+z2=d

or
il =d
or
d? —x2 —y2. (2)
Therefore, (1) reduces to
V =xy\/d* — x* — y?
or
y2 — xzyz(dz _2 _yz)
=V = =2y =f(x,y).
Then,
8_f A3 2 A A 2D A2 2
pe =202 d? —4x3y? — 2xy* =2xy (d 2x"—y ),
%:bczyd2 —2x4y—4x2y3 :2x2y(d2 —x? —2y2) ,
y
2f 2d2 2_12x2 2_24
8 2_ y y y I
&
a—fdeZxZ —12x%*y* —2x*, and
62
pe g =4xyd® —8x°y—8x)>.



For stationary points, we have 3 af = W = 0. Therefore,
d*—2x* —1y> =0 and

&> —x*—2*=0. (3)
Solving the preceding equations, we get y=ux.
Substituting y=x in (3), we get x:%. Thus,

xX=y= \%. Hence, from (2), we have z = \%. Thus,

the statior:ary point is ( N f) At ( N \%),

4d*
r=—— (negative),s=———, andt=——
o (megative), 5
_ 64d® _ 16d° 48 8 _ 1601X
Therefore, rt — s* = S s =nd >0
Since r is negative, it follows that f (x ») or V has

d

a maximum value at ( NeL \/-) Hence, V' is max-

imum when x =y =z. Consequently, the solid is a
cube.

EXAMPLE 3.63

A rectangular box, open at the top, is to have a
volume of 32 cubic feet. Determine the dimensions
of the box requiring least material for its construction.

Solution. Let S be the surface, and x, y, and z in feet
be the edges of the box. Then,
S =xy+2yz+ 2zx (1)
and
V = xyz = 32 cubic feet (given). (2)

From (2), we have z = 32 and so,
o

32 I 1
S=xy+2(y+x)— = xy+64<——|——>.
xy Xy
Then,

oS 64 0S 64
o, 2 2T
x 0 X Oy 2’
0*S 128 *S PSS 128
= , =1, and —=—.
a2 B3 oxdy 1)

The stationary values are given by

oS 64 oS 64
—-=y——5=0and —=x-—=0.
xR an dy 32

Solving these equations, we get x =y =4. Putting
these values in (1), we get z=2. Further, at (4, 4),
we have 7 — s* =3 (positive) and » at (4, 4) is 2
(positive). Therefore, S is minimum for (4, 4). The
dimensions of the box are x=4, y=4, z=2.

EXAMPLE 3.64

Find the points on the surface z 2 =xy + 1 nearest to
the origin.
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Solution. If r is the distance from (0, 0, 0) of any point
(x, y, z) on the given surface, then

P2 =(x—01 4+ -0V +z -0 =x>+)*+7
= x> +y* +xy + 1, using the equation of
the given surface.
Thus, we have a function of two variables given by
P =x 4y +ay+1=f(x,y), say.

Then, o of
a:2x+y, a—y:2y+x,
*f 0*f 0*f
=2, —===2 =1.
oxz T o2 7 and Oxdy

The stationary points are given by% =0 and g—fv: =0
and therefore, ’
2x+y=0and 2y +x = 0.

Solving the preceding equations, we get x=y =10
and then, z2 =xy+ 1 yields z==1. Thus, the sta-
tionary points are (0, 0, £1). Further, at these points,
r=2,s=1,and t=2 and so, rt — s> =3 (positive).
Since r is positive, the value is minimum at (0, 0, £1).

3.12  LAGRANGE’S METHOD OF UNDETERMINED

MULTIPLIERS
Let u = ¢(x1,x2,...,x,) be a function of n vari-
ables xi,x;,...,x,, which are connected by m
equations
.fl(x17x2a e 7'xn) = 0) fz(x]waa s axn) = 07
Su(x1,%2, ..., x,) =0,

so that only n — m of the variables are independent.
For a maximum or a minimum value of u#, we must
have

ou  ou, ou o
du=2"4q d d
o o T o™ s,

Also, differentiating the given m equations connect-
ing the variables, we have

dx, =0.

ofi oy ofi 8f1
dfi = d1+8 zd 2+8x3dX3+ 6xn =0
afz > b h .,
df, = allera 2d2+8 3dX3+...+8xndxn—
_ O fm fm M,
dfm 81d1+8 2d2+a 3dX3+...+8xndxn— .
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Multiplying the earlier (m + 1) equations, obtained
on differentiation, by 1, A, 43, . .., Ay, respectively,
and then adding all, we get an equation which may
be written as
Pidx; + Pydx, + P3dxs + ...+ P,dx, =0, (1)
where,
ou . oh , 0h . Of Wom

P,—a—xr+/bl axr+/uzaxr+/u3axr+...+/1m6xr

The m quantities 11, 4,..., 7, are at our choice.

Let us choose them so as to satisfy the m linear

equations.

Pi=P,=Py=...=P, =0.

Then, the equation (1) reduces to

Puoidx,y + Pooodxy.n + ... + Ppdx, = 0.

It is indifferent which of the n —m of the n variables

are regarded as independent. So, suppose that the

variables X1, X2, -..,X, are independent, then
as the n—m quantities dx,,11, dxp2, . . ., dx, are all
independent, their coefficients must be separately
zero. Thus, we obtain the additional » —m equations
as follows:

Puy1 =0, Ppo=0,...,P,=0.

In this way, we get (m + n) equations
fi=0,46=0,...,/,, =0 and
Py=0,P,=0,...,P, =0,

which together with relation u = ¢(xy,xz,...,x,)

determine the m multipliers Ay, 42, ..., 4, and the

values of n variables xi,x3,...,x, for which the
maximum and minimum values of u are possible.

The drawback of the Lagrange’s method of
undetermined multipliers is that it does not deter-
mine the nature of the stationary point.

EXAMPLE 3.65

Find the point of the circle x* 4 )* +z*=4* and
Ix+my+nz =0 at which the function u =ax”+
by* +cz* + 2fyz+ 2gzx +2hxy attains its greatest
and the least value.

Solution. We have

u=ax’ +by* + cz* + 2fyz + 2gzx + 2hxy, (1)
fi=Ik+my+nz=0, and (2)
h=x+y+2 =k (3)
For extreme points, we must have du = 0. So,

(ax + gz + hy)dx + (hx + by + fz)dy

+(gex+fy+cez)dz=0. (4)

Also differentiating (2) and (3), we get
ldx + mdy + ndz = 0, and (5)
xdx + ydy + zdz = 0. (6)

Multiplying (4), (5), and (6) by 1, 4y, and 7,
respectively, and then by adding all and equating to
zero the coefficients of dx, dy, and dz, we get

ax +hy +gz+ Ml + Ax =0, (7)
hx + by + fz+ Aym + Ay = 0, and (8)
gx+fy+cz+ in+ z=0. 9)

Multiplying (7), (8), and (9) by x, y, and z, respec-
tively, and then adding all, we get

u+dr=0o0r A = —u.

Putting A, =—u in (7), (8), and (9), we obtain
(a—u)x+hy+gz+4l=0, (10)
hx+b—uy+fz+im=0, and (11)
gex+f+(c—u)z+in=0. (12)

Also,

Ix+my+nz+2,.0=0. (13)

Eliminating x, y, z, and 4; from (10), (11), (12),
and (13), we get

a—u h g /
h b—u f m _0
g f c—u n ’
/ m n 0

which gives the maximum or minimum value of u.

EXAMPLE 3.66

Prove that the volume of the greatest rectangular
parallelopiped that can be inscribed in the ellipsoid

S4h g =1is S
Solution. Let (x, y, z) denote the coordinates of the
vertex of the rectangular parallelopiped which lies in
the positive octant and let /' denote its volume.
Volume Vis given by V' = 8xyz. Its maximum value is
to be determined under the condition that it is inscri-
bed in the ellipsoid 5 + % + 2 = 1. Thus, we have

V' = 8xyz, and (1)
22 2
For an extreme value, we must have
dV = yzdx + zxdy + xydz = 0. (3)



Also differentiating (2) we get
X

Multiplying (3) and (4) by 1 and )L, respectively, and
then adding both and equating the coefficients of
dx, dy, and dz to zero, we get

Ax
vz + 2= 0, (5)
n+%-@ (6)
and
Xy + i =0. (7)
2
From (5), (6), and (7), we get
PO S
and so, g J :
a’yz B b’zx B c2xy
xy oz

Dividing throughout by xyz, we get
@ b
)7 = .)7 = Z—2 .
Then, equation (2) yields

X a

3;:1 or x=-x,

v b

3ﬁ_1 or y:%, and
2

z .

3;21 or Z:7§.

Thus, the stationary value is at the point

z a|=
S5
Sk

Differentiating partially the equation (2)

to x, taking y as constant, we get

2x 2z0z 0 and 0z x
=+ _—_=0andso, —=——.
c? Ox T Ox a’z
Now,

V 0z Ax

— =38 8xy— =238 8 -

Ox VE oy Ox vzt xy( a22>
8c2x?

a’z

= 8yz —

and so,
PV x 16c’xy  8c*x%y 2x
Sv( 5152

which is negative. Hence,

az @z a7’
V' is maximum at
a b c
(%5 55-35) and -
abe
Max V =

33
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EXAMPLE 3.67
Solve Example 3.63 using Lagrange’s method of
undetermined multipliers.
Solution. We have
S=xy+2yz+2zx and (1)
V =xyz =32. (2)
For S to be minimum, we must have
dS = (y+2z)dx+ (x+2z)dy+2(x+y)dz=0. (3)
Also, from (2), since V is constant, we have
vzdx + zxdy + xydz = 0. 4)
Multiplying (3) by 1 and (4) by 4 and then adding
both and equating to zero the coefficients of dx, dy,
and dz, we get

V+2z)+4z=0 (5)
(x+22)+xz=0 (6)
2x+2y+ Axy =0. (7)

Multiplying (5) by x and (6) by y and subtracting,
we get

2zx —2zy=0orx =y,
since z=0 is not admissible due to the fact that
depth cannot be zero.

Similarly, from the equations (6) and (7), we
get y =2z. Thus, for a stationary value, the dimen-
sions of the box are

x =y =2z=4, [using (2)].
Proceeding, as in Example 3.65, we note that d—f =
2 (positive) and 7z — s* > 0. Thus, at (4, 4, 2), S has
a minimum. Hence, the required dimensions are
x=4,y=4,and z=2.

EXAMPLE 3.68

Investigate the maximum- and minimum radii vec-
tor of the sector of “surface of -elasticity”
(2 +3? + 2?) = a*x* + b*? + 2%c?, made by the
plane Ix + my + nz = 0.

Solution. On differentiating, we get

xdx + ydy + ndz = 0 (1)
a’xdx + b*ydy + *zdz = 0 (2)
ldx + mdy + ndz = 0. (3)

Multiplying (1), (2), and (3) by 1, 4y, and 7,
respectively, and adding and equating to zero the
coefficients of dx, dy, and dz, we get
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x4 a*xi + 1y =0 4)
y+b2yi +mly =0 (5)
z+ 2l +nly =0. (6)

Multiplying (4), (5), and (6) by x, y, and z, respec-
tively, and adding we get

(P 4+ +2) + (@ + b+ PP
+(Ix+my+mnz)l, =0

or |
}”2 +;Llr4 =0 or /11 =——-
r
Putting this value of 4; in (4), (5), and (6), we get
Jolr? Jomr? J Joni?
SRR LI Gl B L B R

Substituting these values of x, y, and z in Ix +my
nz=0, we get

2 2

Jom?r Jon®r
22 22

2 m? n?

+ + =0
612—}"2 b2_r2 c2_r2 ’

which is an equation in » giving the required values.

EXAMPLE 3.69

Find the length of the axes of the section of the ellipsoid
2 2 2
x_2+y_+z_: 1 by the plane Ix + my + nz = 0.
a? b 2

Solution. We have to find the extreme values of the
function r 2 =x ? 4 y > + z % subject to the conditions

/12]2}’2

0
2 _ 2 ’
or

2 2 2
E—i—ﬁ—i—c—z: 1 and Ix +my + nz = 0.
Differentiation yields
xdx+ydy+zdz=0 (1)
X ¥ z
;dx—?—ﬁdy—kc—zdz:o (2)
ldx + mdy 4+ ndz = 0. (3)

Multiplying (1), (2), and (3) by 1, 4, and 4,
respectively, adding and then equating to zero the
coefficients of dx, dy, and dz, we get

le;—szz:o, 4)

y+ A4 % + Jom =0, and (5)
1

z+A1;+Z2n:O. (6)

Multiplying (4), (5), and (6) by x, y, and z and
adding, we obtain

2 22
2 2 2 . (X y z
(x Ty +z ) + 41 <;+ﬁ+c—2>
+ A(Ix+my+nz) =0
or
> + 41 = 0, which gives 2, = —2.
Hence, from (4), (5), and (6), we have

igl /lzm }yzn
X= V=3 ,andz:r2 .
Sl -1 5-1

Putting these values of x, y, and z in Ix+my + nz

0, we get
Pa? 2 b2 22
)L2<r2—a2+r2—b2+r2—c2> =0.
Since 1, # 0, the equation giving the values of 2,
the squares of the length of the semi-axes, is
Pa? m*b? n*c?

r2—b2+r2—02:0'

22
EXAMPLE 3.70

If a, b, and, c are positive and
@2+ b+ 22
U=

x4222

ax®> + by* 4+ c* =1,
show that a stationary value of u is given by
2 H 2 H

X = s = y 2[1’1(3122 e ——
2a(p+a) 7 2b(p+b) 2¢(p+c)
where u is the positive root of the cubic
1 — (bc + ca + ab)u — 2abc = 0.
Solution. We have
@22+ By 4 2P
u= 222 ) (1)
x*y?z
ax* + by + e = 1. (2)

Differentiating (1), we get

1 (b &2
S (2 4+ Y ax =0
x3<zz+y2)x '

which on multiplication by x*y*z* yields

1
L (b%y* 4 c*2%)dx = 0. (3)
Differentiating (2), we get
Yaxdx =0. (4)
Using Lagrange’s multipliers 1 and u, we get

1
— (b +*2?) =pax or b*y* +c*2 = pax®, (5)
x

—_

—(P2 +a*?)=uby or *Z+d*x*=uby*, (6)

<



and
1
_(a2x2 + b2y2)
z
Then, (6) + (7) (5) yields
2a°x* = u(by? + cz* — ax?)

=ucz or a’x* +b*y* =puc?. (7)

= u(1 —2ax?), using(2).

Thus,
u
2a(a+ux* =pu or x*=—"—_.
N (@ + p)x - X =t a
Slmllarly, we obtain
H 2 M
=— d =—.
Y “2(urb) YT T2t o)
Substituting these values of x, %, and z* in (2), we
have
1 L
20a+w)  20b+p)  2(c+p

or
1 — (bc 4 ca + ab)u — 2abc = 0. (8)

Since a, b, and ¢ are positive, any one of (5), (6), or
(7) shows that p must be positive. Hence, u is a
positive root of (8).

3.13  JACOBIANS

Ifuy, us,. . .,u, are n functions of n variables x, x»,. . .,
X,, then the determinant

81/{1 6141 81/{1

ox Ox, O0x,

8u2 auz 8”2

ox Oxy Ox,

Ou, Ou, Ouy,

g 0nm T ox,

is called the Jacobian of uy, u,,. . ., u,, with regard to

X1, X2,- - ., X,. This determinant is often denoted by
Ay 1z, .,
WOI‘J (M17u2, .- '7”")'

3.14  PROPERTIES OF JACOBIAN

Theorem 3.7. If U, V are functions of u and v, where u
and v are themselves functions of x and y, then
au, V) o,v) ou,v)

O(x,y) — Ou,v) 0xy)’

Proof: Let
U:f(u,v), V:F(M,V), u:qb(x,y),andv:t//(x,y).

Partial Differentiation 3.33

Then,
oU_0U ou oU oy
Ox  Ou Ox  Ov Ox’
ou ou 8u+8U ov
dy  Ou dy Ov Oy’
Ox  Ou Ox  Iv Ox’
o u o
Oy Ou'dy Ov Oy
and so,
(U, V) Ou,v)
d(u,v) "O(x,y)
AU dU || Ou Ou
_ | ou v Ox Oy
T lovav || ov oy
Ou Ov || Ox Oy
[EEE grery
TV bu AV v ad v
PR A A R A
ou 9u
| Ox Oy
B (W@V‘
ox Oy
_ow,r)
A(x,y)

Theorem 3.8. If J is the Jacobian of the system u, v
with regard to x, y, and J’ is the Jacobian of x, y with
regard to u, v, then JJ' = 1.

Proof: Let u =1 (x, y) and v=F (x, y). Suppose that
these are solved for x and y giving x = ¢(u,v) and
y=1w(u,v). Differentiating u =f (x, y) with respect
to u and v, we have

JOu Ox Ou O g O O Ou Oy

Ox Ou Oy ou Ox Ov Oy Ov

Similarly, differentiating v = F' (x, y) with respect to
u and v, we get

ov 8x+8v By d1 v Ox Ov Oy
=—. and 1= —. —+—.=—.
ox Ou ' By Ou Ox Ov 0Oy Ov
Therefore,
;| Ox 9y ||Ou dv
T =10 ol v v
ox Oy || Ou Ov

Qu Ox 4 Ou 9y  Ou u Oy
Ox " Ou + ly * Ou Ox " O v+6y'dv

, 9 p 9 O
v dx+dv_y &_X_A'_d__y

Ox Ou ' dyou Ox*"ov ' dy"ov
1 0

= =1.
0 1
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EXAMPLE 3.71
If x=7 cos 0 and y =r sin 0, show that
L 0(x, .., O0(r,0 1
(i) 8((r, (};)) =r and (ii) 8((X, y)) =
Solution. (i) We have
a(x,y) E & cos —rsinf
W: % % B sinfl  rcos@ ’

= rcos’ 0+ rsin® 0 = r.
(i1) We have
r* =x*+4y* and tan0 __
x
Differentiating partially with respect to x and y, we

get

0 0
Zra—::Zxandso,a—;:;,
0 0
2r—r:2yandso,—r:f,
dy dy r
00 y y
2 _ _
sec Ha— -2 and so, e x2sec0
r2 cos? Osec? 0 r2’

o0 1 1 20
SeC29—:—,andso7—:—:&
dy x dy xsectl x

T 2x 2
Therefore,

& & X y
or,0) _|ax | _| ¥
owy) |2 27|k a

_xz yz_x2+y2_ 2_1
= R~ T~
EXAMPLE 3.72

Ifx=rsin6 cos ¢, y=rsin 0 sin ¢, and z=r cos 6,
show that
I(x,y,z2)

2 .
= r“sinf.
a(r,0,9)
Solution. We have
Ox Ox Ox
o 90 9¢

0, 3.2) oy o ay

m* or 90 99

or 00 0¢
sinfcos¢ rcosfcos¢ —rsinfsing
= | sinfsing rcosfsing rsinfcos¢p
cos 0 —rsinf 0

= cos 0(r? sin 0 cos 0 cos” ¢ + 17 sin O cos O sin” ¢)
+ rsin 0(rsin® 0 cos® ¢ + rsin” 0 sin” ¢)
= r?sinfcos® 0 + 12 sin’ 0
= r?sin 0(cos? 0 + sin” 0) = sin 0.
EXAMPLE 3.73
Ifu=x+4 y+z, uv=y+z, and uvw =z, show that
Ax,y,z
8((u, f w)) =
Solution. We have
zZ=uvw,
y=uv—z=uv—uvw and
X=u—y—z=u—uv+uww —uvw =u— uv.

Therefore,

Ox Ox Ox
du v Ow

8(%%2) _|oy 9y oy

1—v —u 0

=\|l5 7= 7 |=|V—VWwW uU—uw —uv

a(u7v7w) du v Ow

Oz 0z 0z W uw uy
du Ov Ow
1—v —u O
1—v —u
=| v u =uv
% u

vw uw uv

=uv(u —uv +uv) = u?v.

EXAMPLE 3.74

X2X: X3X X1X:
Ifuy =25, up =22, and u3 = "2, show that
8(”17”2;”3) —4
a(xl ; X2, X3)
Solution. We have
Ouy  Ou 0wy
(‘chl 8x2 ('9x3
ONury,u3) _ Now, ow 0w
8 X1.X0.X Oxy Ox 8)63
(vt %2,%3) Owy Quz Juy
Oxy Oxy  Ox3
_ X2X3 X3 X2
x% X1 X1
_ X3 _X3x X
- X2 x% X2
X2 X1 _Xix
X3 x3 x;
1 —X2X3 X3X] X1X2
= 555 | X2X3 —X3X1 X1X2
xfxixg

X2X3 X3X] —X1X2



0 0 2)61)62
x%x%x% X2X3 —X3X1 X1X2
X2X3 X3X1 —X1X2
using Ry — Ry + R,
2x1x2 X2X3 —X3X]
x2x§x§ X2X3 X3X1
ZXUCZ 2
—— (2 4.
= Fag Fen) =
EXAMPLE 3.75
_7 < +y O(u,v)
Ifu=73andv= fd( ok
Solution. We have
wwtfﬁa_—§£
T lov o av| T 2
8(x,y) I g_y %7 2)’7 %
Yoy y oy
2x3 2x 28 2x
EXAMPLE 3.76
Ifu= f‘j’y and v =tan 'x+tan~ !y, find ggz;;
Solution. We have
du_ (1=xp) = (x+y) (=) _1-xy+xy+)°
Ox (1)’ (1-x)’
147
(1w
ou (1 —xwp) = (x+y)(=x) 1-xp+x"+xp
Oy (1—xp)? (1—xp)°
_ 1 + 2
(1—xp)*
ov 1 1
— = nd — =
Ox 1+x? oy 142
Therefore,
4+ 142
Ou,y) _ (-0 (=07 | = L B—Y
d(x,y T 137 (1—-xy) (1_3‘)’)
EXAMPLE 3.77

Ifu=2xy, v=x*—y* x=rcosl), andy=rsin0, find
(u,v)
o(r,0)

3.35

Partial Differentiation

Solution. We have

Ou,v) Ou,v) 9(x,y)

a(r,0) — d(x,y) d(r,0)
Ou Oul|ox ox
ox Oy or 00
T o ||y oy
ox 0Oy or 90
2y 2x ||cos0
2x —2y||sinf rcosf

—4(% +x)r = -4,

—rsin 0 ’

3.15  NECESSARY AND SUFFICIENT CONDITIONS FOR
JACOBIAN TO VANISH

The following two theorems, stated without proof,
provide necessary and sufficient condition for the
Jacobian to vanish.

Theorem 3.9. If uy, uy,..., u, are n-differentiable
functions of the n-independent variables x;, x5,. . ., X,
and there exists an identical, differentiable functional
relation ¢(uy, u, ,. . ., u,) =0, which does not involve

x; explicitly, then the Jacobian g((" 1 ””; vanishes

identically provided that ¢ as a functlon of the u; has
no stationary values in the domain considered.

Theorem 3.10. If u,, u>,. . ., u, are n functions of the
n variables x1, X2, . -,X,;, SaY, Uy = fr (X1,X2,- . -, X5),
m=1,2,...n and lf% = 0, then if all the
differential coefficients are continuous, there exists
a functional relation connecting some or all of the

variables and which is independent of x, x»,. . ., X,,.

EXAMPLE 3.78

fu=x+2y+z v=x — 3}—}—32 and w=2xy —
xz+4yz — 22, show that 2 ;2) =0 and find a
relation between u, v, and W

Solution. We have

Qu Qu Qu
ox Jy 0Oz
a(U,V7W) _lov av ov

Blx,y,z) |2

dw dw Ow

ox dy Oz
1 2 1
=| 1 —2 3
2y—z 2x+4z —x+4y—4z
1 0 0
=| 1 —4 2 =0.

2y—z 2x+6z—4y —x—2y—3z
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Hence, a relation between u, v, and w exists. Now,
u+v=2xx+4z=2(x+2z)

u—v=4y —2z=2(12y —z)
w=x(2y—z)+2z(2y — z)

= (x+22)(2y—2) =
Therefore,

(u+v)(u—v).

L

dw=(u+v)(u—v)
is the required relation connecting u, v, and w.

EXAMPLE 3.79
If £(0) = 0 and /' (x) = 17, show that

£0)+/() =f(f_”).

Xy
Solution. Suppose that

x+y
= dv= .
u=f() +/ () and v =2
Then,

u u ; ;

O(u,v) g—x g—y T+ T+)7?

O(x ): o ov| T |17 w2 | =0

Y ox dy (1—x)®  (1-xp)?

Therefore, u and v are connected by a functional
relation. Let u = ¢ (v), that is,

16400 =0 (12 ).
Putting y =0, we get
J(x)+7(0) =¢(x) or f(x)=¢(x), sincef(0) =0.

Hence,

1) +1() =f<1xjxyy>

3.16  DIFFERENTIATION UNDER THE INTEGRAL SIGN

In the following theorem of Leibnitz, we shall show
that under suitable conditions, the derivative of the
integral and the integral of the derivative are
equal. The result is useful to determine the value
of a definite integral by differentiating the integrand
with respect to a quantity of which the limits of inte-
gration are independent.

Theorem 3.11. (Leibnitz’s Rule): Let f(x,) and
fx (x,a) be continuous functions of x and «. Then,

g [ / e a)dx} - / e

where the limits a and b are independent of o.

= jf(x7 o)dx. Then

a

b
F(oc+6oc):/f(x,o¢+6oc)dx

Proof: Let F(o)

and so,

F(o+ éo) —

/[f x, 00+ 6or)
—f(x,o)]dx. (1)

But by Lagrange’s mean value theorem, we have

—f(d)zéaﬁf(x,oc+06oc),0<0< 1.

S (o + o) %

Hence, (1) reduces to

b
Flat 6;; — Fla) = /%f(x, o + Béo)dx

a

Therefore,
b

— Fo) = /%f(x, o)dx

a

F(o+ 60)
du—0 oo

or

b b
& r(eg) = [ [ a)dx] = [ 5 rtxsas

Remark 3.3. If the limits of integration a and b are not
independent of o, then

¢ [ / e a)dx] - [ Sl

db da
+%f( ,O() _%f(aﬂx)
EXAMPLE 3.80
Show that
7 tan~! ax
_— >
/ (1—|—x2) log( a), a>0
0
Solution. Let
a tan Lax
Fla) = /x(l +x2)d
0



Then by Leibnitz’s Rule,

d /Ootan"axd
da|) x(1+x2) *
0
_ [ 0 [tan” Vax dx
da |x(1+x2)
1 1

xdx

x(14+x2) "1 + a’x?

dx
(1 4+x2)(1 + a?x?)

Il
0\8 0\8 0\8

o0
o / L@,
Tl —a? 14+x2 14 ax? o
0

(by partial fractions)

o]

1 fran~" | a? dx
=_——[tan x| —
1—d? O 1-at) 1+ax?

R 1/ dx
C2(1—a?) 1-a)] x+4%
0
1
I

(=1

[o.¢]
™ 1 X
:2(1—a2)_1—a2' [tan EL
o ™ a e
2(l—a?) 1-a22
i i
T R TIETIR

Integrating both sides with respect to a, we get
9

tan~! ax T
@ = [ =Tlog(1+a) e (1)
0
Also F(0) = 0. Therefore, (1) yields 0 = Zlog 1 + ¢
and so, ¢ =0. Hence,
o0

tan~! ax

—d
/x(1+x2) *
0

EXAMPLE 3.81

= glog(l +a).

1
Evaluate | ’l‘:);dx, o > 0using differentiation under

the integral sign.

3.37

Partial Differentiation

Solution. Let F(a) = Ldx. Then by Leibnitz’s

O%,_.

logx
Rule,
1 1
d x* =1 _/ o [x* p
do logx T ) o logx *
0 0
1
=
= x* log xdx
log x
0
| at1 7! 1
:/x“dx: al = .
a+1], 1+«
0

Integrating with respect to «, we get
1
x*—1

F(o) = dx

=log(l+a)+c(a C(l)nstant of integration)

But when « =0, F(0) = [0 dx = 0. Therefore,
0=logl +c=c. Hence, ©

1
_ /x°c —1
/) logx
EXAMPLE 3.82

Evaluate the integral
[o.¢]

__sinox
e dx.
X

0

dx =log(1 + a).

Solution. We cannot compute this integral directly
because the anti-derivative of the function e™ %
is not expressible in terms of elementary functions.
So we use Leibnitz’s Rule to evaluate it. Let

F(a) :/e’x.smwcdx.
x

0
Then by Leibnitz’s Rule, we have

d d oofxsinoc
EF(OC)—E /e P dx

0

ro _, sinox
/a[e . }dx
0

o0
/e —cos ox.x dx
0

oo

1
= - d = .
/e cos ox dx 52
0
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Integrating, we get

F(a) =tan "o +c. (1)
But,
_,sin Ox r
F(O)z/ex . dx:/de:O.
0 0

Therefore, (1) yields

0=tan ' 0+cand so, ¢ =0.
Hence,
F(o) = / e M e — tan
0
EXAMPLE 3. 83
Evaluate f bgl%dx and hence, show that
1
[HEE dr = Flog2.

Solution. We note that the limits of integration are
not independent of the parameter a. Therefore, the
formula mentioned in Remark after Theorem 3.11 is
applicable. Let

Fla) = /de.

1 + x2
0
Then,
d | [log(l
d /Og( Jrax)dx
da 1 +x2

log(1 + ax) log(1+a%) d
/3a[ 14 x? }d)ﬂ_ 1 +a? %(a)

_ log(1+4.0) iO

1+0 'da()
log(1 +d?)
d.
/ +x2 )(1 + ax) v 1+a2
0
B 1 /a —a +x+a dr
S 14a2 l+ax 14x2

0

N log(1 +d?)

T (by partial fractions)
a

1 1
“Tra {— log(1 + ax) —&-Elog(l +x%)

log(1 + a?)
1+ a2

a
+atan™ 1x] +
0

:TIaZ —;log(l+a2)+atanla]
log(1 + a?)
1+ a2
- llog(l—|—az)—|—atan_la].
1+a? |2

Integrating with respect to a, we get

Fla) = /de

1 +x2

0
= %/log(l +a%)

atan”!a
—+ ————da+c
14+ a2

1
=3 {log(l +d*)tan"'a

2
—/raaztanflada

/atanla
+ ——da+c
1+ a2

1
= Elog(l +a*)tan'a +c.
Substituting a =0, we have F(0) =0. Therefore,

1
0 :Elogl tan~!' 0 + ¢ and so, ¢ = 0.

Hence,
F(a) = /”de —llo (14+a*)tan'a
B 1+ x? 2% '
0
Substituting a = 1, we get
1
log(1 +x) T
——dx =—log?2.
/ T+ 788
0
EXAMPLE 3.84
Prove that
5
/ sin 0 cos ™! (cos o cosec 0)d0 = g(l —cosa).

T _
5 —o



Solution. Here the limits involve the parameter o. Let

iy
2

F(o) = / sin 0 cos ! (cos o cosec 0)d0.

5 -
Then,
d
—I|F
< ()
; 0
= / P [sin fcos™! (cos o cosec 0)]|dO
T
d_ (E) [sm cos” (cos o cosec 5)}
d
- (g — ) [sm (— — oc) cos™!
T
(cos o cosec (5 — d))}
B j sin od 6 +sin ([ B oc)
J V1 —cos? o cosec? 0 2
S—o
x cos”! [cos o cosec (g — OC)}
) . 0
= &dﬂ—kcosacos’l(l)
S Vsin?0 — cos?a
2
sin o .
sin o

dt taking cosf = ¢

Vsin? o — 2

7[ ) 71( t )}sinui,ﬁ'

= |sinosin_ (—— = —sina.
sina/ 1o 2

Integrating with respect to o, we get

F(o) = —gcosoc +c.
But F(0) =0, therefore,

0— 7T+ _7T
= b CO}"C—Z.

Hence,
m T T
F(a) = _ECOSOH—E_E“ — cos .
EXAMPI.E 3.85
If y= f f(¢) sin[k(x — t)]dt show that it satisfies

the dlfferentlal equation ¢ dxl I+ Ky = kf (x).

3.39

Partial Differentiation

Solution. We have
:/}mgmmx—mm.

The upper limit in this integral involves the para-
meter x. So, using Leibnitz’s Rule, we have

/ Ox SlIl

+ £ (x) sinfk(x — x)]

~/ O sinltl =0 2.0
/kf( ) cos[k(x — ¢)]dt.
0

Using once more the Leibnitz’s Rule, we get

X

(x —t)]dt

2= [ 2 wrcostets ~ ola
ikﬂ )cosfik(r— )] 5 ()
~ K7 (0) coslk(x — 0)) - (0)
:_y/ﬂgmﬁufmm+vw
= sz;+ kf (x).
Hence,
Z—zz + Iy = kf (x).
EXAMPLE 3.86

By successive use of Leibnitz’s Rule to f x"dx,
1 0
evaluate [x"(logx)"dx.
0

Solution. We have

o mHl

Therefore, using Leibnitz’s Rule, we get

1
d (1 o
dm<m+1)/8m(x Jabx
0
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1
1 \2
_(m—H> :/x’” log xdx.
0

Applying again the Leibnitz’s Rule, we get

or

1
a{ -1 o .
% (W) :/%(X logx)dx
0
1

(=D(=2) 2
~——— = [ xX"(logx)“dx.
(m+1)° 0/

Repeated use of Leibnitz’s Rule yields
1

or

(_1)(_2)(_3) _ /xm(logx)3dx

0

3.17  APPROXIMATION OF ERRORS

In numerical computation, the quantity [True value —
Approximate Value] is called the error.

We come across the following types of errors

in numerical computation.

1.

Inherent Error (initial error). Inherent error is
the quantity which is already present in the
statement (data) of the problem before its
solution. This type of error arises due to the
use of approximate value in the given data
because there are limitations of the mathe-
matical tables and calculators. This type of
error can also be there due to mistakes by
human. For example, some one can write, by
mistake, 67 instead of 76. The error in this
case is called transposing error.

Round — off Error. This error arises due to
rounding off the numbers during computation

and occur due to the limitation of computing
aids. However, this type of error can be
minimized by

(i) Avoiding the subtraction of nearly equal
numbers or division by a small number.

(i) Retaining at least one more significant
figure at each step of calculation.

Truncation Error. If is the error caused by
using approximate formulas during compu-
tation such as the one that arise when a
function f(x) is evaluated from an infinite
series for x after truncating it at certain stage.

For example, we will see that in
Newton — Raphson Method for finding the
roots of an equation, if x is the true value of
the root of /(x) = 0 and x( and % are approx-
imate value and correction respectively, then
by Taylor’s Theorem,

Sf(xo +h) =f(x0) + hf ' (x0)
2
For ") 4o+ =0,

To find the correction /4, we truncate the series
just after first derivative. Therefore some error
occurs due to this truncation.

Absolute Error. If x is the true value of a
quantity and x is the approximate value, then
|x — x| is called the absolute error.

Relative Error. If x is the true value of a
quantity and x, is the approximate value, then
(x;"o) is called the relative error.

Percentage Error. If x is the true value of
quantity and x is the approximate value, then
(%) x 100 is called the percentage error.
Thus, percentage error is 100 times the rela-
tive error.

3.18  GENERAL FORMULA FOR ERRORS

Let

s n) (1)

u=f(u, u,...

be a function of u;, uy,...,u, which are subject

to the errors Auy, Auy, ..

., Au, respectively.



Let Au be the error in u caused by the errors
Auy, Auy, ..., Au, in uy, up,. .., u, respectively.
Then
u+ Au=f(ug + Auy, uy + Auy, ... ,uy,
+ Auy,) (2)

Expanding the right hand side of (2) by
Taylor’s Theorem for a function of several vari-
ables, we have

u+ Au=f(uy,ua,...,u,)

0 0
<Au1 a—l +--+ Aun aun) f

<Au1 i+

0
o +Au,,a >f+

Since the errors are relatively small, we neglect the
squares, product and higher powers and have

u+ Au=f(uy,uy, ... u,)

(Auli—k

0
. +Auna—un)f G)

Subtracting (1) from (3), we have

/AN o
A GT Ay - A
u= 81 1+82 Uy + +aun Uy,
or
Ou ou Ou
Al/l —8—M1Au] +a—uzAu2++a—unAun,

which is known as general formula for error. We
note that the right hand side is simply the total
derivative of the function u.

For a relative error E, of the function u, we have

Au

E =~

u
oudu  ovdw | oudu,
T Ouy u Ou, u Ou, u

Partial Differentiation 3.41

EXAMPLE 3.87

2 .
If u= 5)2‘—{ and error in x,y,z are 0.001, compute
the relative maximum error (E,),., in u when
x=y=z=1

5x?

Solution. We have u = 25-. Therefore

@_i @_IOxy %__15)@/2
ox 20y B 0z z*
and so

10xy 15x)?
— Ay - i Az

52
Au:%quL
z

But it is given that A x = Ay = A z=0.001 and
x =y =z = 1. Therefore

10xy
(Au)max ~ ‘ ‘ A ’
o
= 5(0.001) + 10(0.001) + 15(0.001)
= 0.03.

Thus the relative maximum error (E,),.. Iis
given by

A : :
(Er)max = (Bt)nax 003 _ Osﬁ = 0.006.

u u

EXAMPLE 3.88

The diameter and altitude of a can in the shape of
a right circular cylinder are measured as 4 cm and
6 cm respectively. The possible error in each mea-
surement is 0.1 cm. Find approximately the maxi-
mum possible error in the values computed for the
volume and the lateral surface.

Solution. If x and y denote the diameter and the
height of the can, then volume of the can is given by
V =Zx?y and so

o w and o
o 27 8y74x
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Therefore the error formula yields

V

m
Ox Oy 2 (o)

+§(x2Ay).

Putting x =4,y =6, Ax = Ay = 0.1, we get

AV = (1.2)7 + (0.4)7 = 1.6 T cm’.

Further, the lateral surface is given by S = mxy
and so

§— and §— X
ax ay_ﬁ'

Therefore

AS = m(yAx + xAy).
Putting the values of x, y, Ax and Ay, we get

AS = 7(0.6 +0.4) = 7 cm?.

EXAMPLE 3.89

The height 4 and the semi-vertical angle o of a cone
are measured and from them the total area A of the
cone (including the base) is calculated. If 4 and o
are in error by small quantities 64 and 6o respec-
tively, find corresponding error in the area. Show
further that o = Z, an error of 1 percent in 4 will be
approximately compensated by an error of —0.33
degree in a.

Solution. Radius of the base = » = A tan «. Further,
slant height = / = A sec a.. Therefore

Total area = 12 +7wrl=7mr(r+1)

=mh tana(h tan o + h seca)

= 7h?(tan o + sec o tan o).

Then the error in 4 is given by

04 04
0A 7%6h+8f§

=27 h(tan® o+ seco tana)§ h

+ wh*(2tan asec’ o + sec’ o + sec o tan’ o) 8 o

For the second part of the question,

T h
OC—E, Oh m
Therefore
1 2| h
A=27h|-+Z| —
6 7T}’[3+3} 100
2 (4 8 2
b hz( () )a«
A3 AT
Tk 5
=< + 237 hS (1)

But after compensation 64 = 0. Therefore (1)
implies

57.3°
173.2

=—0.33°

EXAMPLE 3.90

The time 7 of a complete oscillation of a simple
pendulum of length L is governed by the equation
T =2m\/L/g, g is constant, find the approximate
error in the calculated value of T corresponding to
the error of 2% in the value of L.

T=2r l
g

Taking logarithm, we get

Solution. We have

1 1
logT:log27r+§log l—Elogg (1)

Differentiating (1), we get

1 161
T2 2%

or

0T 100 = L2« 100 - 128 100
T 207 2 g

:%[2—0]:1.

Hence the approximate error is 1%.



3.19  MISCELLANEOUS EXAMPLES
EXAMPLE 3.91

If z=f(x,y) and u, v are two variables such that
u = Ix +my,v = Iy — mx. Prove that

8%z Oz
+ PR

Pz 0%z
2 RN —_
R el G )[8u2+8v2}

Solution. We have

u=Ik+my, v=Iy—mx,
Ou_, ov__,

ox 7 Ox

ou ov

8—.}}—1’}’17 a—y—l

Therefore

0 _ oz ou 0z ov_jox o
Ox  Ou Ox 9Iv Ox  Ou m@v

ooz ou oz 0w ox0x
dy Ou Oy Ov Oy  Ou v

From (1) and (2), we have

J ; 2 0

Ox Ou ov
and

0_, 0.0

ay "ou'd
Therefore

Pz _0(02\_(,0 DN\ (02 0
A2 Ox\ox) \ Ou m@v ou m@v

_ 9 (02 0z\ O (,0z 0z
" ou\ du m@v mav Ou mav

= 126_22_ lma_2z_ m8_22+m26_2z
T ou? Oudv Ovou ov?
0z 0z 0%z
_poz 2072
=1 ou? tm M2 2Um Oudv (3)
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and

Fo_ 0 (0N (00 (, 0 0
o oy\oy) Ou  Ov 8u v

7m8u mau ov ov 8u ov

Pz 9% Pz P
_ 27 C 2
=M 2 T ey +lm8v3u lavz
oz Pz 9z
2072 2
=P s (4)

Adding (3) and (4), we get

822 0%z 2 0z Pz
a2t =) gat o)
EXAMPLE 3.92
@) If f(x,y) = (1 — 2 xy + »*) "'/, show that

B} . o.,0
%|0-5 v 5] -

(b) If V =f(2x —3y,3y — 4z,4z — 2x), compute
the value of 6V + 4V, +3V..
Solution. (a) We have, f = (1 — 2xy +)2)” 2. Then

o _ 1., 23
o 2(1 2xy +3°) 3 (=2y)
— (1 =29 +37)72,
9% 3 s
S =220 07 )
= 37(1 =20 +)7) 2.
Therefore
0 of
Ox {(1 )8x]
0 20 Of 32f

0, 0*
= (72x)6f£+ (1 fx2)£:

= 201 =2 +%) 2
F3(1—2pA(1 =2 +5) 5 (1)
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Similarly differentiating partially with respect to y,
we get

8f 2\ —3
R =(x—=y)(1 -2+,
2 3
8_;:: —(1 =23y +)")7
F3(x— )21 —2xp +)2) 7}
Therefore
o] o 62f
-~ 2% 2
dy [y 6y] (y) Y o2

= zy<x—y><1 - zxy+y2>*%
(=2 +)7)
+3( =) (1= 3xp+7) 7

=y(1 -2y +)7) 2 [By(x — )
x (1 —2xy +yz)71 +(2x=3y)] (2)

Adding (1) and (2), we get the required result.
(b) We have

V =1(2x — 3y, 3y — 4z, 4z — 2x).
Let

r=2x—3y, s=3y—4zand t =4z — 2x.
Then

V =F(rs,t).
Further,
ov_ov or ovas ov or
Ox Or Ox  0OsOx Ot Ox
ov ov ov v
=25 +0-27 =20 -2 (1)
ov_ov o ovos ov o
dy Or Oy Osdy Ot Oy
ov ov oV 1514
and
ov_ov or avas v o
Oz Or 9z 9Jsdz Ot Oz
_0— a4 4OV

Os ot Os ot

The relations (1), (2) and (3) yields

6V, +4V, +3V.

oV _ov oV _ov
_6< or 28t)+4<38+38)

3(-a 4% o

EXAMPLE 3.93
(@) If u=sin™! (%‘iﬁé ) prove that x 9%+ y 3t 5 =
tan u.

(b) If u = x> + > + 23 + 3xyz, show that

x@—i— %—&—z@—fm
Ox yay oz

©Ifu= log( yz) prove that x 2 +ya” =

Solution. (a) We have

Thus

and so z is a homogeneous function of degree 1 in x
and y. Hence, by Euler’s Theorem, we have

0z 0z
x8—+ B =z. (1)
But
O e 0o
8x—cosu8x a 8y—cosu8y.

Hence (1) reduces to

Ou n du .
xXcosu—+ycosu— =sinu
ax Y Jdy
or

X—+ @—tanu
Ox yay_ '



(b) We have

u=x>+y"+2 +3xz
Replacing x by tx, y by ty and z by #z, we get

u(tx, ty, tz) = £x° + £y + £2° + 3txtytz

= t3(x3 +y+2+ 3xyz) = t3u(x,y,z).

Hence u(x,y,z) is a homogeneous function of
degree 3 in u(x,y,z). Therefore, by Euler’s

Theorem,
Ou n u n u 3
X—+y—+z—=3u
5z Yoy %8
(c) We have
2.2
u=log (x ty >
X+y
Therefore
. 22
n x+y’

which is homogeneous function of degree 1 in x
and y. Therefore, by Euler’s Theorem, we have

or
x e Ou +ye" u_ e"
ox Y dy
or
x% + @ =1
ox Y dy
EXAMPLE 3.94

Find the stationary points of x> — xy + > — 2x + y.
Solution. We have f(x,y) = x> — xy + )% — 2x + y,

fi=2x—y-2, fi=—x+2p+1.

Therefore the stationary points are given by

f=H=0
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and so

2x—y—2=0 and —x+y+1=0.

Solving these equations, we get the stationary point

EXAMPLE 3.95

The temperature u(x,y,z) at any point in space is
u = 400xyz>. Find the highest temperature on sur-
face of the sphere x> + )% + 2> = 1.

Solution. We have

u (x,y,2) = 400 xyz> = 400 xy (1 —* — x?)
= 400 xy — 400 x°* — 400 x’y,

which is a function of two variables x and y. Then

u, = 400y — 400" — 1200x7y,
u, = 400x — 1200xy* — 400x°.

For extreme points, we must have u, = u, = 0.
Thus 1 —3* —3x> =0and 1 — 3)? — x> = 0.
Solving these equations, we get x = & %, y=4=+ %
Thus we have four stationary points (5,%),
(=1,-1),(,—-Yand(-1,}). Also
2072\ 2 22)

Uy = —2400xy, 1, = 400 — 1200y* — 1200x>

uy, = —2400xy.
At (% ,%) and (— % ,— %), rt — s* is positive and r is
negative. Therefore maximum exist at these points.

Further, x:%’y:%’givezz m:

% . Therefore

masu e ~a0(2) (1) (1) <.

EXAMPLE 3.96

A flat circular plate is heated so that the temperature
at any point (x,y) is u(x,y) = x> + 2> — x. Find
the coldest point on the plate.

Solution. We have u (x,y) = x* + 2)* — x, so that

uy, =2x—1, u,=4y.
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Then wu,=u,=0 imply x=3,y=0. Also
Uye =2,uy, =4 and uy, =0. Then rt—s>=8(+ve)
and r=2. Therefore u is minimum at (% , 0) .

Therefore the coldest point is (%,0).

EXAMPLE 3.97
Find the minimum value of x>+ )? 4+ 2> when
xX+y+z=3a.

Solution. Special case of Example 3.57 (putting
a =>b = c =1 and p = 3a in that example).

EXAMPLE 3.98
(a) If u = x + y and y = uv, find the Jacobian gE’L%

(b) Show that the functions u = x> 4 )? + 22,
v=x+y+z, w=yz-+zx + xy are not inde-
pendent of one another.

Solution. (a) We are given that u =x+y, y=uv.
Therefore

x=u—y=u—uv and y=uv.

Therefore
2
ox,y) |ou o ‘l—v —u
=0 o=
o(u,v) & o v u
=u(l —v)+uv=u.
(b) We have
u:x2+y2+22, vV=x+y+z
W = yz + zx + Xy.
Then
ou 0
% a_; % 2x 2y 2z
O(u,v,w) a o oo _| 1 1
Ox,y,z) | & @ %)
w ow  dw
Qv a_;v Qu z+y z+x x+y

=2x[(x +y) — (z+x) = 29[(x +»)
— (24 )] +2z[(z+x) — (z+¥)] =0.

Since Jacobian J(u, v, w) = 0, there exists a func-
tional relation connecting some or all of the vari-
ables x, y and z. Hence u, v, w are not independent.

EXAMPLE 3.99

(a) If x=-¢"cosv and y =¢e"sinv, show that
J-J =1

(b) Verify the chain rule for Jacobians if x = u,
y=utanv, z=w.

Solution. (a) We have

x=¢e"cosv, y=¢"sinv.
Then
d(x,y) g_f: % e'cosv —e'sinv
J= oy | T | g ‘
O(u,v) " e'sinv  ecosu

= cos?u+ e sin’v = .

One the other hand the given equations yield

x2+y2262u al’ld V:tan_lX.
X
Therefore
9 )
2 a—z = 2x which yields 8_Z - e%’
Ou . . Ou
262! o 2y which yields P eyj’
v R A 4 ov . X X
ax_x2+y2_62u’ ay_x2+y2_e2u'
Therefore
lea(uvv): exﬂ eyﬁ :2x2 2_};2:e_2uzi
I(x,y) —Zn S| e e g ol
Hence JJ' = 1.
(b) We are given thet
x:u,y:utanv, zZ=Ww (1)
Then
PG JE) BN T Y
Ou,v,w) g g %_vzv
Ju ov ow
1 0 0
= |tanv usec?v 0| =usec’v.
0 0 1



Also, from (1), we have

u=x, v:tan_IX and w=z.
X
Therefore
, O(u,v,w)
3(x,y,5)
ou Ou  Ou
E 0y 0z 1 0
— v v v || =X _x
“|ox oz a2hy? xiy?
ow  dw  Iw
% 9y oz 0 0
X 1
~— 2 2 2
X< + i
Yot )]
1 . y
=————, since = =tanvy
u(1 + tan?v) u
1
Cusec?v’
Hence

J J' =1, which proves the chain rule.

EXAMPLE 3.100

. 00 _y2 _ ﬁ 00 42
Assuming [ y “dx =7, prove that Jo e
cos 2ax dx = ;e .

e
Solution. Let

o0
F(a) = / e cos2ax dx.
0

Then
F'(a) = / e — (cos 2ax)dx
a
0
o0
= / — 2xe™™ sin2ax dx
0
= [ sin2ax]{° — 2a / e cos 2ax dx
= —2aF(a).
Therefore
F/
@ _ 5,
F(a)

Partial Differentiation 3.47

Integrating, we get

2 2
logF(a) = —%: —a* +logc

or

or

. < 2 T
Putting @ = 0, we get c = F(0) = [ e dxz%.
Hence 0

F(a) = / e cos2ax dx = ge_“ .
0

EXERCISES

1. Letf: %2 — R be a continuous function. Define
¢: N2 — N by
S, ) if (x, ¥) # (0,0)
X, y) = ]
ot = {J ) L1 00y
Show that ¢ is not continuous at (0, 0).
Hint: ¢(x, y)=f(x, y)+1 for (0, 0) and so,
#(0, 0)=£(0, 0) + 1. Since fis continuous, it is

continuous at (0,0) also. So  lim f(x,y)=
| (x,y)l—>(0,0)
0,0). Then, lim x,y)= lim xX,p)=
1(0,0) (x_y)ﬂ(o,o)aﬁ( ¥) (X,yHomf( )

£(0, 0). Thus, ( %irr(lo O)qﬁ(x,y);éqﬁ(o,o). Hence,
x,y)—(0,

¢ is not continuous at (0, 0).

2. Show that f (x, y) =x*>+y — | is continuous at
(17 _2) 1

3. Prove that the function f(x,y) = (|xy|)* is not
differentiable at the point (0, 0) but that % and

g~—§ exist at the origin and have value zero.

Deduce that these two partial derivatives are
continuous except at the origin.
Hint: If £ (x, y) is differentiable at (0, 0), then

Af =f(hk) = h%+k§—};+£\/h2 + k2,



3.48

10.

11.

12.

13.
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where ¢ - 0as vVh? + k? — 0. Since f, =f,=0
at (0, 0), f(h,k) =0+ 0+ evh? + k? and so,

8—mPuth p cos 0 and k= p sin 6, so
that h?> + k> = p. Then, ¢ = \/|sin 0 cos 0]
0, which is

and so, lirr(l).s = /|sinfcos O] =
absurd. }fence, fis not differentiable at (0, 0).
If u =x¢(%) + w(2), prove that

, Pu 2u u
—— + 2xy 2 =0
R .
If u =x", show that 002 = ax‘gy o
Ifz =f( ) show thatxax—i—yay— 0.
Ifz= xxjg , show that

99\, 00
Ox Oy ox oy)

Ifu=(1-2xy +y2)7%, show that

0 Ou O [ ,0u]
o

Find the value of ;5 + b]_zd_z where @ x° + b°
¥ =2 =0,

Ans. -
If u:§+f—[+§, show that xa”—&—y(?y—&—
z%=0.
If u=¢" (x cos y—y sin y), show that

U + 1, = 0.

Find the envelope of a system of concentric-
and coaxial ellipses of constant area.

Hint: Area of the ellipse 2—2—&—;—2 =1 is 7wab,
given to be constant say equal to 7¢? and so,
Putting b = 2 in;—z—i—y—z =1,

=z =0. leferentlatmg partially

ab=c*orb = ’—2
we get 2 4 a7
with respect to a g1ves a=c<x Putting this
value of a in az +c"a2 =0, we get 2xy—c

which is the required equation of the envelope.
Find the envelope of the straight line £ + 7 = 1,
where a* + b* =%

Ans. /x4 /y = /c.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Show that the evolute of the rectangular
hyperbola xy = ¢? is
2 2
(x+) = (x =) = (4c)".
Ifu= log" +y , show that x %“ +ya” =
Hint: ¢ = xxjg (A homogeneous function of
degree 3 in x and y).
IR | x+y
If u = sin <ﬂ+ﬁ>’ show that
8u +y Ou can
= —tanu.
o 8 2
Hint: sin u1 = f - \/_ is a homogeneous function
of degree 3.
_ —1 X+y
If u = sin <\/2+\/})’ show that
, %u +2 *u N ,%u  —sinucos2u
X ==+ 2xy— — =
a2 Voaxay Y 92T dcosiu
If u = tan~! ( ) show that
2 82 82
8 5 +2 e g _|_yza_y‘2‘: — sin 2usin® u.
Ifu=sin"! (Zxﬁ)yii), show that
814 8u Ou 2t
+z—=2tanu.
ey e
— =1 _xty
If u = cos Weaay show that
6u +y Ou .
= ——cotu.
¥ o 8 2
If u=rtan'(}), where x=e'—¢ ' and
y=eé'+e ', find %.
Ans. +5 ol
If z=e™ "% f (ax— by), show that
0. 0z
baz—i-aay—Eabz
d
IfV1—x2+/1—-»* =a(x—y), find %
Ans. \/tﬁ.
If y* — 3ax? +x*> =0, show that
d’y  2a°x* —0
dx2 y4 -
If x=r cosf and y =r sin 0, show that

Gr, #r _1[ (V. (or)’
ox2 yr  r|\0x dy) |



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

If x+y=2é cos 0] and
x —y =2v/—1 €’ sin ¢, show that
o’V WV_4 o’V
e + W = 4xy ax—ﬁy .
Expand ¢" log(1 +y) in a Taylor’s series in the
neighborhood of the point (0, 0).
2 2 2
Ans.y+xy -S4+ -S4 52—
Expand " cos y in powers of x and y up to third-
degree terms.

Ans. | +x+1(2 =) +i(* =302) +... .
Show that for 0 < 0 < 1, sin x sin y=xy—%
[(* +3x%) cos 0 x sin 0 y+ (3° 4 3x°y) sin 0 x
cos 0 y].

Hint: Use Maclaurin’s theorem.
If the perimeter of a triangle is constant, show
that its area is maximum when the triangle is
equilateral.
Hint: 2s=a+b+c c=2s—a—b and
A=/s(s—a)(s—b)(s—c)
= /s(s—a)(s—b)(a+b—ys)
Takef(a, b)=A’=s(s—a) (s—b) (a+b—ys)
and find f, and f; etc, and proceed.
Find the points (x, y), where the function xy
(1 —x —y) is either maximum or minimum.
Ans. (3,1).
Find a point within a triangle such that the sum
of the squares of its distances from the three
vertices is the minimum.
Ans, (obgtn MER2En) - (centroid  of the
triangle).
Find the point on the plane 2x+4 3y —z=12
that is nearest to the origin.
Hint: Distance form the origin is

l:v?+ﬁ+m+®—uf

Put f(x, y)=x>+y*+@x+3y—12)> and
proceed.

12 18 -6
, _ Ans. (7,7,5)-
Discuss the maxima and minima of

1 1
u :2sin§(x+y)cos§(x—y) + cos(x + ).

Find the extreme values of 2 (x* — y?) —x* + ™.
Ans. Max at ( £1,0) and Min at.(0, £ 1).

36.

37.

38.

39.

40.

41.

42.

43.
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Find the maximum value of x™ )" Z subject to
the condition x+y+z=a.

Hint: Use Lagrange’s method of undetermined
multipliers.

Ans. x = £a

m-+n+p*

ma p— ha J—
m+n+p’ Y= m+n+p? and z =

mmnnpm+n+p

(m +n +p)m+n+p :
Divide 24 into three parts such that the con-
tinued product of the first, square of the second,
and the cube of the third part may be maximum.
Hint: Find the Max of x)°z° subject to the
condition x +y +z=24. Also can be obtained
from Exercise 36 by putting a =24, m=1,
n=2,and p=3.
The temperature T at any point (x, y, z) in space
is T'=400xyz>. Find the highest temperature on
the surface of the unit sphere x* +y* 4+ z* = 1.

Ans. 50.

Ifx=ccos u cosh vand y = ¢ sin u sinh v, show
that

Max. value =

1
=5 c*(cos 2u — cosh 2v).

Ifu=-2,v=-L_ and w = -Z, show that
y—z z—Xx z—y

O(u, v, w)

o(x,y,2)

If x=r cos 0, y=r sin 0, and z=7z, evaluate

O(xy2)
a(r,0,z)

=0.

o ;&ns. r.
— _ utv : u,v
If x=uv and y = %= determine o)
Ans.
The roots of the equation in A
A=xP+0U-»>+0-27=0
are u, v, and w. Show that
Ou,v,w) _ , =2)(z=x)(x~y)
o(x,y,z) (v=w)w—u)(u—v)
Hint: The equation simplifies to
P (xy+)+ PP+

(u—v)
duy

—%ﬁ+ﬁ+£):0
Letx+y+z=¢ x> +)y* + 22 =n, and x> +)°
+ 22=¢ Then u4+v+w=¢, w+vw+uw
=1y, and uvw = £. Find ggz;; and géff‘i)) Then
Ouy,w) _ O(uyw) 9(EnL)

Oxyz) = 0EnQ) " Oxy.z)
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U=x+y—z V=x—-y+z and
W=x*+y*+2z*—2yz, show that U, V and W
are connected by a functional relation, and find
that functional relation.

Hint: Show that % = 0. Further,

U+ V=2, U= V=2(y—z). Then (U+ V)* +
(U= V)P =4(x*+)* + 22— 2yz) = 4W.
If u=x>—2y, v=x+y+z and w=x—2y

. A(u,v,w)
=x—2y+ 3z, find Arz)

, Ans. 10x — 2.
Evaluate [log(1 + acosx)dx using Leibnitz’s
Rule. 0

Ans. wlog(%+%vl —az).

Show that f Wu’x = 7o

Showthatf (1— e‘“")dx log(1+a),(a>-1).

leferentlatlng f

-1 lx
oo =gtan” g under the

integral sign, ﬁnd the value of f

2+ 2)

50.

I

Evaluate [

dx
0 (a? cos? x+b? sin® x)*’

Hint: Putting tan x =¢, we get

2

/ dx o
a2 cos?x + b2sin’x  2ab’
0

Use Leibnitz’s Rule, first differentiating
with respect to @ and then with respect to 5. We
shall get

2

/ cos” x dx 0 d
= an
) (a® cos? x + B2 sin’x)*  4a’h

iy
2

/ sin” x dx T
/ (a® cos?x + b2 sin’x)>  4ab>’

Adding these two results, we get the value

m(a?+b)

of the given integral as =55










4 Matrices

There are many situations in pure and applied
mathematics, theory of electrical circuits, aerody-
namics, nuclear physics, and astronomy in which
we have to deal with algebraic structures and
rectangular array of numbers or functions. These
arrays will be called matrices. The aim of this chap-
ter is to study algebra of matrices along with its
application to solve system of linear equations.

4.1  CONCEPTS OF GROUP, RING, FIELD AND
VECTOR SPACE

Definition 4.1 Let S be a non-empty set. Then a
mapping f: S X S — S'is called a binary operation in S.

A non-empty set along with one or more binary
operations defined on it is called an algebraic
structure.

Definition 4.2 A non-empty set G together with a
binary operation /: G x G — G defined on it and
denoted by * is called a group if the following
axioms are satisfied:

(G1) Associativity: For a, b, ¢, € G,
(axb)xc=ax(bx*c)
(G,) Existence of Identity: There exists an element e in
G such that for all a € G,
axe=exa=a
(Gs) Existence of Inverse Element: For each element
a € G, there exists an element b € G, such that
axb=bxa=ce.

Definition 4.3 Let G be a group. If for every pair a,

bea,
axb=>bxa,

then G is called a commutative (or abelian) group.
If a *x b # b * a, then G will be called non-
abelian or non-commutative group.

Definition 4.4 The number of elements in a group G is
called the order of the group G and is denoted by O
(G). A group having a finite number of elements is
called a finite group.

EXAMPLE 4.1
Let Z be the set of all integers and let f: Z X Z — Z
defined by f (a, b)=a * b=a+Db be binary
operation in Z. Then
(i) a+(B+c)=(@+b)+cforalla, b, ce”
(ii)) a+0=0+a=aforallaeZ and so 0 acts
as an additive identity.

(iii)) a+(—a)=(—a)+a=0 foraeZ and so
(— a) is the inverse of a.

(iv) a+b=b+a,a, beZ (Commutativity).

Hence, (Z, +) is an infinite additive abelian group.

EXAMPLE 4.2

The set of all integers Z cannot be a group under
multiplication operation f(a, b) = ab. In fact, =1 are
the only two elements in Z which have inverses.

EXAMPLE 4.3

The set of even integers [0, £2, +4, ...] is an additive
abelian group under addition.

EXAMPLE 4.4

The set of vectors V form an additive abelian group
under addition.

EXAMPLE 4.5

We shall note in article 13.10 on matrices that the set
of all m x n matrices form an additive abelian

group.



4.4 Engineering Mathematics-1

EXAMPLE 4.6

The set {—1, 1} is a multiplicative abelian group of
order 2.

Definition 4.5 Let S be a set with binary operation
f(m, n)=mn, then an element a € S is called
(1) Left cancellative if
ax=ay=x=yforall x,y €S,
(ii) Right cancellative if
xa=ya=x=yforall x,y €S.

If any element « is both left- and right cancellative,
then it is called cancellative (or regular). If every
element of a set S is regular, then we say that can-
cellation law holds in S.

Theorem 4.1 If G is a group under the binary opera-

tion f'(ab) = a x b=ab then for a, b, c € G,
ab =ac = b =c (left cancellation law)

ba =ca=b=c (right cancellation law)

(Thus cancellation law holds in a group).

Proof: Since G is a group and a € G, there exists an
element ¢ € G such that ac = ca = e. Therefore,

ab = ac = c(ab) = c(ac)
= (ca)b = c(ac)
= eb =ce
=b=c.
Similarly, we can show that
ba=ca=b=c.

Theorem 4.2 Let G be a group. Then,

(a) The idetity element of G is unique.
(b) Every a € G has a unique inverse.
(¢) For every a € G, (a’l)fl: a

(d) Foralla,be G

(ab)'=b""a7".

Proof: (a) Suppose that there are two identity ele-
ments e and e’ in G. Then,

e’ = e since € is an identity element,

and
e¢ = € since e is an identity element.
Hence e=e’.
(b) Suppose that an arbitrary element a in G has two
inverses b and c¢. Then, ab=ba=e¢ and ac=ca=ce.
Therefore,
(ba)c =ec=c
and
b(ac) = be = b.
But, by associativity in G,
(ba)c = b(ac).
Hence b=c.
(c) Since G is a group, every element a € G has its
inverse ¢ '. Then, ¢ 'a = e. Now

a’! (afl)ﬂ: e=ala

By left cancellation law, it follows that (a~! )71: a.

(d) We have

(ab)(b'a") =a(bb™")a™"' = aea”!

Similarly
(b7'a"")(ab) = b7 (a 'a)b
=bleb=b"'b=e.
Thus
(ab)(b'a ") = (b"'a ") (ab) =e.

Hence, by the definition of inverse,

(ab)'=b""a".

Definition 4.6 A subset H of a group G is said to a
subgroup of G, if under the binary operation in G, H
itself forms a group.

Every group G has two trivial subgroups, G
itself and the identity group {e}.

The non-trivial subgroups of G are called
proper subgroups of G.

EXAMPLE 4.7

The additive group R of real numbers is a subgroup
of the additive group C of complex numbers.

Regarding subgroups, we have



Theorem 4.3 A non-empty subset H of a group G is a
subgroup of G if and only if

(i) a,be H=abecH,

(i) acH=a'cH.
Conditions (i) and (i) may be combined into a single
one and we have “A non-empty subset H of a group G is
a subgroup of G if and only if a, b €H = ab~' € H.”

Theorem 4.4 The intersection of two subgroups of a
group is again a subgroup of that group.

Definition 4.7 Let G and H be two groups with binary
operations ¢: GXxG — G and w: HxH — H,
respectively, then a mapping f: G — H is said to be a
group homomorphism if for all a, b € G,

f(¢(a,b)) = w(f(a), (b)) (1)

Thus if G is additive group and H is multiplicative
group, then (1) becomes

fla+b)=f(a). f(b).

If, in addition f is bijective, then f is called an
isomorphism.

EXAMPLE 4.8

Let Z be additive group of integers. Then the map-
ping f: Z — H, where H is the additive group of
even integers defined by f(a) =2a forallac Zis a
group homomorphism. In fact, for a, be Z

fla+b)=2(a+b)=2a+2b=f(a)+f(b).
Also
fla)=f(b) =2a=2b=a=0b,

and so f is one-one homomorphism (called
monomorphism).

Definition 4.8 Let G and H be two groups. If £ G — H
is a homomorphism and ey denotes the identity
element of H, then the subset

K={x:x€gG, f(x) =en}

of G is called the kernel of the homomorphism f.

Definition 4.9 A non-empty set R with two binary
operation ‘4’ and .’ is called a ring if the following
conditions are satisfied.
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(i) Associativity of ‘+': if a, b, c € R, then
a+(b+c)=(a+b)+c

(ii) Existence of Identity for ‘+': There exists an
element 0 in R such that

a+0=0+a=a forallaeRr

(iii)  Existence of inverse with respect to ‘+': To each
element a € R, there exists an element b € R
such that

a+b=b+a=0
(iv) Commutativity of ‘+": If @, b € R, then
a+b=>b+a
(v) Associativity of *.": If a, b, c € R, then
a-(b-c)=(a-b)-c
(vi) Distributivity of “+' over .": If @, b, c € R, then
a-(b+c)=a-b+a-c
(Left distributive law)
and
(a+b)-c=a-c+b-c
(Right distributive law)

Let R be aring, if there is an element 1 in R such that
a.l =1.a=aforevery a € R, then R is called a ring
with unit element.

If R is a ring such that a.b=b.a for every
a, b € R, then R is called commutative ring.

A ring R is said to be a ring without zero
divisors ifab=0=a=0o0r b=0.

EXAMPLE 4.9

We have seen that (Z, +) is an abelian group.
Further, if a, b, ¢ € Z then

a-b=0=a=0o0rb=0.

Hence Z is commutative ring with unity which is
without zero divisor.
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EXAMPLE 4.10

The set of even integers is a commutative ring but there
does not exist any element b satisfying b-a=a-b=a
for a € R, Hence, it is a ring without unity.

EXAMPLE 4.11

We shall see later on that the set of #n X n matrices
form a non-commutation ring with unity. This ring

is a ring with zero divisors. For example, if (1) 8
0

and {1

0 . .10 0
0] , then their product is {0 0]. But
none of the given matrix is zero.

Definition 4.10 A commutative ring with unity is
called an integral domain if it has no zero divisor.

For example, ring of integers is an integral
domain.

Definition 4.11 A ring R with unity is said to be a
division ring (or skew field) if every non-zero ele-
ment of R has a multiplicative inverse.

Definition 4.12 A commutative division ring is called
a field.

For example, the set of rational number Q
under addition and multiplication forms a field.
Similarly, R and C are also fields. Every field is an
integral domain but the converse is not true. For
example, the set of integers form an integral domain
but is not a field. An important result is that

“Every finite integral domain is a field.”

Definition 4.13 A subset S of ring R is called a subring
of R if S is a ring under the binary operations in R.
Thus, S will be a subring of R if

1) abeS =a-bes,

(i) a,beS=abes.
For example, the set of real numbers is a subring of
the ring of complex numbers.

Definition 4.14 A mappingf: R — R’ from the ring R
into the ring R’ is said to be a ring homomorphism if

(1) fla+b)y=f(a)+f(b),
(i) f(ab)=f(a). f(b),
for all a, b € R.

If, in addition, f is one-to-one and onto then f is
called ring isomorphism.

Definition 4.15 A non-empty set V is said to be a
Vector Space over the field F if
(i) V is an additive abelian group.

(i) If for every a € F, ve V, there is defined
an element av, called scalar multiple of «
and v, in V subject to

a(v+ ) = av + aw,
(04 B)v =av+ P,
Afv) = (@) v,
lv=v,
forall o, f € F, v, w€ V, where 1 represents the unit
elements of F under multiplication.
In the above definition, the elements of V are

called vectors whereas the elements of F are called
scalars.

EXAMPLE 4.12

Let V, = {(x, ): x, y € R} be a set of ordered pairs.
Define addition and scalar multiplication on V, by

(x,3) + (,)) = (x+x,y +)/),
and
a(x,y) = (ox, ap).

Then ¥, is an abelian group under addition opera-

tion defined earlier and
af(x, y) + (&, V)] = alx +, y+))
= (ox + o', oy + )

= (ox + o) + (o’ + /)
a(x, y) +alx, ),

(04 B)(x, ¥) = ((oe+ B)x, (o + B)y)
= (ox + fx, 0 + fy)
= (oox, o) + (B, By)
= a(x,y) + Blx,»),

a(B(x,)) = (aB) (x,),
L(x,y) = (x,p).

Hence, V; is a vector space over R. It is generally
denoted by R?.



Similarly, the set of n-tuples (xy, x5,..., x,) form
a vector space over R and is denoted by ¥, or R".

Definition 4.16 Let V be a vector space over the field
K and W be a subset of V. If W is a vector space
under the operations of V, then it is called a vector
subspace of V.

Thus, W will be a subspace of V if

(i) W is a subgroup of V,
(i) A€F,weWimply Awe W.

The conditions (i) and (ii) can be combined into a
single condition, namely, 4;, A, € F and wy, w, € W
1mply /l] wi + /12 Wy € w.

Definition 4.17 Let V be a vector space over a field F
and let v, v,, ...,v, € V. Then any element of the
form oyvi+on v, +...4 a, v,, o, €EF is called a
linear combination over F of vy, v,...v,

Definition 4.18 Let S be a non-empty subset of the
vector space V. Then the linear span of S, denoted
by L(S), is the set of all linear combinations of finite
sets of the elements of S.

Definition 4.19 Let V be a vector space over a field F.
Then vy, v,,...,v, €V are said to be linearly inde-
pendent over F if for scalars 1y, Ay, ..., 4, €F, Ajv;
+/le2 + ... +)v,,V,, =0 lmplleS i] = ;Q =...= /l,, =0.

Definition 4.20 Let V be a vector space. Then vy, vy,
..,V € V are called linearly dependent if there exist
Ay Aoy ..., A, €F, not all of them zero, such that
/l]V] + ;\.2\/2 +...+ ).,,Vn =0.
Thus, vy, vy, ..., v, are linearly dependent if
they are not linearly independent.

Definition 4.21 An infinite subset S of a vector space
V over a field F is said to be linearly independent if
every finite subset of S is linearly independent.

Theorem 4.5 L(S) is a subspace of V.

Proof: Let v, we L(S). Then
v=As1 + s+ ...+ sy,
w= :ultl + :u2t2 + ...+ :umt'm

where 1's and u's are scalars and s; and ¢, are in S.
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Therefore, for o, f € F, we have
av+ fw = a(lis1 + Aasa + ...+ Lusy)
+ Bt + .o ttm)
= (adi)s1 + (ada)s2 + ... + (ady)Sn
+ (Bt + -+ (Bt tm € L(S).
Hence L(S) is subspace of V.
Further, if S and T are subsets of a vector
space V, then
(i) SCcT=L(S)CL(T)
(i) L(SUT)=L(S)UL(T)
(1) L(L(S)) = L(S)

EXAMPLE 4.13
Letv; = (1, 0) and v, = (1, 0) be vectors in the vector
space R? = {(x,y): x,y € R}. If 1, /> €R, then
Avi +Aov, =0 = )q(l,()) + /12(0, 1) =0
= (41,0) + (0,42) =0
= (4,4)=0
= A=A =0.

Hence, vy, v, are linearly independent.

EXAMPLE 4.14
Letvi=(1,0,1),v(0,1,0)and vs=(1, 1, 1). Then
we note that

vi vy —vs = (1,0,1)+ (0,1,0) — (1,1,1)
=(14+0-1,0+1—-1,14+0—1)
=(0,0,0).

Hence, v;, v, and v; are linearly dependent.

Theorem 4.6 Let 7/ be a vector space over a field F. If vy,
V2, V3,...,V, are linearly independent elements of V,
then every element in their span has a unique repre-
sentation in the form v, + Aov, + ... A,v, with A, € F.

Proof: Every element in the linear span is of the form
A vi+4s va+... 4, v,. Suppose that there are

following two representations for an element:
Mvi+dova+ .o+ Agvy = v+ Ve oo Vs

and so
(A= pvi+ (2 —po)va + . 4 (A — py)va = 0.
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Since vy, v,, v3...v, are linearly independent,
we have

=y =070 —p, =0,...,4, —p, =0,
which yield

M=, A=y, hn = .

Hence, representation of every element in the span
is unique.

Theorem 4.7 If v{,v,v3,...,v, are in V, then either
they are linearly independent or some vy is linear
combination of the preceding ones v, v,,v3,...,Vk_1.

Proof: If v{,v5,v3,...,v, are linearly independent, we
are done. So suppose that vi,v,,v3,...,v, are linearly
dependent. Thus, o;v| +ovy+...+o,v, =0, where
not all of a;,00,...,a,, are zero. Let k be the largest
integer for which o # 0. Since o;=0 for i > £,
vy +...+a,vp =0. Since oy # 0, we have

vk:cx,;l(—oclvl —Oszz—...—OCkflkal)
= (—a;lfxl)vl +...+ (—a;lak,l)vk,l.

Hence, v, is a linear combination of its predecessors.

Theorem 4.8 A system of vectors in a vector space is
linearly dependent if and only if any one of the
vectors in that system can be represented as a linear
combination of the other vectors in the system.

Proof: Suppose that V is a vector space over the field
F and let vi,v;,v3,...,v, € V be linearly depen-
dent. Then, by definition,

Avi+Aovy + .o+ Ay, =0,

where not all of the 4; are zero. Suppose that 4; # 0,
then
/12 13 ;Ln
L e Vi
IR i
Hence v, is linear combination of other vector in the
system.
Conversely, suppose that v; is linear combina-
tion of v, v3, ..., v,, that is

=+ +...+ v, LEF

and so
(—1)V1 + va +A3vzs+ ...+ Ay, = 0.

Since the first coefficient is non-zero, it follows that
Vi,V2,V3,. .., V,is a linearly dependent system.

Theorem 4.9 If a subsystem of a finite system of
vectors in a vector space is linearly dependent, then
the whole system is linearly dependent.

Proof: Let vy, vs,v3,...,v, € V be a finite system of
vectors in V. Suppose that vi, vy, v3, ..., v, k<nis
linearly dependent. Therefore,

Avit+iovat. A AV +H0ve  +0ve o +...+0v, =0,
where not all of 4;,4,,...,4; are zero. Hence,
Vi,V2,V3,. ..,V is linearly dependent.

It follows from Theorem 4.9 that any superset of a
linearly dependent set is also linearly dependent.

EXAMPLE 4.15
Show that the set
{(L 1a0)7 (Oa 17 1)’ (1,0, _1)? (la 17 1)}

is linearly dependent.

Solution. We note that
1(1a 1,0) - 1(0’ 17 1) - 1(1’()’_1) = (O’an)
Hence the set
{(17170)7(07171)7(170771)}

is linearly dependent. Being superset of this linearly
dependent set, the given set is also linearly dependent.

Definition 4.22 Let S be subset of a vector space V. If
every element of V can be written as the linear
combination of the elements of S, then S is called
generator of V.

For example, let V, = {(x, y): x, y € R} be the
vector space and let

V) = (1,0),\/2 = (0, 1)
be vectors in V5. If (x, y) € V, be arbitrary, then

(x,y) =x (1,0) + (0,1)
=XV +)ywm

Hence S= {v;, v»} generates V.



Definition 4.23 Let S be subset of a vector space V. If
(i) S generates V, that is, L(S)=V, and

(i) the elements of S are linearly independent,
then S is called basis of the vector space V.

For example {(1,0), (0,1)} is a basis of the vector space

Vo = {(x,y): x,y € R}.

Definition 4.24 The number of elements in the basis of
a vector space is called the dimension of that vector
space.

For example, the dimension of V) is 2.

If the number of elements in the basis of a vec-
tor space is finite, then the vector space is called
finite dimensional vector space.

EXAMPLE 4.16
Let F be a field and
F(n) = {(xl,xz, . ,xn): X; € F}

be a set of n-tuples. If we define addition and scalar
multiplication in F ™ by

(x17x27~~;xn)+(ylvy27"'7yn)
- (xl +ylax2 +J’27 ceey Xy +yn)7
and
Ax1,x2, .0 0x) = (Axy, Axgy ooy Axy).

Then F™ becomes a vector space (linear space).
Let

er = (1,0,...,0),

e =(0,1,0,...,0),....en = (0,0,...,1).
Then,
(x1,%2, . .,x,) =x1(1,0,...,0) +x,(0,1,0,...,0)

+ ... +x,(0,0,...,1)
=xie; +xe + ... +x4€,

..., e,} generates F . Further
/1161 + 2262 + ...+ }ynen = O

and so {ey, e,

= A(1,0,...,0) + 4,(0,1,...,0)
+ ...+ 4,(0,0,...,1)=0
= ()L],;LZ,...7)Ln) =0
>h=h=...=4,=0
andso {e,e,, ..., e } is linearly independent. Hence,
{e,e, ..., e} is the basis of F™ and so F™ is n-
dimensional.
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4.2  MATRICES

Definition 4.25 A rectangular array of mn real or
complex numbers, arranged in m rows and n col-
umns, is called an m X n matrix.

Anm x nmatrix A is represented by the symbol

ar ain .. Aqp
an an .. A2y
A4 = or
Ldm1  Am2 - - Qmn
ar ain .. Aqp
ary azp .. .. Ay
A = ,
Am1 Am2 -~ -~ dmn

where a;; denotes the element in the ith row and jth
column of the matrix. Each of the mn number
constituting a m X n matrix is called entry (or ele-
ment) of the matrix A. We generally abbreviate the
symbol of the matrix A by A = [a;],, . , or simply
by [a;;]. Further, if a matrix A = [a;;] has m rows and
n columns, then it is said to be of order m X n.

Definition 4.26 Two matrices A=[a;],~, and
B =[b;]n x » over a field F(R or C) are said to be
equal if

(i) they are both of the same type, that is, have
the same number of rows and columns.

(il) the elements in the corresponding places
of the two matrices are equal, that is a; = b;
for all pairs of i, j.

We observe that the relation of equality of two
matrices is an equivalence relation. In fact,
(i) If A is any matrix, A = A (Reflexivity)
(i) If A=B, then B =A (Symmetry)
(i) If A=B and B=C, then
(Transitivity).

A=C

Definition 4.27 The elements a;; of a matrix 4 = [a;;]
are called the diagonal elements of A.
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Definition 4.28 A matrix in which the number of rows
is equal to the number of columns is called a square
matrix.

If A is a square matrix having n rows and n
columns then it is also called a matrix of order n.

Definition 4.29 If the matrix A is of order n,
the elements a1, az,..., a,,are said to constitute
the main diagonal of A and the elements
anl, Ay_12,-.., A1, constitute its secondary
diagonal.

Definition 4.30 A square matrix A = [ga,] is said to be
a diagonal matrix if each of its non-diagonal ele-
ment is zero, that is, if a;; =0 whenever i # .

A diagonal matrix whose diagonal elements, in
order, are dy, d,...,d, is denoted by Diag [d;,
dg, N 7dn] or Dlag [a”, ay, ... ,a,,,,} lf A= [ai,-].

Definition 4.31 A diagonal matrix, whose diagonal
elements are all equal is called a scalar matrix.
For example, the matrix

2 00
0 2 0
0 0 2

is a scalar matrix of order 3.

Definition 4.32 A scalar matrix of order n, each
of whose diagonal element is equal to 1 is called
a unit matrix or identity matrix of order n and is

denoted by 7,,.
For example, the matrix
1 0 00
01 00
0 010
0 0 01

1S a unit matrix of order 4.

Definition 4.33 A matrix, rectangular or square, each
of whose entry is zero is called a zero matrix or a
null matrix and is denoted by 0.

Definition 4.34 A matrix having 1 row and n column
is called a row matrix (or a row vector). For
example, the matrix

2 3 5 6 2

1S a row matrix.

Definition 4.35 If a matrix has m rows and 1 column,
it is called a column matrix (or a column vector).
For example, the matrix

2

1

0

-3

is a column matrix.

Definition 4.36 A submatrix of a given matrix 4 is
defined to be either 4 or any array obtained on delet-
ing some rows or columns or both of the matrix 4.

Definition 4.37 A square submatrix of a square matrix is
called a principal submatrix if its diagonal elements
are also the diagonal elements of the matrix A.

Thus to obtain principal submatrix, it is neces-
sary to delete corresponding rows and columns. For
example, the matrix

31
i s

is a principal submatrix of the matrix

1 2 3 4
2 3 10
6 4 3 2
1 2 4 1

Definition 4.38 A principal square submatrix is called
leading submatrix if it is obtained by deleting only
some of the last rows and the corresponding col-
umns. For example,

2 5]

is the leading principal submatrix of the matrix

1 2 3 4
2310
6 4 3 2
1 2 4 1

4.3 ALGEBRA OF MATRICES
Matrices allow the following basic operations:

(a) Multiplication of a matrix by a scalar.
(b) Addition and subtraction of two matrices.
(c) Product of two matrices.

However, the concept of dividing a matrix by another
matrix is undefined.



Definition 4.39 Let o be a scalar (real or complex) and
A be a given matrix. Then the multiplication of
A =[ay] by the scalar o is defined by

od = aay] = [oay],
that is, each element of A is multiplied by the scalar
o. The order of the matrix so obtained will be the
same as that of the given matrix A.
For example

4 31 2 . 12 4 8
2 1 0| 8 4 0|’
Definition 4.40 Two matrices A =[a;] and B = [b;]

are said to be comparable (conformable) for addi-
tion/subtraction if they are of the same order.

Definition 4.41 Let 4 and B be two matrices of the
same order, say m x n. Then, the sum of the matrices
A and B is defined by
C=ley] = A4 + B= [ay]|+ [ by] = [ay+by].
Thus,

cj=a;+b;,1 < i< ml <j < n,
The order of the new matrix C is same as that of
A and B. Similarly,

C= 4 — B= [ay] — [by] = lay — by]
Thus,

ci=aj—b; for 1 <i<m 1<j<n

Definition 4.42 If A, A,,..., A, are n matrices which
are conformable for addition and 4y, /,, ... A, are
scalars, then 414 + A4, + ...+ 4,4, is called a
linear combination of the matrices 44, 4, ..., A,.

Let A = [a;],B = [b;j],C = [c;j],be m x n matri-
ces with entries from the complex numbers. Then
the following properties hold:

(@ A+B=B+4
addition)

b) A+B)+ C=4 + (B+ ) (Associative

law for addition)

(c) A+0=0+4=4 (Existence of additive
identity)

(d) A+(—A)=(—A4)+A=0 (Existence of
inverse)

(Commutative law for

Thus the set of matrices form an additive commu-
tative group.

4.11
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4.4 MULTIPLICATION OF MATRICES

Definition 4.43 Two matrices 4 = [g;],, . , and B =

[by],  , are said to comparable or conformable for
the product AB if n=p, that is, if the number of
columns in A is equal to the number of rows in B.

Definition 4.44 Let 4 = [a;],, , , and B=[by],,  be
two matrices. Then, the product AB is the matrix
C =y such that

mxq

Cij = ailbl‘,- + a,-zsz + e + Cl],,bm'

= auby forl <i<ml<j<n
k=1

Note that the c¢;; [the (i, j)th element of AB] has
been obtained by multiplying the ith row of A,
namely (a;1, ap,..., a;)with the jth column of B,
namely

by;

by;

by
Remark 4.1 In the product A , the matrix A is called
prefactor and B is called postfactor.

EXAMPLE 4.17

Construct an example to show that product of two
non-zero matrices may be a zero matrix.

Solution. Let

x 0 0 0
4= {y 0} ' {a b}
Then A and B are both 2 x 2 matrices. Hence, they
are conformable for product. Now,

x 0 0 0
=] s)
y 0 a b
_{0+0 0+0]_[o 0}
L0440 0+0] [0 0]

Definition 4.45 When a product AB=0 such that
neither A nor B is 0 then the factors A and B are
called divisors of zero.

The above example shows that in the algebra
of matrices, there exist divisors of zero, whereas in
the algebra of complex numbers, there is no zero
divisor.
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EXAMPLE 4.18
Taking
1 30 3 4
A= -1 2 1|, B= 1 2 3|,
0 0 2 -1 1 2

show that matrix multiplication is not, in general,
commutative.

Solution. Both 4 and B are 3 x 3 matrices. Therefore,
both AB and BA are defined. We have,

1 3 0 2 3 4
AB = -1 2 1 1 2 3
0 0 2 -1 1 2
5 9 13
= -1 2 4
-2 2 4
and
2 3 4 1 3 0
BA = 1 2 3 -1 2
-1 1 2 0 2
-1 12 11
= -1 7 8
-2 -1

Hence 4B # BA.

EXAMPLE 4.19

Give an example to show that cancellation law does
not hold, in general, in matrix multiplication.

Solution. Let

34) o= [34)
- [43]

Then 4 and B are conformable for multiplication.
Similarly, 4 and C are also conformable for multi-
plication. Thus,

e [0 4[24 [

and

0 4 1 2 00
=5 5] o al=100)
Hence AB=AC, A # 0 without having B=C and

so we cannot ordinarily cancel 4 from AB=AC
even if 4 #0.

Remark 4.2 The above examples show that in matrix
algebra

(a) The commutative law AB = BA does not
hold true.

(b) There exist divisors of zero, that is, there
exists matrices 4 and B such that AB =0
but neither 4 nor B is zero.

(c) The cancellation law does not hold in
general, that is, AB=AC, A # 0 does not
imply in general that B = C.

4.5 ASSOCIATIVE LAW FOR MATRIX
MULTIPLICATION
and C = [cy] are

If4 = [aij]mxn B = [b/k];z X p> n xp
three matrices with entries from the set of complex
numbers, then

(4B)C = A(BC).

(Associative Law for Matrix Multiplication).

4.6  DISTRIBUTIVE LAW FOR MATRIX
MULTIPLICATION
and C = [¢y], ., are

If4 = [aij]m X n’B = [bjk]n X p p xq
three matrices with elements from the set of
complex numbers, then

AB+C)=4B+ AC
(Distributive Law for Matrix Multiplication).

Definition 4.46 The matrices A and B are said to be
anticommutative or anticommute if AB—= —BA.

For example, each of the Pauli Spin matrices (used
in the study of electron spin in quantum mechanics)

o1 CJo =il 1 o0
=01 0T i o T Jo 1)



where i* = — 1 anticommute with the others. In fact,

0 1 0 —i i 0
0x0y = 3
’ 1 0 i 0 0 —i
0 —i] [0 1 —i 0
O'yO'x - ) .|
i 0 1 0 0
and so 0,0y, = —0,0;.
Definition 4.47 If A and B are matrices of order n, then

the matrix AB — BA is called the commutator of A
and B.

Definition 4.48 The sum of the main diagonal ele-

ments a;, i = 1,2, ...,n of a square matrix A is
called the trace or spur of A.
Thus,

trd = an + an +
Theorem 4.10 Let 4 and B be square matrices of order
n and A be a scalar. Then
(@) tr(Ad)=Awr A,
(by tr(A+B)=trA+1trB,
(¢) tr (AB)=tr (BA).

oot an.

Proof: Let
A = [ay]

nxn

and B = [ bl:]}

(a) We have
A = I:)v a,]-]

nxn

and so
tr (/L.A) = Ziaﬁ = ),Zaﬁ = LtrA.
=1 i=1

(b) We have
A + B = [a,j + b,j]

nXxXn
and so
II”(A + B) = Z [ai,- =+ bij]
i=1
~YusYon
i=1 i=1
=trA + trB.
(c) We have

AB = [cy]

nxn
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where
cj = Zaik by,
k=1
and
BA = [dlj]n X n?
where .
d,'j = Z b,’ka]g‘.
k=1
Then

i=1

= z”: (2”: aik bki) = z”: (i: byi aik)
=1 \'i=1 =1 \i=1

= du. = tr (BA).
k=1

tr (AB) = 26’,‘,’ = i (; 2373 bki)

EXAMPLE 4.20
If A and B are matrices of the same order say n,
show that the relation AB — BA =1, does not hold
good.
Solution. Suppose on the contrary that the relation
AB — BA = I, holds true. Since 4 and B are of same
order, AB and BA are also of order n. Therefore,
tr(AB — BA) = tr I,

=trAB— tr BA=1trI,.

Since tr AB =tr BA, we have

O=wl, =1+1+1...41 = n,
which is absurd. Hence, the given relation does not
hold good.

Definition 4.49 An n x n matrix A4 is said to be nil-
potent if A" =0 for some positive integer 7.

The smallest positive integer n, for which
A" =0, is called the degree of nilpotence of A.
For example, the matrix

01 2-1
001 2
0 0 01
00 0O
is nilpotent and the degree of nilpotence is 4.

Similarly, the matrix

=[]
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is nilpotent with degree of nilpotence 2. In fact,
p l 6 9] l 6 9]
—4—-6| |-4 -6
0 0
“Los)

36 —36 54 —54
—24 +24 36+ 36

It can be shown that every 2 x 2 nilpotent matrix A

such that 4> =0 may be written in the form

AT s
TR

where A, u are scalars. If A is real then 4, u are also
real.

Definition 4.50 A square matrix A is said to be
involutory if A> =1
For example, the matrix

oY)

Theorem 4.11 A matrix 4 is involutory if and only if
(I+A4)([I—-A4)=0.

is involutory.

Proof: Suppose first that A is involutory, then

A =1
or
I—4*=0
or
?—4%>= Osince I’ =1
or

(I+A4) (I—A)=0since 4 =IA.
Conversely, let
(I+4)(I-4)=0

Then,

P—IA+A4l —A4*=0
or P-A4+0=0
or

P—4=0
or
A=PF=1I.

Definition 4.51 A square matrix A is said to be
idempotent if A>=A.

For example, 7, is idempotent.

4.7 TRANSPOSE OF A MATRIX

Definition 4.52 A matrix obtained by interchanging
the corresponding rows and columns of a matrix A
is called the transpose matrix of A.

The transpose of a matrix A is denoted by A” (or
by 4'). Thus, if A= {[a;]mxn then A" =[a;],p is
an n x m matrix. For example, the transpose of the
matrix

1 0 2

3 7 4

1 2 8
is

1 3 1

0 7 2

2 4 8

Further,

(1) The transpose of a row matrix is a column
matrix. For example, if A =[1 2 4 3 ], then

N =

T _
A=y

3

(i1) The transpose of a column matrix is a row
matrix. For example, if

3
A= 8 |,
3
then
AT:[3 8 3]

(iii) If A is m x n matrix, then 47 is an n x m
matrix. Therefore, the product 44 T A" 4
are both defined and are of order m x m
and n X n, respectively.

If A =[a;lm x » and B = [b;],, « , are matrices of
the same order and if 4 is a scalar, then the transpose
of matrix has the following properties:

(@) ()'=4

(b) ()" =24"

() (A+B)Y=4"+B"

(d) (AB)" =B" A" (Reversal law).

4.8  SYMMETRIC, SKEW-SYMMETRIC, AND
HERMITIAN MATRICES

Definition 4.53 A square matrix 4 is said to be sym-
metric if A=A".



Thus, 4= [a;],x, is symmetric if a;=a; for
i<i<ml<j< n

Definition 4.54 A square matrix 4 = [a;],,,, is said to

be skew symmetric if a;; =— a;; for all i and .
Thus square matrix is skew-symmetrical if 4 = — A”.
For example,

[USTIS EN

h
b
f

(SN

is symmetric matrix whereas the matrix

0 1 2
-1 0 3
-2 -3 0

is a skew-symmetric matrix.

Properties of Symmetric and Skew-Symmetric
Matrices

(a) In a skew-symmetric matrix 4, all diag-
onal elements are zero. In fact, if 4 is
skew-symmetric, then

a; = —aj; for all 7 and j.
= A = —ajj
= a;; = 0.

(b) The matrix which is both symmetric and
skew-symmetric must be a null matrix. In
fact, if 4 =[a;] is symmetric, then

a;j = aj; for all i and j.

Further, if 4=[a;] is skew-symmetric, then
a; = — ay; for all i and j. Adding, we get 2a;;=0 for
all i and j and so a;; = 0 for all i and j. Hence, 4 is a
null matrix. Thus, “Null matrix is the only matrix
which is both symmetric and skew-symmetric.”

(c) For any square matrix 4, 4 + A" is a
symmetric matrix and 4 — A is a skew-
symmetric matrix. In fact, we note that

() (A447) =AT+(4") = AT+ A=A+ 4"

and so A+ A" is symmetric.

(i) (4—da")'=a"— (") = 4" -4

= (4 —aT)
and so 4 — A" is skew-symmetric.

(d) Every square matrix 4 can be expressed
uniquely as the sum of a symmetric and a

4.15
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skew-symmetric matrix. To show it, set

P:%(A +4") and Q:%(A —A4").
Then
P’ = l(A + A7) Tzl(A +4")’
2 2
1 1
:E(ATJr(AT)T) =5 (A" +4)
:%(A +4") =P.

and so P is symmetric. Further,

o = [u-am]| = Ly
=5 (47 ()) =5 (=)
- - o

and so Q is skew-symmetric. Also P+ Q= A. Thus
A can be expressed as the sum of a symmetric and a
skew-symmetric matrix.

To establish the uniqueness of the expression,
let A =P+ Q;, where P; is symmetric and Q; is
skew-symmetric. It is sufficient to show that P} = P
and O, = Q. We have,

AT =P +0)' =P +0[ =P -0
Thus

A+A4"=2P or Py =-(4+4") = P.

N —

Also,
O =A4A—P =4- % (4+4")

1
:E(AfAT) = 0.

Hence, the expression is unique.

(e) If 4 is a square matrix, then 4 + 4" and
AA" are symmetric matrices. These facts
follow from

() A+d4")'= AT+ (U")'=4" +4

=A+A4"

and

(i) (447)'= (UT)'AT = 447

(f) If A and B are two symmetric matrices,
then AB-BA is a skew-symmetric matrix.
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In fact,

(4B — BA) = (4B)" —(BA)"

= B"4" — A"B" (Reversal Law)
— BA—AB

= —(4B — BA).

(g) IfAisasymmetric (skew-symmetric), then
B" ABis a symmetric (skew-symmetric)
matrix. In fact, if 4 is symmetric, 47 =4
and so

(B"4B) = B"4" (B")" = B"4"B
=B"4B

and if 4 is skew-symmetric, then

(B"4B)"= B"A"(B")" = B"(—A)B = —B"4B.

EXAMPLE 4.21
Express the matrix

b

Il
N W =
DO N
(V20 (RN

as the sum of a symmetric matrix and a skew-
symmetric matrix.

Solution. We know that every square matrix 4
can be expressed as the sum of symmetric
matrix (4 +A") and a skew-symmetric matrix

1(4 —A"). In the present case

12 4 13 7\
%(A+AT):% 302 +1]202
725 4 25

2 5 11 13 4
:%504:302

11 4 10 425

and
1 124 137

T
E(A—A): 302 -(202
725 4 25
(013 0-1-3
:5100:%00
300 200

Hence
124 134 0-1-3
302|=|3202|+]L1 00
725 425 200

Definition 4.55 A matrix obtained from a given matrix
A by replacing its elements by the corresponding
conjugate complex numbers is called the conjugate
of 4 and is denoted by A.

Thus if 4 = [aii]m X n then 4 = [a_ij]mxn’
a; denotes the complex conjugate of a;;.

where

Definition 4.56 A matrix whose all elements are real is
called a real matrix.

If A is a real matrix, then obviously 4 =4
Further if 4 and B are two matrices, then

(@ (4)=4

(b) (A+B) = A+B

€ (4)=414

(d) @ = A B, where / a complex number.

Definition 4.57 The transpose of the conjugate of a

matrix 4 is called transposed conjugate or tranju-

gate of 4 and is denoted by A’ or sometimes by A*.
We observe that

For example, let

2 142 344
A=|14i 7  2+4i],
342 4+i 343



then
2 1—-2i 3—-4i
A=1|1-i 7 2—1
3—-2i 4—i 3-3i

and
2 1—i 3-2i
A'=11-2i 7 4-—i
3—4i 2—i 3-—-3i

Let 4 and B the matrices, then the tranjugate of
the matrix possesses the following properties:

@ (' =4
(b) (4+B)"=4"+ B, 4 and B being of the
same order.

(c) ()A)ez JA°, ] being a complex number.
(d) (4B)’=B’4°, 4 and B being conformable
to multiplication.

Definition 4.58 A square matrix 4 = [a,] is said to be
Hermitian if a;;=aj; for all i and ;.

Thus, a matrix is Hermitian if and only if 4 = A°.
We note that

(a) A real Hermitian matrix is a real symmetric
matrix.
(b) If 4 is Hermitian, then

a; = ay for all i,

and so a; is real for all i. Thus, every diagonal
element of a Hermitian matrix must be real.

Definition 4.59 A square matrix 4 = [a;] is said to be
Skew-Hermitian if a;= ajfor all i and j. Thus, a
matrix is Skew-Hermitian if 4 = — 4’. We observe that

(a) A real Skew-Hermitian matrix is nothing
but a real Skew-symmetric matrix.

(b) If 4 is Skew-Hermitian matrix, then a; =
—a;; or a; + az= 0 and so a;; is either a pure
imaginary number or must be zero. Thus the
diagonal element of a Skew-Hermitian matrix
must be a pure imaginary number or zero.

For example,
2 3—4i 2+3i
3+4i 0 7—5i
2-3i 7+45i 4
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is an Hermitian matrix, whereas, the matrix

0 3+4i
-3 +4i i

is Skew-Hermitian.
It can be shown easily that if 4 is any square matrix,
then 4 + 4%, 44°, 4°4 are Hermitian and 4 — A" is
Skew-Hermitian.

EXAMPLE 4.22

Show that every square matrix can be uniquely
expressible as the sum of a Hermitian matrix and
Skew-Hermitian matrix.

Solution. As mentioned above, if 4 is any square matrix,
then 4+ A" is Hermitian and 4 — A° is Skew-
Hermitian. Therefore, 1 (4 + 4”) and 1 (4 — 4%) are
Hermitian and Skew- — Hermitian, respectively, so that

_ 0 l 40
A4 = (A+A)+2(A A%,

N —

which proves first part of our result. The uniqueness
can be proved easily and is left to the reader.

EXAMPLE 4.23

Show that every square matrix 4 can be uniquely
expressed as P+ i Q where P and Q, are Hermitian
matrices.

Solution. We take

(4+4") and 0 = l(A —A".

P =
2i

N —

Then 4 = P+ iQ. Further,

(a4’

N —

P = (%(A +A9)>0 =

1 1, g0 1
= A" 44 == (4 +4
A T3 ) =547+ 4)

1
=5 +4% =P,
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showing that P is Hermitian. Similarly,

o' = BﬂA—A%r

(4) ey

- A ()

I
==% (4" —4)

1

0 _
2—i(A—A) = 0,

showing that Q is also Hermitian. Thus 4 = P +iQ,
where P and Q are Hermitian.

4.9 LOWER AND UPPER TRIANGULAR MATRICES

Definition 4.60 A square matrix 4 = [a;;], in which all
elements above the main diagonal are zero, is called
a lower triangular matrix.

Thus a matrix 4 is lower triangular if a;=0
for i <j.

Definition 4.61 A square matrix A = [a;], in which all
elements below the main diagonal are zero, is called
an upper triangular matrix.

Thus a matrix 4 is upper triangular matrix if
al,=0f01‘l>]
For example,

1 2 -1 1 0 0
01 3 |and [6 =5 0
0 0 1 0 4 1

are, respectively, upper triangular and lower trian-
gular matrices.

4.10  ADJOINT OF A MATRIX

Definition 4.62 Let A =[a;] be a square matrix of
order n. Then the cofactor of a;; is defined as

Ajj = cof (aij) = (—1)i+j | M; |7

where M,; is the matrix obtained by deleting ith row
and jth column of the matrix 4.

For example, if

1 3 2
A=12 0 4],
3.6 5
then
W)—WW—HV13‘
(e(0) 23 3 6
=—(6-9)=3
cof(az,) = cof(6) = (—1)° b2 ‘ =0
2 4

Definition 4.63 Let A=[a;] be a square matrix of
order n. Then the cofactor matrix of A is defined to
be the matrix [4,;], where 4;; denotes the cofactor of
the entry a;; in |A|.

For example, if

2 10
A=1] 0-3 1],
-1-1 3

then
A= (=1 (-9+1) = =8,
Ay = (=17 (0+1)=—1,
A= (=1)* (0-3) = -3,
Ay = (=1 (3+0) = -3,
A = (=1)* (6+0) =6,
Ay = (—1)° (=24 1) =1,
Ay = (1) (1+0) =1,
Ay = (=1)° (24 0) = -2,

A3 = (—1)° (=64 0) = —6.
Hence, the confactor matrix of 4 is given by

8 -1 -3
djl=1-3 6 1
1 -2 -6

Definition 4.64 The adjoint of a square matrix 4 =
[a;] of order n is defined to be the transpose of the
cofactor matrix of 4. Thus

A11 A21 e N Anl

) A12 Azz e . A,,z
ad] A= A13 A23 e . An}
Ay Aoy oo A



EXAMPLE 4.24
Find the adj 4 if
2 1 0
4= 0 -3 1
-1 -1 3

Solution. We have seen earlierthat the cofactor
matrix of 4 is

-8 -1 -3
4;]=1-3 6 1
1 =2 -6
Therefore,
-8 -1 =317
adid =[4;,]"=|-3 6 1
1 =2 -6
-8 -3 1
=|-1 6 -2
-3 1 -6

Theorem 4.12 Let A be an nxn matrix. Then
A(adj A) = AJA|L, = (adj A) A.
Proof: Since both 4 and adj A are square matrices

of order n, the products A(adj A) and (adj 4)
A are defined. Let

ang a2 ... ... Aip

any ay ... N ]
A=

ayl Ay ... ... Apy

Then the cofactor matrix of 4 is

A]] A12 e e Aln
Ay Ay ... ... A
[4;] =
An Ap ... ... Am
and therefore,
A Ay ... ... An
A Axn ... ... Apn
adj A =
Ay Ay . .. A

Matrices 4.19
Thus
ayng app ... ... A4y
dy; ayy ... ... dyy
A (adj A) =
a1 4y ... ... Ay
A]] Az[ Anl
Ay Ay ... ... Ap
X
Ay Aoy oo .. A

But, we know that

Al if i=]
apn Ajp +apdp + ...+ aindjy = {| |if i=]

0ifi #j°
Therefore,
A 0 ... ... 0
0 4 ... ... 0
A(adj 4) =
o o0 ... |4]
1 0 0
0 1 0
=4
0 O 1
= |4]| I,.
Similarly,
(adj 4)4 = |Al1,.
Hence
A (adjA) = |4] 1, = (adj 4) 4.

Corollary 4.1 If |4]|#£ 0, then
1 1
A|l—adjd) =1, = (—adj4] 4.
(|A ’ ) <|A| ’ >
4.11  THE INVERSE OF A MATRIX

Definition 4.65 A square matrix 4 of order 7 is said to
be invertible if there exists another square matrix B
of order n such that

AB = B4 = 1I,.
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The matrix B is then called the inverse of A. If there
exists no such matrix B, then 4 is called non-
invertible (singular). The inverse of 4 is denoted by

A~ For if 4= [1 l} and

0 1
1 -1
5= {5 7

a2 - o)
IR

Thus AB=BA=1,. Hence A is invertible and its
inverse is B.

example,

] , then

Theorem 4.13 The inverse of a square matrix
is unique.

Proof: Suppose on the contrary that B and C are two
inverse of a matrix 4. Then

AB = BA = I, (18)
and

AC = C4 = I, (19)

Thus, we have

B=B1I, (property of identity matrix)
=BAC  [using(19)]
= (BA) C (Associative Law)
=1IC [using(18)]
=C.

Hence, inverse of 4 is unique.

Definition 4.66 A square matrix A is called non-sin-
gular if [A] # 0.

The square matrix A will be called singular if
|A]=0.

Theorem 4.14 A square matrix A is invertible if and
only if it is non-singular.

Proof: The condition is necessary. Let 4 be invertible
and let B be the inverse of 4 so that
AB = I = BA.

4l 18] = 1] =1.

Therefore,

Hence |4] # 0.

The condition is sufficient. Let A be non singular.
Therefore, |4]| # 0. Let

1
B =—(adj 4). Then
4]

1 1
AB :A<—adj A) = (4 adj 4)
] 4]
1
=

4]
Similarly, BA=1. Hence, AB=BA=1I and so
B= ﬁ (adj A) is the inverse of 4.

4] 1] = 1.

Theorem 4.15 Let 4 and B be two non-
singular matrices of the same order. Then AB is
non-singular and

(4B)'=B7' 47",

Proof: Since

[4B| = |4] [B| # 0,
it follows that 4B is non-singular and so invertible.
Moreover,

(4B) (B'47") = 4(BB ') 47!

=AI4" = 447" =1
and
(B7'47") (4B) = B'(4 '4)B=B""IB
=B 'B=1.
Hence

(4B) (B™'47")=1=(B7'4™") (4B),
which proves that B 47" is the inverse of AB,

that is,
(4B)'=B'4!

Theorem 4.16 If 4 is a non-singular matrix, then
()= ()"

(Thus operations of transposing and inversion

commute).

Proof: We note that
AT AN = (@) =1" =1
and
(AN AT = (a4 =1 = 1.
Hence
AT ) =1=(a")'4”



and so

Theorem 4.17 If a matrix A4 is invertible, then 47 is

invertible and

Proof: We have

AU = (aa)'=1" =1
and

(A Na = (aa)'=1"=1.
Thus, (A’l)gis the inverse of the 4°.

4.12  METHODS OF COMPUTING INVERSE
OF A MATRIX

1. Method of an Adjoint Matrix

If 4 is non-singular square matrix, then we have

1 1
A —adj A> == (adj A>A.
(|A| A
This relation yields

at= L

=—adj 4.
4]

EXAMPLE 4.25
Find the inverse of the matrix
3 -3
A= 1|2 -3 4
0 -1 1

N

Solution. We have

3 -3 4
4 =12 -3 4
0 —1 1

=3(-344)+3(2)4+4(-2)=1.
Cofactor of the entries are

An =1, Ap=-2 A;3=-2

Ay=-1, An=3 Apx=3

A1 =0 Ay = —4 Aszz = 3.

Therefore, the cofactor matrix is

1 -2 -2
[45]= |-1 3 3
0 —4 -3

Matrices 4.21

and so
1 -1 0
adj4 = | -2 3 -4
-2 3 =3
Hence
| 1 -1 0
A7 = i adjd=|-2 3 —4
4] -2 3 =3
EXAMPLE 4.26
Find 4" if
1 2 -1
A= |3 0o 2
4 -2 5
Solution. We have |4| =—-4. The cofactor matrix is
4 -7 —6]
[A,»j}: -8 9 10
| 4 -5 —6]
and so
4 -8 47
adjd= | -7 9 -5
-6 10 —6]
Hence
L[4 -8 4 -1 2 -1
A A S T
—6 10 -6 3 =5 3
2 2 2

2. Method Using Definition of Inverse

Let B be the inverse of matrix 4, which is non-
singular. Then, 4B =1, that is,

ay adip ... ... dip bll b12 bln
az; Adxp ... ... dyy bZl b22 b2n
Ayl Ay ove ov. Oy b,y by ... ... by

1 0 . 0

0o 1. 0

0 0. 1

Multiplying the matrices on the left and then com-
paring the corresponding entries we can find by,
bis,..., b,,. Then, B will be the inverse of 4.



4.22

Engineering Mathematics-1

EXAMPLE 4.27
Find the inverse of
1 2 -1
A= |0 1 3
0 0 1

Solution. The given matrix is upper triangular matrix.
The readers may prove that inverse of an upper
triangular matrix is also upper triangular matrix.
Similarly, the inverse of a lower-triangular matrix is
again a lower-triangular matrix. So, let

a b ¢
0 d e
0 0 f

be the inverse of the given matrix. Then, by defini-
tion of the inverse, we must have

[1 2 -1 a b ¢ 1 00
0 1 3 0 d el = 1|0 1 0
10 0 1 0 0 f 0 0 1
or

(a b+2d c+2e—f 1 0 0
0 d et+3f | = lo 1 0
0 0 I 00 1

Equating corresponding entries, we get
a=1,d=1,f=1
b+2d =0sothat b = —2d = -2
e+ 3f =0sothat e = —-3f = -3
c+2e—f=0sothatc=f—-2e=1+6=17.
Hence,

1 -2 7
A'= 10 1 -3
0 0 1

Remark 4.3 We can also find the inverse of a lower
triangular matrix by the above method.

3. Method of Matrix Equation.

Let
anxiy +apxy + ...+ ayx, = b

axxi +anxy + ...+ ayx, = by

an1 X1 + QX2 + .o A AppXy = bn

be a set of n equations in n variables xy, x», ..., x,, In
matrix form, we can represent these equations by

AX = B,
where
fayy ap ... ... a
a; Aayp ... ... dp
A= ,
LAyl Ap2 ... ... Ay
[ x by
X2 by
X = , B=
L X, by

and A4 is called the coefficient matrix. If A is non-
singular matrix, then 4" exists. Premultiplying the
matrix equation by 4 we get

A (4x) = 47'B

or
(47'4)x =47'B
or
IX=4"'B
or
X=4"'B.

Hence, if we can represent xy, x5,...,X, in terms of
by, b,,..., b, then the coefficient matrix of this
system will be the inverse of A4.

EXAMPLE 4.28
Find the inverse of
1 0 —4
A= 0 -1 2
-1 2 1

Solution. We observe that |4| = —1 # 0. Thus, A is
non-singular and so the inverse of A4 exists. We
consider the matrix equation

1 0 —4 X1 b]
0 -1 2| |(x|= |b],
-1 2 1 X3 b3



which yields
x; — 4x;3 = by
—Xy +2x3 = by
—x1 + 2x3 + x3 = bs.
Solving these equations for xy, x;, and x3, we have
x1 = 5b1 + 8by + 4b;
Xy = 2by + 3by + 2b;
x3 = by +2by + bs.
In matrix form, we have

X 5 8 4 by
X2 = 2 3 2 b2 s
X3 1 2 1 b3
that is
X =4"B.
Hence
5 8 4
A'=12 3 2
1 2 1

4. Method of Elementary Transformation
(Gauss-Jordan Method)

The following transformations are called elemen-
tary transformation of a matrix:

(a) Interchanging of rows (columns).

(b) Multiplication of a row (column) by a non-
zero scalar.

(c) Adding/subtracting & multiple of a row
(column) to another row (column).

Definition 4.67 A matrix B is said to be row (column)
equivalent to a matrix A if it is obtained from 4 by
applying a finite number of elementary row (col-
umn) transformations. In such case, we write B ~
A. In Gauss—Jordan Method, we perform the
sequence of elementary row transformations on
A and [ simultaneously, keeping them side-by-side.

EXAMPLE 4.29
Using elementary row transformations, find A" if

1 0 2
A=12 -1 3
4 1 5

Matrices 473

Solution. Consider the augmented matrix

10 21 0 0
[Al=12 -1 3[0 1 0
4 1 50 01
10 2| 1 0 0]
Ry — Ry — 2R,
~10 -1 —1[-2 1 0
Ry — Ry — 4R,
0 1 -3|-4 0 1]
(10 2/ 1 00
~10 1 1] 2 -1 0|R— -R,
0 1 -3|-4 0 1]
(10 2/ 1 00
~101 1| 2 -1 0|Rs—R—R,
0 0 —4|—-6 1 1]
10 2|1 0 0
~10 1 1]2 -1 0R3—>—%R3
00 1]3 -4~
[1 0 2[/1 0 0
~10 1 03 —3 j]R2—>R2R3
00 13 4
10 0of—2 1 1
~l0 1 o] I -3 LIR —R —2R
[0 0 1] 5 -4 -
Hence
2 4
at=| g -
3 1 1
2 3 4
EXAMPLE 4.30

Using elementary row transformation, find the

inverse of the matrix

A=

W A~ W

W
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Solution. Consider the augmented matrix Now we reduce the matrix 4 to identity matrix /3 by
~ elementary row transformation keeping in mind that
1331100 each such row transformation will apply to the
[AI]=]1 4 3[0 1 0 prefactor /5 on the right hand side.
Performing R, — R, — Ry and R3; — R;+2R,,
|1 3 4|0 0 1 we get
13 310 O | | 3 0
~10 1 —=1{0 1 —1|Rp—Ry—R; 0 2 —-6|=|-11 04
0o -2 2 1
|1 3 4/0 0 1
13 3] 10 0 Performing R, — 1R, we get
~10 1 =1 01 —1|R3—R3—Ry 1 3 1 0 0
|13 1|-1 0 1 0 1—3:—%%0A
_ 0o -2 2 2 0 1
10 6/, 1 -3 3
~10 1 —-1| 0 1 —1|R —R;—3R, PerformingR;, — R, —R,and R; — R; + R,, we get,
100 1|-1 0 1
10 6] 1 -3 3 b : 73 0
- 01 =3|= —% % 014
L0 0 =101 Performing R; — — 1 R3, we get
1 0 0] 7 -3 -3
1 0 6 % -+ 0
~ 10 1 0]-1 1 0 R1—>R1—6R3. 0 1 3 _ _% % ol4
|00 1|-1 0 1 0 0 1 _él1 _i _i
H
ence Performing Ry — R; + 6R3 and R, — R, + 3R;, we
» 7 -3 =3 get
A7 =] -1 1 0
-0 10 0 31 3
01 0|=|-3 —% —% A
EXAMPLE 4.31 0 0 1 L _1 _1
Find the inverse of the matrix 4 4 4
1 1 3 Thus,
A= 1 3 =31, 3 1 %
2 4 h=|-% -} -3|4
by using elementary transformations. —% —% —%
Solution. Write 4 = I54, that is, Hence

113 1 0 0 1 301
1 3 =3|=1]01 0la A =-2 -1 -
2 —4 —4 00 1 Lol

NN NV N[



4.13  RANK OF A MATRIX

Definition 4.68 A matrix is said to be of rank r if it has

at least one non-singular submatrix of order » but

has no non-singular submatrix of order more than r.
Rank of a matrix 4 is denoted by p(4).

A matrix is said to be of rank zero if and only if all

its elements are zero.

EXAMPLE 4.32
Find the rank of the matrix
1 3 4 2
A= 2 4 6 2
-1 5 4 6

Solution. The matrix A4 is of order 3 x 4. Therefore,
p(4) < 3. We note that

3 4
=] 2 4 6| =0,
1 5 4
3 2
s =| 2 4 2|=0,
-1 56
4 2
s|=| 2 6 2|=0,
1 4 6
3.4 2
s =14 6 2|=0
5 46

Therefore, p(4) # 3. But, we have submatrix B =

{ ; ﬂv whose determinant is equal to —2 # 0.

Hence, by definition, p(4) =2.

EXAMPLE 4.33
Find the rank of the matrix
2 1 -1
A=10 3 =2
2 4 -3

Solution. Since |4] = 0, p(A) < 2. But, we note that
‘ 2 1

0 3= 6 # 0. Hence, p(4)=2.
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Remark 4.4 The rank of a matrix is, of course,
uniquely defined when the elements are all expli-
citly given numbers, but not necessarily otherwise.
For example, consider the matrix

4—x 2¢5 0
A=| 25 4—x 3
0 V5 4—x

We have
|| = (4 —x)’—25(4 —x) = 0,if x = 9,4 or —1.

When x =9, we have the singular matrix

-5 25 0
A= (25 -5 V5],
0 V5 -5

which has non-singular submatrix

W

Thus, for x =9 the rank of 4 is 2. Similarly, the rank
is 2 when x=4 or x=-1. For other values of
x,]A4| # 0 and so the rank of 4 is 3.

Theorem 4.18 Let 4 be an m x n matrix. Then
p(4) = p(4").

Proof: Suppose p(4) =r. Then, there is at least one
square submatrix R of A of order » whose deter-
minant is non-zero. If R™ is transpose of R, then it is
submatrix of AT. Since, the value of a determinant
does not alter by interchanging the rows and col-
umns, |R'| =[R| # 0. Therefore, p(47) > r.

Now if 47 contains a square submatrix S of
order r+ 1, then corresponding to S, S* is a sub-
matrix of 4 of order »+ 1. But p(4) = r. Therefore,
|S| = [ST| = 0. Thus, 4" cannot contain an (» 4 1)
rowed square submatrix with non-zero determinant.
Thus, p(4") <r. Hence, p(4")=r.

Theorem 4.19 The rank of a matrix does not alter
under elementary row (column) transformations.

Proof: Let A = [a;] be an m x n matrix of rank . We
prove the theorem only for elementary row trans-
formation. The proof for column transformation is
similar.
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Case I. Interchange of a pair of row does not alter the
rank.

Let s be the rank of the matrix B obtained from
the matrix A of rank » by elementary transformation
R, Ry Let By be any (r+ 1) rowed square sub-
matrix of B. The ( + 1) rows of By are also the rows
of some uniquely determined submatrix A, of A.
The identical rows of 4y and By, may occur in the
same or in different relative positions. Since, the
interchange of two rows of a determinant changes
only the sign, we have

B()| = |A()| or ‘Bo| = —|A()|.
Since p(4)=r, every (r+1)-rowed minor of
A vanishes, that is, |49 =0. Hence, | By |=0.
Therefore, every (» + 1) rowed minor of B vanishes.
Hence, s=p(B)<r=p(4). But 4 can also be
obtained from B by interchanging its rows.
Therefore, » <s. Hence r=s.

Case Il. Multiplication of the elements of a row by a
non-zero number does not alter the rank.

Let s be the rank of the matrix B obtained from the
matrix 4 of rank » by the elementary transformation
R, — kR, (k # 0) If By is any (r 4-1)-rowed submatrix
of B, then there exists a uniquely determined submatrix
A of A such that | By| = | A | (When pth row of B is one
of those rows which are deleted to obtain B, from B) or
| Bo |=Xk| 4o | (when pth row of B is retained while
obtaining By from B). Since p(4)=r, every (r+ 1)-
rowed submatrix has zero determinant, that is | 4y | = 0.
Hence, | By | =0. Thus every (r +1)-rowed submatrix
of B vanishes. Hence p(B) <, that is, s <r. On
the other hand, 4 can be obtained from B by ele-
mentary transformation R, — %RP. Therefore, we
have r <s. Hence r=s.

Case lll. Addition to the elements of a row, the
product by any number k£ of the corresponding
elements of any other row, does not alter the rank.

Let s be the rank of the matrix B obtained from
the matrix 4 by elementary transformation R, —
R,+kR,. Let By be any (r 4-1)-rowed square sub-
matrix of B and A4, be the corresponding placed
submatrix of 4. The transformation R, — R, + kR,
has changed only the pth row of the matrix 4. We
know that the value of the determinant does not
change if we add to the elements of any row the

corresponding elements of any other row multiplied
by some number. Therefore, if no row of the sub-
matrix A, is a part of the pth row or if two rows of 4
are parts of the pth and gth rows of 4, then | By | =|
Ay |- Since p(4)=r, we have | 4y |=0 and conse-
quently | By |= 0.

Again, if a row of A is a part of the pth row of
A, but no row is part of gth row, then

|Bo| = |4o| + k|Co,

where Cj is an (r+ 1)-rowed square matrix which
can be obtained from A, by replacing the elements
of 4 in the row which corresponds to the pth row of
A by the corresponding elements in the gth row of
A. All the (#+1) rows of the matrix C, are exactly
the same as the rows of some (r+1)-rowed square
submatrix of 4, though arranged in some different
order. Therefore, | Cy | == times some (7+1)-rowed
minor of 4. Since the rank of 4 is r, every (r+1)-
rowed minor of 4 is also zero, so that | 4o |=0, | C
|=0, and so in turn | By |=0. Thus, every (r+1)-
rowed square matrix of B has zero determinant.
Hence, s <r. Also, since, 4 can be obtained from B
by an elementary transformation, R, —R,+ kR,
Therefore, as stated, » <s. Hence r=s.

EXAMPLE 4.34
Find the rank of the matrix

3 2 -1
A= (4 2 6
7 4 5

Solution. We have

32 -1
A=14 2 6
7 4 5
(-1 0 —7
~| 42 6|RR—R-R
7 4 5



1 0 7

~ 4 2 6 R1—>—R1
|7 4 5

-~ (1) (2) —2; R2—>R2—4R1
0 4 —as| BT RTR
[1 0 77 |

~10 1 -—-11 R2—>§R2
0 4 —44]
1 0 77

~ 0 1 —11 R3—>R3—4R2.
0 0 0]

Thus, |4| = 0. Therefore p(A4) # 3. But, since
10
e

it follows that p(4) =2.

4.14  ELEMENTARY MATRICES

Definition 4.69 A matrix obtained from a unit matrix
by a single elementary transformation is called an
elementary matrix.

For example,

0
0
1

S = O
S O~

is the elementary matrix obtained from /5 by sub-
jecting it to C} <> C3. The matrix

4 0
0 1
0 0

—_ o O

is the elementary matrix obtained from /3 by sub-
jecting it to Ry — 4R, whereas the matrix

1 20
0 1 0
0 0 1

is the elementary matrix obtained from /5 by sub-
jecting it to Ry — Ry + 2 R;. The elementary matrix
obtained by interchanging the ith and jth row of a
unit matrix / is denoted by Ej;. Since, we obtain
same matrix by interchanging ith and jth row or ith
and jth column, E£; will also denote the elementary
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matrix obtained from 4 by interchanging ith and jth
column. E; (k) denotes the eclementary matrix
obtained by multiplying the ith row or ith column of
a unit matrix by k.

Similarly, £;(m) denotes the elementary matrix
obtained by adding to the elements of the ith row
(column) of a unit matrix the m multiple of the
corresponding elements of the jth row (column).

We note that |E;| = —1, |Ei(k)] =k#0
| E;(m) | =1. Tt follows, therefore, that all the
elementary matrices are non-singular and, hence,
possess inverse.

Theorem 4.20 Every elementary row (column)
transformation of a matrix can be obtained by pre-
multiplication (post-multiplication) with corre-
sponding elementary matrix.

Proof: Let B be the matrix obtained from an m X n
matrix 4 by row transformation. If £ is elementary
matrix obtained from 7, by the same row transfor-
mation, it is sufficient to show that B = EA.

Let

R
Ry
M= ., N=[C\C, ... G
Rm
Then
R1C1 R1C2 RICn
R2C1 RzCz R2Cn
MN = e ..
R, C; R,C, R, C,

Clearly, a row transformation applied to M will be
the row transformation applied to MN. Hence, ele-
mentary row transformation of a product MN of two
matrices M and N can be obtained by subjecting
the prefactor M to the same elementary row
transformation.

Similarly, every elementary column transfor-
mation of a product MN can be obtained by sub-
jecting the post-factor N to the same elementary
column transformation.
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Now, A is an m X n matrix and /,, is an identity
matrix of order m. Therefore, 4 = I,,4 Hence, by the
preceding arguments, if we apply a row transfor-
mation to 4 to get a matrix B, then this can be done
by applying the same row transformation to I,,.
Thus, if B is obtained from A4 by applying a row
transformation and E is obtained from /,, by using
the same row transformation, then B = FA.

Similarly, if B is obtained from 4 by subjecting
it to a column transformation and £ is obtained from
I by subjecting it to the same column transformation
then B=AE.

EXAMPLE 4.35
Let
= 47
A=12 1 3
and |5 3 2]
(1 3 47
B=1|4 2 6
|5 3 2]

Thus, B has been obtained from 4 by the row
transformation R, — 2 R, Now, if, E is the ele-
mentary matrix obtained from /5 by R, — 2 R,
then

1 00|13 4 1 3 4
EA=10 2 0|2 1 3|=1|4 2 6|=8B.
001|532 0 01

4.15 ROW REDUCED ECHELON FORM AND NORMAL

FORM OF MATRICES

Definition 4.70 A matrix is said to be in row-reduced
echelon form if

(1) The first non-zero entry in each non-zero
row is 1.
(ii)) The rows containing only zeros occur
below all the non-zero rows.
(iii) The number of zeros before the first non-
zero element in a row is less than the num-
ber of such zeros in the next row.

The rank of a matrix in row reduced echelon
form is equal to the number of non-zero rows of the
matrix. For example, the matrix,

01 3 4
00 1 2
00 0 0

is in the row reduced echelon form and its rank is
2 (the number of non-zero rows).

Theorem 4.21 Every non-zero m x n matrix of rank r
can be reduced, by a sequence of elementary
transformation, to the form

5 )

(normal form or first canonical form), where I, is
the identity matrix of order r.
Proof: Let A = [a;],,,, be a matrix of rank r. Since
A is non-zero, it has at least one element different
from zero. Suppose a; # 0. Interchanging the first
and ith row and then first and jth column we obtain
a matrix B whose leading element is non-zero,
say k.

Multiplying the elements of the first row of the
matrix B by }, we obtain a matrix

I cin c13 Cin
€1 € (€23 Con

C = ,
Cnml Cm2 Cm3 . .. Cuyn

whose leading element is equal to 1. Subtracting sui-
table multiples of the first column of C from the
remaining columns, and suitable multiples of first
row from the remaining rows, we obtain a matrix

1 0 o ... ... 0

0 dy dy ... ... dy
D= :

0 dw dwy .. ... dm



in which all elements of the first row and first
column except the leading element are equal to
zero. If

dy dn ... ... ... dy
dyy dyg ... ... ... dy,

#0,
dy oy e e e do

we repeat the above process for this matrix and get a
matrix

I 0 o ... ... 0
0 1 o ... ... 0
E= 0 0 €33 cee .. €3y
0 0 3m3 N )

Continuing this process, we obtain a matrix

A
e[ 2]

The rank of N is k. Since, the matrix NV has been
obtained from 4 by elementary transformations,
p(N) = p(4), that is, k=r. Hence, every non-zero
matrix can be reduced to the form

I 0
0 0
by a finite chain of elementary transformations.

Corollary 4.2 The rank of an m x n matrix A4 is r if and
only if it can be reduced to the normal form by a
sequence of elementary transformations.

Proof: If p(A) =r, then by the above theorem it can
be reduced to normal form by a sequence of ele-
mentary transformations.

Conversely, let the matrix 4 has been reduced

[6 8] by elementary transfor-

to normal form [

. 0].
0 O}wrandweknow

mations. Now the rank of {

that rank of a matrix is not altered by elementary
transformation. Therefore, rank of 4 is also 7.
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Corollary 4.3 If 4 is an m x n matrix of rank r, there
exist non-singular matrices P and Q such that

I. 0
ma-[5 0]
Proof: Since A is an m x n matrix of rank r, it can be

reduced to normal form [[V 0] using a sequence

0 0
of elementary transformations. Further, since the
elementary row (column) transformations are
equivalent to pre-(post) multiplication by the cor-
responding elementary matrices, we have
PPy ...Py A0, Q... 0, = {16 8]

Now, since, each elementary matrix is non-singular and
the product of non-singular matrices is again non-sin-
gular, it follows that Py Py ;...Py and Q1 Q,... O, are
non-singular matrices, say P and Q. Hence

Pa0= | o,

where P and Q are non-singular matrices.

4.16  EQUIVALENCE OF MATRICES

Definition 4.71 Two matrices whose elements are real
or complex numbers are said to be equivalent if and
only if each can be transformed into the other by
means of elementary transformations.

If the matrix A is equivalent to the matrix B,
then we write A ~ B

The relation of equivalence ‘~’ in the set of all
m X n matrices is an equivalence relation, that is, ~
is reflexive, symmetric, and transitive.

Theorem 4.22 If A and B are equivalent matrices, then
p(4) = p(B).

Proof: If A~B, then B can be obtained from 4 by a
finite number of elementary transformations. But
elementary transformation do not alter the rank of a
matrix. Hence p(4) = p(B).

Theorem 4.23 If two matrices 4 and B have
the same size and the same rank, they are equivalent.
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Proof: Let 4 and B be two m x n matrices of the
same rank r. Then they can be reduced to

normal form by elementary transformations.
Therefore, i
I, 0 I, 0
AN[O O]andBN 0 0}

or, by symmetry of the relation of equivalence of

matrices i
I. 0 I. 0
AN[O o]a“d[o 0

Using transitivity of the relation, ‘~’ we have 4 ~ B.

~ B.

Theorem 4.24 If A and B are equivalent matrices,
there exist non-singular matrices P and Q such that
B=PAQ.

Proof: If 4 ~ B, then B can be obtained from 4 by a
finite number of elementary transformations of A.
But elementary row (column) transformations are
equivalent to pre (post) multiplication by the cor-
responding elementary matrices. Therefore, there
are elementary matrices Py, Ps,....P; O, O5,...,0;
such that
P P y...PiA Q1 0y...0,=B.

Since, each elementary matrix is non-singular and
the product of non-singular matrices is non-singular,

we have, PAQ — B,
where P=P, P, ;...P;and Q= Q; 0-...Q; are non-
singular matrices.

Theorem 4.25 Any non-singular matrix of explicitly
given numbers may be factored into the product of
elementary matrices.

Proof: Any non-singular matrix 4 of order n and the
identity matrix /,, have the same order and same rank.
Hence A ~ I,,. Therefore, by the Theorem 4.41, there
exist elementary matrices P; and Q; such that

A=PpP,_,...P\,0|0;...0..

EXAMPLE 4.36
Reduce the matrix
1 -1 2 -3
4 1 0 2
A= 0 30 4
0 1 0 2

to normal form and, hence, find its rank.

Solution. We observe that

10
4 5
A~1o 3
0 1
10
0 5
“lo 3
0 1
10
0 1
“lo 3
0 5
10
0 1
“lo 3
0 5
10
0 1
1o o
0 0
10
0 1
1o o
0 0
10
0 1
“lo o
0 0
10
0 1
1o o
0 0
214.

Hence, p(4) =4.

EXAMPLE 4.37
Reduce the matrix

_g 12 C— G+
0 4 C3—>C3—2C1
0 2 Cy, — C4+3C
0 0]

-8 14
0 4 R2—>R2—4R1
0 2]

0 07
0 2
0 4 R2<—>R4

—8 14
0 07
0 0
0 _y|Ci— G20

-8 4]

8 8 R3 —>R3—3R2

0 _ R4—>R4—5R2
-8 4]

0 07

0 O

5 0| GG
4 -8
0 0
0 0 C3—>—%C3
1 0 C4—>—%C4

-2 1

0 0

0 0
1 O R4—>R4 —|—2R3

0 1
32 -1
4 2 6
7 4 5

to the normal form and, hence, find its rank.



Solution. We note that
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Thus,
1 1 1 1 00 1 00
1 -1 —-1|=1({0 1 0{4({0 1 O
3 1 1 0 0 1 0 0 1

We shall apply elementary transformations on A
until it is reduced to normal form, keeping in mind
that each row transformation will also be applied to
the pre-factor /3 of the product on the right and each
column transformation will also be applied to the

[3 2 —1
A=14 2 6
|7 4 5
(-1 0 —7
a2 g [T RTR
|7 4 5
(1 0 7
~ 14 2 6|R — —R
|7 4 5
bo ’ R, — R, — 4R,
~ |4 2 =22
R3 — R3 — TR,
|10 4 —44
(1 0 7 7
~ [0 1 -—11 R2—>%R2
|10 4 —44 |
(1 0 7]
~ 10 1 —11|{R; — R3—4R,
10 0 0|
(1 0 0]
~ 10 1 —-11|C—C—17C
10 0 0|
[1 0 0
~ 10 1 0|C—=GC+11C,
|10 0 0
(I, 0
“lo of
Hence p(4) =2.
EXAMPLE 4.38
For the matrix
1 1 1
A=|1 -1 -1},
3 1 1

find the non-singular matrices P and Q such that
PAQ is in the normal form. Hence, find the rank of
the matrix 4.

Solution. We write
A = LAL.

post-factor /3 of the product on the right.
Performing R2 - R2 - Rl, R3 - R3 - 3R1, we

get,
1 1 1 1 0 0 1 0 0
0O -2 2|=(-1 1 0(4]10 1 O
0o -2 -2 -3 0 1 0 0 1

Performing C; — C;, — C,, C3 —» C5 — C;_ we get

1 0 0 1 00 1 -1 -1

0 -2 2|=|—-11 0(4]0 1 0

|0 -2 -2 -3 0 1 0 1]
Performing R, — — 3 R,, we get

1 0 0 1 00 1 =1 —17

0 1 1|=| L —lolafo 0

|0 =2 -2 -3 01 0 1

Performing R; — R;+2R,, we get
0 0 1 -1
—% 0(4]0 1 0
1 1 0 0 1

10
0 1
0 0

N roj— —

0
1
0
Last, performing C3 — C; — C,,we have
0
0
0

1 0 1 0 0 1 -
0 1 = =1 ol4{0 1 -1
0 0 -2 -1 1 0
or 0
b
where
1 0 0 1 -1 0
P= I =fol, og=1]0 1 -1
-2 -1 1 0 0 1
. . . L 0
Since 4 is equivalent to 0 ol We have p(4) =2.
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EXAMPLE 4.39
For the matrix

A=]1

find non-singular matrices P and Q such that PAQ is
in the normal form. Hence find the rank of 4.

Solution. Write 4 =15 A I; that is,
1 0 0 1 0 0
A=10 1 0{4]0 1 0
0 0 1 0 0 1

As, in the above example, we shall reduce 4 to normal
form subjecting it to elementary transformations.
Performing R,—R, — Ry, R; — 3R;, we have
1 —1 1 1 00 1 0 0]
=|(-1 1 0{4{0 1 0].
4 -2 -3 0 1 0 0 1]

Performing ¢, — ¢, + ¢y, c3 —»¢3 — ¢ we have

1 0 0 1 0 0 1 1 —1]
0o 2 0Ol=1]—-1 1 04|00 1
|0 4 =2 -3 0 1 0 0 1]
Performing R, — 1R,, we have
1 0 0 1 0 O 1 1 -1
01 o|=|-11olalo 1 o
0 4 -2 -3 0 1 0 0 1
Performing R; — R; — 4R,, we have
1 0 0 1 0 0 1 1 -1
01 o|=|-1 1olalo1 o
0 0 -2 -1 -2 1 0 0 1
Performing C; — — 3 C3, we get
100 10 0] 11 4
01 0f=|-1 1 olalo 1 0
00 1 1 -2 1] o o -1
Hence,
13:PAQ7

where

S

P=|—

0 1 1
Ofand 0= 1|0 1
1 0 0

— O
D= O rol—

1
2
-2
Since A ~ I3, p(4) = p(lz) =3.

Theorem 4.26 The rank of the product of two matrices
cannot exceed the rank of either matrix.

Proof: Let 4 be m x n and B be n x p matrices with
rank r5 and rg, respectively. Then, by Corollary 4.9,
there exist non-singular matrices C and D of order
m and n, respectively, such that

—_ IFA 0
CAD = [ 0 0},
I. 0
where { 0’* 0] denotes the normal form of 4. Thus
_ et | O
A=C [ 0 0 D
so that
-1 IrA 0 1
AB = |C D' |B
0 0
L. 0]
=C1< ‘ (D13)>.
U

Since C' is non-singular, AB has same rank as

has zeros in the last

m — r4 rows and, hence, 16" 8} (D7'B) also has

only zeros in the last m — r, rows. Hence, the rank
Ly O

f .
“ 1o o
therefore, that

L, 0], ., 1., 0]
{0 0](D B).But_0 0

(D7'B) is at most r,. It follows,

p(AB) <ry

Also
p(aB) = p((4B)")
= p[B"4"]
But, as proved earlier,
p(B" AT) < p(B") = p(B) = rp.

Hence,
p(4B) < rp.

This completes the proof of the theorem.



EXAMPLE 4.40
Let 4 be any non-singular matrix and B a matrix
such that AB exists. Show that

p(AB) = p(B).

Solution. Let C=AB. Since A4 is non-singular, there-
fore B=A4"'C. Since rank of the product of two
matrices does not exceed the rank of either matrix,

WIS () = p(4B) < o(B)
and
p(B) = p(47'C) < p(C).
Hence
p(C) = p(4B) < p(B) < p(C),
which yields
p(B) = p(C) = p(4B).

4.17 ROW AND COLUMN EQUIVALENCE
OF MATRICES

Definition 4.72 A matrix A is said to be row (column)
equivalent to B if B is obtainable from A4 by a finite
number of elementary row (column) transforma-
tions of 4.

Row equivalence of the matrices 4 and B is
denoted by 4 X B and column equivalence of 4 and
B is denoted by 4 LB.

Theorem 4.27 Let A be an m X n matrix of rank r.
Then there exists a non-singular matrix P such that

- [S].

where G is an 7 X n matrix of rank » and 0 is (m —r)
n matrix.

Proof: Since A4 is an m x n matrix of rank r, therefore
there exist non-singular matrices P and Q such that

I, 0
pig- [ 9]
But every non-singular matrix can be expressed as
product of elementary matrices. So,

0=010>...0,

where O, 0,...Q, are all elementary matrices.
Thus,

PAQy Or... O = [16 g}
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Since, elementary column transformation of a
matrix is equivalent to post-multiplication with the
corresponding elementary matrix, we post-multiply
the left hand side of the above expression by the ele-
mentary matrices Qt’1 , Qt’_ll, ., 071, 07! succes-
sively and effect the corresponding column
transformations in the right hand side, we get a
relation of the form

G
PA_O.

Since elementary transformations do not alter the
rank

p(PA) = p(4) = r and so p[g] =r,
which implies that p(G) =r since G has r rows and

G .
last m x r rows of [ 0 } consist of zero elements only.

Theorem 4.28 Every non-singular matrix is row
equivalent to a unit matrix.

Proof: Suppose that the matrix 4 is of order 1. Then
A =[a;1] which is clearly row equivalent to a unit
matrix. We shall prove our result by induction on
the order of the matrix. Let 4 be of order n. Since
the result is true for non-singular matrix of order 1,
we assume that the result is true for all matrices of
order n — 1.

Let A=[a;] be an n x n non-singular matrix.
The first column of the matrix 4 has at least one
non-zero element, otherwise | 4 |=0, which con-
tradicts the fact that 4 is non-singular. Let a;; =k #£ 0.
By interchanging (if necessary) the pth row with the
first row, we obtain a matrix B whose leading
coefficient is k£ # 0. Multiplying the elements of the
first row by +, we get the matrix.

1 Cl2 C13 ... ... Cip
Cy1 Cp C23 ... ... Cp

C =
Cnl Cn2 Cp3 cee e Cyn

Using elementary row transformation, we get

1 dp diz ... di
0
D=1|... A ,
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where 4, is (n — 1) x (n — 1) matrix. The matrix 4,
is non-singular otherwise | A; [= 0 and so | D | =0.
Since 4 ~ D, this will imply | 4 | =0 contradicting
the fact that 4 is non-singular. By induction
hypothesis, 4; can be transformed to /,,_; by ele-
mentary row transformations. Thus, we get a matrix
M such that

1 d12 d13 dln

0 1 0o ... ... 0
M:

0 ... .. o 1

Further, use of elementary row transformation
reduces M to the matrix.

1 0 o ... ... 0

0 1 o ... ... 0
I, = 5

0o ... o ... ... 1

which completes the proof of the theorem.

Corollary 4.4 Let A be a on-singular matrix of order x.
Then there exists elementary matrices Ey, Ey, ..., E;
such that

EE, |...E,E1A=1,.

Proof: By the Theorem 4.28, non-singular matrix A
can be reduced to 7, by finite number of elementary
row transformations. Since elementary row trans-
formation is equivalent to pre-multiplication by the
elementary matrix, therefore, there exists elemen-
tary matrices E1, Ey, ..., E;suchthat E, FE, | ... E;
E A=1,

Corollary 4.5 Every non-singular matrix is a product
of elementary matrices.

Proof: Let 4 be a non-singular matrix. Then, by
Corollary 4.4, there exist elementary matrices £,
E,,..., E, such that

EE, ...EbE A =1,

Pre-multiplying both sides by (EE,_; ...E:E;) ",
we get

A=E'E;" .. E"
Since, inverse of an elementary matrix is also an ele-

mentary matrix, it follows that non-singular matrix

can be expressed as a product of elementary
matrices.

Corollary 4.6 The rank of a matrix does not alter by
pre-multiplication or post-multiplication with a
non-singular matrix.

Proof: Every non-singular matrix can be expressed
as a product of elementary matrices. Also we know
that elementary row (column) transformations are
equivalent to pre-(post) multiplication with the
corresponding elementary matrices. But elementary
transformations do not alter the rank of a matrix.
Hence, the rank of a matrix remains unchanged by
pre-multiplication or post-multiplication with a
non-singular matrix.

4.18 ROW RANK AND COLUMN RANK
OF A MATRIX

Definition 4.73 Let A be any m x n matrix. Then the
maximum number of linearly independent rows
(columns) of A is called the row rank (column rank)
of 4.

The following theorem (stated without proof)
shall be used in the sequel.

Theorem 4.29 The row rank, the column rank and the
rank of a matrix are equal.

4.19 SOLUTION OF SYSTEM OF LINEAR EQUATIONS
Let

ayxy +apxy + ...+ ayx, = b

anxi + apxy + ...+ ayx, = by

(1)
amX1 + amaX2 + ...+ Xy = bm
be a system of m linear equations in » unknown x;,
X2,..., X, The matrix form of this system is

AX = B,
where
ar an I /AT
any ann e e arx
A =
aAml w2 --- ... A



is called coefficient matrix of the system,
Fxp

X2

X =

L x” .

is the column matrix of unknowns, and
by ]

by

bm
is column matrix of known numbers or the matrix of
constants. We call the system (1) as the system of
non-homogenous equations.

Any set of values of xy, x»,...,x, from a scalar
field which simultaneously satisfy (1) is called a
solution, over that field, of the system. When such a
system has one or more solutions, it is said to be
consistent, otherwise it is called inconsistent.

SOLUTION OF NON-HOMOGENOUS LINEAR
SYSTEM OF EQUATIONS

(A) Matrix Inversion Method.

Consider the non-homogeneous system of linear
equations AX=B, where 4 is non-singular n X n
matrix. Since A is non-singular, 4~' exists. Pre-
multiplication of AX=B by 4" yields

AN (4Ax)=4""'B

4.20

or
(A'4A)x=4"B
or
IX=4"'B
or
X =4""'B.

Thus if 4 is non-singular, then the given system of
equation can be solved using inverse of 4. This
method is called the Matrix Inversion Method.

EXAMPLE 4.41

Solve x+2y—3z=—-4

2x+3y+2z=2
3x—3y—4z=11
by Matrix Inversion Method.
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Solution. The matrix form of the system is AX=B,

here
1 2 =3 X —4
A= |2 3 21,X=|y|and B= 2
3 -3 —4 z 11

We note that

|[4| = 1(—=6) —2(—14) — 3(—15) = 67 # 0.
Thus 4 is non-singular. Hence the required solution
is given by

X=4"B. (2)
The cofactor matrix of 4 is
-6 14 -15
Ay = | 17 5 9
13 -8 -1
and so
-6 17 13
adjd=[4;,]"=| 14 5 -8
-15 9 -1
Hence
1 1 ; -6 17 13
A =—adjd =— 14 5 -8
4] 671 _15 o 1

Substituting 4" in (2), we get

X . [ —6 17 13 —4
= — 14 — 2
y &7 5 8
z | —15 9 -1 11
. [ 201 3
=— | -134| = | -2
67
| 67 1

Hence x=3,y=-2,and z=1.

B. Cramer’s Rule.
If|A| # 0, then AX = B has exactly one solution x; =

A j=12,.
from A by replacing the jth column of 4 by the
column of b’s.

Consider the matrix form AX = B of the system of
linear equations. Again Suppose that 4 is non-singular.

Then, pre-multiplication of AX=B by 4" yields

., n, where 4; is the matrix obtained

Al] Az] oo P An] bl

1 1[4 An . Ap || b2
X=4A " B=—

L T I

Ay Ay oor o Ay || By
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or
X bidy +boAy + ...+ DA
X2 1 biAy +byAy + ...+ bAn
Ml
Xn b1A1n+b2A2n+~--+bnAnn
Therefore,
1 |41
x1 == (b1 +bydoy + ...+ bydy) = —+
|4] ||
1 |4
Xy = f(blAlz + boAry + ...+ bnAnz) = —
|| 4]
—l(bA + bpAo, + +bA)—|A”|
xn—|A| n‘lln n12n nnn—‘A|a

where 4; is the matrix obtained from 4 by replacing
the jth column of 4 by the column of b’s.

EXAMPLE 4.42
Solve the system of linear equations
3x+y+2z=3
2x—3y—z=-3
x+2y+z=4

by Cramer’s rule.

Solution. Let A4 be the coefficient matrix. Then

301 2
Al=12 -3 —1|=8
12 1

and so 4 is non-singular. Thus the Cramer’s rule is
applicable and we have

3 1 2
1
x=ro[=3 =3 -1 :%:1,
4] 4 2 1
3 3 2
1 16
] 1 4 1
3 1 3
z:% 2 -3 -3 :%8:4.
] 1 2 4

Hence, the required solutionisx=1,y=2,andz=—1.

Remark 4.5 The above two methods are applicable
only when 4 is non-singular.

4.21 CONSISTENCY THEOREM

Definition 4.74 Let AX =B be the matrix form of a
given system of equations. Then the matrix

all aln oo Al b]

any ann e aryp b2
[A:B] =

aml QAmp -+ Amn by

is called the augmented matrix of the given system
of equations.

Definition 4.75 If a system of linear equations has one
or more solution, it is said to be consistent; other-
wise it is called inconsistent.

Theorem 4.30 (Consistency Theorem). The system of
linear equations AX = B is consistent if and only if
the coefficient matrix 4 and the augmented matrix
[4:B] are of the same rank.

Proof: Let C1, Cs, ..., C,denote the column vectors of
the matrix 4. Then the equation AX = B is equivalent to

X1
X2
(CiCy...Cl|...| =B
Xn
or
x1Ci +xC+...+x,C, =B. (3)

Let » be the rank of the matrix 4. Then 4 has r
linearly independent columns. Without loss of
generality, we assume that C;, C,...,C, form a
linearly independent set and so each of the
remaining n — r columns is a linear combination of
these » columns Cy, C,,...,C;

Suppose the given system of linear equations is
consistent. Therefore, there exist n scalar ky, k»,..., k,
such that

hC +kC+...+k,C, =B. 4)

Now since each of n — r columns C, 1, Cyiz, ..., Cy,
is a linear combination of first » columns C;, Cs,...,
C,, it follows from (4) that B is also a linear
combination of C;, C,,...,C, Thus, the maximum
number of linearly independent columns of the
matrix [4:B] is also r. Therefore, the matrix [4:B] is



also of rank ». Hence, rank of 4 and the augmented
matrix [4:B] is the same.

Conversely, suppose that the matrices 4 and [4:B]
are of the same rank r. Then the maximum number of
linearly independent columns of the matrix [4:B] is 7.
But the first 7 columns C;, C,,..., C, of the matrix
[4: B] had already formed a linearly independent
set. Therefore, the column B should be expressed as
a linear combination of C;, C,,..., C, Hence, there
are scalars ky, k»,..., k., such that

hC +kCy+ ...+ kC.=B

or
kC +kC+ ...+ kC,
+0C,10C,in+...4+0C, =8B (5)

Comparing (3) and (5), we get

X1 = k,xz = k2, ey Xy = kr, Xp+1 = 07

X2 =0,...,x, =0
as the solution of the equation AX = B. Hence, the
given system of linear equations is consistent. This
completes the proof of the theorem.

If the system of linear equations is consistent,
then the following cases arises:

Case I. m > n, that is, number of equations is more
than the number of unknowns. In such a case

(1) if p(4) = p([4:B]) =n, then the system of
equations has a unique solution

(1) if p(4) = p([4:B]) =r < n then the (n — r)
unknowns are assigned arbitrary values and
the remaining » unknowns can be deter-
mined in terms of these (# —) unknowns.

Case Il. m < n, that is, the number of equations is less
than the number of unknowns. In such a case

(1) if p(4)=p(A4:B])=m, then n—m un-
knowns can be assigned arbitrary values
and the values of the remaining m
unknowns can be found in terms of these
n — m unknowns, which have already been
assigned values

@11) if p(4)=p([4:B])=r < m, then the (n — r)
unknowns can be assigned arbitrary values
and the values of remaining » unknowns can
be found in terms of these (» — ) unknowns,
which have already been assigned values.
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EXAMPLE 4.43

Show that the system
x+y+z=-3
Ax+y—2z=-2
2x+4y+T7z="7

of linear equations is not consistent.

Solution. The matrix form of the system is

AX =B
and the augmented matrix is
11 1 -3
[4:B]=3 1 -2 =2
2 4 7 7
1 1 1 —3_R R — 3R
R —
~lo =2 -5 7|22
R3; — R; — 2R,
o 2 5 13|
R P +R
—
~lo =2 -5 7|7 T
0 0 0 20|

Thus the number of non-zero rows in Echelon form
of the matrix [4: B] is 3. But

1 1 1
A~ |0 =2 =5
0 0 0

and so p(4) =2.
Thus,
p(4) # p([4:B]).

Hence, the given system of equation is inconsistent.

EXAMPLE 4.44

Show that the equations
x+2y—z=3
Ix—y+2z=1
2x =2y +3z=2
xX—y+z=-1

are consistent. Also solve them.

Solution. In matrix form, we have

o2 -1 3
3 -1 2 1
AX=15 5 31| 2
1 -1 1]|L? —1
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The augmented matrix is

12 -1 3
PP R
2 2 3 2
1 -1 11
12 -1 37
0y s g |R—R-3R
~ Ry — Ry — 2R,
0 -6 5 4|
0 -3 2 —4)
12 -1 37
0 -1 0 -4
“lo 6 5 _4|RTRR
0 -3 2 —4)
12 -1 37
0 o | R R—6R:
“lo o0 5 g0 ReR
o o 2 8]
12 -1 37 1
0 -1 o -4
“lo o0 1 4| Rk
0o o0 1 4
12 -1 37
0 -1 0 —4
“lo o 1 4R ReRs
o 0o o o0

The number of non-zero rows in the echelon form
is 3. Hence p([4:B]) =3. Also

1 2 -1
0 -1 0
A~1o 0 1
0 0 0

Clearly, p(4) =3. Thus, p(4) = p([4, B]) and so the
given system is consistent. Further, r=n=3.
Therefore, the given system of equation has a
unique solution. Rewriting the equation from the
augmented matrix, we have

xX+2y—z=3
—y=-4
z=4

andsox = —1, y=4 and z =4 is the required solution.

EXAMPLE 4.45

For what values of 4 and p, the system of equations
x+y+z=6
x+2y+3z=10
X+2y+lz=u

has (i) no solution (ii) a unique solution, and (iii) an
infinite number of solutions.

Solution. The matrix form of the given system is

I 1 1] (x
AX =11 2 3| |y
|12 4]z
[ 6
= (10
L H
=B.
Therefore, the augmented matrix is
1 1 6
[4:B]=1|1 2 3 10
L1 2 1 qu
o1 1
Ry — Ry — R
~ 0 1 2
R; — R; — R,
L0 1 A—-1 u—6
o1 1 6
~ 10 1 2 4 Ry — R3 — Ry.
L0 0 A—=3 pu—10

If /. # 3, then p(4) =3 and p([4:B]) = 3. Hence, the
given system of equations is consistent. Since p(4)
is equal to the number of unknowns, therefore, the
given system of equations possesses a unique
solution for any value of u.

If A=3 and u # 10, then p(4)=2 and
p([A4:B]) = 3. Therefore, the given system of equa-
tions is inconsistent and so has no solution.

If 2=3 and p=10 then p(4) = p([4:B])=2.
Thus, the given system of equation is consistent.
Further, p(4) is less than the number of unknowns,
therefore, in this case the given system of equations
possesses an infinite number of solutions.



EXAMPLE 4.46

Determine the value of A for which the system of

equations
X1+x+x3=2
X1+ 2x +x3 =2
Xi+x+(A=5x=2

(1) has no solution
(i1) has a unique solution.

Solution. The matrix form of the given system is

1 1 1 X1
AX =11 2 1 X3
|1 1 A-5]|x
[ 2
=|-=-2
| A

=B.

Therefore, the augmented matrix is

11 1 2
B =12 1 =2
11 i-5
11 1 R R R
R
~10 1 0 A
, Ry — R3 — Ry
|0 0 A-6 4i-2

If A=6, then p(4)=2 and p([4:B])=3. Therefore,
the system is inconsistent and so possesses no solution.

If 4 # 6, then p(4) = p([4:B]) = 3. Hence, the
system is consistent in this case. Since p(4) is equal
to the number of unknowns, the system has a unique
solution in this case.

EXAMPLE 4.47

Determine the value of A for which the system of
equations

x+y+z=1
X+2y+4z=1
x + 4y 4 10z = 2

possesses a solution and, hence, find its solution.
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Solution. The given system of equations is expressed
in the matrix form as

1 1 1] («x 1
AX=|1 2 4||y|=1| 2| =8B
1 4 10|z 72
Therefore, the augmented matrix is
1 1 1
[4:Bj=|1 2 4 1
L1 4 10 2
(1 1 1
~10 1 3 4i-1
[0 3 9 -1
1 1 1 1
~ (0 1 3 A—1
[0 0 0 22-31+2

We note that

p(4) = p([4:B]) if /> =34 +2=0.
Thus, the given equation is consistent if 1> — 34 +
2 =0, that is if (1 —2) (A—1)=0, that is, if A =2
or A=1.If A=2, then we have

1 11 1
[A:B]~ |0 1 3 1
0 00 O
and so the given system of equations is equivalent to
x+y+z=1
y+3z=1.

These equations yields y=1-—3z, and x=2z.
Therefore, if z=k, an arbitrary constant, then x
2k, y=1-3k, and z=k constitute the general
solution of the given equation.

If A=1 then, we have

111 1
[A:B]~ |0 1 3 0
0 00 O
and so the given system of equations is equivalent to
x+y+z=1
y+3z=0.

These equations yields y = —3z, x =1 4 2z. Thus, if
c is an arbitrary constant, then x =1+ 2¢, y= —3c,
and z=c, constitute the general solution of the
given system of equations.
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EXAMPLE 4.48

Find the value of A and u for which the system of
equations
3x+2y+z=6
Ix+4y+3z=u
6x+ 10y + Az=p
has (i) unique solution, (ii) no solution, and (iii)
infinite number of solutions.

Solution. The given system of equations is expressed
by the matrix equation

3 2 1] [x 6
AX=1(3 4 3||y|=]|14| =B.
6 10 Af |z u
Therefore, the augmented matrix is
3 2 1 67
[AB]=1(3 4 3 14
6 10 4 u |
32 1 6 Ry — Ry R
~02 2 8 | Ry—Ry—2R,
06 1-2 pu—12]
32 1 6
~ 102 2 8 Ry — R; —3R,.
0 0 1—8 u—36]

If 2 #£ 8, then p(A4) = p([4:B]) = 3 and so in this case
the system is consistent. Further, since p(4) is equal
to number of unknowns, the given system has a
unique solution.

If A=8, 1 # 36, then p(4) =2 and p([4:B])=3.
Hence, the system is inconsistent and has no solution.

If 2=8, w=36, then p(4)=p([4:B])=2.
Therefore, the given system of equation is consistent.
Since rank of A4 is less than the number of unknowns,
the given system of equation has infinitely many
solutions.

EXAMPLE 4.49
Using consistency theorem, solve the equation
xX+y+z=9
2x+ 5y +7z=52
2x+y—z=0.

Solution. The matrix form of the given system of
equations is

11 17[x 9
AX=|2 5 yl=1|521]=28
2 1 -1z 0

Therefore, the augmented matrix is

11 1 9
4:Bl=1|2 5 7 52
2 1 -1 0
L T
~00 3 s 3 |
0 -1 -3 —18] 2 !
(11 1 9 ]
~lo -1 -3 gk
0 3 5 34 |
(1 1 1 9
~lo -1 -3 g | R3R
0 0 —4 -20

Thus we g_et echelon form of the_: matrix [4:B]. The
number of non-zero rows in this form is 3.
Therefore p([4:B]) = 3. Further, since

1 1 1
A~ |0 -1 =3
0 0 —4
Therefore p(4)=3. Hence, p(4)= p([4:B])=3.
This shows that the given system of equations is
consistent. Also, since p(4) is equal to the number
of unknowns, the solution of the given system is
unique. To find the solution, we note that the given
system of equation is equivalent to

11 1] [x 9
0 -1 =3||y|=|-18
0 0 -4z ~20

and so

x+y+z=9, —y—3z=-18, —4z=-20,
whichyieldsz = 5,y = 3,and x = 1 as the required
solution.

4.22 HOMOGENEOUS LINEAR EQUATIONS

Consider the following system of m homogeneous
equations in 7 unknowns Xy, xp, ... ,X,
anx; +apxy +...+ax, =0

anxy +anx; +...+axyx, =0

amX1 + amxs + ...+ appx, = 0.

The matrix form of this system is
AX =0,



where
ayp aip ... ... aip x| 0
ay 4ay ... ... ary, 0
X2
5 X = 5 0 =
e e e e X,
Al Amd e vnn Amn 0

It is evident that x; = 0,x, = 0,...,x, = 0, that is,
X=0is a solution of the given system of equations.
This solution is called trivial solution of the given
system.

Let X, and X, be two solution of AX=0. Then
AX; =0 and AX, =0 and so for arbitrary numbers
ki, ko, we have

A(lel + kzXz) =k (AXl) + kz(AXz)

=k;0+ k,0=0.
If follows, therefore, that linear combination of two
solutions of AX'=0 is also a solution. Hence, the
collection of all solutions of the equation 4X=0
form a subspace of the vector space V.

Theorem 4.31 Let the rank of a matrix 4 be r. Then
the number of linearly independent solutions of m
homogeneous linear equations in z variables, AX =0
is (n—r).

Solution. Let

a an N AT
a a a, 1
21 o3 R
n X
A= X =
Xn
Aml Ap2 -+ .. A

Since p(4)=r, it has r linearly independent col-
umns. Without loss of generality, suppose that the
first » columns of the matrix 4 are linearly inde-
pendent. We write
A=[C, C...Cyl,

where Cy, C,, ..., C, are column vectors of A.
Therefore, AX=0 can be written as vector equa-
tion.

x1C + 0G0 +...+x.C,

+%41Cri1 + ... +x,¢, = 0. (6)
Since each of the vector C,.1,C,12,...,C, is a
linear combination of vectors C;, C,, ..., C,,
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therefore
Cp1 =p1Cr+puC + ... +p1,C,
Cri2 =p2Ci +p2nC +... +p2C,

C, =puiCi + pC + ... + puC,, (7)

where k= n — r. The expression (7) can be written as
puCi+pnC+..4+p1,C.—1.Crp1 +0C 42 +...+0C, =0
p2uCi4+pnC+...4p2»C4+0.Cyp1 —1Cr 0 +...4+0C, =0

P Ci+pCr+..4ppC+0.Co 1 +0C 2 +...—1C,=0.

(8)
Comparing (6) and (8), we note that

P11 P21 Pri
P12 P2 Pk2
Xl = lili ; X2 = pér PR Xn—r = p(l){r
0 —1 0
0 e
e . 0

| 0 | 0 | | —1]

are (n — r) solutions of AX=0. Suppose now that
C]X] + C2X2 + ...+ Cn—an—r =0.
Comparing (r+ 1)th, (»+ 2)th,..., nth compo-
nent on both sides, we get
—1=0,—¢c,=0,...,¢,—r=0.
Hence X1,X3,...,X,_, are linearly independent.
Suppose that the vector X, with components
X1,X2,...,X, is any solution of the equation 4AX = 0.
We assert that X is linear combination of
X1,X2,...,X,_,. To prove it, we note that the vector
X 20Xy +x0X0 + X, (9)
being linear combination of solutions is also a solu-
tion. Then the last n — » components of the vector
(9) are all zero. Let zj,zp,...,z, be the first r
components of the vector (28). Then the vector
whose components are (zj,zp,...,z,0,0,...,0)
is a solution of the equation AX=0. Therefore
from (6), we have

21C1 +ZzC2 +... +ZrCr = 0.

But the vector Cy, Cy, ..., C, are linearly indepen-
dent. Hence z; = z; =z, = 0. Hence (9) is a zero
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vector, that is,
X +x0X +x500+. .+ 55, = 0

or
X = =X X1 — Xp12X2 — o0 — XXy

Thus, every solution is a linear combination of the
n — r linearly independent solution X;,X5,...,X,_,.
It follows, therefore, that the set of solution [X7, X5,
..., X,_,] form a basis of vector space of all the
solutions of the system of equations AX =0.

Remark 4.6 Suppose we have a system of m linear
equations in n unknowns. Thus, the coefficient
matrix 4 is of order m x n. Let r be the rank of 4.
Then, » <n (number of column of 4).

If r=n, then AX=0 possesses n—n=0
number of independent solutions. In this case, we
have simply the trivial solution (which forms a
linearly dependent system).

If » < n, then there are n — r linearly indepen-
dent solutions. Further any linear combination of
these solutions will also be a solution of AX=0.
Hence, in this case, the equation 4AX = 0 has infinite
number of solutions.

If m < n, then since » <m, we have r < n. Hence
the system has a non-zero solution. The number of
solutions of the equation AX =0 will be infinite.

Theorem 4.32 A necessary and sufficient condition
that a system of #» homogeneous linear equations in
n unknowns have non-trivial solutions is that
coefficient matrix be singular.

Proof:

The condition is necessary. Suppose that the system of n
homogeneous linear equations in #» unknowns have
a non-trivial solution. We want to show that | 4
| = 0. Suppose, on the contrary, | 4 | # 0. Then rank
of 4 is n. Therefore, number of linearly independent
solution is n —n=0. Thus, the given system pos-
sesses no linearly independent solution. Thus, only
trivial solution exists for the given system. This
contradicts the fact that the given system of equa-
tion has non-trivial solution. Hence |4| = 0.

The condition is sufficient. Suppose |4| = 0. Therefore,
p(4) < n. Let r be the rank of 4. Then the given

equation has (n — r) linearly independent solutions.
Since a linearly independent solution can never be
zero, therefore, the given system must have a non-
zero solution.

EXAMPLE 4.50

Solve
x+3y—2z=0

2x—y+4z=0
x—11ly+4 14z =0.

Solution. The matrix form of the given system of
homogeneous equations is AX =0, where

1 3 -2 x 0
A=12 -1 41, X=1{y],0=10

1 —-11 14 z 0
We note that

1 3 -2
[4l=12 -1 4 |=30—-724+42=0.

1 —11 14
Therefore A4 is singular, that is p(4) < n. Thus, the
given system has a non-trivial solution and will
have infinite number of solutions.
The given system is

1 3 =27[x
2 -1 41|y =0
|1 —-11 14] [z]

S Ry — Ry — 2R,
~10 T B =0 e R R
0 —14 16/ |z 3o

1 3 =27 [x]]
~ 10 —7 8 y :0, R3 —>R3—2R2
10 0 0] |[z]
and so we have
x+3y—-2z=0
—T7y+8=0.
These equations yield y:%z,x:%loz. Giving

different values to z, we get infinite number of
solutions.

EXAMPLE 4.51

Solve
X1 —X2+x3=0

X1 +2x, —x3=0
2x1 +x3 + 3x3 = 0.



Solution. In matrix form, we have AX=0, where

1 -1 1 X1 0
A=11 2 —-1|,x=|xn|,0=10
2 1 3 X3 0

We note that |4]=9 # 0. Thus A4 is non-singular.
Hence, the given system of homogeneous equation
has only trivial solution x; =x, =x3 =0.

EXAMPLE 4.52

Solve 2x —2y+5z4+3w=0

4x—y+z+w=0
3x—2y+3z+4w =0
x—=3y+7z+6w=0.

Solution. The matrix form of the given system of
homogeneous equation is

2 -2 5 3][«x
14 -1 o1y
=13 5 3 4|27

1 =3 7 6{|w
Performing row elementary transformations to get
echelon form of 4, we have

2 -2 5 3 1 -3 7 6
4 —1 1 1 4 —1 1 1
A=13 5 3 4|73 2 3 g|fioR
1 -3 7 6 2 -2 53
"l -3 7 6
4 11 27 o3| e RemAR
“lo 7 _1g | RT3k
0 4 —9 _gRemR—2R
"l -3 7 6
0 4 -9 -9
“lo 7 _1g | RR
0 4 -9 —9,
"l -3 7 6
0 4 -9 —9
“lo 28 72 _se| BT
0 4 -9 —9]
1 -3 7 6
0 4 o _o|R—R-TR:
~ 0 0 _9 7 R4*>R47R2.
0 0 0 0

The above echelon form of 4 suggests that rank of 4 is
equal to the number of non-zero rows. Thus p(4) = 3.

4.43

Matrices

The number of unknowns is 4. Thus p(A4) < n. Hence,
the given system possesses non-trivial solution.
The number of independent solution will be
m—r)=4-3=1.

Further, the given system is equivalent to

1 -3 7 6 X
0 4 -9 -9((»| _ 0
0 0 -9 711z
0 0 0 O0f|w

and so, we have

x=3y+T7z+6w=0

49y —-9z-9w =0

—-9z24+7w=0
These equations yield z= %w, y=4w, x= gw.
Thus taking w=t, we get x= gt, y=4t, z :gt,
w=t as the general solution of the given
equations.

EXAMPLE 4.53

Determine the value of 4 for which the following

equations have non-zero solutions:
x+2y+3z=Ix
X+y+2z=4y
2x+3y+z =iz

Solution. The matrix form of the given equation is

1-41 2 3 X
AX = 3 1-2 2 y| =0.
2 3 1—2||x

The given system will have non-zero solution only
if | 4 |=0, that is, if rank of A is less than 3.
Thus for the existence of non-zero solution, we
must have

1—-2 2 3
3 1-2 2 |=0
2 3 1-2
or
6—1 6—1 6—1
3 1-4 2 |=0 usingRi =R +R,+R;3
2 3 1-4
or
1 1 1
6-2)3 1—-1 2 |=0
2 3 1-2
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or
10 0
6-1)|3 —2—4 -1 |=0, ©7C~C
2 1 —1-2 G-G-G
or
(6—2)[A*+32+3]=0,
which yields

J—6and STV ~12

Thus, the only real value of 4 for which the given
system of equation has a solution is 6.

4.23  CHARACTERISTIC ROOTS AND
CHARACTERISTIC VECTORS

Let A be a matrix of order n, A a scalar and X =
X1
X2

a column vector.
Xn
Consider the equation
AX =X (10)

Clearly X= 0 is a solution of (10) for any value of 4.

The question arises whether there exist scalar A and

non-zero vector X, which simultaneously satisfy the

equation (10). This problem is known as char-
acteristic value problem. If I,, is unit matrix of order

n, then (10) may be written in the form

(4—-A,)X =0. (11)

The equation (11) is the matrix form of a system of

n homogeneous linear equations in 7 unknowns.

This system will have a non-trivial solution if and

only if the determinant of the coefficient matrix

A — AL, vanishes, that is, if

al —A (25 1 2, ain
an ay —A ... ... ary
A—iL|=| ... . .. =0.
an ap e e A — A

The expansion of this determinant yields a polyno-
mial of degree n in A, which is called the char-
acteristic polynomial of the matrix 4.

The equation |4 — Al,|=0 is called the char-
acteristic equation or secular equation of A.

The n roots of the characteristic equation of a
matrix A4 of an order n are called the characteristic
roots, characteristic values, proper values, eigen-
values, or latent roots of the matrix A4.

The set of the eigenvalues of a matrix A4 is
called the spectrum of A.

If A is an eigenvalue of a matrix 4 of order n,
then a non-zero vector X such that AX = AXis called
a characteristic vector, eigen vector, proper vector,
or latent vector of A corresponding to the char-
acteristic root /.

Theorem 4.33 The equation AX = AX has a non-trivial
solution if and only if /4 is a characteristic root of 4.

Proof: Suppose first that A is a characteristic root of
the matrix A. Then |4 — A/,|=0 and consequently
the matrix 4 — Al is singular. Therefore, the matrix
equation (4 — AI)X =0 possesses a non-zero solu-
tion. Hence, there exists a non-zero vector X such
that (4 — ADX=0 or AX=/X.

Conversely, suppose that there exists a non-zero
vector X such that AX = AX or (4 — A)X=0. Thus,
the matrix equation (4 — A)X=0 has a non-zero
solution. Hence A4 — Al is singular and so |
A — All=0. Hence, 4 is a characteristic root of the
matrix 4.

Theorem 4.34 Corresponding to a characteristics
value A, there correspond more than one char-
acteristic vectors.

Proof: Let X be a characteristic vector corresponding
to a characteristic root 4. Then, by definition, X # 0
and AX=AX. If k is any non-zero scalar, then
kX # 0. Further,

A(KX) = k(AX) = k(AX) = A(kX).

Therefore, kX is also a characteristic vector of 4
corresponding to the characteristic root A.

Theorem 4.35 If X is a proper vector of a matrix 4,
then X cannot correspond to more than one char-
acteristic root of 4.

Proof: Suppose, on the contrary, X be a characteristic
vector of a matrix 4 corresponding to two char-
acteristic roots A; and /J,. Then, AX=21,X and
AX= 1, X and so (4; — A,) X = 0. Since X0, this
implies 4; —4,=0 or A;=/1,. Hence the result
follows.

Theorem 4.36 Let X;, X5, ..., X, be non-zero char-
acteristic vectors associated with distinct char-
acteristic roots A, A, ... A,, of a matrix 4. Then X,
X>,..., X, are linearly independent.



Proof: Let ¢y, c»,...,c, the constants such that
Cle—l—CzXz—f—...—FCan:O (12)
Multiplying throughout by 4 and using the fact that
AX= 1,X;, we get
X1 +ehXo+ ...+ X, =0 (13)
Repeating this process, we obtain successively

C])fX] +C2/1§X2 +... +Cn;Lan =0

Cl),?Xl-‘rCzing—‘r...—‘rC,,/lan:O (14)

Cy /AL:(_IXl + Cg)»lg_le +... —|—Cn)»f_1Xn =0
The k equations (12) through (14) in vector
unknowns X;, X5, ..., X, can be written in the form
14y A3 !
1y 23 A
[Cle C2X2 ...... c,,X,,] e
1, 22k
Since Ay, 45,..., 4, are distinct, the right factor is a
non-singular Vander-monde matrix. Since it is non-
singular, its inverse exists. Post-multiplication by
its inverse yields
[ZR.CRZY. CHF Xy =0

Since Xi, X5, ..., X, are all non-zero, it follows that
¢y =cy=c,=0. Thus, the relation (12) implies ¢;
1=c>=c¢,=0. Hence, Xj, X5, ..., X,, are linearly
independent.

Let ¢(4) = apt" + aX N a1k +a,
be the characteristic polynomial of a matrix 4. Thus

[A—A0| = 6(2)
= ap"+a X+ an i d+ ay.

If we put 1=0, then we get |4| =a,,. The diagonal
term of |4 —Al] is (a1, —A)(az—4)...(a,,—2) and this
is the only product yielding A" and 2""'. Expanding
the product, we obtain (—1)" A" and
(=1)""" S a2 1 as the first two terms of ¢(2).
Hence

ap = (—1)"and a; = (—1)""" Za,-,»
In ¢(4), the of "7,
(—1)"_1 (a11 +axn + ...+ ay) is of special inter-
est. As we know, the term a;; +ay +...+a,, is
called the trace or spur of the matrix 4. It follows

from the above discussion that the sum of the
eigenvalues of a matrix is equal to its trace and the

coefficient namely
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product of the eigenvalues of a matrix A is its
determinant | A |.

Theorem 4.37 The characteristic roots of a Hermitian
matrix are real.
Proof: Let /. be a characteristic root of a Hermitian
matrix. Then there exists a non-zero vector X such that
AX = AX. (15)
Taking transpose conjugate, we get
X4 = Jx°. (16)
Pre-multiplying (15) by X and post-multiplying
(16) by X, we get
X%4x = x%°Xx, and (17)
X'4°x = Jx'x. (18)
Since 4 is Hermitian, 4’=4 and, therefore, (17) and
(18) imply
XX =7X'X = (A-2)X'Xx=0.
Since X # 0, we have A— A =10 and so A=A
Hence A is real.
Corollary 4.7 The characteristic roots of a real sym-
metric matrix are all real.

Proof: Since a real symmetric matrix is Hermitian, it
follows from Theorem 4.37 that the characteristic
roots of a real symmetric matrix are all real.

Corollary 4.8 The characteristic roots of a Skew-
Hermitian matrix are either pure imaginary or zero.

Proof: Let 4 be a Skew-Hermitian matrix. Then i4 is
Hermitian. Let A be the characteristic root of A.
Then AX = X, X # 0 or (iA)X = (i2)X. Thus il is a
characteristic root of i4. But i4 is Hermitian and
characteristic roots of Hermitian matrix are real.
Thus i/ is real, which is possible only if 1 is zero or
pure imaginary. This proves the result.

Corollary 4.9 The characteristic roots of a skew
symmetric matrix are either pure imaginary or zero.

Proof: Since a Skew-Symmetric matrix is Skew-
Hermitian, the result follows from corollary 4.8.

EXAMPLE 4.54
Find the characteristic vectors of the matrix

310
A=10 3 1
0 0 3
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Solution. The characteristic equation of the given
matrix is
3—-4 1 0
|A— M| = 0 3—4 1 =0,
0 0 3—14

which yields (3—2)*=0. Thus 3 is the only distinct
characteristic root of 4. The characteristic vectors
are given by non-zero solutions of the equation
(4-3DHX=0, that is,

0 1 0 X 0
0 0 1 x| =10
0 0 0 X 0

The coefficient matrix of the equation is of rank 2.
Therefore, number of linearly independent solution
is n—r=1. The above equation yields x,=0,
x3 = 0. Therefore, x;=1, x,=0, x3=0 is a non-zero
solution of the above equation. Thus,
1
X=10
0
is an eigenvector of 4 corresponding to the eigen-
value 3. Also any non-zero multiple of this vector
shall be an eigenvector of A corresponding to 4 = 3.

EXAMPLE 4.55

Find the eigenvalues and the corresponding eigen-
vectors of the matrix

6 -2 2
A= |-2 3 -1
2 -1 3

Solution. The characteristic equation of the given

matrix is
6—-1 =2 2

lA—J|=| =2 3-2 -1 |=0
2 -1 3-1
or
6—-4 =2 0
-2 3—1 2—-4 :07 C3—>C3+C2
2 -1 2-1
or
6—-/4 =2
Q= =2 3-1 1| =0
2 -1 1
or

Q-2 (A-2)(A—8) = 0.

Thus, the characteristic roots of 4 are .=2, 2, 8.
The eigenvector of A corresponding to the eigen-
value 2 is given by (4 —2/) X=0 or

4 =2 271 Tx 0
-2 1 -1 x| =10
2 -1 1 x5 | 0
or
-2 1 -1 X1 [0
4 =2 2 X2 = 0 5 R1<—>R2
2 -1 1 x3 0
or )
—2 L =111 O R Ry 2R
00 0fjx | =101 p p iR
00 0] |x3 0 3T

The coefficient matrix is of rank 1. Therefore, there
are n—r=3 — 1 =2 linearly independent solution.
The above equation is

—2x1 +x3 —x3 =0.

Clearly,
—1 1
X = 0 and X, = |2
2 0

are two linearly independent solutions of this equa-
tion. Then X; and X, are two linearly independent
eigenvectors of 4 corresponding to eigenvalue 2. If
ki, k, are scalars not both equal to zero, then
kX + kX, yields all the eigenvectors of A corre-
sponding to the eigenvalue 2.

The characteristic vectors of 4 corresponding
to the characteristic root 8 are given by (4 — 8I)

X=0 or by
[6—8 —2 2 X 0
-2 -8 —1 X2 = 0
| 2 —-13-8 X3 0
-2 -2 2 X1 0 Ry Ry R
~ 0 -3 -3 x| =101, Ry Ri4R
L0 -3 =3 [x 0 3T
(=2 =2 27 [x 0
~ 0 -3 -3 X2 =10 s R3 —>R3—R2
0 0 0f [x; 0

The coefficient matrix is of rank 2. Therefore, num-
ber of linearly independent solution is n —r=3
2=1. The above equations give

—2x1 —2x +2x3 =0

— 3)62 —3)63 = 0.



Hence x, =—x3. Taking x,=—1, x3=1, we get
2

x; =2. Therefore X35 = |—1
1

is an eigenvector of A4 corresponding to A=S8.
Further, every non-zero multiple of X3 is an
eigenvector of 4 corresponding to the eigenvalue 8.
EXAMPLE 4.56

If 4 is non-singular, show that the eigenvalues of 4™
are the reciprocals of the eigenvalues of 4.

Solution. Let A be a characteristic root of the matrix A.

Therefore, there exists non-zero vector X such that
AX = X
= A7'AX =247'X
1 -1
= jX =AX.
Hence i is a characteristic root of 4" and X is the
corresponding characteristic vector.

EXAMPLE 4.57

Show that the characteristic roots of a triangular
matrix are just the diagonal elements of the matrix.

Solution. Let

ayng a2 ... ... Ay
0 ay ... ... Ay
0 0 ... ... am

be a triangular matrix of order #n. Then

an - (251 A7)
0 agz—;y... (250
lA—a|=| ... .. ...
0 0o ...... Ay — A

= (all —)v)(azz —i)...(a,,,, —/1)
Hence, the roots of the characteristic equation
|[A—A1|=0 are ay,, as», ..., a,, which are the diag-
onal element of 4.

EXAMPLE 4.58
Show that 0 is an eigenvalue of a matrix 4 if and
only if 4 is singular.

Solution. If A =0 is an eigenvalue, it satisfies the
characteristic equation |[A—A/|=0 and so we have
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|A|=0. Thus 4 is singular. Conversely if 4 is sin-
gular, then |4| =0. Thus 4 =0 satisfy the equation
|A—All=0 and so it is an eigenvalue.

4.24  THE CAYLEY-HAMILTON THEOREM

Let
o) = apl" + a7Vt a, A+ a,
be the characteristic polynomial of a matrix 4. Then
p(4) = apA" + a1 A" + ... +a, 14 + a,l,,

ag = (—l)n
is called the characteristic function of the matrix A.
Concerning this function, we have the following
famous theorem.

Theorem 4.38 (Cayley-Homilion  Theorem). Every
square matrix A4 satisfies its characteristic equation
¢ (A)=0.
Proof: The characteristic matrix of A is 4 — AL,.
Since the elements of 4 — A [, are at most of the first
degree in /, the elements, (cofactor) of the adjoint
matrix of 4 — Al, are of degree utmost n — 1 in A.
Therefore, we may represent adj (4— Al,) as a
matrix polynomial
adj(A4—2L)=Bo)" '+ B )"+ .. 4B, _224+B, 1,
where B is the matrix whose elements are the
coefficients of 4 * in the corresponding elements of
adj (4 — AL, ). But
(A4 —AL) adj (4 — L) = |4 — i, | I,
that is,
Aadj (4—1,) — Aadj (4 - AlL,) = o(A) L.
Substituting the expansion of adj (4 — Al,,) from
above and ¢(1) = agA"+ a1 X" + ...+ a,_1 A+ ay,
we get

A(BoA" '+ B P + + Byt Byy)
- /"L(B();unil +Bl/1'172 +...+ anl)

= (aoi” +a —l—a,,,li—i—a,,)ln.
Comparing coefficients of like powers of Z on both

sides, we get
—IBy = apl,

AB() - 131 = all,,
ABl - ]Bz = azl,,

AB,_1 = aul,.
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Multiplying these successively by 4", 4",
adding, we get,

0=qad"+ a1 A" '+ ...
that is,

P(A4)=0.

This completes the proof of the theorem.

I, and

+a, 14+ a,l,

Corollary 4.10 If 4 is non-singular, then
At =Rt B2 Gl
a, an a,

I

__1 n—1 n—2
(a0Ad" ' + a1 A" + ..

n

+ anfll)

Proof: By Cayley-Hamilton theorem, we have
apAd" + a1 A" + ...+ a1 A+ a,d = 0.
Pre-multiplication with 4~ yields
aA" '+ A"+ . . 4a, +a,Ad =0.

or
A71 — _@Anfl _ﬂAnfz _ _ an71[
an an T a
1
=— —(apd" "+ @ A" P+ ...+ a,l).
Remark 4.7 1t follows from above that
1
A"=—— (A" + A"+ .+ al).
a

0
Thus higher powers of a matrix can be obtained
using lower powers of 4.

EXAMPLE 4.59
Verify Cayley-Hamilton theorem for the matrix
2 -1 1
A=1|-1 2 -1
1 -1 2
and hence find 4™".
Solution. We have
2—42 -1 1
[A—-A| =] -1 2—-12 -1
1 —1 —
=2 +6-9.+4.

Thus, the characteristic equation of the matrix A is
P =62 4+91—4=0.

To verify Cayley-Hamilton theorem, we have to

show that

A — 647494 — 41 = 0. (19)

We have
6 -5 5
A =|-=5 6 —5 :
5
[ 22 —
A= -21
|21
Then, we note that
0 0
A3 —64%+494 — 41 = 0 0|=0.
0 0 0

Further, pre-multiplying (19) by 4™, we get
A —64+91-447"=0

and so )
AV ==(4%> — 64 +9I
(4% — 64+ 91)
| 31 —1
-1 1 3

4.25 ALGEBRAIC AND GEOMETRIC MULTIPLICITY OF
AN EIGENVALUE

Definition 4.76 If A is an eigenvalue of order m of
matrix A4, then m is called the algebraic multiplicity
of /.

Definition 4.77 If s is the number of linearly inde-
pendent eigenvectors corresponding to the eigenva-
lue 4, then s is called the geometric multiplicity of A.

If r is the rank of the coefficient matrix of
(4 — A) X=0, then s =n — r, where n is the number
of unknowns.

The geometric multiplicity of an eigenvalue
cannot exceed its algebraic multiplicity.

4.26 MINIMAL POLYNOMIAL OF A MATRIX

Definition 478 A polynomial in x in which the
coefficient of the highest power of x is unity is
called a monic polynomial.

For example, x* — x> +2x* +x +4 is a monic
polynomial of degree 4 over the field of real
numbers.

Definition 4.79 The monic polynomial m(x) of lowest
degree such that m(4)=0 is called the minimal
polynomial of the matrix 4.



If m(x) is the minimal polynomial of a matrix
A, then the equation m(x) =0 is called the minimal
equation of the matrix 4.

Theorem 4.39 The minimal polynomial of a matrix is
unique.

Proof: Suppose that the minimal polynomial of a
matrix 4 is of degree r. Therefore, for no non-zero
polynomial of degree less than », we can have
m(A)=0. Let m(x) and m,(x) be two minimal
polynomial of 4. Then

m(A)=A"+a A " +... +al=0

my(A) =A"+ b A+ .. +bI=0.
Subtracting, we have
(b] — al)Aril + ...+ (br —ar) 1=0.
Thus, we have a polynomial f(x) of degree r — 1
such that /' (4) =0. Since its degree is less than r,
this should be a zero polynomial. Hence
b] — aj :0,...,br—a,:0

and so a=by,..., b =a,
proving that m(4) = m,(A4). Hence, minimal poly-

nomial of 4 is unique.

Theorem 4.40 Every polynomial p(4) such that
p(A) =0 is exactly divisible by the minimal poly-
nomial m(4).

Proof: Let ¢(1) be the quotient when p(1) is divided
by m(4) and let »(1) be the remainder, which is of
degree less than the degree of m(A). Then, by
division algorithm, we have,

p(A) =m(A)gq(L) +r(4)

0
0 =p(4) =m(4)q(4) + r(4) = 0.g(A)+r(A),
which yields r (4) = 0. Since r (1) is of degree less
than the degree of m(1%), it follows that m(1) is not a
minimal polynomial unless » (1) =0. Thus,

p(2) = m(2)q(2)
and hence m(2) divides p(1).

S

Corollary 4.11 The minimal polynomial of a matrix is
a divisor of the characteristic polynomial of that
matrix.

Proof: Let (1) be the characteristic polynomial of
a matrix 4. Then by Cayley-Hamilton theorem,
¢(A4)=0. Let m( /) be the minimal polynomial of 4.
Then, by Theorem 4.57, m(/) divides ¢(4).
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Corollary 4.12 Every root of the minimal equation of a
matrix is also a characteristic root of the matrix.

Proof: Let (1) be the characteristic polynomial of a
matrix 4 and m(A) be its minimal polynomial. Then,
by Corollary 4.17, m(Z) divides ¢(1). Therefore,
there exists a polynomial g(4) such that

¢(4) = m(2)q(4).
Now, suppose p is a root of the equation m(4)=0.
Therefore, m(u) =0 and so

o(u) = m(u)q(n) = 0.
Hence p is a root of the characteristic equation
¢(1)=0 and so u is a characteristic root of 4.

Theorem 4.41 If /,;, 1, ..., 4, are the characteristic
roots, distinct or not, of a matrix 4 of order n and if
g(4) is any polynomial function of 4, then
the characteristic roots of g(4) are g(4;), g(12), ...,
&(4n)-

Proof: We have

| A2, = (=1)"(A=21) (A=22) ... (A—4y).

We want to show that
| g(d) = Ly | = (=1)" (2 —g(4))
X (2 —g(4)) ... (4 —g()).

Suppose g(x) is of degree r in x and that for a fixed

value of 4, the roots of g(x)— A =0 are xy, x5, ..., X,
Then

gx)—A=alx—x))(x —x2)...(x — x,),
where o is the coefficient of x” in g(x). Hence
gd)— A, =a(d—x11,) (A—x21,) ... (A—x.1,).
Therefore if ¢(A) is the characteristic poly-
nomial of 4, then

lg(4) — /|

= o"|(4d—x1L,)| |[A—x20,] ... |A—x.1]

= 29(x1) Bx2) .. Hx,)

=o"(—1)" (x; — A1) (x1 = A2) ... (x) — A)

(=D = A1) (= A2) e (= An)
=o (b —x1) (hh—x2) ... (41 —x)
vt (Ay=x1) (A —x2) oo (A —x)

=(g(h) —4) (g(h) = 4)... (g(4n) —4)

= (=1)" (A —g(a))(4—g(4)) ... (2 —g(2n)).
Hence, g(4;), g(4,), ..., g(4,) are the characteristic
roots of g(A4).
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Theorem 4.42 Every root of the characteristic equa-
tion of a matrix is also a root of the minimal
equation of the matrix.

Proof: Suppose m(x) is the minimal polynomial of a
matrix 4. Then m(A)=0. Let 1 be a characteristic
root of A. Then, by Theorem 4.58, m(4) is the
characteristic root of m(A). But m(A)=0 and
so each of its characteristic root is zero. Hence
m(2A)=0, which implies that 4 is a root of the
equation m(x)=0. This proves that every char-
acteristic root of a matrix 4 is also a root of the
minimal equation m(x)=0.

Corollary 4.12 and Theorem 4.42 combined
together yield:

Theorem 4.43 A scalar / is a characteristic root of a
matrix if and only if it is a root of the minimal
equation of that matrix.

Definition 4.80 An n-rowed matrix is said to be
derogatory or non-derogatory according as the
degree of its minimal equation is less than or equal
to n.

It follows from the definition that a matrix is
non-derogatory if the degree of its minimal polyno-
mial is equal to the degree of its characteristic
polynomial.

Theorem 4.44 If the roots of the characteristic equa-
tion of a matrix are all distinct, then the matrix is
non-derogatory.

Proof: Let 4 be a matrix of order n having n distinct
characteristic roots. By Theorem 4.60, each of these
roots is also a root of the minimal polynomial of 4.
Therefore, the minimal polynomial of 4 is of degree
n. Hence, by definition, 4 is non-derogatory.

EXAMPLE 4.60
Show that the matrix

7 4 -1
A=1] 4 7 -1
4 4 4
is derogatory.
Solution. We have
7-4 4 -1
[A—il|=| 4 7—i —1 |=—(A—12)(3=2)%

—4 —4 4-

Therefore, roots of the characteristic equation
|[A— 2l =0are 1=3, 3, 12.
Since each characteristic root of a matrix is also
a root of its minimal polynomial, therefore, (x — 3)
and (x — 12) shall be factors of m(x). Let.
g(x) = (x—3) (x —12) = x* — 15x + 36.
We have

69 60 —15
AA=1] 60 69 —15
—60 —60 24
Then, we observe that
0 0 0
g(4) =4* — 154 +361= [0 0 0
0 0 0

Thus g(x) is the monomic polynomial of lowest
degree such that g(4)=0. Hence g(x) is minimal
polynomial of 4. Since its degree is less than the order
of the matrix 4, the given matrix 4 is derogatory.

4.27 ORTHOGONAL, NORMAL, AND UNITARY
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Definition 4.81 Let
X1 Vi
X2 2
X=|..|landY =
Xn Vn

be two complex n-vectors. The inner product of X
and Y denoted by (X, Y), is defined as

1

2
X,Y)=X"Y = {1 %...%,)

Yn
=Xy1 +tXoy2+ ..o+ XY
If X and Y are real, then their product becomes
Y1

2
X, Y)=XTY = [x; xa... x,]

Yn
= X1+ x0)2 +..+ Xp Y-



Definition 4.82 Let X be a complex n-vector. Then the
positive square root of the inner product of X with
itself is called the length or norm of X. It is denoted
by [|.X]!

For example, if

X1
X2
X =
Xn
then
X = VX, X) = VXX

= P P ol
Obviously, the length of a vector is zero if and only
if the vector is a zero vector.

Definition 4.83 A vector X is called a unit vector if
| X[ =1.

Definition 4.84 Two complex n-vectors X and Y are
said to be orthogonal if

X, ¥)=Xx"Y =o0.
Obviously, zero is the only vector which is ortho-
gonal to itself.

Definition 4.85 A set S of complex n-vectors X7, X5,
..., X, is said to be an orthogonal set if any two
distinct vectors in S are orthogonal.

Definition 4.86 A set S of complex n-vectors X7, X5,
..., X, s said to be an orthonormal set if

(i) S is an orthogonal set

(i) each vector in S is a unit vector.
Thus the set X, X5, ..., X,, is orthonormal if

(X, X)) =65,i,j=1, 2,....n,
where ¢;; (called Kronecker delta) is defined as
6--{0 for i #j
Y11

fori=j.
Theorem 4.45 An orthogonal set of non-zero vectors
is linearly independent.
Proof: Let S=[X7, X>, ..., X, ] be an orthogonal set
of non-zero vectors. Let ¢y, ¢»,..., ¢, be scalars such

that
cXiteoXo+...+¢,X, =0 (20)

Let 1 <m < n. Then inner product of (20) with X, is
(Xm, aXi+eXo+ ...+ C,,X,,) = (Xm, 0)
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or
Cl (XmaXl) + CZ(XmaXZ) +...+ Cm(vaXm)
+...+ X, X,) =0.

Since (X,,, X,)=0 for m # n, the above relation
yields
em(Xomy Xim)= 0.

Since X, # 0, the inner product (X,,, X,,) # 0.
Hence ¢,,=0, m=1, 2,..., n. Thus, (39) implies
ci=c=...=c,=0. Hence, X;, X5, ..., X,, are
linearly independent.

Corollary 4.13 Every orthonormal set of vectors is
linearly independent.

Proof: Since for every vector X, (X,, X,)=1, the
result follows from Theorem 4.45.

Definition 4.87 A square matrix U with complex
element is said to be unitary if vu=1.
If U is unitary, then

v'u =1

= |U'U| =1
= | U] |U =1 =1

= |U|#0.

Hence, U is non-singular and so invertible. Thus, U”
is the inverse of U and we have

U'U=1=UU"

Hence, a matrix U is unitary if and only if
U'u=u0"=1.

If U is a unitary matrix, then the transformation

Y=UX s called a unitary transformation.

Theorem 4.46 The eigenvalues of a unitary matrix are
of unit modulus.

Proof: Let 1 be an eigenvalue of a unitary matrix.
Therefore, there exists non-zero vector X such that
AX =X (21)
Therefore, taking transposed conjugate of (21), we
get
0 0
(4X)" = (4X)

= X% =x" (22)
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By (21) and (22), we have
X04%4x = XX
= x'x =x%%
= (1-i)XXx =0
= (1 —1%) =0 since X"X #0
= =1
|4 =1.

4

Theorem 4.47 (i) If U is unitary matrix, then absolute
value of |U] =1

(i) Any two eigenvectors corresponding to
the distinct eigenvalues of a unitary matrix are
orthogonal.

Proof: (i) We have

v’ = |@|= 7] = Tul
Therefore
\UP=1U].|U| = |U°||U| = |U'U|
=|I|=1.

Hence, absolute value of determinant of a unitary
matrix is 1.

(ii) Let 4; and /4, be two distinct eigenvalues of
a unitary matrix U and let X;, X, be the corre-
sponding eigenvectors. Then

UX, = 41X (23)
UX; = 12X, (24)

Taking conjugate transpose of (24), we get
XU’ = Jx? (25)

Post-multiplying both sides of (25) by UX;, we get
xU'ux, = ILx!ux,
= X29X1 = ;12X29)L1X1 since U'U =1
and UX1 = )le
= XX = L X)X
= (1-2Jh) X2X =0 (26)
But eigenvalues of a unitary matrix are of unit

modulus. ~ ~
Therefore 1,4, = 1, that is, 1, = % Thus (26)

reduces to ;
<1 - “—1> XX =0
Ja

Jo =)
(2} ‘> XX, =0
12

= X20X1 = 0 since 4; # 4.
Hence, X; and X, are orthogonal vectors

Theorem 4.48 The product of two unitary matrices of
the same order is unitary.

Proof: Let 4 and B be two unitary matrices of order
n. Then
A4 = A°4 =1 and BB = B"B = 1.
We have
(4B)"(4B) = (B’4") (4B)
=B"(4°4)B
=B"IB
=B'B=1
Hence, AB is an unitary matrix of order n. Similarly,
(BAY'(BA) = (4"8") (B)
=4"(B"B)4
=414
=A'4=1
and so BA is unitary.
Theorem 4.49 The inverse of a unitary matrix of order
n is an unitary matrix.
Proof: Let U be an unitary matrix. Then
v =1
= (U =1 =1
= U)'ut =1
= w' u'=1
Hence, U™ is also a unitary matrix.
Remark 4.8 It follows from Theorem 4.66 that the set
of unitary matrices is a group under the binary

operation of multiplication. This group is called
unitary group.

Definition 4.88 A square matrix P is said to be
orthogonal if PTP=1.

Thus, a real unitary matrix is called an orthogo-
nal matrix.

If P is orthogonal, then

P’P=1
= |P'P|=1I] =1
= |P'||P|=1
= |P|*=1
= |P| # 0.

Thus P is invertible and have inverse as PT. Hence
P'p=I=PP".



If P is an orthogonal matrix, then the transfor-
mation Y= PX is called orthogonal transformation.

Theorem 4.50 The product of two orthogonal matrices
of order # is an orthogonal matrix of order x.

Proof: Let 4 and B be orthogonal matrices of order 7.
Therefore, 4 and B are invertible. Further both AB
and BA are matrices of order n. But

4B| = 4] |Bl #0and [B4] = |B| |4] #0

Therefore, AB and BA are invertible. Now
(4B)" (4B) = (B"A") (4B)
=B"(4"4)B
=B'I B
=B'B=1.
Hence AB is orthogonal. Similarly BA is also
orthogonal.

Theorem 4.51 If a matrix P is orthogonal, then P~ is
also orthogonal.

Proof: Since P is orthogonal, we have
PP’ = 1
= (pP" ) =1
= (P1)"'P
= (PP
Hence, P~ is also orthogonal.

Remark 4.9 The above results show that the set of
orthogonal matrices form a multiplication group
called orthogonal group.

Theorem 4.52 Eigenvalues of an orthogonal matrix
are of unit modulus.

Proof: Since an orthogonal matrix is a real unitary
matrix, the result follows from Theorem 4.46.

Remark 4.10 It follows from Theorem 4.46 that +1
can be the only real characteristic roots of an
orthogonal matrix.

Definition 4.89 A matrix A is said to be normal if and
only if 4%°4=44"

For example, unitary, Hermitian, and Skew-
Hermitian matrices are normal. Also, the diagonal
matrices with arbitrary diagonal elements are normal.

Theorem 4.53 If U is unitary, then 4 is normal if and
only if U’AU is normal

4.53
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Proof: We have
(U4’ (U'4U) = (U'4"U) (U"4U)
= U"4"(vU") AU
=U"4T4U
=U%4%4U (27)
and similarly,
(U'4U) (UP4U)'= U44’U  (28)
From (27) and (28), we note that 4°4=44" if and
only if
(U"AU) (U'4U) = (U'4U) (U%4U)".
Hence, 4 is normal if and only if U’AU is normal.

4.28  SIMILARITY OF MATRICES

Definition 4.90 Let 4 and B be matrices of order n.
Then B is said to be similar to A if there exists a
non-singular matrix P such that B=P~'4P.

It can be seen easily that the relation of similar-
ity of matrices is an equivalence relation.

If B is similar to A4, then

|B|=|P7'4P| = |P7'| |4] |P|
=Pt |P| |4]
=[PP 14
=[I] |4] = [4].

Therefore it follows that similar matrices have the
same determinant.

Theorem 4.54 Similar matrices have the same char-
acteristic polynomial and hence the same char-
acteristic roots.

Proof: Suppose 4 and B are similar matrices. Then
there exists an invertible matrix P such that
B=P'AP. Since

B—xI = P '4AP —xI
=P AP — P (xI)P

=P (4 —xI)P,
we have
|B—xI|=|P ' (4—xI)P|
=[P |P||4d—xI|
=|P'P||4—xI|
= |4—xI|.
Thus 4 and B have the same characteristic poly-
nomial and so they have same characteristic roots.
Further if / is characteristic root of 4, then,
AX =X, X #0
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and so
B(P'X)= (P '4P) P 'X
=P 'AX =P '(JX)
= A(P7'X)
This shows that (P~'X) is an eigenvector of B cor-
responding to its eigenvalue A.

Corollary 4.14 If a matrix 4 is similar to a diagonal
matrix D, the diagonal elements of D are the
eigenvalues of 4.

Proof: Since 4 and D are similar, they have same
eigenvalues. But the eigenvalues of the diagonal
matrix D are its diagonal elements. Hence the
eigenvalues of 4 are the diagonal elements of D.

4.29 DIAGONALIZATION OF A MATRIX

Definition 4.91 A matrix A is said to be diagonaliz-
able if it is similar to a diagonal matrix.

Theorem 4.55 A matrix of order n is diagonalizable if

and only if it possesses n linearly independent
eigenvectors.

Proof: Suppose first that 4 is diagonalizable. Then 4
is similar to a diagonal matrix

D= diag[ilﬂvz . )n}
Therefore, there exists an invertible matrix P = [X|
X, ... X,] such that P~'4AP =D, that is, AP =PD
and so
A[X] X2 .. )(,1] = [Xl X2 .. .Xn] dlag[m /12 e /1,,}

or

[AX], AXQ .. AX,,] = [/1]/\’1 ),ZXQ . )yan].
Hence

AX] = A]X],A_Xz = /12X2, e ,AX,, = /lan.
Thus, X;, X5,..., X, are eigenvectors of A corre-
sponding to the eigenvalues 4, 4, ..., 4,, respec-
tively. Since P is non-singular, its column vectors
Xi, X5,..., X, are linearly independent. Hence A has
n linearly independent eigenvectors.

Conversely suppose that 4 possesses n linearly
independent eigenvectors X;, X3, ..., X, and let 4,
A2,..., A, be the corresponding eigenvalues. Then
L tAXl = X1, AX> = ioXo, ..., AX, = JnXy.

e

PZ[Xl ,Xz,...,Xn} andD:diag [/11 ;uz /Ln]
Then

AP = [AX, AX, ... AX,]
= [)lel /12X2 . /ALan}
= [Xl" X2 P Xn] dlag [)»1 }vz N )vn] = PD.

Since the column vectors X}, X5...., X,, of the matrix
P are linearly independent, so P is invertible and
P! exists.

Therefore,
AP=PD =P 'AP=P'PD
= P 4P=D

= A is similar to D. = A is diagonalizable.

Theorem 4.56 If the eigenvalues of a matrix of order n
are all distinct, then it is always similar to a diag-
onal matrix.

Proof: Suppose that a square matrix of order n has n
distinct eigenvalues, 4, 45, ..., 4,. As eigenvectors
of a matrix corresponding to distinct eigenvalues are
linearly independent, 4 has n linearly independent
eigenvectors and so, by the above theorem, it is
similar to a diagonal matrix.

The following result is very useful in diagona-
lization of a given matrix.
Theorem 4.57 The necessary and sufficient condition
for a square matrix to be similar to a diagonal matrix
is that geometric multiplicity of each of its eigen-
values coincide with the algebraic multiplicity.
EXAMPLE 4.61
Show that the matrix

2 3 4
A= 1|0 2 -1
0 0 1

is not similar to diagonal matrix.

Solution. The characteristic equation of 4 is
2—1 3 4
|[A—AM|=| 0 2—2 —11]=0
0 0 1-4
2-2)@2-1)(1=2)=0.
Hence the eigenvalues of 4 are 2, 2, and 1. The

eigenvector X of A corresponding to A=2 is given
by (4—21) X=0, that is, by

and so

03 4] [x 0
00 1| | x| =

0 0 —1] | x|

0 3 4] [x ] 0

o0 —1| | xn|=|0|,RR—R—R.
00 0] | x| 0



The coefficient matrix is of rank 2. Hence number of
linearly independent solution is n —r=1. Thus
geometric multiplicity of 2 is 1. But its algebraic
multiplicity is 2. Therefore, geometric multiplicity
is not equal to algebraic multiplicity. Hence 4 is not
similar to a diagonal matrix.

EXAMPLE 4.62

Give an example to show that not every square
matrix can be diagonalized by a non-singular trans-
formation of coordinates.

Solution. Consider the matrix

=1 1]

The characteristic equation of 4 is
1—-4 1

[A—-2| = 0 11—

=

or
(1 - 1)2: Oa

which yields the characteristic roots as 2= 1,1.
The characteristic vector corresponding to
A=1, is given by (4—I) X=0, that is, by

o o] 1] - [5)

The rank of the coefficient matrix is 1 and so that
number of linearly independent solution is n —r
2—1=1. Thus the geometric multiplicity of
characteristic root is 1, whereas algebraic multi-
plicity of the characteristic root is 2. Hence, the
given matrix is not diagonalizable.

EXAMPLE 4.63
Show that the matrix
8 -8 -2
A=14 -3 =2
3 4 1

is diagonalizable. Hence, find the transforming
matrix and the diagonal matrix.

Solution. The roots of the characteristic equation

8— -8 -2
|A—AI|=| 4 —3-7 —2|=0
3 —4 1-2

are 1,2, 3. Since the eigenvalues are all distinct, A is
similar to a diagonal matrix. Further, algebraic mul-
tiplicity of each eigenvalues is 1. So there is only
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one linearly independent eigenvector of 4 corre-
sponding to each eigenvalues. Now the eigenvector
corresponding to A=1 is given by (4 — [) X=0, that
is, by

[7 —8 -2 X1 0
4 -4 22| |n|=|0],
13 -4 0] |x 0
[ 7 -8 =27 [x ] 0]
~ =3 4 0 X2 = 0 ,R2—>R2—R1
| 3 -4 0] [x3] | 0]
7 -8 =27 [x] 0]
~ -3 4 0 X2 =10 ,R3—>R3+R2.
0 0 O X3 0

We note that rank of the coefficient matrix is 2.
Therefore, there is only one linearly independent
solution. Hence geometric multiplicity of the eigen-
values 1 is 1. The equation can be written as

7x1 — 8)(2 — 2x3 =0

—3x; +4x, =0.
The last equation yields x; = %xz. So taking x,=3,
we get x;=4. Then the first equation yields x3=2.
Hence, the eigenvector corresponding to A=1 is

4
Xi=13
2
Similarly, eigenvectors corresponding to A=2 and 3
are found to be

3 2
Xz = 2 and X3 = 1
1 | 1
Therefore, the transforming matrix is
4 3 27
P={(3 2 1],
2 I 1]
and so the diagonal matrix is
1 0 0
PlaP=]0 2 0
0O 0 3
EXAMPLE 4.64
Diagonalize the matrix
1 0 -1
A= 1 2 1
2 2 3
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Solution. The characteristic equation of the given
matrix is
1—-2 0 -1
|[A—M|=]| 1 2—2 1 =0
2 2 3-4
or
2462~ 11)+6=0.
The characteristic roots are A =1, 2, 3. Since the
characteristic roots are distinct, the given matrix is
diagonalizable and the diagonal elements shall be
the characteristic roots 1, 2, 3.
The characteristic vectors corresponding to
A=1 are given by (4—I) X=0, that is, by

00 —17] [x 0
11 1 x| =10
12 2 2] | x| | 0 |
(11 17 [x ] [ 0]
~10 0 —1 xx |=10|, Ri—R
122 2] | x| | 0 ]
(1 1 1 X 0
~10 0 —1 X2 | =10 R3—R;—2R;.
|0 0 0 X3 0

The rank of the coefficient matrix is 2. Therefore,
there is only 3 —2 =1 linearly independent solu-
tion. The above equation yields,
X1 +x+x3=0
—X3 = 0.
Hence, the characteristic vector corresponding to
A=11s
1
-1
0
The characteristic vector corresponding to =2 is
given by (4—21) X=0, that is, by

-1 0 -1 X1 0
1 0 1 x| =10
2 2 1 X3 0
-1 0 -1 X1 0 Ry Ryt Ry
~ 00 0 x| =10
R; = R;— R
120 |x 0
[—1 0 — X1 0
~| 12 0] =10l RhoRs.
00 O X3 0

The rank of the coefficient matrix is 2. Therefore,
there is only 3 — 2 = llinearly independent solu-
tion. The equation implies
—X1 — X3 = 0
X1 — 2X3 =0
which yields x; =2, x,=—1, x3= —2. Therefore,
the characteristic vector is

2
-1
-2
The characteristic vector corresponding to 4=3 is
given by
-2 017 [ x ] [0 ]
1-1 1 X |=1]0
2.2 0] | x| | 0 |
-2 0-17] [ x| [0 ]
~|-1-1 0 X2 = 0 7Rz—>RQ—|—Rl.
220 X3 0

The rank of coefficient matrix is 2. and so there is
3—2=1 independent solution. The equation
yields,
—2x1—x3=0
—X] —Xp = 0.
and so the corresponding characteristic vector is
1
-1
-2
Thus, the transforming matrix is
1 2 1
P=| -1 -1 -1
0 -2 -2
We have |P| = —2 and the cofactors of P are

A =0, Ap=-2, A3 =2,
Ay =2, An=-2, Ax=2,
As1=—1, An =0, Ay =1
Therefore,
0 2 -1
adj P= | —2 -2 ,
2 2 1
and so
1 1 0 —1 !
Pl——adP=| 1 1 0
1P| -1 -1 )



Then we observe that

o -1 ! 1 0 —1
Pl4P = 1 1 0 1 2 1
-1 -1 -1 2 2 3
1 2 1
x| -1 —1 -1
0 -2 -2
o -1 1 1 4 3
= 1 1 0 -1 -2 =3
-1 -1 -4 0 -4 —6
1 00
=10 2 0| =dag[l 2 3].
0 0 3

Definition 4.92 Let 4 and B be square matrices of
order n. Then B is said to be unitarily similar to A if
there exists a wunitary matrix U such that
B=U"4U.

Theorem 4.58 (Existence Theorem). If A is Hermitian
matrix, then there exists a unitary matrix U such
that U’4U is a diagonal matrix whose diagonal
elements are the characteristic roots of 4, that is,

UAU = diag[X) Ja ... 4.

Proof: We shall prove Theorem 4.75 by induction on
the order of 4. If n = 1, then the theorem is
obviously true. We assume that the theorem is true
for all Hermitian matrices of order n — 1. We shall
establish that the theorem holds for all Hermitian
matrices of order .

Let /1 be an eigenvalue of 4. Thus 4, is real. Let
X; be the eigenvector corresponding to the eigen-
values ;. Therefore AX, = 1,X;. We choose an
orthonormal basis of the complex vector space V,
having X; as a member. Therefore, there exists a
unitary matrix S with X, as its first column. We now
consider the matrix S™'4S. Since X; is the first
column of S, the first column of S~'4S is S~'4X, =
S7'.X, =21 ST'X;. But ST X, is the first column of
S~'S=1. Therefore, the first column of S~ '4S is [/,
0...0...0]". Since S is unitary, S~' = S’ and so

(57'45) = 594°(s71)"= §°4S = 57148.
Hence S'4S is Hermitian. Therefore, the first row
of S48 is [4; 0... 0 ... 0]. Thus,

0
—1 _ 1
S48 = [ 0 B] ,
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where B is a square matrix of order n—1.
Therefore, by induction hypothesis, there exists a
unitary matrix ¥ such that

VBV = Dy,
where D, is a diagonal matrix of order n — 1.
LetR = [(I) V] be a matrix of order n. Then

I 0

R is invertible and R~! = [0 1

] . Now since V'

is unitary, V%=y"and so

I 0 I 0 _
R():[o V”}:{O Vl}:RI'

Hence, R is uniatary. Since R and S are unitary
matrices of order n, SR is also unitary of order . Let
SR = U. Then

U~ '4u = (SR) 'A(SR)
( ) (SR)
( LAS)R

“lo 15 allo 7]

°H =15 iz
__0 v-'Bl|lo ¥V 0 VBV

(41 0

= | 0 Dl]:dlag[}llzin]

As an immediate consequence of this theorem, we
have

Corollary 4.15 If 4 is a real symmetric matrix, there
exists an orthogonal matrix U such that U"AU is a
diagonal matrix, whose diagonal elements are the
characteristic roots of 4.

Theorem 4.59 If /) is an m-fold eigenvalue of
Hermitian matrix 4, then rank of 4-4 I,, is n — m.
Proof: By Theorem 4.58, there exists a unitary
matrix U such that
U'AU = dlag[i)» RPN A.)»m_,_]lm_;,_z PN in],
where 4 occurs m times and Am+1,4 m+2, ., 4 are all
distinct from A. Since U is unitary, subtracting A1,
from both sides of the above equation, we get
U'lA — AU = diag[00...0(/pi1 — 4)
(Amt2 — A) o (An — A)].
Since U is non-singular, it follows that the rank of
A — /1, is same as that of the diagonal matrix on the
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right-hand side. But the rank of the matrix on the
right-hand side is n — m because (4,41 — 4), (Ao —
A), ..., (4, — 2) are all non-zero.

Corollary 4.16 If / is m-fold eigenvalues of a
Hermitian matrix 4, then there exists m linearly
independent vectors of 4 associated with 4, that is,
with 4; there is associated an m-dimensional space
of characteristic vectors.

Theorem 4.60 With every Hermitian matrix 4 we can
associate an orthonormal set of n characteristic
vectors.

Proof: The eigenvectors associated with a given
eigenvalue of 4 form a vector space for which we
can construct an orthonormal basis by Gram-
Schmidt process. For each A4, there are n vectors in
the basis so constructed. Also, the eigenvectors
associated with distinct eigenvalues of a Hermitian
matrix are orthogonal. It follows, therefore, that
these n basis vectors constitute orthonormal set.

Theorem 4.60 indicates how the diagonaliza-
tion process may be effected. In fact, we have the
following theorem.

Theorem 4.61 I/ U;,, U,,..., U, is an orthonormal
system of eigenvectors associated respectively with
the eigenvalues 4; ... 4, of Hermitian matrix 4 and
if U is the unitary matrix /U; U, ... U, J, then
U*AU = diag[lly ... Ay)-

(The vectors Uy, U,,..., U, are often called a set of
principal axes of A and the transformation with
matrix U used to diagonalize A4 is called principal
axis transformation).

Proof: We have AU, = 4,U;, j=1,2,..., n, where /; is
the eigenvalue associated with U;. Thus, if U= [U,
U, ... U,], then

[AUAU, ... AU, = [MUy AUy ... 7 Uy,

that is, . .
AU = U diag[i) 3. .. 4.

Since, Uis unitary U = U’ and so pre-multiplication
by U’ yields
U4AU = U'U diag [217, ... 2
= U'U diag [A142 ... Ay
= diag [L1/2... 4]

EXAMPLE 4.65
Diagonalize the matrix

4= 2 1—2i

142 =2

Solution. The characteristic equation of A4 is

s | 2—24  1=2i|

4 -4 _’ 142 —2—2‘ =0
?-9=0,

which yields the characteristic roots as 4 = —3, 3.
The eigenvectors corresponding to the eigenvalue
—3 is given by (4 + 31)X = 0, that is, by

5 1-2i||x 0
{14—21’ 1 sz] - M’
which yields
5X1 — (1 — Zi)xz =0
(142i)x; +x, =0.
Solving these equations, we get x; = 1 —2i, x, = —5.

or

Hence, X = [ 1 :521'} is the eigenvector corre-
sponding to 4 = —3.

The eigenvector corresponding to A =3 is given
by (4 — 30X = 0 that is, by

-1 1-2i||{x| |0
14+2i -5 x| 0]

which yields

—x1+(1=2i)x;=0

(1 + 2i))ﬁ —5x, = 0.
Solving these equations, we get x; =5, x, = 1 + 2i.
Thus the required eigenvector is X, = {1 ﬁ 21-]
We note that

1—-2i

X'x =[5 121']{ S }
=5(1 —2i) = 5(1 —2i) =0.

Thus {X;, X5} is an orthogonal set. Now

Norm of X; = /|1 = 2i|*+|-5> = /5 + 25
=30
Norm of Xy = \/|5*+|1 + 2i]?
=v25+5
=/30.
Therefore, normalized characteristic vectors are
1-2i 5
V30 V30




Hence the transforming unitary matrix is
1

U= 1426 |+

V30

—2i S5
\/35_0 \/%]
V30

We then note that

U'AU = U'4U = {_3 (3)] = diag [-3 3].

0
EXAMPLE 4.66
Diagonalize the Hermitian matrix
52 0 0
22 0 0
A= 00 5 =2
00 -2 2

Solution. The characteristic equation of 4 is
5-4 2 0 0
2 2-1 0 0
|[4— 21| = 0 0 5-, -2 =0.

0 0 -2 2-1
The characteristic roots are 1, 1, 6, 6. The character-
istic vector corresponding to 4 = 1 are given by
(4—DX =0, that is, by

4 2 0 0 X 0
2 1 0 0 x| |0
00 4 -2 x| |0’
0 0 -2 1 X4 0
which yields
dx; +2x, =0
2x1+ x =0
4X3 — 2)(4 =0
2x3+ x4 =0
with the complete solution as
1 0
-2 0
Xi=1| olX2=14
0 2

These vectors are already orthogonal. The normal-
ized vectors are

1 0
w3 0
U =|-Vs|land U, = | L
0 5
0 NG
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Similarly, the normalized vectors corresponding to
A =6 are

2 0
v 0
Uy= |V5|land Uy = | _ 2
0 1\/5
0 V5
Hence, the transforming unitary matrix is
1 2
-4 0 —-= 0
e {)5 L | =0
% Ve
0 7 0 7

and U’ AU = diag [1 1 6 6].

4.30 TRIANGULARIZATION OF AN ARBITRARY
MATRIX

Not every matrix can be reduced to diagonal form
by a unitary transformation. But it is always possible
to reduce a square matrix to a triangular form. In this
direction, we have the following result.

Theorem 4.62 (Jacobi-Thoerem). Every square matrix
A over the complex field can be reduced by a uni-
tary transformation to upper triangular form with
the characteristic roots on the diagonal.

Proof: We shall prove the theorem by induction on
the order n of the matrix 4. If n = 1, the theorem is
obviously true. Suppose that the result holds for all
matrices of order n — 1. Let A; be the characteristic
root of 4 and U, denote the corresponding unit
characteristic vector. Then AU, = A U;. Let {U;,
U,, ..., U,} be an orthonormal set, that is, U= [U],
U,, ..., U,]. Then

Uy

U;

UlAU = [AU, AU, ... AU,

U0

= |- | MU AU, ... AU,]
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Since U{Uy=1 and UJU =UU =...=
UfUl =0, we have
i UPAU, Ul4U,
0 UlAU, UlAU,
U'AU = | ... ... e
L0 U4, Ul4U,
_ -)ul B
1o cf
Now, by induction hypothesis, the matrix
[ UYAU, UJAU,
c_ | -
| U%4U, UfAU,

which is of order n — 1, is triangularizable. Thus
there exists a unitary matrix W of order n —1 which
triangularize C, that is, W/CW is triangular. Let

|7 0 4|1 0
V_[O W}ThenV _[0 W_l]and

I 0 I 0 _
V():{o W”}:{O WI}ZVI’

Hence V' is unitary and

- [} ][ 2L Y

_[;Ll BHJ 0}_[/11 BW}
Lo wicllo w]| o wicw)]

where W/CW is upper triangular. Thus, we have

i BW
unlar) =
(Ur)'a(y) [O WUCW]

il b12 bln
0 )vz bzn
0 0 ... ... 7,

Since UV is unitary, the characteristic roots of the
triangular matrix are the same as that of 4. Thus,
diagonal elements of triangular matrix are char-
acteristic roots of 4.

Theorem 4.63 A matrix 4 over the complex field can
be diagonalized by a unitary transformation if and
only if 4 is normal.

Proof: Suppose first that U is unitary and 4 can be
diagonalized, that is, U’AU = diag[4, J» ... A,].

Then 4 = U diag[}; 4, ... 2,]U” and so

A4 =U (diag[i) Aa...4))" (diag[i Zo... 2]) U’
and

AA’ = U (diag[Ay Az ... 2)) (diag[iy Ay...2])" U?

But
diag[Ay A» ... A,] (diag[Ay 2» ... 2,])? = (diag[ 4, 2>

20 diag[Ay A ... Al
Hence 4°4 = 44” and so 4 is normal.

Conversely, suppose A is normal. Then, by
Theorem 4.70, there exists unitary matrix U such
that U’AU = B, where B is upper triangular. But
U°4U is normal and so B is normal. Suppose that
the upper triangular matrix B is

},1 b12 bln
0 A ... ... by
B =
0 0 ... ... A
Since BB = BBH, we have
[ 0 by ... .. 0]
b12 )»/2 b23 0
B:
T
rA1 by biz ... ... b
0 iz b23 - cee bzn
X
L 0 0 0 .
_/11 b]2 b13 bln_
0 /12 b23 bzn
L O 0 0 o
[ 21 0 b3 0 |
biy 2 b 0
X
__b1n by O ... ... Ay ]




Comparison of 1-1 entries on both sides, we have

J121 = A+ biabiy + bizbis + ...+ bi,by,
or
0= |b12|2+|b13|2+ oo+ |b1n|27
which implies that bj, = b3 =...= by, = 0.

Similarly, comparison of 2-2 entries, we get

byy =by=...=by, =0
and so on, Hence B is diagonal, that is, U’AU = diag
(A A -on Aa)-

4.31 QUADRATIC FORMS

Definition 4.93 A homogeneous polynomial of the

type n o

Z Z a,-j Xi Xj,

1=
where a;; are elements of a field F is called a
quadratic form in n variables x1, x,, ..., X, over the
field F.
If a;; are real, then the quadratic form is called real
quadratic form.
For example, x? —3x;x; +x3 +x1x3 is a real
quadratic form.
Theorem 4.64 Every quadratic form over a field Fin n
variables x;, x, ..., x,, can be expressed in the form
of X'BX, where B is a symmetric matrix of order n
over F and X is a column vector [x;,x>,..., xn]T.

Proof: Let
n n
Z E d,‘j Xi Xj,
i=1 j=I

be a quadratic form over the field F in n variables
Xy, X2, ..., X,. Since x; x; are scalars, we have x; x; =
x; x;. Therefore, the coefficient of x; x; is a; + a;;.
Thus, we assign half of the coefficient to x;; and half
to x;;. Let b;; be another set of scalars such that b;; =
a; and b,-j =1 (al-,- + aj,-) for i 7éj Then

ZZaU X Xj = ZZ[)U X Xj.

i=1 j= i=1 j=
Since, b;; = bj;, the matrix B = [by],, « n 1S Ssymmetric.
We further note that if
X1
X2

Matrices 461
then
biy by - - bin | | %1
by by - - by | | X2
XTBX =[xixy..] | oo oo e e
bnl bn2 """ bnn Xn

The symmetric matrix B is called the matrix of the
quadratic form

E E ajj X; Xj.

i=l j=

EXAMPLE 4.67
Find the
x% — 3x1x2 +x§ + x1X3.

matrix of the quadratic form

Solution. The given quadratic form can be written as

xz—éxx —Exx +x2—|—lxx —|—lxx
1212221 2213231-

Therefore, the matrix of the given quadratic form is

a a2 a
A= |an axn a3

)

where
1 3 1
a; = ap=—= a3 ==
11 12 5 @3 =7
a = , anp =1 apn=0
a1 ==, an=0 ap3=
Hence
1 =3 1
2 2
A=|-3 1 0f,
i
I 0o

which is symmetric.

EXAMPLE 4.68

Find the quadratic form corresponding to the sym-
metric matrix.

b

I
W N =
W O N
—_ U W
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Solution. The required symmetric form is

(1 2 37 [x
XTAX = xpooxs] |2 0 3| | x
13 3 1] |x3]
(X1 4+ 2x) + 3x3 ]
= [x1x2x3] | 2x1 + 3x2
| 3x1 + 3x2 + x3 |

:xl(xl + 2x7 + 3)(?3) —|—x2(2x1 + 3X3)
+X3(3X1 + 3x; +X3)

= x% + x% + 4dx1xy + 6x1x3 + 6x2x3.

4.32 DIAGONALIZATION OF QUADRATIC FORMS

We know that for every real symmetric matrix 4
there exists an orthogonal matrix U such that
U AU = diag [A1 22... 2],

where 4, 74,..., 4, are characteristic roots of 4.
Applying the orthogonal transformation X = UY to
the quadratic form X’ AX, we have

XTAX = Wy + 23+ 4 Ay
If the rank of 4 is 7, then n-r characteristic roots are
zero and so

XTAX = 20yt + Joysy + - oo+ Aoyl
where 41, 45,..., A, are non-zero characteristic roots.

Definition 4.94 A square matrix B of order n over a
field F is said to be congruent to another square
matrix 4 of order n over F, if there exists a non-
singular matrix P over F such that B=P”AP.

The relation of “congruence of matrices” is an
equivalence relation in the set of all nxn matrices
over a field F. Further, let 4 be symmetric matrix
and let B be congruent to 4. Therefore, there exists a
non-singular matrix P such that B=P”4P. Then

B = (PT 4P)" = PTATP
= PTAP,since 4 is symmetric
= B.
Hence, every matrix congruent to a symmetric
matrix is a symmetric matrix.

Theorem 4.65 (Congruent reduction of a symmetric
matrix). If 4 is any » rowed non-zero symmetric
matrix of rank r over a field F, then there exists an n
rowed non-singular matrix P over F such that

T, |41 O
PAP—[O 0},

where 4, is a non-zero singular diagonal matrix of
order r over F and each 0 is a null matrix of a
suitable size.

Proof: We prove the theorem by induction. When
n =1, r = 1 also. The quadratic form is simply
ajx2, an = 0 and the identity transformation y; =
x1 is the non-singular transformation. Suppose that
the theorem is true for all symmetric matrices of
order n — I, then we first show that there exists a
matrix B = [b;], « , over I’ congruent to 4 such that
b11 # 0. We take up the following cases.

Case L. If @ # 0, then we take B = A.

Case Il If @;; = 0, but some diagonal element of 4, say
a; # 0. Then using R; Ry, C; C; to 4, we obtain a
matrix B congruent to 4 such that by, = a; # 0.

Case Ill. Suppose that each diagonal element of 4 is
zero. Since A is non-zero, there exists, non-zero
element a; such that a; = a; # 0. Applying the
congruent operation R; » R; + R;, C; » C;+ C;t0 4,
we obtain a matrix D = [dj;], « , congruent to 4 such
that d; = a; + a; = 2a; # 0. Now, applying the
congruent operation R; — Ry, C; C to D, we obtain
a matrix B = [b;], « , congruent to D and therefore
also congruent to 4 such that b;; = d;; # 0. Hence,
there exists a matrix B = [b;] congruent to a sym-
metric matrix such that the leading element of B is
non-zero. Since B is congruent to a symmetric
matrix, therefore, B itself is symmetric. Since b;; #
0, all elements in the first row and first column
except the leading element can be made zero by
suitable congruent operation. Thus we have a matrix

aln 0 ... 0

B

congruent to B and, therefore, congruent to 4 such
that B is a square matrix of order n— /. Further C is
congruent to a symmetric matrix and so C is also
symmetric. Consequently B; is also a symmetric
matrix. By induction hypothesis, B; can be reduced
to a diagonal matrix by congruent operation. So C
can be reduced to a diagonal matrix by congruent
operations. Thus, 4 is congruent to a diagonal
matrix, say, diag [4; 45 ... 4 ... 0000 ]. Thus there



exists a non-singular matrix P such that

PTAP = diag[} 23 ...24...0000)].
Since p(4) = r and we know that rank does not alter
by multiplying by a non-singular matrix, therefore,
rank of PTAP =diag[/, J» ... /... 0000 ]is also r.
So r elements of diag [4; 45 ... 44 ... 000 ]are non-
zero. Thus, £ = r and so

PTAP = diag[Z; J3...2....000 0].

Corollary 4.17 Corresponding to every quadratic form
XTAX over a field F, there exists a non-singular
linear transformation X = PY over F such that the
form X”AX transforms to

MY+ Aoyt Ayt
where A, 4, ..., 4, are scalars in F and r is the rank
of the matrix A4.
Definition 4.95 The rank of the symmetric matrix 4 is
called the rank of the quadratic form X' AX.

EXAMPLE 4.69

Find a non-singular matrix P such that P7AP is a
diagonal matrix, where

6 —2 2
A= |-2 3 -1
2 -1 3

Find the quadratic form and its rank.
Solution. Write 4 = /4], that is,

6 -2 2 1 0 0 1 00
-2 3 —-1|=]01 0j4|{0 1 0
2 -1 3 0 0 1 0 0 1

Using congruent operations, we shall reduce
A to diagonal form. Performing congruent opera-
tions R; — R, +%R1,C2 — G +%C1 and R3 —
R3 — %Rl, C3 — C3 — %Ch we have

6 0 0 1 00 1 % _%
0 % —é = % 1 0{4|{0 1 0
0 -3 3 -3 0 1] oo 1

Now performing congruent operation R3; —

R3 —&-%RQ, C; — Gy +%C27 we have
6 0 0 1 00 1 1 -2
1
0 I 0|= g I 0f{4|0 1 1
16 1
00 7 -7 7 L [00 1
Thus
1

7 16
diagl6 - —| =P ' 4P
lag[ 3 7:| y

Matrices 463
where
R
P=10 1 5
0 0 1

The quadratic form corresponding to the matrix 4 is
XTAX = 6x% +3x3 + 3x3 — 4x1x2 — 23013

48
+ 4dx3xq. ( )

The non-singular transformation X = PY cor-
responding to the matrix P is

X 1 % —% Vi
x| =101 % Y21,
X3 0 0 1 »
which yields
+1 2
x| = —yy — =
1 =)1 3y2 7y3
1
x2=y2+7y3
X3 =)3.

Substituting these values in (48), we get
7 16
(PY)"A(PY) = 697 + 303 + 13-
It contains a sum of three squares. Thus, the rank of

the quadratic form is 3.

Theorem 4.66 Let A be any n-rowed real symmetric
matrix of rank ». Then there exists a real non-sin-
gular matrix P such that

PTAP=diag[11...1 —1 =1 —1 ...
~1000 ... 0],

where 1 appears p times and —1 appears 7 - p times.

Proof: Since 4 is a symmetric matrix of rank r, there
exists a non-singular real matrix Q such that

0T40 = diag[ly J2... 2. ...000 0.

Suppose p of the non-zero diagonal elements are
positive and »—p are negative. Then by using
congruence operations R; R;, C; C;, we can assume
that first p elements 4, 4,, ..., 4, are positive and 4,

1> Api2s ..., Ay are negative. Let
1 1 1 1 1
S=diag|—=—... —111].



4.64

Engineering Mathematics-1

Then S is non-singular and S” = S. Let P= QS. Then
P is also real non-singular matrix and we have

PT4P = (08)"4(0S) = sTQ"40s
= S"(diag[A; 42...4,0...0))S
= S(diag[4; 42... 4 0...0])S
=diag[l1...1 =1 =1 ...—10...0]

so that 1 appears p times and —1 appears » — p times.

Corollary 4.18 If X" AX is a real quadratic form of rank
rin n variables, then there exists a real non-singular
linear transformation X = PY which transform X" 4X
to the form

Y'PTAPY =y{ +y3+ ... 4y, =0 = = V0

which is called canonical form or normal form of a
real quadratic form.

The number of positive terms in the normal form of
X"AX is called the index of the quadratic form,
whereas p — (r — p) = 2p — r is called the signature
of the quadratic form and is usually denoted by s.
A quadratic form X”AX with a non-singular matrix
A of order n is called positive definite if n = r = p,
that is, if » = rank = index. A quadratic form is
called positive semi-definite if r <n and r = p.
Similarly a quadratic form is called negative defi-
nite if its index is zero and n = r and called negative
semi-definite if r <n and its index is zero.

EXAMPLE 4.70

Find the rank, index, and signature of the quadratic
form x* — 2)* + 322 — 4yz + 6zx.

Solution. The matrix of the given quadratic form is

1 0 3
A=1(0 -2 =2
3 -2 3
Write A = IAI, that is,
1 0 3 1 0 0] [1 0 O
0 -2 =2(=1[{0 1 0(4|0 1 0
3 -2 3 0 0 1] [0 O 1
Performing  congruence  operations R3; —
Ry — 3Ry, C3 — C3 —3Cy, we get
1 0 0 1 0 0] [1 0 -3
0 -2 -2|= 0 1 0]4(0 1 0
0 -2 -6 -3 0 1] [0 O 1

Performing  congruence  operations R3; —
R3 —Rz,Cg — C3 — Cz, we have,
1 0 0 1 0 0 1 0 -3
0 -2 0 = 0 1 0]14|0 1 -1
0 0 —4 -3 -1 1 0 0 1

Performing R, — \/%Rz, C — \/%Cz, and R; —
ﬁR% C; — \/LZC% we get,

0—10:27?(1)/1075—5
00—l -3 =3 2] [0 0 3

Hence X = PY transforms the given quadratic
form to y7 —y3 — 3.

The rank of the quadratic form is 3 (the number
of non-zero terms in the normal form.)

The number of positive terms is 1. Hence, the
index of the quadratic form is 1.

We note that 2p —r = 2 —3 = —1. Therefore,
signature of the quadratic form is —1.

4.33  MISCELLANEOUS EXAMPLES

EXAMPLE 4.71
Compute the inverse of

1 -1
2 1
2 =3

using ele-

wn O N

mentary transformations.

Solution. Write 4 = 134, that is,

2 1 -1 1 00

02 1|=[01 0fA4

5 2 =3 0 0 1

We reduce the matrix on the L.H.S of the equation

to identity matrix by elementary row transforma-

tions, keeping in mind that each row transformation

will apply to I3 on the right hand side.
Interchanging R; and Rz, we get

5 2 =3 0 0 1

02 1|={0 1 0f4.

2 1 -1 1 00
Performing Ry — R; — 2R3, we get

1 0 -1 -2 01

02 1 |=]0 1 0|4

2 1 -1 1 00



Performing R3; — R3 — 2R, we have

1 0 —1] [—2 0 1]
02 1(=]0 1 0|4
10 1 1 | | 5 0 2]
Now performing R, — R, — R3, we get
(1 0 —17 [—2 0 1]
01 O0f=|-51 2|4
10 1 0 | | 5 0 2]
Now performing R; — R3 — R, we have
1 0 -1 -2 0 1
01 0|=1|-5 1 2 | 4
0 0 1 10 -1 -4
Lastly, performing R; — R; 4+ R3, we have
1 0 0 8 -1 -3
01 0f=|-5 1 2 |4=4"4
0 0 1 10 -1 —4
Hence
8 -1 -3
Al'=1-5 1 2
10 -1 -4
EXAMPLE 4.72

Using Cayley-Hamilton theorem, find 4~', given
the matrix

13 -3 5
A=1] 0 4 0
15 9 —7

Solution. Proceeding as in Example 4.59, the char-
acteristic equation is

13-4 =3 5
[4— M| = 0 4— 2 0
—15 9 77—
or
(I3=ADN@-A)(=7-2)+754-21)=0
or
AP —102% + 8/ + 64 =0.
By Cayley’s Hamilton theorem, we have
A — 1047 + 84+ 641 =0

4.65
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1

A ' =—— 4> —104+8]
64! +81]

([ o4 -6 30
=—1| 0 160
—90 18 —26
13 -3 5 100
~10] 0 4 0 |+8[010
~15 9 —7 001
[94-1304+8 —6+30  30—50
- 0 16—40+8 0
| —90+150 18—90 —26+70+8
[—28 24 —20
———| 0 —16 0
| 60 —72 52
—7 6 -5
——— |0 —4 0
15 —18 13

EXAMPLE 4.73
For the matrix:

2
A=13 =3 1 2|,
1 1 1 2

find non-singular matrices P and Q such that PAQ is
in the normal form. Hence find the rank of A4.

Solution. Write

A = LAl
that is,
2 1 -3 -6 1 00 (1)(1)88
3 -3 1 2|=1012014
1 1 1 2 001 0010
0001

Performing elementary transformation R; < Rj,
we get

I 1 1 2 001 (1) (1) 8 8
3 -3 1 2(=]0120|4 0010
2 1 -3 -6 100 000 1



4.66

Engineering Mathematics-1

Performing R, — R, —3R; and R; — R; — 2R,
we get

0
0
1
0

S O O =
S o = O
- o o O

Performing C2 — C2 — Cl, C3 — C3 — Cl, C4 —
Cy —2Cy, we get

-1 -1 =2

Now performing R3 < R, we have

1 0 0 0
0 -1 =5 —10
0 -6 —2 —4

1 -1 -1 =2
0 0 1
0 0 0
=1 0 —-2|4
0 0 0
01 -3
0 0 0
Performing R, — —R;, we get
1 0 0 0
0 1 5 10
0 -6 -2 —4]
- 1 -1 -1 =2
0 0 1
0 0 0
=|-1 0 2 |4
0 1 0
0o 1 -3
- 0 0

Now performing R; — R3 + 6R;, we get

1 0 0 O
0 1 5 10
0 0 28 56
I -1 -1 =2
0 0 1
0 1 0 0
=|-1 0 2|4
0 0 1 0
-6 1 9
0 0 o0 1

Performing C; — C; — 5C; and Cy — C4 — 10C3,
we get

1 0 0 O
01 0 O
0 0 28 56
1 -1 4 8
0 0 1
0o 1 -5 -10
=|-1 0 2|4
0 0 1 0
-6 1 9
0 0 0 1
Performing R4 — 53 R4, we get
1 0 0 O
01 0 O
0 0 1 2
1 -1 4 8
0 0 1
0o 1 -5 -10
= -1 0 2|4
3 19 0 0 1 0
14 38 28 0 0 0 1

Performing Cy — C4 — 2C5, we get

1 0 0 0
01 0 0
0010
1 -1 4
0 0 1
0 =5
=|-1 0 2|4
3 19 0 I =2
14 28 28 0 0 1

or



where
[0 0
P=|-1 0 2] and
3 1 9
L™ 14 28 28
e -1 4
0~ 0 1 -5
o0 1 2
L0 0 O 1
Also p(4) =3
EXAMPLE 4.74 3 -1 2
(a) Find the rank of the matrix | —6 2 4] by
-3 1 2
reducing it to the normal form
1 1 2
(b) For the matrix 4 = |1 2 3 |,find non-
0 -1 -1

singular matrices P and Q such that PAQ is in
the normal form. Hence find the rank of 4.
(¢) Reduce the following matrix to column echelon
and find its rank:
1 1 -1 1
-1 1 -3 =3
1 0 1 2
1 -1 3 3

A=

(d) Find all values of u for which rank of the matrix
u —1 0 0
0 wu -1 0
0 0 wo -1

-6 11 -6 1

A=

is equal to 3.

Solution. (a) We have
3 —-12 1 —-12
Ad=|-6 2 4|~ 4lc,—c -
3 1 2] |[-5 12
-1 27
—8 24
—4 12

1

0 Ry — Ry + 10R,
0

1 -1 2

0

0

R3; — R3+5R;

1
1 -3 R2 — —§R2
—4 12

Matrices 4.67
rn -1 2
~ |0 1 -3 R3 — R3 + 4R2
L0 0 0
o o0
0 1 -3 G —-G+0
C G -C
0 0 0 3 — 03 1
1t 0 0
~ 0 1 0 C3 — C3 + 3C2
LO 0 O
L 0
=" (normal form)
0 0

Hence p(4) = 2.
(b) Expressing the given matrix in the form
A = ALz, we have

1 1 2 roojrr 1 2771100
1 2 3|=(010((1 2 3]|010
0 -1 -1 001J10 -1 —-11[001

Using the elementary transformation R, — R, — Rj,
we get
[0 1 2] 1 0 0] [1 0 0
0 1 1[{|—-1 1 0]4{0 1 0
0o -1 -1 0 0 1 0 0 1
Using the elementary column transformations C, —
C, — Cy and C; — C3 — 2C1, we have

1 0 0 1 0 0 1 -1 =2
0 1 I|=]|-1 0 0]4]|0 1 0
0 -1 1 0 0 1 0 0 1

Operating R3 — R3 + R,, we get

(1 0 07 1 0 07 1 —-1 =27
01 I|=|-1 0 0(4|0 1 0
L0 0 0] .-1 0 1/ [0 O 1

Now operating C; — C; — C,, we have

1 0 07 r 1 0 071 11 -1 -—17
01 0f=]—-1 0 0[4]0 1 -1
L0 0 O] l—1 0 1] [0 0 1]
or
L 0]
where
1 0 0 1 -1 -1
P=|-1 0 0landQ =10 1 -1
-1 0 1 0 1
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Since elementary transformations do not alter the
rank of a matrix,

p(4) =p[% 8] =2.

(c) A Matrix is said to be in column echelon form if
(i) The first non-zero entry in each non-zero
column is 1.
(i1) The column containing only zeros occurs
next to all non-zero columns.

(ii1) The number of zeros above the first non-
zero entry in each column is less than the
number of such zeros in the next column.

The given matrix is

11 —1 1]
P R
10 1 2
1 -1 3 3]
10 0 0]
O
~l, S, [|e—a+a
1 2 4 o |GGG
10 0 0
1 2 40
~ L, Jemare
1 2 4 0
10 0 07
1 2 0 0
~ L, e ara
1 -2 0 0.
10 0 0]
L1 0 0
~ 10 0 RQH%RZ’
1 -1 0 0.

which is column echelon form. The number of non-
zero column is two and therefore p(4) = 2.
(d) Similar to Remark 4.4

We are given that

A=

Therefore
u -1 0 0o -1 0
[Al=pl 0 u —=1|+1/0 u -1
-6 11 -6 -6 -6 1
=1 — 6>+ 11— 6
=0ifu=1, 2, 3.

For u = 3, we have the singular matrix
3 -1 0 0
0 3 -1 0
0o o0 3 -1/

-6 11 -6 1

which has non-singular sub-matrix
3 -1 0
0 3 -1
0 0 3

Thus for u = 3, the rank of the matrix 4 is 3.
Similarly, the rank is 3 for 4y =2 and pu = 1. For
other values of u, we have |4]| # 0 and so p(4) = 4
for other values of u.

EXAMPLE 4.75

Solve the system of equations :
x+y+z=6
xX—y+2z=5
x+y+z=28

2x =2y +3z=17

Solution. The augmented matrix is

1 116
4:B]=|1 -1 2 5
301 1 8
111 6'R P
R
~ o —2 1 -1 P2
R3—>R3—3R1
0 —2 -2 —10]
10 0 6'C o e
O
~lo =2 1 1|
C3—>C3—C1
0 —2 —2 —10]
10 0 6]
~ |0 2 —1| e
0 -2 -2 —10]




10 0 6

~ 10 1 =2 —1|R —Rs+2R
0 0 —6 —12
(10 0 6

~ 0 1 =2 —1|Ry—R3+3R,
00 0 -9

It follows that p(4) =2 and p[4 : B] = 3. Hence the
given equation is inconsistent.

EXAMPLE 4.76
Discuss the consistency of the system of equations:
2x =3y +6z—5w=3, y—4dz+w=1,
4x —5y+8z—-9w =1
for various values of A. If consistent, find the
solution.

Solution. The matrix equation is AX = B, where

2 -3 6 -5 y
A=10 1 -4 1|, x=1]"|and
4 =5 8 9 :

w
M3
B= |1
L A
The augmented matrix is
2 -3 6 -5 3]
[A:B]=|0 1 -4 1 1
4 -5 8 9 7]
(2 -3 6 -5 3 ]
~ O 1 —4 1 1 R3 — R3 - 2R|
101 -4 1 21-6]
[2 -3 6 -5 3 ]
~ 10 1 —4 1 1 R3 — R3 —R2
0 0 0 0 2-7

We note that p(4) = p[4 : B] if J—7=0, that is,
if A =7. Thus the given equation is consistent if
A=7. Thus if A =7, than we have

2 -3 6 -5 3
[4:B]=|0 1 —4 1 1
00 0 0 0

and so the given system of equations is equivalent to
2x —3y+6z—5w =3
y—4z4+ow=1

4.69
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Therefore if w = ki, z=ky, theny = 1 + 4k, — ky
and x = 3 4 3k, + k;. Hence the general solution of
the system is x =3 + 3ky + ki, y =1 + 4ky — ky,
z=ky, w=ky.

EXAMPLE 4.77

Test for consistency the following set of equations
and solve if it is consistent: 5x + 3y + 7z = 4,
3x+26y+2z=9,7x+2y+ 10z = 5.

Solution. The augmented matrix is

5 3 7 4
[4:B] = |3 26 2 9
7 2 10 5
ris 9 21 12
R1 — 3R1
~ |15 130 10 45
R2 b 5R2
7 2 10 5

(159 21 12

~ |10 121 —11 33|R, — R, —R;
7 2 10 5

(35 21 49 287R, — IR,
~10 11 -1 3|R—1R
135 10 50 25] R; — 5R;

35 21 49 28

~|10 11 -1 3 |Ry—R—R
L0 —11 1 -3
35 21 49 28

~10 11 =1 3 |Rs—Ry+R,.
0 0 0 0

We observe that
p(4) = 2,p(14 : B)) =2,
and so p(4) = p([4 : B]). Hence the given system
of equation is consistent. Further, the given system
is equivalent to
35x + 21y + 49z = 28

1 ly —ZzZ = 37
which yield y = % and x = [ — 162,
Taking z = 0, we get a particular solution as

7 3
- =" z=0.
X ]1’ y 17 z
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EXAMPLE 4.78
(a) Find the value of A for which the equations
A=Dx+@BA+1)y+24z=0,
(A=Dx+(@2=2)y+ (A+3)z=0,
x4+ BA+1)y+3(Z—-1)z=0.
are consistent, and find the ratios of x : y : z when A
has the smallest of these values. What happens
when 2 has the greater of these values?
(b) Determine b such that the system of homoge-
neous equations
2x+y+2z=0,
4x+3y+bz=0
has (i) Trivial solution (ii) Non-trivial solution.
Also find the non-trivial solution using matrix
method.

x+y+3z=0 and

Solution. (a) For consistency, the coefficient matrix A,
in the matrix equation AX = 0, should be singular.
Therefore, we must have

A—1 32+1 22

h—1 4)-2 143 |=0

2 3+1 3(2-1)
A—1 3+1 22

~ 0 2-3 3-2|=0
2 3241 3(2-1)
=1 32+1 Sil+1

~l 0 -3 0 |=0
2 341 62-2

A=1 5i+1]
~ =3, 62—2'_0

~ 2(A=3)[A-1)BA-1)=(5A+1)] =0
or

6(4 —3)* =0, which yields 2 =0 or /1 = 3.
When A=0, the given system of equations
reduces to

—x+y=0,
—x—2y+3z=0,
2x4+y—3z=0.
The last two equations yield
X y z
35373 andsox =y =z

When A =3, all the three equations become
identical.

(b) The given system of equation is
x+y+3z=0,
2x+y+2z=0,
4x + 3y + bz = 0.

The system in matrix form is

1 1 3 X 0
2 1 2 y| =10
4 3 b z 0

This homogenous system will have a non-trivial
solution only if |4|=0. Thus for non-trivial
solution

B =
W — —
SN W
Il
o

or
1(b—6)—12b—8)+3(6—4)=0
or
—b + 8 =0, which yields b = 8.
Thus for non-trivial solution, b = 8. The coefficient
matrix for non-trivial solution is

113 Lol 3] R ZaR,
201 20 ~ |0 1 42
4 3 8 0 -1 —4| 7 77 :
(11 3]
~ 0 -1 —4 R3—>R3—R2.
0 0 0|

The last matrix is of rank 2. Thus the given system
is equivalent to
x+y+3z=0
—y—4z=0.
Hence y = —4z and then x = z. Taking z = ¢ the
general solution is
x=t y=—4 z=t

EXAMPLE 4.79

Prove that the sum of the eigenvalues of a matrix 4
is the sum of the elements of the principal diagonal.

Solution. If 4 = [g;;] be the matrix of order n, then the
characteristic equation of the matrix 4 is

|4 — 1| =" — ! (Z a,,-) + o =0.

i=1



Form the theory of equations, the sum of the roots

A, 22, .-, 4y 18 equal to negative of the coefficient
of /"~!. Hence
M+A+ . +Ah,=an+an+ ... +au
= Trace 4.
EXAMPLE 4.80
(a) Find the eigen values of A~! if the matrix 4 is
2 5 -1
0 3 2
0 0 4

(b) Find the eigenvalues and the corresponding vec-
tors of the matrix

1 0 0
A=1(0 2 1
2 0 3

Solution. (a) By example 4.57, the eigenvalues of
triangular matrix are the diagonal elements. Hence
the eigenvalues of 4 are 2, 3 and 4. Since the
eigenvalues of 4~! are multiplicative inverses of
the eigenvalues of the matrix A4, the eigenvalues of

—1 11 1
A~ are 5,5 and 4.

(b) We have
1 00
A=10 2 1
2 0 3
The characteristic equation of A is
1-42 0 0
|[A—AM|=| 0 2-1 1 |=0.
2 0 3-1

or

P =627+ 114—6=0,
which yields A =1, 2, 3. Hence the characteristic
roots are 1, 2 and 3.

The eigenvector corresponding to A =1 is
given by (4 — I)X = 0, that is, by

0 0 0] (x 0
0 1 1 X2 = 0
2 0 2 X3 0
Thus, we have
x; +x3 =0,
2x1 + 2x3 = 0.

4.71
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Hence x; = x, = —x3. Taking x3 = —1, we get the
vector
1

-1
The eigenvector corresponding to the eigenvalue 2
is given by (4 — 2[)X = 0, that is, by

-1 0 0 X1 0
0 0 1 x| =10
2 0 1 x3 | 0
This equation yields
0
X, = | 1| as one of the vector.

0
Similarly, the eigenvector corresponding to 4 = 3 is
given by (4 — 31)X = 0 or by
-2 0 0 X

which yields | 1 | as one of the solution. Hence

0 1
X;= |1

1 -
EXAMPLE 4.81

Find the sum and product of the eigen values of the
matrix:

N S
W A~ == DN
S W W W
(23 (S I NN

Solution. The given matrix is

1 2 3 4
2 1 5 6
A_7432
4 3 0 5

The sum of the eigenvalues is the trace (spur) of the
matrix and so the sumis 1 +1+3 45 = 10.
Product of the eigenvalues is equal to |A4].
Expanding |4|, we get the product as 262.

EXAMPLE 4.82 7 4 —4
One of the eigenvalues of {4 —8 —1|is —09.
4 -1 -8

Find the other two eigenvalues.
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Solution. The characteristic equation of the given
matrix is

7—A 4 —4
A—- =| 4 -8-1 —1 |=0.
4 —1 —-8—-1
or
(7—7) [22+ 162+ 63] —4[-28 — 4]
— 4284441 =0
or

2P +97% — 49, — 441 = 0.
Clearly 4 = —9 satisfies this equation. Then, by
synthetic division, the reduced equation is
J2—49 =0,

Which yields 4 = = 7. Thus the eigenvalues of the
given matrix are —9,7, —7. The sum of the eigen-
values is —9 + 7 — 7 = —9, which is equal to the
trace of the given matrix.

EXAMPLE 4.83

Verify that the following set of vectors in R3 is
linearly dependent: (1,0,1),(1,1,1),(1,1,2) and
(1,2,1): Also find the number of linearly inde-
pendent vectors.

Solution. The vectors is R3 are given to be
Vi = (17 0, 1)7 V2 = (17 L 1)7
vi=(1,1,2), vg= (1,2, 1).
Let
Avi 4+ Aavy + J3v3 + A4vy = 0, (29)
This gives
(1,0, 1) + (1, 1, 1) + 23(1, 1, 2)
+4(1,2,1)=0
or
M+A+A3+44=0
O+ +43+204=0
M+2+203+ A4 =0.
We have four variable and three equations. Thus

there is one degree of freedom. We have
ho_da_ha_h_,
-1 2 0 1

Therefore
M=k, A=2k, 13=0, l4g = —k.
Putting these values of 4; is (29), we get
7kV1 +2kV2+0V3 7](\/4 =0
or
V1 72V2+0V3+V4 =0.

Thus (29) is satisfied for 4y =1, 4, = =2, 13 =0
and A4 = 1. Since not all of 4; are zeros, it follows
that v, vo, v3, v4 are linearly dependent.

EXAMPLE 4.84

What do you mean by an orthogonal matrix? Verify
that the following matrix is orthogonal:

cosf 0 sinf
0 1 0
—sinf 0 cos0

Solution. A square matrix P is said to be orthogonal if
PTP=pPPT = If

cos 0 sinf
P = 0 1 0o |,
—sinf 0 cos0
then
[ cos@ 0 sinf][cos§ 0 —sind
PPT = 0 1 0 0 1 0
| —sinf 0 cos0 sinf 0 cosf
[ 5 . —sinOcos0
cos* 0 + sin“ 0 0 .
+sin 0 cos 0
= 0 1 0
—sinfcos0
. 0 cos?0+sin’0
| +sin0 cos 0
1 0 0
=0 1 0 =1
0 0 1

Hence P is orthogonal.

EXAMPLE 4.85
Show that the transformation

2
Y1 =X+ X2 + 7 X3,

3 3 3
2 +1 2
==X t5X — X
2=z 3 o3,
2 2 —‘,—1 is orth 1
=-X1 — = —x31 nal.
V3 3)(1 3XQ 3X3 S orthogona

Solution. In matrix form, we have

Y = PX,



where
1 2 2
3 3 3
N
_ _ |2 1 2
Y = %) ,P— 3 3 -3 and
LY3 ]
2 _2 1
3 3 3
X1
X = X2
X3

The transformation ¥ = PX will be orthogonal if
PTP = 1. To show it, we observe that

M1 2 2 1 2 2
303 3 303 3
Tp_ |2 1 2 21 2
PP=\5 35 —3||5 3 3
2 2 1 2 2 1
L3 3003 3 3003
[1 0 0
=10 1 0|=1
10 0 1
Hence Y = PX is orthogonal.
EXAMPLE 4.86 2 0 1
Diagonalise the matrix 4 = [ 0 3 0 | through
1 0 2

an orthogonal transformation.

Solution. We shall proceed as in Example 4.66. The
characteristic equation of 4 is

2-4 0 1
[A—Al=| 0 3—-12 0 |=0
1 0 2—1
or
2-20)@B3-1H2-4)-0B3-2)=
B-2[2-2*=1=0
B-Ad+12-4r—1]=
B-1)(2—41+3]=0
=1=3, 3, L.
The ch. vector corresponding to 4 = 3 is given by
—x1+x3=0
xll txz 20} (30)

Matrices 4.73
Thus
1
Xi=10
1
X
Let X; = | y | be another eigenvector of 4 corre-
z

sponding to the eigenvalue 3 and orthogonal to Xj.
Then

x —y =0, because it satisfies equation (30)

and
x+z=0, using X' X; = 0.
Obviously x = 1, z = —1 is a solution. Therefore
1
Xo=11
-1

Further eigenvector corresponding to 4 = 1 is given
by (A —I)X =0, that is , by

1 0 1 X1
02 0 x| =0.
1 0 1 X3
This equation yields
x1+x3=0, 2x, =0, x;+x3=0.
Thusx; =1, x, =0, x3 = —1 and so
1
X3=10
-1

Length (norm) of the vectors X, X, X3 are
respectively \/f, \/5, V2. Hence the orthogonal
matrix is

5B
P=|0 = 0
and
PTAP =dig[3 3 1].
EXAMPLE 4.87 3 01 —1
(a) Show that the matrix 4 = | -2 1 2 |, is

0 1 2
diagonalizable. Hence, find P such that P~'AP is
a diagonal matrix. Also obtain the matrix
B=A*+54+3I
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(b) Find a matrix P which diagonalizes the matrix

A= [4 l] verify P~'AP = D, where D is the

2 30
diagonal matrix. 31 -1
(c) Show that the matrix 4 = | -2 1 2 | is
0o 1 2

diagonalizable. Hence, find P such that P~'AP is a
diagonal matrix.

Solution. (a) The characteristic equation for the given
matrix 4 is

3—5 1 —1
A—ill=| =2 1-, 2 |=0,
0 12—
that is,
(B-2)(*=32)+4-2.+2=0
or

P62+ 111-6=0.

By inspection, 4 = 1 is a root. The reduced equation
is 2 — 51+ 6 = 0, which yields 1 = 2,3.

Since all characteristic roots are distnict, the
given matrix A4 is diagonalizable. To find the non-
singular matrix P satisfying P~'4P = diag(1,2,3),
we proceed as follows:

The characteristic vectors
(4 — AI)X =0, that is, by

are given by

3—-4 1 -1 X 0
-2 1-1 2 x| =10
0 1 2—A]|x3 0

and so
(3 —/I)xl +x—x3=0
—2x1+(1—i)x2+2X3=0 (31)
Ox; +xp + (2 — )V)X3 =0
For A =1, we get
2x1 +x—x3=0
—2x1+2x3=0
Xy +x3=0
We note that x; = 1, x, = —1, x3 = 1 satisfy these

equations. Hence the eigenvector corresponding to
i=1islt —1 17"

For 4 = 2, we get from (31),
X1+x—x3=0
—2x1—x+2x3=0
Ox; +x, =0

Clearly x; = 1, x, = 0, x3 = 1 is a solution. Hence

the eigenvector corresponding to 4 = 2 is [1 0 1]”.
For A = 3, we have

X —x3=0
—2x1 — 2% +2x3 =0
X —x3=0
Taking x3 = 1, we get x, = 1 and x; = 1. Thus the

eigenvector corresponding to =3 is [0 1 1]7.
Hence

and
P7'AP = diag[1 2 3] =D, say (32)

Premultiplication by P and postmultiplication by
P! reduces (32) to

A=PDP .
Further,
A" =pD"P!.
Thus
A =pPD*P.
But
1 00 1 00
D=0 2 0|, D*=1|0 4 0
0 0 3 0 0 9
1 10 -1 -1 1
A=|-10 1|landP'=|2 1 -1
1 11 -1 0 1
Putting these values in B = 4% + 54 + 31, we get
25 8 -8
B=A>+54+31=|—-18 9 18
-2 8 19

(b) We have

-t



The characteristic equation of A4 is

4— 1

|AM|‘ 23—

o

or
4-1H3-4)-2=0
or
P =T7i4+10=0
The characteristic roots are 1= % =2, 5. Since
the eigenvalues are distinct, the matrix 4 is diag-

onalizable. The eigenvector corresponding to 4 =2
is given by (4 — 2I)X = 0, that is ,by

8] =[6)

2x1+x, =0 or

or by

Putting x, = 2, we get

Xl:{z—l],

Similarly, eigenvector corresponding to A =75 is
given by (4 — 5I)X =0 or by

2o ()

—X1+x,=0
2x1 —2x2 =0

or by

and so x; = x,. Putting x, = 1, we get

.

Thus the transforming matrix is

P=13 1)

and

W=
W=

w
W=

4.75
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Then
[—L 1714 177-1 1
—1 _ 3 3
PrAP=1, in 3”2 1}
L 3 3
[_2 2
:—33H—1 1]
0
EEEI AR
2 0}
1o 5]

(¢) The characteristic matrix of the given matrix A4 is

3—-1 1 —1
M- =| -2 1-4i 2 |=0
0 1 2—4
or
G-)(1 =2 =) —2 —[[-4+21] —1(~2)
=0
or

B-N1-1H2-2)—-6+2.+4-2142=0
or
B-H1-1)2-1)=0.
Hence the given matrix A has distinct characteristic
roots 4 = 1,2,3. Consequently it is diagonalizable.

Now the eigenvector corresponding to 4 = 1 is given
by (4 —I)X =0, that is, by

2 1 -1 X1 0
-2 0 2 x| =10
0o 1 1 X3 0
Thus
2x1+x2—x3=0
—le —|—OX2 + 2)C3 = O
Ox; +x2+x3=0
and so x; = x3 = —x;. Taking x, = —1, we get an
eigenvector corresponding to A =1 as
1
Xi=1]-1
1

Now eigenvector corresponding to 4 = 2 is given by
(4 —-21X =0, that is, by
1 1 —1 X1 0
-2 -1 2 x| =10
0o 1 0 X3 0
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Thus
X1 +x—x3=0
—2x1 —x3 +2x3=0
x;=0
For this system x; = 1, x, = 0, x3 = 1 is a solution.

Therefore

1
Xo=10
1

An eigenvector corresponding to 1 = 3 is given by
(4 —301)X =0, that is, by

0 I -1 X1 0
-2 -2 2 n|l=10
0 1 —1 X3 0
Thus
X27X3:0
—2)61 — 2XQ +ZX3 =0
XQ—X3=0,

which yields x; =0, x, =1, x3 =1 as one of the
solution. Thus
0
X3 =

Therefore the transforming matrix is

110
P=1|-1 0 1
111

and so the diagonal matrix is
-1 -1 1 31 —1

PlaP=|2 1 —-1||-21 2
-1 0 1 0 1 2
1 10
x|—=1 0 1
1 11
1 00
=10 2 0.
0 0 3
EXAMPLE 4.88

Reduce the quadratic form x* + 5y% + 2% + 2xy +
6zx+2yz to a canonical form through an
Orthogonal transformation.

Solution. The given quadratic form can be written as
X2+ xy + yx + 59 + yz + yz + 22 + 3zx + 3z
The matrix of the quadratic form is
1 1 3
A=11 5 1
311

Write 4 = IAI, that is,

1 1 3 1 00 1 0 0
1 5 1|=]01 0{4|{0 1 0
3 11 0 0 1 0 0 1

Using congruent operations Ry — R, — Ry, C; =
C2 — C1 and R3 —>R3 —3R1, C3 — C3 —Cl, w¢e
get

1 0 O 1 00 1 -1 -3
0 4 -2|=|-1120]14(0 1 0
0 -2 -8 -3 01 0 0 1

Now performing congruent operation R; —
R3 +%R3, C;— Cs —l—%Cz, we get

10 0 100 1 -1 -3
04 0|=|-110{4]|0 1
00 —9 111 0 0 1
Thus

diag [l 4 —9]=P '4P,

where
1 -1 —%
P=10 1 }
0 0 1

Hence the required canonical form is

X +4y* — 92,

EXAMPLE 4.89

Reduce the quadratic form x? 4+ )? + 2% — 2xy —
2yz — 2zx to canonical form through an orthogonal
transformation.

Solution. The matrix of the given quadratic form is

I -1 -1
A= |-1 1 -1
-1 -1 1



The characteristic equation of A4 is

1-2 -1 -1
A—M=| -1 1-4 -1 |=0
-1 -1 1-2
or
(1=2) [ =22]+4-2-2+41=0
or

P32 4+4=0,
which yields A = —1, 2,2.

The eigenvectors will be given by
(4 — AI)X = 0, which implies
1-2 -1 -1 X 0
-1 1-1 -1 vyl =10
-1 -1 1-2 z 0
or
(1-A)x—y—z=0,
—x+(1—-A)y—z=0 and
—x—y+(1-21)z=0.
For A = —1, we have

2x—y—z=0,—x+2y—z=0 and
—x—y+2z=0.

Solving these equations, we get x =y =z = 1 and
so the eigenvector is [I 1 1] Its normalized form
is [L 1 L] "

Vi V33

Corresponding to 4 =2, we have —x —y —
z=0, -=x—y—z=0 and —x—y—z=0. We
note that x = —2,y = 1,z =1 is a solution. Thus
the eigenvector is [—2 1 1]". and its normalized

T
form is {’—2 L i] . To find the second vector,

V6 V6 W6
we have
—x—y—z=0
and
—2x+y+z=0 |using XZHX1:O.
We note thatx = 0, y = —1 and z = 1 is a solution.

The normalized vector is [O, \’/—% %]

Matrices 4.77
Hence
)
i 0
p—|L L _.L
G
Vi Ve V2
and
PTAP = diag[-1 2 2].
EXERCISES

1. Show that the subset {x*—1, x + I, x— 1} of
the vector space of polynomials is linearly
independent.

2. Show that the subset {(1, 1, 1, 0),(3,2,2, 1), (1,
1,3, -2),(1,2,6, =5), (1, 1,2, 1)} of Vis
linearly dependent.

3. Show that the subset {(0, 0, 1), (1,0, 1), (1, —1,
1), (3, 0, 1)} is not a basis for V5.

4. Show that the subset (1, x, (x—1)x, x(x — 1)
(x —2)} form a basis for vector space of poly-
nomials of degree 3.

5. Show that

1 0
e;=10 and e; = |1
0 0

form a linearly independent set and describe its
linear span geometrically.

Solution. We note that

oe; + fe; =0
implies
1 0 0
al0f+pl1]| =10
0 0
implies
o 0 0
o+ |p|l=10
0 0 0
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implies

0
pi=10
0 0
Consequently, o = § = 0. Hence {e; e;} form
a linearly independent set.
Further, the linear span of {e; e,} is the set
o
of all vectors of the form | f8
0
but (x,y) plane and is a subset of the three
dimensional Euclidean space.
6. Show that the vectors

which is nothing

1 0
vi=|1]|,my=|-1][, and v = | —1
1 2

are linearly dependant.

Solution. We note that the relation.

1 0 2 0
o 1 =+ o —1 + o3 —1 =10
1 2 8 0
is satisfied if we choose oy = —2,00 = —3 and

o3 = 1. Thus oqyvy + aavo + o3vz = 0 is satis-
fied by ay, oy, 3, where not all of these scalars
are zero. Hence the set {v|,v,,v3} is linearly
dependent.

7. Use the principle of mathematical induction to

. 1 1 " 1 n

show that if 4 = [O 1}’ then 4" = {0 1}
for every positive integer n.

8. Express the matrix

1 3 5
A=12 -1 3
4 6 5

as the sum of a symmetric matrix and a Skew
symmetric matrix.

5 9 1 1
A IR BT
2 2 O -2 3 0

9. Find the adjoint of the matrix

1 1 1
A=|1 2 3
2 -1 3

and verify the result A(adj 4) = (adj 4)4 = |4|1,..

3 -4 -5
Ans.adj 4= | -9 1 4
-5 3 1
10. Find the inverse of the following matrices:
01 2
HA4=1|1 2 3
31 1
cosa —sino 0
(i) B= |sina cosa O
0 0 1
12 2
(i) C = 2 1 =2
-2 2 -1
1 33
ivyD=1|1 4 3
1 3 4
1 1 3
V) E = 1 3 -3
-2 -4 -4
[ 11 ] cosa sino 0
Ans.(i)|—4 3 —1],(ii) | —sino cosa O |,
e B R
Li] r7eses
i) [3 4 3|, @v)|-1 1 o0f,
N SR
1 —24 -8 —127
(V)_§ 10 2 6
2 2 2]

11. Using Gauss Jordan method, find the inverse of
the following matrices:

3 -3 4
A4=1]2 -3 4
0 -1 1



2 -1 3
@B=[1 11
1 -1 1
3 -2 -1
Giyc=|-4 1 -1
i 2 0 1
14 3 -2
wD=1|6 8 -1
0 2 —7
1 -1 0 -1 1 2
Ans.(i)| =2 3 —4|(i)]| O % —%
2 3 -3 1 -1-3
1 2 3 -54 17 13
1
2 5 7|1(v)———| 42 -98 2
(iii) (iv) 54
-2 —4 -5 12 —28 94
12. Find the rank of the following matrices.
01 -3 -1 2 3 -1 -1
~ 10 0 1 1 .. 1 -1 -2 —4
Dl o 2 Wi3 | 3
11 -2 0 6 3 0o -7
2 -1 3 4 121 2
... |0 3 4 1 . 1 3 2 2
)1y 3 7 5] M)y 4 3 4
2 5 11 6 3 7 4 6
1 3 4 3
M3 9 12 9
1 3 4 1

Ans. (i) 3, (ii) 3, (iii) 3, (iv) 3, (v) 2

13. Show that no Skew-symmetric matrix can be of

rank 1.

Hint: Diagonal elements are all zeros. If all
non-diagonal positive elements are zero, then
the corresponding negative elements are also
zero and so rank shall be zero, If at least one
of the elements is non-zero, then at least one
2-rowed minor is not equal to zero. Hence, rank

is greater than or equal to 2.
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14. Reduce the following matrices to normal form

and, hence, find their ranks.

5 3 14 4
@Jjo 1 2 1
1 -1 2 0
1 21 0
g |-2 4 3 0
1 0 2 -8
1 1 2
(iii) |1 2 3
10 —1 —1]
(2 =2 0 6
. 4 2 0 2
™1 210 3
|1 -2 1 2
1000 1000
Ans.(i)|0 1 00|,Rank3 (ii) [0 1 0 0|, Rank3
0010 0010
100 _
[0
(iii) |0 1 0 |Rank2; (iv) 00 Rank3
000 )
. Find the inverse of the matrix
2 —1 3]
A= 11 1 1
1 -1 1
using elementary operations i
-1 1 2
Ans. 0 % f%
-4 -

16. Using elementary transformation, find the

inverse of the matrix
-1 -3 3 -1
1 1 -1 0

A=1 45 5 2 _3
—1 1 0 1

0o 2 1 3

1 1 -1 =2

Ans. 1 2 0 )
-1 1 2 6
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17. Test for consistency and solve the following
system of equations.

)x+y+z=6
x+2y+3z=14
x+4y + 7z = 30.
Ans. Consistent; rank 2; x =c—2, y =8 —2c,
z = ¢ for arbitrary constant ¢
({i)2x+6y+11=0
6x +20y+6z+3=0
6y—18z+1=0
Ans. Not consistent
(i) 2x—y +3z=38
—-x+2y+z=4
3x+y—4z=0

Ans. Consistent, x =2,y =2,z=2

18. Find the values of A for which the following
system of linear equations will have no unique

luti
solution Xyt iz=1
2x+y+z=2
x+2y—iz=1

Will this system have any solution for these
values of 1?

Ans. 1 = — % and the equations are inconsistent
for this value. Hence no solution exists for

i=-1

19. Discuss the existence and nature of solutions
for all values of 1 for the following system of

equations.
x+y+4z=6
x+2y—2z=6
X+y+z=6

Ans. Unique Solution for 4 # . For A =15,
the equations are not consistent.

20. Solve the following equations using matrix
method

2x—y+3z=9
xX+y+z=26
X—y+z=2

Ans. Coefficient matrix is non-singular. The
unique solutionisx=1,y=2,z=3

21. Determine the values of a and b for which the
equations
x+2y+3z=4
x+3y+4z=5
x+3y+az=5>b

have (i) no solution, (ii) a unique solution, and
(iii) an infinite number of solution.
Ans.()a=4,b#5(i)a#4(iii)a=4,b=5
22. Solve completely the system of equation
x+y+z=0
2x—y—3z=0
3x—5y+4z=0
x+17y4+4z=0

Ans. Trivial solutionx =y =z =0.
23. Solve

4x+2y+z4+3u=0

6x+3y+4z+7u=0

2x+y4+u=0

Ans.x=cj,u=cpy=—-2c1—Cp, 2= —C>
24. Find the eigenvalues of the matrix

a h g
0 b O Ans. a, b, ¢
0 0 ¢

25. Find the eigenvalues and the corresponding
eigenvectors for the given matrix.

8 -6 2

-6 7 -4

2 —4 3
! —4 2
Ans. 0,3,15,c;=|1|,co=|-2|,c3=| -2
1 4 1

26. If the characteristic roots of a matrix 4 are A,
A2, ... An, show that the characteristic roots of A%

2 2 2
are Ay, Ay, ..., A

Lne

Hint: 4x = /X = 4(4X) = A(4X) = 42X = J(JX) = 22X



27. Show that the matrices A and B'4B have the
same characteristic roots
Hint: |[B~'AB — /I| = |B"'4B — B~ 'IB|

= [B'(4 — AI)B|
=[B!} — a1|B]
= |4 — iI||B7'B]
=14 — M.
28. Verify Caley-Hamilton theorem for the matrix
1 0 2
A=10 2 1
2 0 3

and, hence, find its inverse.
Ans. A satisfies 4> — 64> +74+21 =0

1 [-3 0 2
A7 :E(A2 —64+7)=|-1 L 1
| 2 0 -1
29. Find the minimal polynomial of the matrix.
5 -6 —6]
-1 4 2
3 -6 —4

Ans. x2 — 3x + 2.
30. Show that the matrix

a-+ic
b+id
is unitary if and only if a® + b* + ¢* + d* = 1.
31. Show that the matrix

—b +id

a—ic

W= WI[N WIN

A=

W WIS W[—
WIN W— WIN

is orthogonal. Hint: Show that 4”7 4 = I.
32. Show that the matrix

-9 4 4
-8 3 4
-16 8 7
is diagonalizable. Obtain the diagonalizing

matrix P.
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1 01
Ans.P= |1 1 1|diag[-1,-1,3]
1-12
33. Diagonalize the matrix
1 -6 —4
0 4 2
0 -6 -3
1 00
Ans.|0 1 O
0 0 1
34. Diagonalize the real-symmetric matrix
3 -1 1
A=|-1 5 —1
1 -1 3
R 1
V2 V3 e
Ans. P = 0 o5 —7|, diag[23 6]
11 1
V2 V3 Vb

35. Find a non-singular matrix P such that PTAP is
a diagonal matrix, where

0o 1 2
A=1|(1 0 3
2 30

0 -1 -3

Ans. |1 I -2

0 0 1

36. Reduce the quadratic form
Xy + 92 + # — 12yz + 6zx = 4xy — 2xt —
6zt to canonical form and find its rank and
signature
Ans. y? — 33 + 13, Rank:3, Signature:1
37. Reduce the quadratic form
6x% + Bx% + 14x§ + 4xox3 + 18x3x1 + 4x1x; to
canonical form and find its rank and signature.
Ans. »? + 33 + 13, Rank:3, Signature:3









Beta and Gamma Functions

The beta and gamma functions, also called Euler’s
Integrals, are the improper integrals, which are
extremely useful in the evaluation of integrals.

5.1 BETA FUINCTION
The integral [x”~'(1 —x)""'dx, which converges

form>0 andon > 0 is called the beta function and is
denoted by 8 (m, n). Thus,

1
B(m,n) = /x"’_l(l —x)" dx,m>0,n>0.
0
Beta function is also known as Eulerian Integral of

First Kind.

As an illustration, consider the integral

1
[x(1 —x)*dx. We can write this integral as
0 1

/x%*1 (1 —x)dx,

0

which is a beta function, denoted by (3, 5). But, on the
1

other hand, the integral | x2(1 — x) " dx is not a beta

0
function as n —1 = —3 implies n = —2 (negative).

5.2  PROPERTIES OF BETA FUNCTION
1. We have
xmfl (1

p(m,n) = —x)" dx

S o~ _

(1—x)""'(1 = (1 =x))"'dx, since

1
= /x”‘l(l —x)" dx
0

pB(n,m),m >0, n>0.

Thus,
B(m,n) = p(n,m), m > 0,n> 0.

2. We have
1

B(m,n) = /x"”l(l —x)"'dx. (1)

0

Putting x = sin® 6, we get dx = 2sin 0 cos 0 d0 and
therefore, (1) becomes

s

2

B(m,n) = /(sin2 0)" (1 —sin® 6)""!
0
.2sinfcos 0 db

[N

=2 [ sin? 2 0cos* 2 0sinbHcos O db

=2 [ sin” ' 0cos* ' 0 do.

o\wla o\

Thus,

B(m,n) —x)"dx

1
/xm—l(l

0

%
=2 / sin?" ' 0 cos® 1 0 db.
0
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3. Let m and n be positive integers. By definition,
1
B(m,n) = /xm_l(l —x)"'dx, m>0, n>0.
0
Integration by parts yields

=,

Bl = |

0

n
0
S pm—1,n+1)
n
Similarly,
m—2
B(m—1,n+1) —mﬁ(m—2,n+2)
1

Multiplying the preceding equations, we get

(m—1)(m—2)...2)(1)

ﬁ(m’n):n(n+l)(n+2) ..... (m+n—2)
x B(1,m+n—1)
(m—1)1123...(n—1)]

1.2...(n—Dn(n+1)(n+2)...

1
><‘/xl—l(] _x)m+n—2dx
0

1
—1)! —1 ! _
_(m I’l / m+n 2dx
0

(m+n—2)

m+n—

- -t )“"‘Y
(m+n-2) |(m+n—-1)(-1) .

D11

- (m+n=2) ‘m+n-1

C(m—1) (n—1)!

- (m+n-—1)

Hence, if m and n are positive integers, then

(m —Dli(n— 1)
4. Put x:ﬁ so that dx = dt Then the
1+t

expression for beta function reduces to

g - | (@)"’"(l—li)w-@itﬁ

g1 1
(140" (140" (l+t)

00
1 +t m+n / m+n
0

xmfl
p(m,n) = / de
Since f(m, n)

X" 1 p xnfl p
m,n) = T mn X = T m n X
plm.n) 0/(1—|—x) + 0/(1+x) *

5. From the property (4), we have

xmfl
Mmm>=/f7;5m7ﬂ

0

0\8 0\8 S

Hence,

B(n, m) we have

1

:/(1+xm+ndx+/
1

0
=1 —1—12, say.

In D, put x =150 that dx = — % dt and so,
1

+ X m+n

<

1
1 1

7/ 1+l m+n / 1+x m+n
0

0

Hence, (2) reduces to
1 1

m%mz/( mwﬁ+/
0

0
1

/

m+n

xmfl + xnfl

————dx, m>0, n>0.
(1+x)m+n

; ‘/Lw<‘l)d"/L 1
2= (1+%)m+n t2 - tm,l([+1)m+n‘t2

dt

(2)

dt



EXAMPLE 5.1
Show that

Ooxm71_|_xnfl
LT e =28(m,n).
/ (1+x)m+n ﬁ( )
0

Solution. We know that

ﬁ(mvn) =

Adding (1) and (2), we get
Ooxmfl + xnfl
2f(m,n) = d
ﬁ(m n) / (1 +x)m+n X
0
EXAMPLE 5.2

Show that
a

/x’"il(a —x)"dx = """ B(m, n).

0

Solution. Putting x = ay, we get

/x’”’l (a—x)""dx

(=1

m—1+n—1+4+1_ m—1 (1

a y —y)"dy

1

:m+nl/y 17 nldy
0

= a"" ' B(m, n).
EXAMPLE 5.3

Show that
Bom+1m) _ m

Blm,n) — m+n’

Beta and Gamma Functions

Solution. We have

1
Blm+1,n)= [ xX"(1—x)"'dx
/
1

[

=2 [B(n,m)—~ B(n,m-+ 1)
=" B(m.n) =" plm+1,n)
Thus,
(1+%)Blm+ 1,m) == B(m,n)
or
(I’l + m)ﬁ(m + lvn) = mﬁ(mvn)
or
Bm+1,n)  m
B(m,n)  m+n’
EXAMPLE 5.4
Prove that

sin” 60 cos” 9d0%ﬁ<m+l n—;1>,

o\
0I5

m>—1andn> —1.

x)"x""'dx, since B(m+1,n) = f(n,m+1)
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Solution. We have

sin” 0 cos" 0 dO

= \
SR

sin” "' 0 cos” ! 0.sin O cos O dO

S o\
[SIE]

/ "1 9(1 — sin? 9)2 sin B cos 8 db.
0

Putting sin® 6 = x so that 2sin 0 cos 0 df = dx, we
get

1

1
1 m— n—1 1 m+1 n+
:E/x Zl(l—x) 21a’x:2/ T 1 -x) T dx

0 0
1 /m+1 n+1
_EB(T7 5 >,m>—1 and n>—1.
EXAMPLE 5.5
Show that
ﬁ(man):ﬁ(m+lvn)+ﬁ(mvn+l)

Solution. By definition,

p(m+ 1,n)+ p(m,n+1)
1 1

=/x'"(1 —x)”*ldx+/

0 0
1

:/x’"*l(l —x)" 1[x—i—(l — x)|dx

0
1

= /x’"il(l —x)""'dx = B(m,n).

0

K1 = x)"dx

EXAMPLE 5 ()
Express f b dx, m, n, a, b > 0 in terms of

beta functlon

Solution. Put hx = ay so that dx = ¢dy in the given
integral. This gives

/ a+bx
0

r 1
anbm / +y m+n anbm
0

oo

a+ay m+n b 'y
0

Bm,n),

using property (4) of beta function.

EXAMPLE 5.7
Show that f(m, %) = 2*"~'B(m,m).

Solution. We know [see property (2)] that

B(m,n) =2 [ sin® 10 cos* 10 do. (1)

S
[SIE]

1
Putting n = 3, we get

ﬁ(m,%) =2

Now, putting n = m in (1), we have

sin”"~' 0 do. (2)

S —
ok

sin? ' 0 cos® ' 0 do

p(m,m) =2

2

0/
:2/(sin0cos9)2m_]d9

0

2 1 2m—1

/<2sin29> do
0

;

1

— 2 / sin” "' 20 d6
0

= 22m
T

1
:W/sinzm’lqbdaﬁ, 6 =20

0



%

1

= S .2/31n2m Yo do
0

1 1 .
= Wﬁ(m 5) , using(2),

and so,

B(mg) =2 )

5.3 GAMMA FUNCTION

The gamma function is defined as the definite integral
o0

I'(n) = / e x"dx, n>0.

0
The gamma function is also known as Euler’s Integral
of Second Kind.

5.4 PROPERTIES OF GAMMA FUNCTION

1. We have

I‘(nJrl):/e’xx”dx [—x"e™]° +n/x”’1e’xdx
0

0
00

n/ e x" Ydx=nl'(n).

0

Hence,
I'(n+ 1) =nl(n),
which is called the recurrence formula for I' (n).
2. Let n be a positive integer. By property (1), we
have
Pn+1)=nl'(n)=nn—1I'(n-1)

=nn—1)(n-2)I'(n- 2)
— n(n = 1)(n—2)..32.1 T(1)
=nll'(1).

But, by definition,

(1) = / e Vdx =[—e"]y =1
0
Hence,
I'(n+ 1) = n!, when n is a positive integer.
If we take n = 0, then
0l =T(1)=1,

Beta and Gamma Functions 5.7

and so, gamma function defines 0!
Further, from the relation I'(n+ 1)=nl'(n), we
deduce that

[(2) = 1.0(1)

P(3) =2I(2) = 2.1 = 2,
I'(4) =3.I'(3) = 3.2.1 = 3!, and so on.
Moreover, I'(0) = oo and I'(—n) = —c if n > 0.

SO Da4) ()T

n—+ n—+ n—+

P == A 0=
_T(n+2)
_—n(n+l),n7é0andn7é—l
_(n+2)T(n+2)
Cn(n+1)(n+2)
~ T(n+3)
—m, n;éO, I’l#—l, andn;é—2
B T(n+k+1) B
Stk oL

n#-2,andn# —k.
Thus, I'(n) for n < 0 is defined, where £ is a least-
positive integer such that n + k + 1 > 0.

5.5 RELATION BETWEEN BETA AND GAMMA

FUNCTIONS
= / e 't ar.
0

We know that
Putting # = x so that df = 2xdx, we get
o0
I(m) = 2/ e x¥ . (1)
0

Similarly, we can have
o0

'(n) :2/ ey ldy.
0
Therefore,

T'(m)I'(n) =4

o0

2 —2 o

e X 10l)c./e rylay
0

00 00
4//@ (*¥*+?) 2m12n ldxdy.
0 0
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Taking x = » cos 0 and y = r sin 0, we have
dx dy = rd0 dr.

Therefore,
7
:4//6 2(m+n)— 2m71 0
0

X sm2" Y0 drdo

3 0o
:2/|:2/ -2 2m+n ldl’]

0 0
x cos? 1 9sin®1 9 do

iy
2

2/cos2”’_1 0

0

=T'(m—+n)

x sin®' 0 d()] , using(1)

=T'(m + n)B(m, n) using property (2)
of beta function.

Hence,
_ T'(m)'(n)
plm,n) = L'(m+ n)
EXAMPLE 5.8
Show that I'(3) = /7.
Solution. We know that
L'(m)I'(n)
ﬁ(m,n) - T(m+n)
Putting m = n = 5, we get

Second Method
We kn9w that (see Example 5.4)

/ sin” 0 cos” 0d0 =

0

1
2 2 2

Putting m = n = 0, we get

jde_ reP _[rer

2T°(1) 2
Thus,
2

m_[FQ)]

2 2
Hence,

-
EXAMPLE 5.9

Express the integrals f vtan 0 d0 and f Vot 0 dO

in terms of gamma functlon

Solulion We have

iy

/\/tan do = /sm 0 do :/sin%Ocos_%QdH

cos2 0
) "“) @)
ZF(% %* ZF(l)

=2 ()7 (3)

Similarly, we can show that

a4 (3) ()



EXAMPLE 5.10

Show that I'(n)I'(1 — n) = 0<n<l.

sinnm?

Solution. We know that

00
/ 1 +x m+n
0

['(m)I'(n)
I'(m+n)

Also,
ﬁ(man) =

Therefore,

L) [ o ’
C(m+n) / (1 +x)m+"d

Putting m = 1—n so that m >0 implies n < 1, we get

T'(n)(1 —n) :/(x”_1 dx

, m>0andn>0.

(1) 1 +x)
0
or
® n—1
I‘(n)I‘(l—n):/lx+x x:sinﬂn 0<n<l1
0
EXAMPLE 5.11
Show that
/sinz’”*1 0cos? 1 0d0 = 7I‘(m)1"(n) .
2T (m + n)

0

3 3
Hence, evaluate [sin” 6 d6 and [ cos” 0 do.
0 0

Solution. We know that

2

Z/Sinsz1 0cos®™ 10 dO = B(m,n)
0

or )
/sm2m "0cos™ 1 0 do = %.ﬁ(m,n).
But, ﬂ?m, n) = % Therefore,
/Esmz"’1 Ocos* 10 do = L(m)T(m) .
) 2T'(m + n)

If we put 2m — 1 = p and 2n — 1 = g, then this

Beta and Gamma Functions 5.9

result reduces to

2

L
/sm”Hcoqu dl = ——=1t—~=~ (2 (

20 (=4

I\)

). (1)

0
Putting ¢ = 0 in (1), we get

2

PN (L
/sinpﬂdH:F( )G) -

oT (P12
J =
Similarly, takmg p =0, we get

res) ve
IEE

3 T (g+1)
/cosq 0do= %ﬁ
J P 2
EXAMPLE 5.12
Show that
1 VT
I'(m)T (m + 5) = 5o I'(2m)

(Duplication Formula).

Solution. In Example 5.7, we have shown that

1
ﬁ<m7§> = 22" B(m, m).
Converting into gamma function, we get

L(m)T"(3) _ -1 '(m)I'(m)
L(m+1) r@2m) -

Since I'(}) = /7, we get
\/_

L'(m+1)

F(m)F(m—i—%) = VT o).

22m—1

w1 L(m)
=7 1F(Zm)

EXAMPLE 5.13
Show that

ji r

/efaxxl171dx _ (n)’
a’

0

where a and n are positive. Deduce that

(i) [e“x"'cosbx dx= %cos no
0

. r .
Usin bx dx = #sm no,

(i) [e@x"
0
where 2 = @* + b* and 0 = tan ™! f Also evaluate

oo oo
J e cosbx dx and [ e sinbx dkx.
0 0
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Solution. Put ax = z, so that adx = dz, to get

oo

7 n—1
/e’a"x”’ldx:/e’z(z) %
a a
0 0
i r
:—/e_zz"_ldz:ﬂ. (1)
a”" a"

Replacing a by a + ib in (1), we get

oo
(atibyr o n— I'(n)
(a-+ib)x .n ld — ) )
/ e X" ldx @t i) (2)
0
But as,
e (atiblx — pmax oI _ =X(cog hx — i sin bx)

and taking a = r cos 0 and b = r sin 0, De-Moivre’s
Theorem implies

(a+ib)" = (rcosf+ irsin9)"
= r"(cos 0 + isin 6)"
= r"(cosnl + isinn0).

Therefore, (2) reduces to
o0

/[e*“x(cosbx—isinbx)]x"*ldx
0
_ L'(n) _T'(n)
~ (cosnf+isinnf)

L(n)

:r—n(cosnf)—isinné)).

(cosnf+isinnf) ™'

Equating real- and imaginary parts on both sides, we get
o0

/ e X" cosbx dx = L(n) cos nb
rn
0

o0
/ e xn—l

0
If we put n = 1, then

and

I'(n)

sin bx dx = —nsin no.
r

1) rcos 0 a
/ ¥ cos bx dx = . cos ) = " P
0
and

3

1 in 0 b
/e sinbxa’x—¥5in@—rs’g1 popy~
0

EXAMPLE 5.14
Show that

r(n%):

Hence, deduce that F(%)I‘(%) = m2.

JAD(2n + 1)
22T (n+1)

Solution. We know that
sin?" ' 0cos® 1 0 do.

p(m,n) =2

Therefore,

1 1
ﬁ<n+§,n+§>

o

I

0

™

1 1
:22n_1/sin2”20d0 :ﬁ./sinz’%ﬁd(ﬁ, ¢=20

0 0

1 . o
=7 2/51n ¢ do =2

0
(see Example 6.11)

_ VAl (n+))
2 T(n+ 1)
’ 11\ _Ta+)ra+))
ﬁ(’”z’”z) RN TES
_[Pe+YP
T2n+1)

From (1) and (2), we have

) -E R

Further, putting n = ;, we have

-4l

Q)=

Hence,

2 . 20 2n
:2/sin2”9c032”0d0 :2/ (SH;_ > do
0

% ! [F(z"z“) ﬁ]
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EXAMPLE 5.15 EXAMPLE 5.17
Show that Show that
5 5
1_/1 3 -
/Vtan0d6/\/cot9d02I‘<4)F(4> :%. sin 0 .
0 0
Solullon In Example 5.9, we have proved that Solulion We have
3
Vit df= [ Vcotf d@——I‘ /\/sm dH/
/ anf / 0 ( ) (4> V/sinf
But, 2
r G) r G) — V3 (Example 5.14.) _ / sin0 do. / sin$0.d0.
Hence, 0 . 0
A (&) w1 vr_rgrg) «
= = — - 1 : : 1 : - :
/ tan0 d / cotl d ok F(#) 2 F(2T+2) 2 I‘(%)F(%) 4
0 0
(see Example 5.11)
EXAMPLE 5.16 1“(‘1_‘) r T@) «
Show that N r()a (s
~log—) d ,p>0,qg>0.
/ Y (Og y) YT o P EXAMPLE 5.18
‘ Prove that
Solution. Putting log! = x, wehave !l = e*ory=¢"* 1 !
e 7 / log—) dy=T(n), n>0.
and so, dy = —e " dx. Therefore, y
0
o !
/ W (log ;) dy Solution. Putting log )l} = x, that is,i =e‘ory=e 7,

we have dy = —e *dx. Hence,
1 0
1 n—1
e~ P=l(_e™)dx /(log—) dy =— /x”’le’xdx
y
0

e X" dx

o
B
S
&
Il
0\8

/ ;(t)p ldt . F( ),n>0.
= e | — .—, putting gx = ¢
, 4 1 EXAMPLE 5.19
1
1 7 r Evaluate [ x*(log1)’dx.
=— _’tf”_lalt:ﬂ L0 “ - o
P Solution. Putting log = y, thatis, . = e’ orx = e 7,

we have dx = —¢” dy. Therefore,
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1

Joo)

0

0 oo
/ 4yy eVdy= /
o0 0

/e ﬁg,puttmgSy t
0

o0

6

1
T Adt=—T03)=—.
¢ (3)=523

625 625
0

EXAMPLE 5.20
Show that

1

/x’” (logx)"dx =

0

(=1)"n!
(m +n)n+1

Solution. Putting log x = —y, we have x = ¢ and so,
dx = —e™”. When x = 1, y = 0 and when x — 0,

y — oo. Therefore,

S —_ _

xm(logx)"dx

0 00
/e_my )dy ( )n/e—(m+l)y.ynd
00 0

/e dt utting (m—+1)y=
m—H m—f—l’p &

0

Y o D
_(m+1);1+10/ tdt—(m+1)n+1r( +1)
_ (—=1)"n!

(m+ 1)n+1 !

o0

EXAMPLE 5.21
Prove that

5V de

Solution. Putting x> = tan 6, we have 2xdx = sec” 6 db.
Therefore,

1
/ dx sec? 0 1 40
) \/1+x4 \/2tan9 V1 +tan2 0
1 / sec20 1 dO—Ij do
2/ Vtan0 sec® 20 sin? 0 cos? 0

ol—

_E/L_l
2 s (sinfcos0)? 2

[ gntgcos?
_Zﬁo/sm ¢cos ¢ do

2
2 oL 0
=—— [ sin 2¢cos ¢ d
4ﬁo/ peos” ¢ do
S ()
42 \4’2)’
z
since f(m,n) =2 fsinZ"’f1 dcos? L ¢ do.
0

EXAMPLE 5.22
Show that

2

/(m+m)de

()6 -4

Solution. We have

s

/(m+ Vsec)do

0

z

:/Vtan9d0+/\/sec9d0
0

0



3 3
:/sin%ﬁcos_%ﬁd(?—&—/
0 0

sin’ O cos™ 20 dO

z

5

2 2

:E/Siﬂ%9C057%9 d9+§/sin00cos’%0d0
0 0

D) o)

_! [F(%)F(%) +F(%)F(%)1

2| (1) r@

5.6  DIRICHLET'S AND LIOUVILLE'S THEOREMS

The following theorems of Dirichlet and Liouville
are useful in evaluating multiple integrals.

Theorem 5.1 (Dirichlet). If V is the region, where
x>0,y>0,z>0,and x +y + z < 1, then

g e TOT@T0)
//V/x 1y 1714 dy d “Thtgtrtl)

(The Dirichlet’s Theorem can be extended to a
finite number of variables).

Proof: Sincex+y+z<1,wehavey+z<1—-x=a.

Therefore,

///xp’lyq’lz“1 dx dy dz

14
l—x 1—x—y

1
// / PN e dy dz
0

x 0
1 a a-y

:/x"’*1 //yqflz"fldzdy dx. (1)
0 00

5.13

Beta and Gamma Functions

Let

a a—y
I://yqflz“ldzdy.

0 0
Putting y =aY and z = aZ, this integral reduces to
= / (a¥)V(az) "' Pdz dY,

where D is thDe domain where X > 0, Y > 0, and
Y+ Z > 1. Thus,

1 1-Y
1=aq+’/ / Y74z dy
0 0
1 =Y
=l / Yo\ =| avr
"lo
0
q+r !
_ /Y‘H(l —yydy
p
0
attr a*" T(@)T(r+ 1)
= 1 = _—
r Bla, r+1) r T(g+r+1)
:aq+r F(q)I‘(r) .
I(g+r+1)

Hence, (1) yields
// ¥ Yl Yk dydz
4
1

_ F(q)F(}") — aq+r I
O/F(q+r+1)xp o

_T@r) [ - G e

_m/x '(1—x)"""dx, sincea=1—x

_ T

*mﬁ@ﬂfrr*l)

_ T(@r() T@erg+r+1) TEr@rr)
T(g+r+1) T(p+q+r+1) T(p+q+r+1)

Remark 5.1. If x + y + z < h, then by putting
=X,7=7Y,and § =7, wehave X + Y +Z <
= 1 and so, the Dirichlet’s Theorem takes the form

///xpflyqflz"fldx dy dz
v

CTO@I) e
Tg+r+1)° '

= =
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Theorem 5.2 (Liouville). If x, y, and z are all positive
such that #; <x 4y + z < h,, then

// fx+y+ 2 W 27 dx dy dz

L'(p)r / 1
ALY Vel s hp+q+r dh.
F(p —|— q -|- r) S

(Proof, not provided here, is a slight modification of
the proof of Dirichlet’s Theorem).

EXAMPLE 5.23

Evaluate [[[x y z dx dy dz taken throughout the
ellipsoid

Solution. Put ’a‘—z =X, “Z—i =Y,and3 = Z to get

x:aX%, y:bY%, and z = ¢7?
and

a b? c?
de, ydy = 7dY, and zdz = idZ.

xdx =

The condition, under this substitution, becomes
X+Y+Z<1.

Therefore, for the first quadrant,

///xyzdxdydz

— /[/@¢@@@»@&)

2 2
[ (G ) )
2b2 2
//Xl 'y 1z"ldx dy dz
rmrora)
8 T(+1+1+1)
by Dirichlet’s Theorem
_ a1 B a*bh>c?
8 'I'(4) 831 48
Therefore, value of the integral for the whole of the
ellipsoid is 8 (74 ) = <

8
a?b*c?

a?b?c?

EXAMPLE 5.24
The plane £ +7 4 Z = 1 meets the axes in A, B, and
C. Find the volume of the tetrahedron OABC.

Solution. We wish to evaluate

// dx dy dz

condition %43 +Z=1. Putting
Y=X,;=Y,and:=Z,weget X+ Y+ Z=1.
Also dx = adX, dy = bdY, and dz = cdZ. Therefore,
using Dirichlet’s Theorem, the required volume of
the tetrahedron is

v=[[[ awa
:///abchdeZ

:abc// X' lySlz=lgx dy dz

under the

rnrr)
TI+1+1+1)

abc _a_bc_ abc

= abc

EXAMPLE 5.25

Evaluate [[[ x"'y"' 2"~ dx dy dz, where x > 0,
y >0, and z > 0 under the condition (¥)"+(})?+
=t

Solution. Put (£)°= X, (3)’=7Y, and (%)'= Z so that
dx = L xilax,
p
b

dy = ~yi'dy, and
q

de =574z,
r

Therefore,

///xl_lym_lz”_]dx dy dz
- / / / aXi)lfl(bﬁ)mq(cZ%)H

b
x P i yi ' 2 ax dy dz
par

lbm n " .
_47c ///XPL’IYTIZF‘IdX dY dZ
par

dper T (“r(z)re

par (14 bemgn)




EXAMPLE 5.26
Show that [[ x”~' 3"~ ' dx dy over the positive

. 2 g .
octant of the ellipse Z—j +5=1Iis 023 ﬁ(% L4 1).

Solution. Putting 2—2 =X and Z—z =Y, we get x =
avX and y = b\/Y and dx = ¢X2dX and dy =5
Y=3dY. Therefore,

// xmflynfldxdy
1 b

= / / a" Ly YT IX Dy Y

mpyn ot
:“4 //XTIYTldXdY

_a" TEL(E) e TE)LE)
1

(g g T
a"b’ T(Hr(E+1) _ambnﬁ@
2n F(”’T*”—i-]) T 2n 2’

5.7.  MISCELLANEOUS EXAMPLES

EXAMPLE 5.27

Evaluate fooo = _ffé using Beta and Gamma functions.

Solution. Putting x° =¢, we have x =# and so
5

dx = %t’é. When x =0, t =0 and when x = oo,

t = oco. Therefore

5.15

Beta and Gamma Functions

1/« 2
- ing T(n) T(1-2
6 (sin§>7 using I'(n) < n)

T
= 0 .
sinnm (0 <n)

EXAMPLE 5.28
Evaluate [ x*v/a? — x2dx using Gamma function.

Solution. Putting x = asin 0, we getdx = acos 0 d0

and Va2 —x2 = Va? — a?sin’ 0 = a cos 6. When
x =0, 0 =0 and when x = a, 0 = 7. Therefore

1= /x4\/a2 — x%dx
0
= /a4 sin* 0(a cos 0)(a cos 0)d6
0

z
= a6/ sin* 0 cos” 0 d0.
z 0
: . T () r (25t
Since [sin™0 cos" 0d0 = %M, we have
0

—
3
&
T
o

TR
2T(4)
_a [paVmgvE] _mat
2 3! 32°
EXAMPLE 5.29
Show that fol \/i‘—igdx = 2.14'.3.‘.,59.1"7"1)’ where n is odd
integer.

Solution. Putting x = sin 0, we have dx = cos 0 d0.
Therefore

)

2
3T (%)\/77 (see Example 5.11).
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Since n is odd, we take n = 2m + 1. Therefore

mm—1)(m—2)...32.1  /x
(m+m—=3)(m=3)...5:3T@F) 2
_ 2m(2m—2)2m—4)...6.4.2
C2m+1)2m—1)(2m —3)...3.1
(m=1)n—=3)(n—5)...64.2
= dd
nin—2)...53.1 . (nodd)
which was to be established.
EXAMPLE 5.30
Show that [;* xMe™ @ gy = s I ().

. . o 14
Solution. Putting ax = \/z, we have a dx = 5z~ 7dz.

Therefore

/ Xy = L/ e’ (£> z iz
2a a
0 0

o
1 et
=——— | e*z2dz
2am+1

0
00

1 _ m;rl
= — e Z
Zam+1

0

1 m+ 1
Zam+1 ( 2 )

dz

EXERCISES

1. Show that
(1) p2.5,1.5) = 15+

i AG.0) =
(i) THT()

2. Show that

3. Show that
inileiaxzdx _ F(l’l)
2a"
0
4. Show that
a T 1
PN CRL) BT
a* (loga)
5. Show that

0
6. Show that

b

[w=are

a

7. Prove that

o0

/ \/)‘cefﬂdx = ?

0

z
2

. 5 8
sin’ x cos? xdx = —.

—x)"dx=(b—a)"™" " f(m+1,n+1).

r no—at? 1 n+1
/.xe dxzan_'_l].—‘<2>,n>l
0

8. Show that

dx T

/\/1

9. Prove that

/

) V1t a2

_x4

539



10.

11.

12.

13.

14.

15.
16.

Show that

[~ resy

Express the integrals in terms of gamma
function

(i) fxp lehdx, k>0 Ans. (i) D2

k-

(ii) }(log;) ) ?e‘yy"“dy =T(n).
0

(iii) [ e dx (iii) & f el adt = rd).

0

5T (3)-

2n—1 —ax _I'(n)
Show that f X dx = 2a”'

Show that f e dx =

Show that yf(x + 1, y) = xf(x, y + 1).

Show that f Vxe ™ dx. f :[ dx = ;0=

The plane 2 + ptHi=1 rneets the axes in A, B,
and C, respectlvely Find the mass of the
tetrahedron OABC if the density at any point is

p = uxyz.

5.17

Beta and Gamma Functions

Hint: Mass:///pdxdydz,ogf-f-%
a

+i<i
C

:///;nyzdxdydz

x Y
Put - =X, =
u ,b

=Y, and Z—Zand proceed.
a c

ua*b*c?

Ans. =5
17. Show that the volume of the solid bounded
by the coordinate planes and the surface \/g +

\/>+\/'_1lsabc
2

18. Find the volume of the ellipsoid ‘2 +y—2 =1

Hint: V' =38 / / / dxdydz.

v

72

Pu ; X b7 = Y and — Z,
and use Dirichlet’s Theorem to get
41
V =—abc.
3 abe

19. Show that the entire volume of the solid

6 +6 '

o 4
lisgzm abc.



6 Multiple Integrals

The aim of this chapter is to study double- and triple
integrals along with their applications. Thus, we
shall consider here the integrals of the functions of
two- and three variables.

6.1 DOUBLE INTEGRALS

The notion of a double integral is an extension of the
concept of a definite integral on the real line to the
case of two-dimensional space. Let f(x,)) be a
continuous function of two independent variables x
and y inside and on the boundary of a region R.
Divide the region R into subdomains R;, R»,...,R,
of areas ORy, 6R,,..., OR,, respectively. Let (x;, y;) be
an arbitrary point inside the ith elementary area,
OR;. Consider the sum

Sy = f(xi,yi)0R1 +f (x2,2)0Ry + . ...
+f (X0, y1)0R; + - .+ [ (Xn, Yu)OR,-

= Zf(xivyi)(SR
i=1

When n — oo, the number of subregions increases

indefinitely such that the largest of the areas 6R;

approaches zero. The lim S, if exists, is called the
e

double integral of the function f(x, y) over the

region (domain) R and is denoted by

//f(x,y)dR.

If the region R is divided into rectangular meshes
by a network of lines parallel to the coordinate
axes and if dx and dy be the length and breadth
of a rectangular mess, then dxdy is an element of
area in Cartesian coordinates. In such a case, we

have
/R [ 1r = /R F(x,) dx dy.

We now state, without proof, two theorems that pro-
vide sufficient conditions for the existence of a dou-
ble integral over a closed region R.

Theorem 6.1. Let ¢ and w be two continuous func-
tions defined on a closed interval [a, b] such that
o(x) < w(x) for all x € [a, b]. Let fbe a continuous
function defined over R = {(x, y): a < x < b,

O <y < p@h Then, [[f(xy)dsdy and

b [ w(x)
i [ [ f(x,y)dy|dx exist and are equal.
a [ p(x)

Theorem 6.2. Let ¢ and y be two continuous func-
tions defined on a closed interval [¢, d] such that
o(y) < w(y) for y € [c, d]. Let f'be a continuous
function defined over R = {(x, y): ¢ <y < d,

gb(y) < x < w(y)}. Then, ﬂfxydxdy and

w(y)
f I flxy dx] dy exist and are equal.

o(»)

EXAMPLE 6.1

Show that
1

1 171
[ e[| o

(x+y) (x+
o Lo o Lo
Solution. We have

1
// —y sdx | dy
0

1

2

/de dy
(x+y)°

dy dx.

[ | 1 Yy »
0/{<x+y>2 <x+y>3}d @

S o~ _
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B / 7t

N o l+y, 27
0

Similarly, we can show that

1T 1 T

— 1
/ / al yde dx =—.
s &+ 2

(1+y)°

Hence,
171 rol
/ / x_y3dx dy;«é/ / ol y sdy | dx.
o Lo (x+) o Lo
The reason is that the function f(x,y) = Yy 3
(x+»)

is not continuous in R={(x,y): 0<x<1,0<y<1}.

6.2  PROPERTIES OF A DOUBLE INTEGRAL

Let K # 0 be any real number. Then,
//foydxdy K//fxydxdy

2. The double integral of the algebraic sum of
a finite number of functions f; is equal to
the sum of the double integrals taken for
each function. Thus,

/ / LG A7) + -4 fox,y)dx dy

_ / R/ i) dy + /R folx,y)dx dy

+...—|—/ Sa(x,y)dx dy.

3. IftheregionR is partitioned into two regions
R, and R,, then

[[renasar= [ [ reepiaxa

+ S (x,y)dx dy.
I

6.3  EVALUATION OF DOUBLE INTEGRALS
(CARTESIAN COORDINATES)

The double integrals can be evaluated using Theorems 6.1
and 6.2. In fact,

(1) If the limits in the inner integral are func-
w(x)
tions of x, then we evaluate [ f(x,y)dy,
é(x)
first taking x as a constant and then evalu-
ate the integrand (function of x), obtained
in the first step, integrating it with respect
to x between the limits ¢ and b. Thus,

//fxydxdy / /fxydydx.

a ¢(x) a o)

(i) If the limits in the inner integral are func-
w(y)
tions of y, then we evaluate [ f(x,y)dx,

o)
first taking y as a constant and then evalu-

ate the integrand (function of y), obtained
as a result of the first step, integrating it
with respect to y between the limits ¢ and d.

Thus,
d y(y) d | w(y)
/ /f(x,y)dx dy:/ / S (x,y)dx| dy.
€ o(y) ¢ Lo
EXAMPLE 6.2
Show that
27 4 4T 2
/ /(xy—i—ey)dx dy :/ /(xy—!—ey)dy dx.
1 L3 3 L

Solution. The function f(x, y) = xy + e” is a con-
tinuous function over the rectangle R = {(x, y): 1 <
x < 2,3 <y < 4}. Therefore, the values of these
integrals are equal. In fact, we note that

4
7
/ (xy +e¥)dx = §y+ey
3
and so,



2 4 2
// (xy +e”) dxdy:/[ x—&—e}]
13 1

2+
=—+e —e
4

One the other hand,
2

3
/(xy—i—ey)dyzix—i—ez—e
1

and so,
4T 2 4
/ /xy+e )dy dx—/[ x+é —e}dx
3 L1 3
21

:T+e —e.

Hence, the result.

EXAMPLE 6.3
Evaluate [ x2y2dx dy over the circle x* + y* < 1.

Solution. Since x> + y* < 1, it follows that

¥ <1 and y»<1—x%
or

|x] <1 and |y <V1—x2
or

—1<x<1 and —-VI-x2<y<VI-—x%
The integrand f (x, y) = x*y” is continuous over the
region

R:{(x,y):—l <x<1,—V1-x2<y< vl—xz}.

Therefore,
1 V1-x2

[[eao-[] ]

—1 —V1=22

x*y2dy| dx

1

| » Vi 5 .
= / xz{—} dx = /—xz(l — x*)7dx
3) = ] 3
—1 _
A 1
= g/xz(l - x2)%dx, since integrand is even
0

2

4
=3 / sin? 0 cos* 0 d0, substituting x = sin 0

IS
—_
W
R

™
6.42°2 247
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EXAMPLE 6.4

Evaluate the double integral of the function £ (x, y)
=1+ x + y over a region bounded by y = —x,

x=,/y, and y = 2.

Solution. The region R is bounded by y = —x, the
parabola y* = x, and the line y = 2. Thus, the limits
of integration for x are x = —y, x =/, y=0,
and y = 2. Therefore,

2
//(1+x-|—ydxdy /
R 0

2 VI
[x + 5 + xy}

NAZ

/ (I +x+y)dx| dy

-y

dy

-y

I
O\N

[(ﬁ +§+yﬂ) - <—y +y32—y2>} dy

Il
O\I\J

2
.
(2+4+\/i+y\/§)dy

Il
o _

3 2
_ 32 2 2
- [2+ 7 73 2+5y2]0
13 44
=2+
371
EXAMPLE 6.5

Evaluate [ ydx dy, where R is the region bounded
R
by the parabolas y* = 4x and x* = 4y.

Solution. The given parabolas are y* = 4x and x> = 4y.
Solving these equations, we get x = 0 and y = 4. The
corresponding values of y are y = 0 and y = 4. Both
the curves pass through the origin and the points of
intersection are (0, 0) and (4, 4). Thus, the limits of
integrationarex =0tox =4 andy = %2 toy = 24/x.
Thus,

2
4

R{(x,y): 0<x<4 §y§2\/)_c}.
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Therefore,

4
//ydxdy:/ /ydy dx
R 0

EXAMPLE 6.6
Calculate the double integral

I
// (x* +3?)dx dy
00

and determine the region of integration.

Solution. The region of integration is bounded by the
lines x = 0, x = 1, y = 0, and the parabola x* = y.
Thus, the region is

R:{(x,y):OSxS 1; Ogygxz},
and is shown in the following figure:

Ya

xX=y

The given integral can be expressed as

1 x*

/ /(x2+y2)dy dx.

0 0

So, we evaluate the inner integral first. We have

5 o A6
/ (2 +)H)dy = [xzy + ] =x'+=
0 3o
Therefore,

/R/(x2+y2)dx dyzo/l(x4+);—6>dx

B [xS xT_l 126
0

_5+21_105'

57a1 105

EXAMPLE 6.7
Evaluate the double integral [[e**”dR over the

region R, which lies between ‘[wcgz squares with their
center at the origin and with sides parallel to the
axes of coordinates, if each side of the inner square
is equal to 2 and that of the outer square is 4.

Solution. The region R is irregular. However, the
straight lines x = —1 and x = 1 divide this region

into four regular subregions R, R,, R3, and Ry.
AY

Ry

R,
Ry

Therefore,

//e”ydR:// e dx dy+// e dx dy
Ry

R R,

+// e dx dy+// e Vdx dy
R; Ry



1T 2 1T 2
= / /ex+ydy dx + / /e"”dy dx
2 -2 -1 1

EXAMPLE 6.8

Evaluate fj Xy dx dy over the positive quadrant of
the circle x*> + y* = a*.

Solution. The region of integration is
R= {(x,y): 0<x<a; 0<y<Va? —xz}.

The integrand f(x, y) = xy is continuous over R.
Therefore,

a | Va2—x?
//xydxdy:/ / xy dy|dx
R 0 0
Qr Vi '
:/ {x?] :—/x[a2 — x*]dx
0

2r __x_“_a_“_a__é
2], 2 40_4 8 8

EXAMPLE 6.9
Evaluate || xy dx dy, where R is the domain bounded

R
by the x-axis, ordinate x = 24, and the curve x* = 4ay.
Solution. The region of integration is

2
R= {(x,y): 0 <x < 2aq O§y§2}.
a

The region is bounded by y = 0, x = 2a, and the
parabola x> = 4ay.

Multiple Integrals 6.5

X2 = 4ay

> X
0
Therefore,
X2
2a 4
//xydxdy:/ /xydy dx
0 |o
2a »2 2a

0
L1 [64a] et
T 3242 |6), 3242 6| 3°
EXAMPLE 6.10

1 Vx
Evaluate [ [ (x* 4+ )%)dy dx.
0 x

Solution. The region of integration is bounded by
x=0,x =1, y = x, and the parabola y* = x. Thus,

R={(x,y): 0<x<1; x<y<vx}

Therefore,

1 VX 1
//x+ydyd:/
0 0

X

¥
/x+y dy | dx
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EXAMPLE 6.11
Evaluate [ (x + y)zdx dy over the area bounded by

the ellipse ’ac—i + {)—z =1.

Solution. The equation of the ellipse is ;é —|—%§ =1.
Therefore,

2 2 2
Y X Y X
ﬁzl—; or Z:i 1—; or
b
y=+-va*—x%
a

The ellipse cuts the x-axis at x = +a. Therefore, the
region of integration is

b
R={(x,y): —a<x<a; ——Va®—x*<y
a

b
< —vVa*—x?}.

a
Since x* 4 »* is an even function of y and xy is an
odd function of y, we have

//(x +y)2dx dy

X% + % + 2xp)dy| dx

(
(x2 +y2)dy dx

ba2—x?
,S« /a2 —x2
b/ 2
a 7x2
,ﬁ« [a? —x2

b2 52
a

va
/ 2xy dy| dx

—a |- /2 —2

e
:/ 2 / (x> +*)dy |dx +0
0

—a

; 3q Va2
} dx

—2 2, Y
/{xy+3

x2b b ) i
—\/az—xz—i—ﬁ(a —x)2 dx

a

0

—4

3 3
szxmz —x2 —|—3b? (a2 —xz)i] dx.

Substituting x = a sin 0, we have dx = a cos 0 d0
and so,

//(x +y)2dx dy
R
ab®

= 4/ [a3b sin” 0 cos? 0 —i—Tcos4 0} do
0

T, 3 mab , , 5
EXAMPLE 6.12
Evaluate
1 V142
1
T+2 427 &
0 0
Solution. We have
1 V14x2 !
dyd
/ / e
0 0
1| V1422 ! T
:/ / l+x2+y2y dx
0 0 |
1 1+x2 ]
—/ / ! dx
B (1+22) +2 %
0 0 ]

! 1 V14x2
:/ {tan1 J } dx,
) V1+x2 V1+x2]



0

log(1+Vv2) —log1] :glog(l +V2).

6.4  EVALUATION OF DOUBLE INTEGRALS (POLAR
COORDINATES)

0, ry
We wish to evaluate [ [f(r,0)dr dO over the

region bounded by the sterlai?ght lines 0 = 6, and 0 =
0, and the curves » = r; and = r,. To do so, we
first integrate 1 (r, 0) with respect to » between the
limits » = r; and » = r,. The resulting integrand is
then integrated with respect to 0 between the limits
0 =0,and 0 = 0,.

EXAMPLE 6.13

Evaluate [['rsin0 dr d0 over the area of the car-
dioid » = a(1 + cos 0) above the initial line.

Solution. To evaluate the given integral above the
initial line, we note that the limits of integration for
rare r = 0 and » = a(1 + cos 0), whereas the limits
of fare 0 =0to 0 = .

y

+ o=nr

Therefore,
/ rsinf dr df

7w a(l+cos0)

:/ / rsin 0 dr dO

0 0

Multiple Integrals 6.7

a(14COS 0)
dx

/az(l + cos 0)*sin 0 df
0

& [ LN .0 0
—7/ (ZCOS E) 251n§ coszdﬂ
[ 0.0
:4a2/cossism§d6

= 44° / cos® ¢sinp.2dp, 0 =26

0

=8d4° / cos® ¢psin ¢ do
0

I

= —8a% [ cos’ ¢(—sin¢)de
/

82COS6¢§ 4a?
= —3d _— = —
6 |, 3

EXAMPLE 6.14

Calculate ff dr df over the area included between
the circles » = 2sin 6 and » = 4sin 6.

Solution. The region of integration is between the

circles as shown in the following figure:
y A

r=4sin 6

6=n 0 0=0"x
Therefore, '
7 4sin0 T r4 4sin 0
// Pdr db :/ / Pdr do :/ H do
v 4 2sin 0
- 0 2sin@ 0

= %/ (256 sin* 0 — 16 sin* 0)d0
0



6.8 Engineering Mathematics-1

z
s 2

=6o/sin49 do = 120/sin4¢>d¢, 0=2¢

0 0
31 7w T
EXAMPLE 6.15

Evaluate [[ 24 over are loop of the lemniscates
2

¥ = d* cos 20
Solution. From the figure of the curve, we note that in
the region of integration, r varies from 0 to

. T T
avcos 20 and 0 varies from —— to —.

4 4
Ya
0=mn/4
N // r2 = a2 cos 26
N 2~
0=0 >
(_a, O) 0 (a! 0) X
7 \\
e N pom
Therefore,
7 a\/c0529
// rdrdf / r arl a0
»
va?+ r2 i ) var+r?
=
I | av/cos 260
:/ 3 2r(a® + 1) 2dr | do
-4
i 1 jav/cos 20
1 2 2
:5/ @ tr do
-z 2 0
7
= [ a[(1+ cos20) — 1)d0

=2a [ (V2cos0 — 1)d0

" =2a(1 _9'

= \
INEY

:2a‘f i

EXAMPLE 6.16

Evaluate ff rdr df over the area included between
the circles » = 2a cos 6, r = 2b cos 0, where b < a.

Solution. The region of integration between the given
circles is shown in the following figure:
Y

r=2acosf

_.n
b=-3

In the region of integration, » varies from 25 cos 6 to
2acos 0, whereas 0 varies from — % to 7. Therefore,
3 [ 2acos0

//r3dr do = /
3 47 2acos 0
:/ r—] do
o .4 2bcos 0

z

1
=1 / [16a* cos* 0 — 16b* cos* 0]d0

dr| do

L2bcos 0

=4 [ (a*—b*)cos*0 do



EXAMPLE 6.17

Show that [[7?sin0 dr d0 =22, where R is the

R
region bounded by the semi-circle » = 2acos 0,
above the initial line.

Solution. The region of integration is shown in the
following figure. In this region r varies from 0 to

. s
2acos 0, whereas 0 varies from 0 to X

y
A

r= 2acos 0

Therefore,

//rzsine dr df =
R

3 [ 2acos

¥ sin @ dr|do

(=]

2acos 0

do

3
sin (9

0

O\NH o\

3 2
:%/sinecof@ do

84> 2 24°

3 42 3 °

6.5 CHANGE OF VARIABLES IN A DOUBLE INTEGRAL

Regarding the change of variables in a double inte-

gral, we have the following theorem stated here

without proof.

Theorem 6.3. Let D be a domain in ®? and f: D — R

be integrable over D. Suppose that D be mapped on

to a set 4 of the uv-plane by the transformation
= ¢(u, v) and y = w(u, v), where ¢ and y have

Multiple Integrals 6.9

continuous partial derivatives in 4 and the Jacobian
u v) 7é 0 for all (u, v) € 4. Then,

//fxydxdy //f o)

Deduction. If there is a change in variable from
Cartesian- to polar coordinates, then x = rcos 0,
y = rsin 0, and

w(u,v))|J|du dv.

Ox Ox
or 00 cosf) —rsinl
/= Oy Oy ~|sin® rcosf ’
ar 00
= r(cos? 0 +sin® 0) = r
Therefore,

//f(x, y)dx dy = / f(rcos 8, rsin@) r df dr.
D y

EXAMPLE 6.18
Calculate the integral

I

over the circle x> + y* < 1.

dx dy

Solution. The value of the given integral is four times
the value of the integral taken over the positive quad-
rant of the circle x* + y* = 1. Substituting x = rcos 0
and y rsin 0, the given integral is equal to

// (rcos O — rsin ) ZE H;d do

1

4/ /(cos 0 + sin® 0 — 2sin 0 cos 0)dr dO
0

1

4/ (1 —sin20) /rdr do
2/ (1 —sin20)d
0

5
cos 20} P
2 ]y

20+
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EXAMPLE 6.19

Evaluate f f e dy dx by changmg to polar

coordlnates Hence deduce that f e dx = ‘é;

Solution. In the given integral, both x and y vary from
0 to co. Hence, the region of integration is xy-plane.
Changing to polar coordinates by substituting x = r
cos 0 and y = rsin 0, we get x* + y* = r*; and in the
region of integration, r varies from 0 to oo and 6

. T
varies from 0 to > Thus,

0o 00 7 0 P 8(xy)
x+v o )
//e dydx—//e 8(r,0)drd0
00 0 0
:// e " dr d
00
://e”.% do, » =t¢
00
1 ; e!
si=)
0 s
—Z%/m—lme—f(n
2 4
0

On the other hand,

//e_("2+y2)dyd /e_’C x/e_yzdy
0 0 0 0
/ o
0

/ e dx = ?

Hence, (1) implies

0

EXAMPLE 6.20

a2b? — p2x2 — y
@b + b2 + a2)? dx dy over the
2

Evaluate [

positive quadrant of the elhpse — + = 1.

Solution. Substituting Y Xxand 2= Y, the problem

; —X2_y?
reduces to the evaluation of [[aby/ ————
over the positive quadrant of the circle X > + Y2 = 1.
Substituting X = r cos 6 and Y = r sin 6, we have
dXdY = rdr db. In the region of integration » varies
from 0 to 1 and 0 varies from 0 to 7. Hence, the given
integral reduces to

71
1—2
ab//\/—rrdrdG
1472
0 0
1 — z
1—7r
:ab/ —1+r2rdr

0 0
b / 2
_abrw 1—r
rd|
2/VH "
0
ab7r 1—sint 1
—costdt, 2 =sint

2 1+smt 2
0

_Wabj\/l—SlIlt \/l—smt ostds
T4 1+sint \/1—51[1
0

2
wab 1—sint

:T ost costdt
0
’ 3
:% (1 —sint) dt
0
Tab = mabrmw
2 —_ - | — —
4[th b—4[24
b
——-(r-2).

Remark 6.1. Substituting @ = b = 1, the problem

i 1—x2—3?
reduces to the evaluation of ————dxdy
14x2+)?

over the positive quadrant of the circle x* + y* = 1.

)
The value of the integral in that case is 5 —g.



EXAMPLE 6.21

Evaluate [ [sin7(x* +»*)dx dy.
x2+4y2<1
Solution. Changing to polar form yields

sin 7r(x2 —|—y2)dx dy

x24y2<1
27 1
= // sin(ﬂ'rz) rdr dO
00
27 1
://sin(w t)— do
0 0
| 27 |
cos 7t
=— | |- do
2/‘ T ‘0
0
| 2w
= —E/[comr—coso}dﬁ
0
) 2w
0
EXAMPLE 6.22
2 V2x—x2

X
Evaluateg bf i

coordinates.

dy dx by changing to polar

Solution. The limits of y are from 0 to v2x — x2.
But y = v2x — x2 implies y* = 2x — x* or x> + )* =
2x. Thus, the region of integration is bounded by
x=0,x=2,y=0,and x> + y* = 2x. Changing to
polar coordinates x> + y* = 2x transforms to > =
2rcos 0 or r = 2cos 0.

A

r=2cosf

Multiple Integrals 6.11

For the region of integration, 7 varies from 0 to 2 cos
. T
0, whereas 0 varies from 0 to 3 Therefore,

2 V2x—x2
/ / 2x 2a’y dx
1 ) x-+y
3 2cosl 0
:/ / 7 Ccos dr do
0 0
7 2cosf
:/COSH rdrdf
0 0
2 2cos b
:/COSO— do
0
0
; 2 4
=2 0d0=2-Z=_.
/cos 373
0

EXAMPLE 6.23

Transform to the Cartesian form and hence, evaluate
T a

the integral [ [ 73 sin 0 cos 0 dr do.
00

Solution. We are given that

I://r3sin0c050 dr do.
0 0

Putx = r cos 0 and y = r sin 0 so that dx dy = r dr
d0. The region of integration is shown in the fol-
lowing figure:

y

A
X2+y2 = 22
a
.
0=m 0 a 6=0 X

Therefore, the Cartesian form of the given integral is

I://xydxdy.
—a 0
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Further,
T a W 414
://r3sin0c050drd(9:/sin@cos@Z do
0 0 4 7 0 4 2 T ’
a . a*|sin” 0
_Z/smecosedﬁ—z > 0—0-
EXAMPLE 6.24

Use the transformation x + y = u and y = uv to
1 1—x

show that f f e dy dx = 4L,

Solution. We have
x=u—y=u—uv=u(l —v)and

y=uv.
Therefore,
ox Ox
o) | o :’1—v —u
A(u,v) dy Oy v u
ou v
=u(l—v)—(—uv) =u.

The Jacobian vanishes when u = 0, that is, when
x =y = 0, but not otherwise. Also the origin (0, 0)
corresponds to the whole line # = 0 of the uv-plane
so that the correspondence ceases to be one-to-one.
In order to exclude (0, 0), we note that the given
integral exists as the limit, when 2 — 0 of the
integral over the region is bounded by
x+y=1,x="h, and y =0 where & > 0.
The transformed region is then bounded by the lines
u=1,v=0, and u(1 —v) = A.

When /& — 0, the new region of the uv-plane tends,
as its limit, to the square bounded by the lines u =1,
v=1,u =0, and v = 0. Thus, the region of inte-
gration in the xy- and uv-planes are as shown in the
following figures:

Ya Va

©,1)

Therefore,

I 1—x

//exﬂdydx—//euududv
1 -
vV Vu
=/ée [ududv = | & |=| dv
2]
0 0 0

1
gy = Lo Lo
_E/edV_Z[e]O_Z(e 1).

0

EXAMPLE 6.25
x dx dy
2 _|_y2

Evaluate f f by changing into polar

coordlnates

Solution. The region of integration is shown in the
following figure:

YA

The region is bounded by x =y, x = a, y = 0, and
y = a. Changing to polar coordinates, we have x = r
cos 6,y =rsin 0, and dx dy = r dr df. Further, in the

. . . . T
region of integration 0 varies from 0 to T Also,

x = a implies r cos 9 =aqgorr= . Therefore,
7 varies from 0 to . Hence, cos
cos 0
//xzdxdy //rcos@ dr do
x2 4+ y?

i
:/COS H[r]ﬁdg =a
0

o\m
QL
>
Il
Q
| §



EXAMPLE 6.26

Evaluate [[xy (x* +)2)%dx dy over the positive
octant of the circle x* + y* = 4, supposing 1 + 3 > 0.

Solution. The region of integration is bounded by x =
0, x =2,y =0, and y = 2. Changing to polar
coordinates, we have x = rcos 0 and y = rsin 0 and
s0, rd0 dr = dxdy. The limits of integration in the
first quadrant of the given circle are now r = 0 to r

:2and0:0t00:g.Hence,

// Xy (x2 —l—yz)%dx dy

7 2
//rcos 0.r sin H(rz)%.r dr do
0

2

2
/sm@cos@ /r”+3dr
0

T

2

+4 2
/smOcosO[W } do
n+4],

0

iy

2n+4 2n+4 1.1 2n+3

4/51n9c050d0 47:11—&—4'

:n+
0

6.6 CHANGE OF ORDER OF INTEGRATION

We have seen that, in a double integration, if the
limits of both variables are constant, then we can
change the order of integration without affecting
the result. But if the limits of integration are vari-
able, a change in the order of integration requires
a change in the limits of integration. Some integrals
are easily evaluated by changing the order of inte-
gration in them.

EXAMPLE 6.27
Change the order of integration in the integral

I:/ 0/ S (x,y)dx dy.

—a

Multiple Integrals 6.13

Solution. The region of integration is bounded by
y=—-a,y=a,x =0, and x? +y2 = a*. We have

I= / 0/ Fx,y)dx| dy.

Thus, in the given form, we first integrate with
respect to x and then with respect to y.

Ya

On changing the order of integration, we first inte-
grate with respect to y, along a vertical ship RS,
which  extends from y=-vVa®2—-x* to
y = Va* — x2. To cover the whole region of inte-
gration, we then integrate with respect to x from
x = 0 to x = a. Thus,

I—/dx a/fxy

1127762
a var—x?
= / /f(x, y) dy| dx.

L )
EXAMPLE 6.28 .
Change the order of integrationin/ = [ [ xydx dy
and hence, evaluate the same. 0 x2
Solution. For a given integral, the region of

integration is bounded by x = 0, x = 1, y = X2,
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(parabola), and the line y = 2 — x. Thus, the region
of integration OABO is as shown in the following
figure:

Y4

In the given form of the integral, we have to inte-
grate first with respect to y and then with respect
to x. Therefore, on changing the order of integra-
tion, we first integrate the integrand, with respect to
x and then, with respect to y. The integration with
respect to x requires the splitting-up of the region
OABO into two parts OACO and the triangle ABC.
For the subregion OACO, the limit of integration
are fromx =0tox = ,/yandy = 0toy = 1. Thus,
the contribution to the integral / from the region
OACO is

L[V
I :/ /xy dx | dy.
0o |o

For the subregion ABC, the limits of integration

are fromx =0tox =2 —yandy =1toy =2. Thus,

the contribution to 7 from the subregion ABC is
22—y

I :/ /xy dx | dy.

1 Lo
Hence, on changing the order of integration, we get

1
1:/
0

vy 2 -y

xy dx | dy —|—/ /xydx dy
1

j{ D [P e

3 4 2 3
LN Eal R VA
23], 214 2 3],
_1,5_3
6 24 8
EXAMPLE 6.29

Changing the order of integration, find the value of
o000
the integral E)f J e}—,ydy dx.

Solution. The region of integration is bounded by
x =0 and y = x. The limits of x are from 0 to co and
those of y are from x to co. The region of integration
is shown in the following figure:

YA y=x

v

On changing the order of integration, we first inte-
grate the integrand, with respect to x, along a
horizontal strip RS, which extends from x = 0 to
x = y. To cover the region of integration, we then
integrate, with respect to y, fromy =0toy = oo
Thus,

00 y 00

- -
//Lw@=/LW@
0 Y 0 Y

1



EXAMPLE 6.30

Change the order of integration in the integral

4q 2+/ax
J [ dy dx and evaluate.

0 £
4a
4a 2+/ax
Solution. The given integral is [ [ dy dx. The
0 2

integration is first carried out with réaspect to y and
then with respect to x. The region of integration
is bounded by x = 0, x = 4q, and the parabolas
x* = 4ay and y* = 4ax. Thus, the region of inte-
gration is as shown in the following figure:

Ya
x> = 4ay

The coordinates at the point of intersection of the
parabolas are A(4a, 4a).

On changing the order of integration, we first
integrate the integrand, with respect to x, along the
horizontal strip RS, which extends from x = 3% to
x = \/4ay = 2,/ay. To cover the region of inte-
gration, we then integrate with respect to y from
y =0toy = 4a. Thus,

4q 2+\/ax 4a | 2@y 4a
/ /dy dx:/ /dx dy :/[x]iﬁdy
0 2 O o

4a 4a

4a

v NG
= [ 2y -y = -
/{‘/‘l_ 4a}y l 3 12a]
0

0
32a* 164> 164>

Multiple Integrals 6.15

EXAMPLE 6.31

Evaluate the integral
1 V2—x?

[

0

x dy dx

/ x2 + y2
by changing the order of integration.

Solution. For the given integral, the region of inte-
gration is bounded by x = 0, x = 1, y = x, and the
circle x* + y* = 2. Thus, the region of integration is
as shown in the following figure:

YA y=x
x=a
B =(0,2)
Chamnnas A1, 1)
| -
0 X

The point of intersection of the circle x* 4+ y* = 2
and x =y is A(1, 1). Draw AC OB. Thus, the region
of integration is divided into two subregions ABCA
and ACO.

On changing the order of integration, we first
integrate with respect to x, along the strips parallel
to the x-axis.

In the subregion ABCA, the strip extends from
x =0 to x = /2 — 2. To cover the subregion, we
then integrate with respect to y from y = 1 to
y = v/2. Thus, the contribution to the integral due to
this subregion is

A Vi
I :/ / X i dy.
/ /x2 +y2

1
On the other hand, in the subregion ACO, the
strip extends from x = 0 to x = y. To cover this
subregion, we then integrate with respect to y from
y = 0to y = 1. Thus, the contribution to the integral
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by this subregion is

dx|dy.

¥y
0| v +y
Hence, the given integral is equal to
va| Va2
X
I =h+1 = / / —
) VxE+y?

1

dx|dy

+ dx | dy

/ |7
[( +y )%]‘/Z—Tder/l[(

0

(ﬁy —y)dy

+(\/§— 1) {yﬂ;

1
2 V2

1
+°) Tody

\§~\§

(\/5 —y)dy+

S — _

V2y %

2 V2
g

Il
N——— ~

N

EXAMPLE 6.32 3 i
Evaluate the integral [ [ (x + y)dx dy by chan-
ging the order of integgratilon.

Solution. The region of integration is bounded by
x=1,x>=4—y,y=0,and y = 3, as shown in the
following figure:

YA

0, 4) (1,3)

v

On changing the order of integration, we first inte-
grate the integrand, with respect to y, by taking
the strip parallel to the axis of y. In the region of
integration, y varies from 0 to 4 — x* and x varies
from 1 to 2. Therefore,

3 /4y
/ / (x +y)dx dy
0

[4—x2 x2

2 2
/ / (x +y)dy dx—/{xy+ } dx
Lo 1

2 4
/ 4x—x3—|—8—i—3—4x2 dx

1
X 4377
[4?——4-8)64-%—?
2
= (8 44 16+3——?)
4 241
2—- ——= —.
( 4 8 + 10 3) 60
EXAMPLE 6.33
Change the order of integration in [=
2a \/ZE
[ ] ¢xy)dy ax.
0 V2ax—x2

Solution. The region of integration is bounded by
x = 0 and x = 2a, the circle x* + y2 = 2ax, and the
parabola y” = 2ax. The equation of the circle can be
written as (x — a)? + y* = a” and so, has the center
at (a, 0). The region of integration is as shown in the
following figure:

YA




We divide the region of integration into three parts by
drawing the line EDF through D parallel to the x-
axis. On changing the order of integration, we first
integrate the integrand, with respect to x and then
integrate the resultant integrand, with respect to y.
So, we draw horizontal strips parallel to the 2x—axis.

In the subregion OEDO, x varies from 5 to a —

v/a? — y? and y varies from 0 to a. Thus, the con-
tribution to the integral due to this subregion is

a?—y?
‘/wnww dy
2

a| 4

-]

0
2a
Similarly, the contribution to the integral due to the
subregion DBFD is

a

2a
b= [| [ ot x|
O |a+/a—?
and the contribution to the integral due to the subre-

gion AEFA is

a

2a
a:/ $(x, y)dx| dy.

o |2
2a

a ‘1—\/11—2——)/7

1:/ /N b(x, y)ds dy

0 2
2a
a 2a

+/ / o(x, y)dx dy

U

2a 2a

+ 0/ / 6(x, y)dx dy.

2
a

Hence,

v
2

EXAMPLE 6.34
oo X 2

Evaluate | [x e~ vdy dx by changing the order of
00

integration.
Solution. The region of integration is bounded by the

lines
x=0,x=o00, y=0, and y = x.

Multiple Integrals 6.17

Therefore, the region of integration is as shown in
the following figure:

YA

On changing the order of integration, we first inte-
grate, with respect to x and then, with respect to y.
Thus,

(o) o0

//xef%dydx :/ /xef%dx dy. (1)
00

0o |y

We first evaluate the inner integral. Substituting
x* = t, we have 2x dx = dt. When x = y, 1= )*
and when x = oo, t = oo, Therefore,

r 2 loo L 1 _500
/xef»_'dxzz/ef?dt :E[el]
yyz

y 2

1
=5 e

Therefore, (1) reduces to

6.7  AREA ENCLOSED BY PLANE CURVES
(CARTESIAN AND POLAR COORDINATES)

(A) Cartesian Coordinates: The area A of the
region

R={(x, y): a<x<b; fi(x) <y <fx)}
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is given by the double integral

b | A
A= / / dy| dx.
a Ak

Similarly, the area A of the region R =

{(x,y): ¢<y<d; fi(y) <x<fa(y)} is given by
the double integral

d | L)
A= / / dx| dy.
¢ [AD)

(B) Polar Coordinates: The area A of the region
R={(r,0); <0< p; £i(0) <r<fr(0)}

is given by

B | £(0)
A:/ / rdr|do.
o [fi(0)

Similarly, the area A of the region R =
{(r,0); 11 <7 <1y filr) <0< fa(r)}is given by
| Ar)
A :/ / do| rdr.
")

EXAMPLE 6.35

Find the area of a plate in the form of a quadrant of
the ellipse ﬁ—z + %—2 = 1. Hence, find the area enclosed
by the given ellipse.

Solution. From the figure, we note that the required
area is bounded by x = 0, x = a, y = 0, and

y:§\/a2 — x2.

_ 7b 't
= 2 Sq units.

Hence, the total area enclosed by the given ellipse is
four times the area enclosed by the plate in the form
of one quadrant = 7 ab sq units.

EXAMPLE 6.36

Find the area lying between the parabola y = 4x — x*
and the line y = x.

Solution. The parabola passes through the origin.
Solving y = 4x — x* and y = x for x, we get x = 0
and x = 3. Thus, the curves y = 4x — x> and y = x
intersectatx = 0and x = 3. When 0 <x <3, 4x — X2
is greater than x. Therefore, the region of integra-
tion is as shown in the following figure:

Ya




Thus, the required area lies between y=x, y=4x — x°,

x = 0, and x = 3. Therefore,
3 [ ax—x? 3
/ (3x — x
0

]| o]

0

/W o

B [3x2 x3] 27 27 9
2 3], 2 3 T2
EXAMPLE 6.37
Find the area lying between the parabola y* = 4ax
and x* = 4ay.

Solution. Solving the equation of the given parabola,
we have O(0, 0) and A(4a, 4a) as the points of
intersection. The region of integration is shown in
the following figure:

Ya X2:4ay

<] A4a, 4a)

v

y? = dax

Therefore, the required area is

—2\/a_x 4a
/dy dx = /b}]z_zﬁ
ﬁ 0 4a
4a
_ 2
:/ 2\/a——]dx
i 4a
0
4a

4a
1
:2\/5/\/)—Cdx—a/x2dx
0

0

X Y 1 [x3]"
2”MMMO

0

Multiple Integrals 6.19

:—\/—(8512)—?(6461)
_32a _16a —Eaz
3 3 377

EXAMPLE 6.38
Find the area of the cardioid » = a(1 + cosf).

Solution. The curve passes through the origin and
cuts the x-axis at x = 2a. Clearly, 6 varies from 0 to
7 and r varies from 0 to a(1 + cos ) in the upper-
half part of the integration region.

Ya g=mn

o
~
o
2
x

The required area is given by

7 | a(l+cos0) T 2 a(14-cos 0))
Azz/ /rdr dezz/H do
2 0
0 0 0

™

:/az(l + cos 0)*d0

0
) 4V
=4q /cos 2d0

0
:8a2/cos4¢d0, 0=2¢
0

3ra?

3

=8a%. —.
@42

T
5=
EXAMPLE 6.39

Find the area lying inside the circle » = a sin 6 and
outside the cardioid » = a (1 — cos 0).

Solution. We have r = a sin 6 and r = a (1 — cos 0).
Therefore, a sin 0 = a(1 — cos 0), which yields sin 0
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+cos @ =1orsin® 6 + cos? 0 +2sin f cos 0 =1 or
sin 20 = 0. Hence, 2 0 = 0 and 7 and so, 6 = 0 or 7.
Further, from the region of integration, it is clear
that r varies from a (1 — cos 0) to a sin 0.

y
A
0 0=m/2
A
(¢a\ >
K
I
XL
0 0=0
Therefore,
3 asin 0 3 rz asin0
A:/ / rdrd@z/{—] do
2 a(1—cos 0)
0 [a(l—cos0) 0

ST

:—/sm@ (1 —cos 0)*]d0

%/ [sin? 0 — cos® 0 + 2 cos O — 1]d0
0

2
:%/(—2c0520+2c080)d0
0
1w i
2| __ = —
[ MH] 2(1-7).
EXAMPLE 6.40

Find the area of one loop of the lemniscates * = a°
cos 20.

Solution. The region of integration is shown in the
following figure:

0=m/4

- P =a’cos 20
S\ 6=0

)

(=a,0) ~0

T0= w4

The required area is given by

7| avicos20 I /020

2
A:2/ /rdr do :2/[—] do
21y
0 0 0
/ a . r a?
—az/cos20 do :7[sm20}3:7.
0

EXAMPLE 6.41

Find the area included between the curve r = a(sec 0
+ cos 0) and its asymptote.

Solution. The curve r = a(sec 0 + cos 0) is sym-
metrical about the initial line. The equation of the
asymptote is 7 = a sec 0.

Y

asec 6

r=

The required area is
[ a(sec 0+cos 0)
/ rdr| do

asecl

do

N
\Nlu e \Nm
r

r 6+cos 0
12 a(sec 0+cos 0)
|2

asecl

[@ (sec O + cos 0)* — a® sec? 0]d0

f=}
s S

2

=a (sec20+c0520—|—2 — sec? Q)dH

\NI:}

az/cos 9+2d9—a{ -+ —
0




EXAMPLE 6.42

Find the area bounded by the parabolas y* = 4 — x
and y> = 4 — 4x.

Solution. The required area is given by

2 [ 4-? 2 ) )
y 44—y
A=2 de|dy =2 [ |4 -2 — d
[| ] oo =25
0 \42 0
2 32 512
=2[(3-= =2(3y -1
(s-37)ar =24,
0
=2[6-2]=8.

6.8 VOLUME AND SURFACE AREA AS DOUBLE
INTEGRALS

(A) Volume as a Double Integral: Consider a
surface z = f (x, y). Let the region S be the ortho-
gonal projection of the portion S’ of z = f{x, y) on
the xy-plane. Divide S into elementary rectangles of
area 6x Oy by drawing lines parallel to the x- and y-
axis. On each of these rectangles, erect a prism
which has a length parallel to Oz. Then, the volume
of the prism between S’ and S is z éx Oy.

N 2

X

Therefore, the volume of the solid cylinder with S as
base, is composed of these prisms and so,

V—bhm z&xéy—//zdxdy
50
/fxy dx dy.

Multiple Integrals 6.21

In the polar coordinates, the region S is divided into
elements of area r ér 60 and so, the volume in that
case is given by

V= //f(rcos 6, rsinf)rdr do.
s

(B) Volumes of Solids of Revolution: Let P(x, y) be
apoint in a plane area R. Suppose that the elementary
area 6x dy at P(x, y) revolves about the x-axis. This
will generate a ring of radius y. The elementary
volume of this ring is 6V = 2zy dy éx. Hence, the
total volume of the solid formed by the revolution of
the area R about the x-axis is given by

VzZﬂ'//ydydx.
R

Changing to polar coordinates, we get

V:27T//rsin0rdrd0
R

:2#//rzsin9 dr do.
R

Y a
R
P(x, y)
[ /v
dx
0 g X

Similarly, the volume ¥ of the area R revolved
about the y-axis is given by

V:27r//xdxdy.
R

Changing to polar coordinates, we have

V:27r//rc039rdrd0
R

:27r//r2cos€)drd9.
R
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(C) Surface Area as a Double Integral: Let Solution. Due to symmetry, the volume of the given
z =y (x, y) be a surface bounded by a curve C. Let  ellipsoid is eight times the volume of the portion of
the projection of C on the xy-plane be bounded by  the ellipsoid in the first octant. For the positive
and let D be the domain on the xy-plane bounded by octant, the given equation yields

) X2 2
zA z==c\/1 — PR
c The region in this octant is bounded by
N
~ 2
S x=0,x=a,y=0, andy=0b1/1-=.
a
Hence, the required volume is given by
9 ; a 1%
V= / / z dy dx
\/ b
X a
=8 / cy/1 dy dx
Then, the area of the surface S is given by 0

2

b —

S \ﬁ o \ﬁ
W o

6z az ? “ 2 213
_ Y
0

EXAMPLE 6.43 o, 2 :
Find the volume of the sphere x> + )* + 2> = o>  Substituting b 1——sm0 wegetdy=by/1—3

using polar coordinates. cosOdf (asxis a constant) Therefore,
a 3 1
Solution. The solid under consideration is bounded v g [ ! x? ! 2\ ., 0 2
above by 22 = a* — (x> + »*) = a*> — /*. The sphere - ¢ —2) Tz
cuts the xy-plane in the circle x> 4+ y* = aor 1* = a*. 00
Because of symmetry, the required volume is given 2
by X by/1——cos0dl
) a
v=2/| [ V&= rdrdo f002 ]
// amrmra :Sbc/ 1——2>/[1—sin29]%c0s0d9
0 0 a
0

27 a

://Vaz—rz.ZrdrdH

(
T e[ (1-5)
:/ [(a —31’2 ] /d0_4m | 8bc/,,<

EXAMPLE 6.44 —2rhe {x _ ﬁ] T4
Find the volume of the ellipsoid "2 + —|— Zz =1. 0

)
\NI:{ e
O
(]
w
1o
>
QU
>




EXAMPLE 6.45

Find the volume contained between the ellipsoid
22 2 2 2
=+ = —|— — =1 and the cyhnder 4 7=

Solution. The equation of the given elliptical cylinder
is

22

2oy

b2

x
—=7r cosb an
a

Q_ QIX

S

Substituting =r sinf, this

equation yields
r? =r cosl or r = cos0.

The required volume is given by

/ x2 y2

7 cosf

4abc// V1—r2rdrd0
0

4ab 2 (1 2); cos 0

C _

- /[ .z ] do
0 2

0

2
4abc T
= |- — =] = - — 4
3 13 2] abc[3m — 4]

EXAMPLE 6.46

Find the volume common to a sphere x>+ +2* =a*
and a circular cylinder x* 4 y* = ax.

(particular case of Example 6.45, takinga=b=c).

Solution. The required volume is the part of the
sphere lying within the cylinder and is given by

V:4//zdydx:4//\/az—xz—yzdydx,
R R

where R is the half of the circle lying in the first
quadrant. Substituting x = r cos 6 and y = r sin 0,
the equation x> + »* = ax yields

P =arcosb or r =acosb.

Multiple Integrals 6.23

Thus, the region of integration is bounded by
r=0,r =acos 0, 0 =0, andOZg.

Hence, _
7 acosl

V =4 vVa:—r:rdrd0

a*> —r? (=2r) dr do

EXAMPLE 6.47

Find the volume bounded by the cylinder x* + y* =
4 and the planes y + z =4 and z = 0.

Solution. To find the required volume, z = 4 — y is to
be integrated over the circle x> + y* = 4 in the
xy-plane.

T~

To cover the area (half of the circle) in the xy-plane, x
varies from 0 to 1/4 — »? and y varies from —2 to 2.
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Thus,
2 [ Va2
V:2/ / zdx|dy
=2 0
2 42
:2/ / (4 —y)dx|dy
-2 0
-
=2 [y e

[SS]

2 [V

-2

2 2
=24/\M—ﬁdw—/yv*ﬂﬂ@
-2

2

=8 / /4 —y* dy, second integrand being odd
-2

=16 / \/4 —y? dy,because of even integrand

0
2
42 4
zmly_vzy +y]
0

2 2
. 32
=16[2sin"' 1] = 271' 16m7.
EXAMPLE 6.48

Find the volume of the solid bounded above by the
parabolic cylinder z = 4— y* and bounded below by
the elliptic paraboloid z = x* + 37,

Solution. The two surfaces intersect in a space

curve, whose projection on the xy-plane is the
2

. X o

ellipse x> + 4° = 4 or 7 +3? = 1. Substituting

x=2rcos 0 and y=rsin 0, the ellipse becomes 7* = 1.
Further,

z=¢i(x) =4 —y* and

z=¢(x) =x* + 37

Therefore,
Pi1(x) — da(x) =4 — " —x* —3)?
=44 —x* =4(1-1).
Also,
0 (xy)
000"

Since the solid is symmetrical about x- and y-axis,

we have
1

V:4//ﬁu—#pmﬁw
0

0

71
:32//1’7;’ ) dr do
0

r2 ! 327
0

EXAMPLE 6.49

Find the volume bounded by xy-plane, the cylinder
x* 4+ y* = 1, and the plane x + y + z = 3.

Solution. We have to integrate z = 3 — x — y over the
circle x> 4 y* = 1. Substituting x = r cos 0 and y = r
sin 0, so that x> + y* = /2, the integrand reduces to
3—rcosf—rsinf =3-r(cos 0+ sin 0) and the
circle x* + y* = 1 reduces to #* = 1. Thus, to cover
half of the region, » varies from 0 to 1 and 0 varies
from 0 to 7. Hence,

V=4

\ I

/{3 —r(cos 0+ sin ) }r dr|do
0

2.3 1
[3r —%(cos() + sin 9)] do

4 _
2 0

SN P
\Nl: \NI:{

4

3 1 .
[z - g(COSB + sin 0)} do

.
/6d9—§/(0050+sin 6)do
0 0
_ 6

4 T

~3 [sin @ — cos 0]}

4 8
S =37

3[ +1] =37 3



EXAMPLE 6.50

Find the volume common to the cylinders x*> +1* =a
and x* + 2> = &°.

2

Solution. The required volume is given by

a a?—r?
= 8/ / Va2 —x2 dy|dx
0
- 8/\/a2 — [y dx
0
/ Y 1643
=8 [(@ =) dx =8|ax—"| =
/(a x7) dx [a x=3 T3
0
EXAMPLE 6.51
Prove that the volume, enclosed between x> 4 = 2ax

12843
and 22 = 2ax is 15a .

Solution. To find the required volume, z = V2ax is to
be integrated over the curve x* + y* = 2ax in the xy-
plane. Changing to polar coordinates by substitut-
ing x = r cos 0 and y = r sin 0, the required volume
is given by

T
2 2acosl

V:4/ /\/2arcos()rdrd0

0 0
5 2acos0

:4\/2_a/ /ﬁmmd@

0 0
2 2acos
3
Vcos 0 /ﬂ dr|do
0 0

B 4\/22/ \/C__.OS“ l %‘| 2acos 0

0

=4/2a

8 2 s 5
\/_a a)iVcos 0(cos 0)2 dO

UIIoo
m‘

%
3
(2a) /cos 39 ap = &4 %zgcﬁ
0

Multiple Integrals 6.25

EXAMPLE 6.52

Find, by double integration, the volume generated
by revolving the cardioid » = a(1 + cos 0) about
the initial line.

Solution. We observe that the upper and lower halves
of the cardioid » = a(1 + cos ) generate the same
volume. Therefore, it is sufficient to consider the
revolution of the upper-half cardioid only, for
which r varies from 0 to a(l + cos 6) and 0 varies
from 0 to 7.

(2a, 0) >

Hence,
7 a(l4-cos0)

Volume of Revolution =27 [ [ r*sinfdrd0
00

s

3 a(l+cos0)
:ZW/sinﬂ[—]
3 0

0

3 ™
:?/sin@(l +cosf)’do

_ 2@’ |(1 +cos0)*]”
3 4
0
27a’ 8

= —WTa(—Zé*) :§7W3'
EXAMPLE 6.53
Find the volume of the solid generated by revolving

2 .2
the elhpse il + Jb% = 1 about the x-axis.

Solution. Due to symmetry, it is sufficient to calcu-
late the volume obtained on revolving the upper
half of the ellipse. For this, x varies from — a to a
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a 2b\/% a
:277/[)}—} dy:w/

—a —a

= 27Tb2/ (a* — x*)dx = 2mb? {azx - X—T '
0

a? a? 3
wmb? [[5 & 4
=2 /[a —?} —§7Tab.
0
EXAMPLE 6.54

Find the area of the surface of the paraboloid
x* + y* = z, which lies between the planes z = 0
andz = 1.

Solution. The required surface area is given by

[ GG o

But,

0z 0z
a—Zxand a—y—Zy

Therefore,

S:/ V14+4(x? +y?) dx dy
://\/1+4r2rdrd9

(changing to polar coordinates).

To find the limits, we see that the projection on the
plane z = 1 is the circle x* +y* = 1 or * = 1 and
this circle lies between 0 = 0 and 0 = 2x. Hence,

2 1

S://\/1+4r2r do dr
0 0

27 1

1

:g//\/1+4r28r do dr
0 0

27 3 1 2T
1 1+ 42)? 1
:—/ (Ui ) :—/(5\/§—l)d0
8 3 12
0 0 0
_5\/5—1 2W_7T
== = [5V5-1]
EXAMPLE 6.55

Compute the surface area of the sphere x> 4 y* +

2 2
zZ =a.

Solution. The surface area of the sphere is twice

the surface area of the wupper-half sphere
z=/a* — x> —y*. We have

0z x

R o — and

Oz y

Y et

Therefore,

=] )3 o
_ / / —— _“x2 — @y

The domain of integration is the circle x* + y* = a
on the xy-plane. Therefore,

2

a

= f

—a

va?—x?
/ S
(12 _ x2 _y2

e



Changing to polar coordinates, we have

27 a

SEE

rdr|do

2r dr|df = 4nd’.

=

EXAMPLE 6.56

Find the area of the spherical surface x> + y* + z* =
a” inside the cylinder x* + y* = ax.

Solution. We have

s=a ff 1+ (%)

adx dy

”//m

0z\?
+<(9y> dx dy

over x> + y2 =ax

, x=r cosf, y=r sinf

EXAMPLE 6.57

Find the area of that part of the cylinder x> 4+ y* =

a®, which is cut off by the cylinder x* + 22 = a*.

Solution. The equation of the surface has the form
y = Va* — x? so that

0 0]

R S

8x \/az —xz’ 82

3 v\’
Ox 0z 2 — 2
The domain of integration is a quarter circle

22 + 22 = a* where x>0 and z>0 on the xz-
plane. Therefore,

/ L dz|dx =8d%,
22— 2
0

and

Multiple Integrals 6.27

EXAMPLE 6.58 s o

Find the area of the paraboloid 2z = i + % inside
22 2 a

the cylmder — + i 1.

Solution. The required area is

e[ (33 o

where the integration extends over the positive
2 )P

octant of the elhpse — + i 1.

AZ

/__\

0z «x 0z y
have — — = e _7
We avea anday b

_4//<1+ +b2) dx dy
:4ab// (14 & +n*)dédn,

x=af, y=5b¢, sothat &+ =1

7o
:4ab//(l+r2)rdrd0,
00

E=rcosf, n=r sinf
2
:§7rab<2%—l).

Therefore,

6.9  TRIPLE INTEGRALS AND THEIR EVALUATION

Let f (x,y,z) be a continuous function in a finite
region V of 3. Divide the region V into n sub-
regions of respective volumes 6V, 6V5,..., 6V, If
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(x, ¥j» z;) be an arbitrary point of the ith subregion,
then

Jlim Z S (i, i zi)oVi,
oVi—0 i=1

if exists, is called the triple integral of f(x,y,z)

over the region V, and is denoted by

ffI[f(X,y,z)dV or ff!f(x,y,z)dx dy dz.

Evaluation of Triple Integrals
(a) If the region V is specified by the inequalities,
a<x<b c<y<d,ande<z<f,

and if a, b, ¢, d, e, and f are constants, then
bdf

//V/f(X,y,z)dx dy dz = ///f(xay,Z)dx dy dz

ace

b d A
— [ [ @ [ 1oy

Since a, b, ¢, d, e, and f are constant, the order of
integration is immaterial, and the integration
with respect to any of x, y, and z can be per-
formed first.

(b) If the limits of z are given as functions of x and y,
and the limits of y as functions of x while x takes
the constant values say from a to b, then

/ / / Py, 2)dx dy d=

b | y2(x) 2(xy)
:/ / / S (x,y,2)dz pdy| dx.
a »1(x) 21 (x,y)

Thus, the integration with respect to z is performed
first regarding x and y as constants, then the inte-
gration with respect to y is performed regarding x as
constant and in the last, the integration with respect
to x is performed.

EXAMPLE 6.59

Evaluate
log2 x x+logy

1= e dz dy dx.

0o 0 0

Solution. We have

log2 x
1= [e”y“]gﬂogy dy dx
0 0
log2 «x
_ / /[er+y+x+logy _ eery] dy dx
0 0
log2 «x
= / /[ez".ey.elogy — "¢’ dy dx
0 0
log2 «x
= / /[ezxyey —e".¢] dy dx
0 0
log2 [ x x
= / /ezxyeydy—/exeydy dx
0 LO 0
log2 x X
= / ezx{yey}g—ezx/eydy—ex/eydy dx
0 L 0 0
log2
= / [¥ - xe" — ¥ (e — 1) — e*(e" — 1)]dx
0
log2
= / [xe®™ — ¥ + e]dx
0
log2 log2 log2
= / xeXdx — / ey + / edx
0 0 0
log2 log2 log2
1 1
= g[xel”]g’gz -3 / e dx— / edx+ / e'dx
0 0 0
1 4o
-] 2 3log2 7€ x7log2

_ %logz elogS _g (elogS o 1) + (elogZ _ 1)

8 4
_510g2—§(8—1)+(2—1)

8 28 8 19
= log2—241 =Zlog2——.
30827 g Tl =382
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EXAMPLE 6.60

Evaluate
e logy &

>
2 4
:///logzdzdxdy. _ez+ ez+ 1+1 2e+2
/] =g te—(gte 1 e
2
4

13 1
Solution. We have =2+ 7 Z(ez —8e+13)
e logy e*
I = logz. 1dz| dx dy EXAMPLE 6.61
Evaluate the integral
e 10gy !
// {zlogz —/z dz}dx dy VIZ2 \/1-a2-?
z
/ / / xyz dz dy dx.
e logy
0 0 0
:// e loge’ — 0 — & + 1]dx dy
Solution. The given triple integral is
e logy 1 1—x2
27V/1-2 -2
:// (6 — 1)+ 1]dx dy :/xy / H dy dx
2
bl I 0 0 0
¢ | logy log L ViE
— _ X 1
_/ / (x l)edx+/ dx|dy :/ / Exy(l—x —3?) dy dx
Lo 1 .
e | logy 1 1-x2
=/ (x —1)e'dx +logy — 1| dy :/%x / (v =’y —»*) dy| dx
1oL 0 0
e logy 1 5
| 1 )2 32y I—x
— [{l=vels — [ edrrlogy—13 @ L
2/ 2T 2 4,
1 1 0
° 1
= / [(logy — 1)¢°” — (8 — ) + logy — 1] dy :l/x(l — x*)dx
I 8 0
z
= / D’(log)’— 1)_(y_€) +10gY— 1] dy :é/sin 9(1 —sin 9) cos0 do. x — sin0
1
=/[(y+1)logy—2y+e—1] dy 1 1142 1
/ ) g/smﬁcos 0do 364218
2 e 1 2 0
o i)
2 I y\ 2
B 1 EXAMPLE 6.62
— [2 7} +(e— 1) Evaluate
le a a—x a—x—y
2
:%+e—/(§+1)dy—<e2—1>+<e_1>2 1=// Pdx dy dz.
00 0

1
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Solution. We have

]:// / dz|dx dy
agx
:// 2]y " dx dy
o0
:/x2 /(a—x y)dy | dx
0 Lo
a r yqa—x
:/x2 ay—xy—y—} dx
L 2]
0
T 2
:/x2 @ —ax —ax +x (a 2x) ]d
o -
1 2
=5 (x 2ax° +x*)d
T 4 .5 5
L] ,x X' x a
=—|lao=—-2a—+—| =—.
2{“3 a4+5L 60
EXAMPLE 6.63
Evaluate / / / dx dy dz 5 over a tetrahedron
x+y+z+1)

bounded by coordinate planes and the plane x + y +
z=1.

Solution. The region of integration is bounded by the
coordinate planes x = 0, y = 0, and z = 0 and the
plane x + y 4+ z = 1. Thus,

R={(,,2); x>0,y>0,z>0, x+y+z<1}

:{(xayyz); OSXSI, Ogygl_x7
szfl—x—y},

z
A

A(1,0,0)

Therefore,
/// dxdydz
x+y+z+1
1 1-
1
:// / —13dzdydx
TP (x+y+z+1)
1

1 1—x [ 1—x—y
(x+y+z+1)dz| dydx

[
1/

X r _ l—x—y
1 2
_ Erykz+) T
2
0o 0 Gt 0
v 1 1
- — | dvdx
20/0/ (x+y+1)° 4] Y

0
1
:%[_3:( %—}—log(x—i—l)}o
%{ % éJrlogZ} :—log2715—6.
EXAMPLE 6.64
a x x+y

Evaluate f f f & r2dz dy dx.

Solution. We have

a x xty

/// e dz dy dx
00 0
= / / [+ 15 dy dx
0 0



8 4 2
- i"“ 7 3e™ 4ot
8 4
EXAMPLE 6.65

Evaluate the triple integral

Solution. We have
1
0/\/(a2 —X2 ) 2

a V-2
:/ / [sm ! z ] dy dx
) a2 —x2— )2 )
a [ Vaa=2
—/ / [sin~' 1]dy| dx
0 0

Multiple Integrals 6.31

Note: The ecarlier example may be restated as

dx dy d
“Evaluate / / / Ve over the posi-
-2 22

tive octant of the sphere x* + y* +z2°= a*.”

EXAMPLE 6.66
Evaluate
c b a
1= / / / (x2 + 3 +z2)dz dy dx
—c¢ —-b -—a

Solution. We observe that the integrand x* + y* 427
is symmetrical in x, y, and z. Therefore, the limits of

integration can be assigned as per our preference.
We have

c b a

I:///(x2+y2+zz)dxdydz

/()c2 +y* 4+ Zz)dx dy dz,
—c¢ —b LO

since x*> 4+ + 2* is even in x
b

c -3 a
:2//%+y2x+22x} dy dz
0

—c —=b
c b
g
=2 / / [?—&—ayz—kazz}dy dz
—c —b

b r
/ <? +a + a22> dy |dz,
0

since integrand is even in y

3 3 b
_4/{613)}—|—ai+a22yhdz

3 3
:4/{%4—%—1—511)22]&

—C
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b ab?
/?%ﬂ?wmh,

since integrand is even in z
c
ba® ab’z  abz’
8
0

0

EREEE 3

_3 batc ab3c+abc3
3 3 3
8ab
:4%5p2+bl+&y
EXAMPLE 6.67

over the ellipsoid

[ xyz dx dy dz
2 2 2
Z+eE=1

Evaluate

Solution. The region of integration is bounded by

2
\/l—x——ﬁandz—c

The projection on the xy-plane is the ellipse

X2 )2 o .
—+5 = = 1. Hence, the limits of integration for y
and x are from y = —b

and x = —a to x = a. Thus,

(v,2);—a<x<a,~b

—cy/ ———y ;<z<cy/1— —Z’—i

Hence,

///xyzdxdydz
2 2

by/1-5 1=

IR
—by/1-5 \/7

= 0, since the integrand z is an odd function.

x2

1-Stoy=by/1-%

R=

z dz| dy dx

6.10  CHANGE TO SPHERICAL POLAR COORDINATES
FROM CARTESIAN COORDINATES IN A TRIPLE
INTEGRAL

Let P(x, y, z) be any point in >, Then, the position
of this point is determined by the following three
numbers:

1-5<y<by/1-%,

(i) The distance r = \/x% +32 +z% of P(x, y, 2)
from the origin (0, 0, 0).

(i) The polar distance 0, where 0 is the angle
between the radius vector OP and the
positive direction of z-axis.

(iii)) The angle ¢, which the projection of the
radius vector OP on the xy-plane makes
with the x-axis.

Z A

P(x, y, 2)

r z

6
0 rsin 6 sin ¢ =
b o -
X 90°— ¢ y
M 90
rsin 6
N

Then,

x = r sinf cosp, y = r sinl sing, z =r cosl

and so, x* + y* + z°= 2. Under these transforma-
tions, the region

R={(x,,2)
is mapped into the region

R ={(r0,0);0<r<a,0<0<70<¢<2m).
Also,

; x2+y2+22 < az}

Ox Ox Ox
ar 00 0o
Ox, y,z) |0y 0Oy Oy
d(r,0,¢) |or 00 0¢

0z 0z Oz
ar 0 9
sinfcos¢ rcosfcos¢p —rsinfsing
= |sinfsing rcosfsing rsinfcos¢p
cos 0 —rsin 0 0
=r?sin6.



Hence,

I:// f(x, v, z)dx dy dz
R
:///f(rsin@cos¢, rsin@sin ¢, rcos0)
B

-2 sin0 dr dO dé.

The polar spherical coordinates are useful when
the region of integration is a sphere or a part of it.
If the region of integration is a whole sphere,
then0 <r<a,0<60<mand 0 < ¢ <27 But
if the region of integration is the positive octant of
the sphere, then 0 < r < @, 0 < 0 < 7, and

7r
0<g<2.
Remark 6.2. If the region of integration is a right
circular cylinder, then the Cartesian coordinates
are changed to cylindrical polar coordinates
(r, 0, z) because the position of P(x, y, z) is deter-
mined by 7, 6, and z as shown in the following
figure:

P(x. v, 2)

<v

f 90°— 6

rsin 6

Then,
x=rcosl, y=rsin6, and z = z,
and
5 or 00 0z cos —rsinf 0
4()6’%2): o & Oyl _ sinf rcosf 0
a(r,0,z) or 00 Oz
0z 0z Oz 0 0 1

or 90 0z
=rcos? 0+ rsin®0 = r.

Multiple Integrals 6.33

Hence,

I= / /R £ (x,y,2)dx dy dz

:// f(rcosf, rsin6, z) r dr df dz.
R

EXAMPLE 6.68

Evaluate /= [[[z(x*
land 2 <z < 3.

+32)dx dy dz over x* 4 y* <

Solution. The region of integration is

V={(xy2); ¥ 4+1P<1,2<z< 3}
Using the transformation
x =rcos 0,y =rsin 0, and z = z (cylindrical polar
coordinates) we have

1 27 2T

-] /Zr s M_/ /BTM

0

EXAMPLE 6.69
Evaluate /= [
region

V= {(x,y,z); x>0,y>0,z>0, ;‘—iﬁ—iﬁég 1}

,,,,,, > dx dy dz over the

E:X, Jj:Y, and = =7
a b c

so that dx = adX, dy = bdY, dz = cdZ and hence, dx
dy dz = abc dX dY dZ. Therefore,

I:abc///(l—XZ—YZ—Zz)%dxdydz,

over the region
V'={(X,Y,Z); X >0,Y>0, Z>0,
X+ + 22 <1}

Solution. Substituting

Using spherical polar coordinates,
X =rsinfcos ¢,
Z =rcosb,

Y = rsinfsin ¢, and



6.34 Engineering Mathematics-1

the region of integration becomes

V”:{(r 0,6);0<r<1,0<0,<~ o_¢>gg}.

2’
Hence,

1 5 3
Izabc///(l—rz)%rzsinedrdew
0 0 0

T

1 3 2
:abc/r2(1 —rz)%/sine /d¢ do dr

0 0
1

zabc/rz(l—rz)%
1

abCﬂ'/ 5 l—r 1
0

1

sin 0[¢]5 d0 dr

S \ =)
(ST

sin0 do| dr

o \
[S1E]

b 1 z
_4 Cﬂ-/rz 1—7%) ; [—cos 0} dr
0
, 1
:%/rz(l —1”2)% dr. (1)

0

But, substituting » = sin # so that dr = cos ¢ dt, we

have

1 3
1 . R
/rz(l — rz)zdr = /sm2 V1 —sin’t cost dt
0 0
z
. T
= /smztcoszta’t:—.

0
Hence (1) reduces to
w2abc

[_Wabc< )
2 \16/ T 32

EXAMPLE 6.70
Evaluate

V12 1—x2—)?
dz dy dx

[ e

by changing to spherical polar coordinates.

Solution. The region of integration is
VZ{(XJ, 2; 0<x<1, 0<y<VI—»2,

0<z< l—xz—yz}.

L m_
42°2° 16

Now, we transform the region by using spherical
polar coordinates, by substituting x =r sinf cos ¢,
y =rsin0 sin¢g, and z = r cos 0. The transformed
region is

Y ™
V' = {(r0¢)0<r<10<9 5 §¢§2}

Therefore,

sin@/d¢ do dr
0

Note: This example is a particular case of Example
6.65 fora = 1.

EXAMPLE 6.71
Evaluate 7= [[| (x* +)? +2)"dx dy dz, m > 0

4
over the region V' = {(x, y, 2); x> + y* + 22 < 1}.
Solution. The given region of integration is

V=A(xy 2); ¥ +y +2 <1}.



Changing to spherical polar coordinates by substi-
tuting

x=rsinfcos¢, y=rsinfsing, and z

=rcos b,
A(x,y,2)
a(r,0,9)

Therefore, the region of integration reduces to

we get x> 4+ 1° + 22 = % and =r%siné.

V'={(r, 0, ¢);0<r<1,0<0<m0<¢<2nr}.

Hence,

1 7© 27
:/// " 25in 0 dr dO do
0

6.11  VOLUME AS A TRIPLE INTEGRAL

In Cartesian coordinates, the volume of aregion V is
given by the triple integral

J[] @ av e

where the limits of integration are chosen to cover
the entire region V.

In spherical polar coordinates, the volume of a
region V is given by the triple integral

///rzsinﬂ dr d do,

where the limits of integration are chosen to cover
the entire region V.

Multiple Integrals 6.35

In cylindrical coordinates, the volume of a region V
is given by the triple integral

J|[rarave

where the limits of integration are chosen to cover
the entire region V.

EXAMPLE 6.72
Find the volume of the sphere x* + y* + 2> = 1~

Solution. The required volume is given by

V:8///dxdydz,

taken over the positive octant of the given sphere.
Changing to spherical polar coordinates, we put
x=rsin 0 cos ¢, y = r sin 0 sin ¢, and z = r cos
0. So, x* 4+ y* + z2 = /. In the positive octant, we
have

0<r<a 0<0< g ndogqbgg
Therefore,
V:8///r sin 6 dr dO d¢
0 0
3 5
:8/r2/51n0 /dgf) do dr
0 0 0
:8/ 2/sm0 [3d0 dr
0
a 5
:47T/I’2 /sin@d@ dr
0 0
=47r/2 cos ¢ :47r/r2dr
0
¢ 47ra
—4r|—| =
5,
EXAMPLE 6.73 2 2 2
V- oz
Find the volume of the elhpsmd + b2+ =1.
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Solution. Substituting
have

dx = adX, dy = adY, and z = adZ. Therefore, the
volume is given by

V:abc// dXx dY dZ,

taken over X* + ¥* + Z° = 1. Changing to spherical
polar coordinates by substituting X = 7 sin 6 cos ¢, y
= rsin 0 sin ¢, andz: r cos 0, we have

—Sabc///r sin 0 dr df d¢
:8abc/r2/sm0 /qu do dr
0 0 0

1

= 8abc/r2

=X,7=7, and =27, we
c

(SR

/ sin 0[¢]3 d0 dr
0

sin0 dO| dr

|
N
3
Q
S
9
—
=
o
< \ I

1 1
= 47rabc/r2[— cos 0]% dr = 471'abc/r2 dr
0 0
»1
= 4mabc {} = —mabc.
31o
EXAMPLE 6.74
Find the volume of the solid bounded by the surface

BRONER

2 2
Solution. Substituting (E) =X, (%)3: Y, and
2 a
(5)3: Z, thatis, x = aX3,y =bY’, and z = ¢Z°, we
c

get dx = 3aX?> dX, dy = 3bY* dY, and dz = 3¢Z* dZ.
Then, the required volume is given by

V = ///dx dy dz
4
= / / / 27abeX?Y*Z?dX dY dZ,

taken throughout the sphere X> + Y + Z* = 1.

Changing to spherical polar coordinates (r, 0, ¢), we
have

V=28 /// 27abc * sin® 0 cos? ¢.
V/

1 sin? 0sin® ¢ 12 cos? 072 sin 0 dr dO dé,

where
T T
<r< < — << —5.
r={(r.0,0)0<r<1,0<0< <2 _qs_z}
Thus, B
1 3
V=2l6abc/r8/sin50c0520
o0
3
. /sinzqﬁcoszqﬁdqﬁ do dr
0
1 [ 3
=121 8 0 0.1 Ta0
6abc/r /sm cos? 17 2d dr
0 0

216 .
zﬁwabc/rg /sm50c0529 do| dr

1
216 o[ 421
_Fmbc/r [7.5.3.1} dr

Second Method: For the positive octant, we have

V:///dxdydz.

2 2 2

Substituting (E>3:X , (X)3: y, and (5)3: Z, we
37 "3 “3

have dx = aXde dy = —bY2 dy, dz = 5022 dz,

and X + Y + Z < 1. Therefore, by Dirichlet’s
Theorem,

— / / / 27 beXAYAZE ax dy dz
= —abc/ //XTIY"lZTIdX dydz



3 TE) 1@
_27 . TG 1;(2) 3F(23)
8 T(1+3+5+3)

Hence, the total volume is = 8 74b¢ 4 — 4mabe,

[

EXAMPLE 6.75
Find the volume of the portion cut off from
the sphere x> + »* + z> = &* by the cylinder
x4+ y2 ax.

Solution. The required volume is

ZA

—
e A

o
\

x

=4
2 acos0
=4 / Va2 —r?rdrdo,
0 0
changing to polar coordinates
4 7 acos0
:5/ / 2rva® —r? dr do
0 0

Multiple Integrals 6.37

EXAMPLE 6.76

Prove that the volume of the wedge intercepted
between the cylinder x* + y* = 2ax and the
planes z = mx and z = nx is 7(m — n)a’.

Solution. The required volume is given by
2a V2ax—x2 mx

/dx dy dz

2a
:2(m—n)/x\/2ax—x2 dx
0

2a
=2(m—n) / XV 2ax — 12 dx.
0

Substituting x = 2a sin® 0, we get dx = 4asin 0
cos 0 d. The limits of integration are 6 = 0 to

0= g Therefore,

5
V=2(m-— n)/ 164> sin* 0 cos? 0 d0
0
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EXAMPLE 6.77

The axes of two right circular cylinders of the same

radius a, intersect at right angles. Prove that the

volume inside both the cylinders is 163“3.

Solution. Let the equations of the cylinders be

x> +y* =a* and ¥* 4+ 22 = 4%

Therefore, the region of integration is defined by
— Va2 —x2 <z< Va2 7)62,
—Va? —x><y<va®>—x?, and
—a<x<a.

Hence, the required volume is

a Vi ViR
V= / / / dx dy dz
LR/ - Y % B
a V&2 Vi3
= 8/ / / dx dy dz
0 0 0
V=

/ Va* —x% dy dx

0

Il
oo
o\a

Il
o0
2 o\a
Q
138
|
=
|38
=,
(=]
ﬂ
|
>‘<I\)
&

EXAMPLE 6.78
Find the volume in the positive octant bounded by
the coordinate planes and the plane.x + 2y +3z = 4.

Solution. The region of integration is

4 —
V:{(x7y7z);0<X<4,0<y< 2)(?7
0§Z§4_x37_2y}.

Therefore, the required volume is

4 5
//(4—x—2y) dy dx
0 0

Nen
4y — xy — 2)}—) dx
0

2

2
(8—2x—2x—|—%—4—x——|—2x>dx

4

1 64 16
=—|l6—-16+—| =—.
3 [ 616+ 12] 9
EXAMPLE 6.79
Find the volume of the tetrahedron bounded by the

planes x = 0, y = 0, z = 0, and E+X+f:1;
a b c

a,b,c>0.

Solution. The region of integration is bounded by
four planes x =0,y =0,z =0, andf+¥+f: 1.
a b c

It is bounded below and above by z = 0 and

z= c(l o %) Its projection on the xy-plane is
a

a triangle bounded by x = 0, y = 0, and al —|—% =1.
a

Therefore, the region is



a b(1-2) e(1=3)

V:[U@mm:!/" [ azavax

0 0
a b(lfi)
cf1—x-2%
:/ /[Z]o(1 Dy dv
0 0
a _b(lff)
:c/ / <I—E—X)dy dx
a b
0 0
a b(1-2) a
(-39 b oy
:C/ a dx: <1——) dx
2(-1 ] 2/ a
o L ( b) 0 0
3 a
be [(1 -2 b
:_c[( c;)] 9% ]
2 13(=Y , 6
—a—bccuunits
= .
Second Method: Substituting {:m %:v, and
a
gzw,wehavequ,vEO,wEO,andu+v—i—wSl.

Therefore

v=[[[ v

v
z///adu.bdu.cdu7 ut+v+w<l
V/

:abc/// W =N Ny dv dw
V/

Multiple Integrals 6.39

r@rara)

P(l+1+1+41)

__abc _abc
316

= abc , by Dirichlet’s Theorem

EXAMPLE 6.80

Find the volume of the portion cut off from a sphere

¥ + > + 22 =a’byacone x> +)? =2

Solution. The origin is the center of the sphere and the
vertex of the cone x> + y* = z°. Therefore, the
volume is symmetrical about the plane z = 0. Hence,

V:2///dxdydz.

Changing the coordinates to spherical polar, x* + y*
+ 22 = & reduces to * = @* or r = a. Further,
x* 4+ y* = 2% reduces to

#? sin 0 cos’ ¢ + 1 sin® 0'sin® ¢ = 1? cos® 0
or
1% sin? 0(cos® ¢ + sin® ¢) = 1% cos® 0
or
sin” @ = cos? 0, which yields 6 = g

Thus, 0 varies from 0 to 7 and ¢ varies from 0 to 7.
Therefore,

a § 27
V:2///rzsin0drd0d¢
0 0 0

:2/r2/sin9 [¢le™ d0 dr
0 0

47r/r2

0 0

ENE)

sin 0 d0

—

a a

T 1
47r/r2[—c039]6dr—47r0/r2<1 —ﬁ>dr

0

() (-7

2nad®
== 2 -V2).
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6.12  MISCELLANEOUS EXAMPLES

EXAMPLE 6. 8]
Evaluate f f x+y) dxdy.

2

3
4/ 1/(x—|—y)_2dx dy
p -1
-/
et
~[log(2 +) — log(1 +»)];

=log4 + log6 —2log5

L
535

Solution.

x-l—y
y

EXAMPLE 6.82
Evaluate the integral [7 [
the order of integration.

> dxdy by changing

x2+

Solution. The given integral is

X
(U

The region of integration is bounded by the lines
x=y, x=a, y=0 and y = a. Thus the region of
integration is shown in the figure below:

O y=0
On changing the order of integration, we first inte-

grate with respect to y along the strip parallel to
y axis. The strip extends from y =0 to y =x.

To cover the whole region, we then integrate with
respect to x from x = 0 to x = a. Hence

[—// -5 dxdy = / [ tanly} dx

242 Xl
m

—/de—za

0

EXAMPLE 6.83
By changing the order of integrations, evaluate
a Var—x?
/ / (a* — x> — y*)dy dx.
0 0

Solution. The region of integration is bounded by

x =0, x=a, y = 0 and the circle x> +1? = a?.

Ay
(0,a)

Q

After changing the order of integration, we have to
integrate the integrand first with respect to x and
then with respect to y. We take a strip parallel to
x-axis. The limit of x varies from 0 to y/a? — 2. To
cover the whole region, the limits of y will vary
from 0 to a. Hence the given integral is

a Var-»*
I:/ / [(a® — ) — x*]dxdy
o 0
s
0
PO
+ sin d
2 2 — )2 . Y



EXAMPLE 6.84 .
Changing the order of integration of | [ e sin nx

o 00
dxdy, show that [ (S12)dx =2
0

Solution. We have

o0 o0
/ / e Vsinnx dx dy
0 0

[o¢]

:/ sin nx /e”‘ydy dx
0

o0 o0
. eV
= sin nx dx
—x |,

0
o0
sm nx
/ (1)
0

On the other hand,

e 0
[ (ncosnx + ysin nx)] dy

/”2+J’2 0
0

n Ve T
= 7d:[t 17} = — 2
/n2+y2y a7
0

Multiple Integrals 6.41

From (1) and (2), it follows that

o]

sin nx T
dx = —.
/ x o 2

0

EXAMPLE 6.85

By transforming into polar co-ordinates, evaluate

ff x2 n 2a’xdy over the annular region between the
y

circles x> +3? = a? and x> + y? = b?, where b > a.

Solution. Putting x = » cos 0, y = r sin 0, we have
dx dy = rdrd0. Therefore

b 27
x%y? r*sin® Ocos? 0
———dxdy= ————rdrdf
//x2+ 2 // r?
Y a 0
1 T (1-cosao
=gt ety [ (5o

EXAMPLE 6.86

1 0
Evaluate the integral [ [ [ —E£&d&
0 0

/a2 Vit

Solution. We have

Ve
0
1
/ dz dy dx
A — (VX2 132 22

dx dy

log‘\/x2 +y2‘

!

—log‘\/x2 +32 4+ /2(x2 —i—yzH dxdy
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1—x2

—log(vV2+1) dy dx

(=]
—_ —_

= —log(vV2+1) /vlfodx

1
= —log(V2+1) [2x\/1—x2+ sin~ ﬂ
0

= —log(vV2+1) Fsm }:—glog (\/54—1).

2

EXAMPLE 6.87
Find the area 1n the first quadrant enclosed by the
curve (a) +(—) =1, where « >0, > 0.

Solution. The equation of the curve is

B4 wpe

The parametric form of the curve is
2 .2
X =acos*t, y=bsinft.

Therefore, the required area is

0
dx
A= dx = —dt
/y * /ydf
2 3
h 2
:/(bsin/z’f 1) (——acos(g_l)t> sint dt
o

2

@ sin(1) ¢ cos G-
o
0

Caw [P(E)P(Y)

o T (ﬁ+1+271+2)

2 [ TG T(})
20f _r(§4—%+—1)
Cw TOT()
_a+BFG+@

D¢ de

EXERCISES

Evaluation of a Double Integral

1. Evaluate [[(4 —x* —)?) dx dy if the region D

D
is bounded by the lines x =0, x =1, y =0,

3

and y = .

2 Ans. E
8

2. Evaluate [ [ e**3dx over the triangle bounded
byx=0,y=0,andx +y = 1.
Ans. L (2e + 1)(e — 1)%.

o PP .
3. Evaluate [ [ (a® —x* —)?)dx dy.
0o 0 3
na
Ans. —.
ns. —

a

b
4. Evaluate / / d dy.
Xy
1 1

1 V14?2

Ans. log b log a.

5. Evaluate / / M
1+x2 2
0 0
1 1 V14x2
Hint: / = / {tan ! 4 } dx
) 1+ x2 1+x2],
1
[tan™' 1 — tan~"' 0]dx

6. Evaluate / / x*y?dx dy over the region boun-

dedbyx =0,y =0, and x* + y* = 1.
1 V12

Ans. 220 dy =
ns//xyxy96
0 0



7. Evaluate / / y dx dy, where R is the region in

R
the first quadrant bounded by the ellipse

x2 y2
Stm=l
2
Hint: R={(x.):0 <x<a,0 <y <by/1-5)
b2
Ans.a—

3
8. Evaluate / / xy(x +y)dx dy over the area

between y = x* and y = x.

3
A _
" 56

9. Evaluate / / xy dx dy, where A is the region

common to the circle x° + y2 =xand x> + y2 =

».
Hint: The points of intersection of two circles

1 1
are (0,0) and <, 2). The limits are x = 0 to

2
1 1 — V1= 422
x=3 andy:fxtoy: Vx —x2.
1
7 a(l4cos0) Ans. %
10. Evaluate / / * cos 0 dO dr.
5’
0 0 Ans

11. Evaluate / / 7 sin Odr dO over the cardioid r =

a (1 — cos 0) above the initial line.

a(l—cos 0)

Hint : //rsm@ dr do / /rsm@ dr do
a(l—cos0)
—/sm@[r] do
2],

Multiple Integrals 6.43

12. Evaluate / / r2d6 dr over the area of the circle

7 = acos 0.
4
Ans. i.
3 acosl 9
13. Evaluate rva? —ridr do.
3
0 0 a
Ans. — (37— 4).
ns 18( T —4)

14. Evaluate / / rdr df over one loop of
' \/a + 72 P

”? = a® cos® 26.

a
Ans. 3 (4 —m).
Change of Variable in a Double Integral

15. Transform the following double integral to
polar coordinates and hence, evaluate the same.

a / 2

at—y
I:/ / az—xz—yz)dx dy.
0
1
a

2

// —r rdrd@
wa*

0 Ans. — .
ns. —

16. Changing to polar coordinates, evaluate

1 —x2_12

quadrant of the circle x* + y* = 1.
31 31
. _2
Hint: 1:{{1/#rdrd0:0fofh rdrdo.

v [T
A.fG—Q.
m-1\2

17. Using the transformation x +y = u and y = uv,

show that / / (1 —x— y)]%dx dy, taken

over the area of triangle bounded by the lines x

Hint: /

27
:0 :O d :1'_.
, Y ,and x +y ,13105

Hint: x = 4 —y = u—uv and y = uv. Therefore,
Jacobian J = u. So, dx dy = u du dv. Further, 0
<u<1land 0 <v < 1. Thus,

11
://ulfu v217v)
00

01—

u du dv
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3
u/vzll—v

0

2

18. Evaluate / va* —x%—y?dxdy over the

semi-circle x> + y* =
quadrant.

3 33
=p (3,—) I (5’5) , convert to gamma function.

ax in the positive

T

7 acosl
Hint:]:/ Va2 —r?rdrdo.
0 0 @ (r 2
Ans. = (2 _ %
" 3<2 3>

2

1,& y
= dx dy over the

19. Evaluate / /
2 2

positive quadrant of the elhpse x_ ;;—2 1.
Hint: Another from of Example 6.20.

1+§+§

22
20. Change / / ——— dx dy in polar coordi-
Xty

2
nates and hence, evaluate the same.

+ dacosl
2 sin20

5
Ans. 20d0dr=8a"| - —= ).
ns r cos r a<2 3>

21. Changlng coordinates, evaluate

/ / xy X+ y 2a’x dy over the positive

quadrant of the circle x* + y* = 1.

to polar

1
Ans. 7
Change of Order of Integration

22. Change the order of integration in
1 x(2—x)

0/ x/ S (x,y)dx dy.1
Ans.o/

y
/ Sfx,y)dy dx.
1-y/1-y

23. Changing the order of integration, evaluate the

a 2a—x

integral xy dy dx.
Ans sat
St

24. Changing the order of integration, evaluate
/ / X dx dy
X2 +3?

25. Change the order of integration

uz

/ / + ) dx dy. and hence evaluate it.

0

NS

Ta
Ans. —.
ns 1

Ans. 0.
b /b2
26. Evaluate the integral / / xy dy dx.
0 0 2B
b
A -
ns. g

27. Changing the order of integration, evaluate the

5 Vo
/

integral /
0

log(x* + y*)dx dy, a > 0.
Ans ma’ lo !
3 ga—3).

Area Enclosed by Curves

28. Find the area bounded by the parabola y = x*
and the line y = 2x + 3. 3

Ans. —.
ns 3

29. Find the area of the region bounded by the lines,
x = —2 and x = 2and the circle, x> + y* = 9.

Ans. 4v/5 4 18sin”!

30. Find the area of the cardioid » = a(1- cos 0).
T a(lfc.os())

Ans. Area = 2 /
units. SRS

2 it
= Sq. units.
3 q

37a?

rdrdl=

sq.

31. Find the area outside the circle » = a and inside

the cardioid. » = a(1 + cos0).

7ra2

Ans. —.
ns 5



32. Find by double integration, the area lying
inside the cardioid » = a (1 + cos 0) and outside
the parabola (14 cos 0).= 1.
Hint: Eliminating » between the two equations,

we get cos” 0+2cos =0, which implies 0 = j:g.

5 l+cosf »
ra’ra’O:%TjL .
12

Then Area =

1

2 Treow

33. Find, using double integration, the smaller of
the areas bounded by the circle x* 4+ y* = 9 and
the line x + y = 3. 9

Ans. 2 (m—2).

Volume and Surface Areas as Double Integrals

34. Find the volume of the solid region under the
surface z = 3 — x* — 2)* for x* + )% < 1.

Ans. —.
ns 1

35. Using double integration, find the volume of
the tetrahedron bounded by the coordinate

planes and the plane al +X + o
a b c

a b(l_i) b
x_y _ abe
Ans./ / c(l p b)dy dx = 6
0 0

36. Find the volume of the region bounded by the
surfaces y = x> and x = y* and the planes z = 0
and z = 3.

VA
Hint:V://3dydx:1.
0 x2

37. Calculate the volume of the solid bounded by the
surfacesx =0,y =0,z=0,andx +y +z= 1.
1
Ans. r
38. Find the volume of the cylinder x* + y* — 2ax =
0 intercepted between the paraboloid x* + y* =
2az and the xy-plane.
Ans. 37a’.
39. Find the volume bounded by the xy-plane, the
paraboloid 2z = x* + y* = 2ax, and the cylinder
x4+ =4
Ans. 4.

Multiple Integrals 6.45

40. Find the volume common to the surface y* + z*
= 4ax and x* + y* = 2ax, the axis being
rectangular.

e

Hint: 2a  V2ax—x?
14 / / Véax — y*dy dx
0 Vaax—?
2a V2ax—x2
I
o0

41. Find the volume of the sphere x* + y* + 22 = 9.
Ans. 36m.
42. Find the area of the surface z* = 2xy included
betweenx =0, x =a,y =0, and y = b.

Ans. 23£ Vab(a +b).

\4ax — y*dy dx.

2
Ans. §(37T + 8)a’.

43. Find the area of the portion of the sphere x* +
y* 4 2% = 9 lying inside the cylinder x* + y* =
3y.

Hint: 22 = 9 — x> — )% Then

AN A 9
1+ <a> +(8_y) = m Change to

polar coordinates. Surface area

% 3sind

=

0 0
44. Find the area of the portion of the cylinder
x* 4y = 4y lying inside the sphere
x4y 422 =16,

dr d0 = 18w — 36.

Ans. 64 sq. units.
45. Using double integration, find the volume
generated by the revolution of the cardioid r =
a(l — cosf) about its axis.
Hint: Volume of revolution

7 a(l—cos 6

)
. 8
:277/ /rzslnﬁdrd9:§7ra3.
0 0

46. Find the volume generated by revolving the

2 g2
ellipse — +75 = 1 about the y-axis.
a b

4
Ans. 3 ma’b.
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Evaluation of Triple Integral

47.

48.

49.

50.

51.

I 1—x 1—x—y

Evaluate / / / xyz dx dy dz.
00 0 1

A -
"S- 720

Evaluate / / / Z*dx dy dz over the sphere.
X+ A=
4
Ans. —.
15

VA

301
Evaluate / / / xyz dz dy dx.
Ls 1/13 1
Ans. - [ —— =1 .
ns3<3 2og3>

3 acost Va2—r2
r dz dr do.

Ans. @’ (% - g) .

Evaluate / / / dx dy dz, where V = {(x, y, 2);

Evaluate

4
x> +3? + 22 < a* 0 < z < h}, using cylindrical
polar coordinates.

3 2r h

Ans.///rdzd()dr:ﬂazh.
00 0

Volume as a Triple Integral

52.

53.

54.

55.

56.

Find the volume bounded by the surface
2 2

Pty =dad—+ =2 p>0 g>0
p q

4
Ans.ﬂ 1+1>.
8 q

Find the volume of the paraboloid of revolution
x* + y* = 4z cut off by the plane z = 4.

4
Hint: :4/

0 )

4

Find the volume bounded above by the sphere
x* +y* + 2% = 24” and below by the paraboloid

az = x* +y2.
7
Ans. 7 a (i ——)

Vie—x2

4
/ / dx dy dz = 32m.
2

6

Show that the volume enclosed by the cylinder
1284°

x* 4 y* = 2ax and 2* = 2ax is

Show that the volume of the wedge intercepted
between the cylinder x* + y* = 2ax and the
planes z = x and z = 2x is 7 a’.

Hint: See Example 6.76.









7 Vector Calculus

We know that scalar is a quantity that is character-
ized solely by magnitude whereas vector is a quan-
tity which is characterized by both magnitude and
direction. For example, time, mass, and temperature
are scalar quantities whereas displacement, velocity,
and force are vector quantities. We represent a vector
by an arrow over it. Geometrically, we represent a
vector d by a directed line segment ﬁQ, where d has
direction from P to Q. The point P is called the initial
point and the point Q is called the terminal point of d.

The length ’PQ’ of this line segment is the magnitude

of @. Two vectors @ and b are said to be equal if they
have the same magnitude and direction. The product
of a vector d and a scalar m is a vector m d with
magnitude |m| times the magnitude of @ with direc-
tion, the same or opposite to that of @, according as
m >0 or m <0. In particular, if m = 0, thenm d is a
null vector 0. A vector with unit magnitude is called
a unit vector. If a is non-zero vector, then % = % isa
unit vector having the same direction as that of ¢ and
is denoted by a.

If d,b and ¢ are vectors and m and n are
scalars (real or complex), then addition and scalar
multiplication of vectors satisfy the following
properties:

(i) @a+b=b+a (Commutative law for

addition).

(i) a-+ (Z + E) = (22 +Z7) + ¢ (Associative

law for addition).
(i) 7 (a +5
for addition).

) — m@ +mb (Distributive law

(iv) (m+n)d = md+ nd (Distributive law
for scalars).

(v) @+0=2a=0+a (Existence of identity
for addition).

(vi) @+ (—a)= 0= (—a) +a (Existence of
inverse for addition).
(vii) |md| = |m| |a|.
(viii) m(nd) = (mn)a.
(ix) n(ma) = m(nd).

The unit vectors in the directions of positive x-,
y-, and z-axes of a three-dimensional, rectangular
coordinate system are called the rectangular unit
vectors and are denoted, respectively, by 7, j, and .

Let a;, a», and a3 be the rectangular coordinates
of the terminal point of vector @ with the initial
point at the origin O of a rectangular coordinate
system in three dimensions. Then, the vectors
aii, asj, and ask are called rectangular component
vectors or simply component vectors of d in the x,
y, and z directions, respectively.

o]

T s
0 > Y

ayl l
/ ap/

z

The resultant (sum) of a7, a,j, and ask is the
vector g and so,

:alf +a2f' + a3l€.
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Further, the magnitude of 4 is

la| = \/a} + a5 + a3.

In particular, the radius vector or position vector 7
from O to the point (x, y, z) in a three-dimension
space is expressed as

F=xi +yj + zk
and

r= ¢ =/x2+y*+ 22

The scalar product or dot product or inner product
of two vectors d and b is a scalar defined by

a.b = d| ’5’ cos 0,

where 0 is the angle between the vectors d and b and
0<0<m.

The scalar product satisfies the following
properties:
() a.b=bha.
(i) @ Z+z) —ab+ad
(iii) t(a b) = (tafa :ﬁ.(t?a) = (ﬁ?y)t,

where ¢ is a scalar.

(iv) ii=jj=kk=1andij=jk=ki=0.

() If @=a;i+ayj+ask, then a.a=|a
=d :af—i—a%—&—a%.

i) If d=aji+aj+ask and b=b i+
byj + b3 k, then

2275 = a1by + arby + azbs.

(vi) If a.b=0and @ and b are nonzero vec-
tors, then cos 0 = 0 and so, 0 = 7. Hence,
d and b are perpendicular.

(viii) The projection of a vector d on a vector b

is a vector defined by “projection of d
on b = (acos 0)8, = (@.2,)é,”, where 0
is the angle between @ and ?;, and ¢,
is a unit vector in the direction of the
vector _l;

Let a vector ¢ makes angles o, f§, and 7,
respectively, with positive directions of X, y, and z.
Then, the numbers cos o, cos f and cos y are

called the directions cosines of d. Thus, cosa =
i.é,, cosff =j.é,, and cosy = k.é,, where ¢, is a
unit vector in the direction of 4.

N
a

v

b

The vector- or cross product of two vectors d
and b is a vector defined by @ x b = [ ‘7)" sinfle =
absin 0 e, where 0 is the angle between the vectors d
and b such that 0 < 0 < m and ¢ is a unit vector
perpendicular to both @ and b. The direction ofd x b
is perpendicular to the plane of A and B, such that 4,
b,and @ x b form a right-handed triad of vectors.

In particular, if d = borais parallel to b, then
axb=0. R R A . R X A

Ifa=ai+ayj+ask and b=b,i+byj+ b3k,
then

i j ok
ax?b': ay a az |,
by by b3

The magnitude ‘a X 77] of @ x bis equal in the area
of the parallelogram with sides d and b.
The vector product satisfies the following
properties:
(i) dx b=-bxa (Anti-commutative law).
(i) a x (7)4—6) —Gaxb+axtc
(Distributive law over addition).
(iii) t(Zz’ xz) =(td)xb=ax (t@) = (Zz ><7))t,

t is a scalar.



The dot- and cross multiplication of three vectors
d,b, and ¢ follow the following laws:

() (a-z)zﬁ('é.z).

(i) a- (bxc)=79~(3><ﬁ)=5-(?1><79)
If a = az+a2]+a3kb b11+b2]+
bl% dC—C]l+Czj+C3k,theIl

a, a» a;
a-(bxe)=|br b bsl.
¢ ¢ ¢

QU

(v) @ x (b x z) =@ b - ( -Z;)z,
=G &b— (ﬁ-z)a.
The product Zi.(_B X E) is called the scalar triple
product or box product and is denoted by [abc].

The product d x (?3 X E) is called the vector
triple product.

7.1  DIFFERENTIATION OF A VECTOR

A vector 7 is said to be a vector function of a scalar
variable t if to each value of t there corresponds a
value of 7.

A vector function is denoted by 7 =¥(¢) or

7 :_?(t). For example, the position vector 7 of a
particle moving along a curved path is a vector
function of time t. In rectangular coordinate system,
the vector function]‘ can be expressed in a com-
ponent form as

F=f) =fiit+hi+hik
where fi, />, and f; are scalar functions of t and are
called components of f.

Let 7 = /(¢) be a vector function of the scalar
variable t. If At denotes a small increment in t and
A7 the corresponding increment in 7, then

i _ A Fle+ A0 —7()
dt  A—0At A0 At ’

if exists, is called the ordinary derivative of ¥ with
respect to the scalar t.

Vector Calculus 7.5

Since % is itself a vector depending on t, we can
further consider its derivative with respect to t. If
this derivative exists, it is denoted by ¢ dzz Similarly,
higher derivatives of 7 can be defined.

Geometric Significance of 47: Let 7 = /(¢) be the vector
equation of a curve C i 1n space. Let P and Q be two
neighboring points on C with position vectors 7 and
7+ 07. Then, OP =7, OQ =7+ 67 and so,

PO =00 —OP =7+ 67 —F=6T.

Therefore, & E is directed along the chord PQ. As
ot — 0, that is, as Q — P, the chord PQ tends to the

tangent to the curve C at P. Hence, 4% = hm b Tisa

s
vector along the tangent to the curve at P.

Unit Tangent Vector to a Curve: Suppose that we take an
arc length s from any point, say A, on the curve C,
up to the point P as the parameter, instead of t.
Then, AP = s, AQ = s + 6s, and so, PQ = és. In

this case, % will be a vector along the tangent at P.
Further,

dr o7 chord PO 1

—| = lim _— .

ds| 850 |8s Q—>P Arc PQ

Hence, % is the unit vector 7 along the tangent at P.

Theorem 7.1. If a,b, and ¢ are differentiable vector
functions of a scalar ¢ and ¢ is a differentiable scalar
function of ¢, then

() 4(a+b)=2+dk

Gi) 4(a-B)=a-4+485
(iii) %(5x@>:5x%+@xz
(iv) g (oa) =05 +Fa
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0 4f(523)] = (8) ()

(bxc)

(zxc)} 5><(b><d7>

—s—ax(“"iﬁ’Xc)—&—d"x(bxc)

(vi) ¢ [a x

Proof: We prove (i), (iii), and (v). The other parts
may similarly be proved by the readers themselves.

d .,
(1)E(a+b)
[(a+Aa)+(b+A7a)}—(a+b)
= lim
At—0 At
g Da+Ab . Ad + lim Ab
RN, Ai—0 At A0 At
_da_ db
T dt di
ond L =
(III)E(aXb)
[(a+Aa) (b+Ab)} —axb
= lim
At—0 Al
. axb+axAb+AGxb+Aax Ab—axb
= lim
At—0 At
. dxAb+AGxb+AdxAb
= lim
At—0 At
. Ab NG - NG -
:Athno[aXA_FA x b+ —xAb
. db da - da -
—GXE—FEXIJ 7)(0
:ax—erd—a b+0=a —f+@ b

r (Zxé).

Theorem 7.2. The derivative of a constant vector is
the zero vector.

Proof: We know that a vector is called constant if its
magnitude and direction do not change. Let ¢ be a
constant vector_and let 7 =¢. Then, 7+ 67 =¢
and 50, 6r—6 Thus, =L =0 and hence,

Theorem 7.3. A vector functLonj’ of a scalar variable ¢
is constant if and only if % =0.

Proof: If ? is a constant vector, then, by Theorem 7.2,
d f -0

Conversely, suppose that =0.If f1, />, and f3 are
the components of f along X-, y-, and z-axes, then

fzﬁf—&—ﬁj—i—fﬂg Hence,

) f dfi 2 dfs - df3
0= =@ Tl T ak
Therefore, equality of two vectors implies
ah _dh _ 5 _
dt dt dt

Therefore, fi, f>, and f3 are constant scalars, inde-
pendent of t. Hence, /' is a constant vector function.

Theorem 7.4. A vector functionj7 of a scalar variable ¢
has a constant magnitude if and only if /- % =0.

Proof: First, suppose that the vector functionj_‘" has a

constant magnitude c. Then,
2

77 ==
and so,
d (- 2\ d,
S(77) =23 =0
But,
4Gy AT AT T
E(f'f)_ a Tl TV
Hence
P
Zf'E_Oor =0

Conversely, suppose that 7‘2—{ = 0. Therefore,

274 =0 or [+ 4T =00r 4(77) =0,
which implies f : f is constant = ¢?, say.



2

—.

Hence,

=c? or W =, that is, / has a
constant magnitude.

Theorem 7.5. The necessary and sufficient condition
for a vector function f ofa: scalar varlable ttohavea
constant direction is that f x 4L = (.

Proof: Let F' be a vector function of modulus unity
for all t. Let W =f. Then,]’ :fﬁ.

The condition is necessary: Suppose that / has a con-
stant direction. Since? =f F, it follows thati_f‘ and
have the same direction. Thus, F has a constant
magnitude, equal to unity and a constant direction
dE _

too and so, is a constant vector. Therefore, ;- = 0.

Differentiating? =f F with respect to t, we have
d f df =
dt dt f

Now
f><—_ (fF)

df - = 9w dF
=fLFXF4+f*Fx—
S E X
- - dF oo o
:0+f2F><E,sinceF><F:0

-

_F+f_

-

=f“F
fxdt

-

S o dF -
=/?Fx0=0, since W: 0 (as shown earlier).

The condition is sufficient: Suppose that /' x d/ =
Therefore, as shown prev1ously, I 2 x dE dF = O and
s0 F' x dF = 0. Also, since F is of constant magnl—
tude, F'. dF = 0. These two facts imply that 4= dF = 0.
Therefore F is a constant vector. But magnrtude of
F is constant (unlty) Therefore, F has a constant
direction. But f fF Therefore, direction of fis
also constant.

Corollary 7.1: The derivative of a vector function of a
scalar variable ¢ having a constant direction is col-
linear with it.

Proof: Since f has a constant direction, f X /
and so, / and dd{ are collinear. This completes the
proof of the corollary.

Vector Calculus 1.7

From Theorems 7.3—7.5, we conclude that
(1) % = 0ifand only if}" is a constant vector
function in both magnitude and direction

(i1) _’.%’j =0 if and only if ? has a constant
magnitude

(iii) f X df = 0 if and only if? has a constant
dlrectlon

Theorem 7.6. If j_; =fii+fij+fik is a vector
function of the scalar variable ¢, then

f L [0+ B0+ R0k

Proof: We have

F=hi+hj+rk,

where f1, f>, and f5 are scalar functions of 7. Therefore,

df d .

dt dt i) + dt(fﬂ) <3k>
_di dﬁ di dfy. . dk L
fl T i+ o +f3 dtk

d d

70+ﬁ +0+£ +0+ f3
dfi, df, dfs
Todr +aItJJraltk'

Thus, to differentiate a vector, it is sufficient to dif-
ferentiate its components.

Velocity and Acceleration: Let 7 be the position vector
of a moving particle P, and let §7 be the displace-
ment of the particle in time ¢, where ¢ denotes time.
Then, the vector & denotes the average velocity
of the particle durrng the interval 6t of time.
Therefore, the velocity vector v of the particle at P
is given by
lim o7 d¥
-0 6t dt’
and its direction is along the tangent at P. Further, if
6V is the change in velocity v during the time
interval 6, then the rate of change of velocity, that
is, g—i is the average acceleration of the particle
during the interval éz. Thus, the acceleration of the
particle at P is
TN oV d?/_ d (d? _dz?
bi—0 6 dr  dt (dt) CdrR

—

Vv =
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Tangential and Normal Acceleration: Let 7 be the
position vector of a point P moving in a plane curve
at any time t. Then the velocity of the moving point
is given by

dv _d7 ds

dt —ds dt’

But dr = T is a unit vector along the tangent at P.
Therefore V= ds T Thus, the acceleration is

T}:

dv_d ds ;N _ sy ds dT 0
dt  dit\dt )  di? dt dt’
But,
y A
A T
N
P
A
. s
r
¥
0 » X

dT dT dW dl//A
dr dl// dr dr

where N is a unit vector along the normal at P.
Therefore,

dT  dy ds . lds ¢

_ay Ay _ 198 =N,

dt  ds dt P pdt

where p is the radius of curvature at P. Hence,
(1) reduces to

dv—dzs%_i'_l dS ZN—dVT+V2N
dt  dr p \dt Cdt p
Therefore,
d*s
T tial leration = — = —
angential acceleration AT

and
2

. %
Normal acceleration = —.
P

Radial and Transverse Acceleration of a Moving Particle:
Let 7 be the position vector of a moving particle
P (r, 0). Suppose that R and T are the unit vectors

in radial- and transverse directions, respectively.
Then, 77 = rR and

elocit ﬁ—d—7—i(r )—ﬂk—i—rﬁ
v YVE T a T dt dt

dr - dR d0 dr. do .
= a T aftra

Therefore, the components of the velocity in the
radial- and transverse directions are

dr dvr — do
VR—d and vr l”dt.
T A
P(r, 6)
T
0
0 » X
Further, since 4% =T an dd—g —R, we have
acceleration a
av d (dr, do -
== (SR T
dt dt(dt +rdt )
_ Ly dR  dr d0,  d05 d0dT
T dr dt" dt  dt’ dt dr? dt " dt
dzrk+drdR do drd0+ d*0\ -
=— —_— . — ——tr—
dr? dt d0 dt dt dt dr?
dedT do
dt do’ dt

BT Rra aar e
do\ “.
. R

d*r do\?| . drdo  d*0].

2 2
_drk+dr 6197w (dr do dé))A



Hence,
Radial acceleration = ap = & —r <@> ’
dr? dt
and
Transverse acceleration = ay = 2dr d0 +7r d29.
dt dt ' di
EXAMPLE 7.1

Ifa—sm(92+cos€)j+0ic 5-cos(ﬁ—sin6j’—3i¢,

and ¢ = 2i + 3 — £, ﬁndde(ax(bx8)> at 0 = 0.

Solution. We are given that

G =sin0i+cos0j+ 0k,

b = cos 0i — sin0j — 3k, and ¢ = 2/ + 3j — k.
Therefore,

i j k
bxe=|cosh —sinh —3
2 3 —1

= (sin@ +9)i — (—cos 0 + 6)j
+ (3 cos 0 4 2sin O)k.

Then,
a x (77 x‘c’)
i j i
=| sinf0 cos 0 0
9+sinf —cosO@+6 3cosO—+2sinl

= (3cos® 0 +sin20 — O cos 0 + 60)i
— (%sin20+2sin20—90— esine)j

+ (=65in 0 — 9 cos 0)k.

Therefore,

%[5x (sz)]

= (—6cos0sin0+2cos20 —cos 0+ 0sin0 +6)i
— (3c0s20+4sinfcosd —9 —Ocos O —sin )]

+ (—6cos0+9sin0)k.

Putting 6 = 0, we get

d . . .

E[ax (be)} =(2-1+6)i—(3-9)—6k
=71 + 6] — 6k.

Vector Calculus 7.9

EXAMPLE 7.2

If 7 = (cos nt)i + (sin nt)j, where n is a constant

and ¢ varies, show that 7 x 4 = nk.

Solution. We have

= (cos nt)i + (sinnt);.

Therefore,
dr R
d: (—nsin nt)i + (ncos nt)j.
Therefore,
i j k
L A
Va —_—=
dt cos nt sin nt
—nsin nt ncosnt 0
= lg(n cos® nt + n sin’ nt)
= nk.
EXAMPLE 7.3

=
If @ and b are constant vectors, w iS a constant

scalar, and 7 = @ sinwt + bcos wt, show that
(i) 27+ * = 0 and (i) 7 x & = —wd x b.

Solution. (i) Since ¢ and b are constant vectors, we
have

di -  db -
— =0and —=0. 1
a0 (1)
Now it is given that 7 =4 sin wt + b cos .
Therefore,
T sin of d +2 (sin wi)a
g = Sin @t —-+— (sin wr)a
db d -
+eosor— 4 (cos cut)b

d e .
=0 +d (sin wt)d + 0 + (cos wt)b, using (1).

= (wcos wt)d — (w sin wt)z

and
d27 2 . = 2 3
7= (—o”sin wr)d — (w® cos wt)b

= —@? (6 sin wt + b cos wt) = —w’7.
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Hence,
d*r ) S
—+ w7 =0.
dr?
(i1) Sincedxd=0,bxb=0,andd x b=—bxa,

we have
7 X f]—f = {(cos wt)d + (sin a)t)?;}
X [(—w sin ot)d + (w cos cot)_é}
= (o cos® wt) (@ x b) — (w sin® ot) (b x @)
= (w cos® wt) (@ x b) + (w sin® wr) (@ x b)
= [w(cos® wt + sin® wt) ] (@ x b)
= a)(a X ?)').
EXAMPLE 7.4
Show that

d deZ dax
a\“ " a ar

Solution. We have

Ay, _di ¢
a\ " a

b)ZaXW—WXb

—ﬁxd_z+axﬁ_@xq_d_axﬁ
Cdt T dt ar  de dt = dt
=d X @ — @ x b
A a7
which proves our assertion.
EXAMPLE 7.5
Let 7= 12 —34j + (2t + 1)k, find at ¢ = 0, the
value of ‘f/—if .

Solution. Let 7 = 127 — 34} + (2¢ + 1)k. Then,

i d . d . d .

—=—()i—— Bt +—2t+ 1)k

g = a )i g B+ @)
=2ti—3j+2k and

A7 d ~ o d ~ o d A

=2 (20— 2 (3)j + 2 (2)k = 2i

When ¢ = 0, we have % = 2i. Further,
a*r \/7
—|=v224+02+02=2.
P + 0 +

EXAMPLE 7.6
If @ =52+ — *k and b = sin 1i — cos 1, find

g (Zi.@) and 4 (ﬁ X 25)
Solution. Let & = 5727 +1] — 2k and b = sin #i — cos 7.
Then,

G.b=5Fsint —tcos t.

Therefore,
d /- d )
7 (Zi.b) == (5¢sin t — tcos t)
=5 cos t+ 10¢ sin £ + ¢ sin ¢ — cos ¢
= (5t2 - 1) cost+ 11 ¢sint.
Also,
Pk
adxb=| 54 t —t
sint —cost 0
= (—tz cos t)f — (t3 sin t)j
+ (fSt2 cost —t sin t)lAc
Therefore,
d o
als b)
dl‘( %
d ~ d . R
= (—£ cost)i — = (£ sin ¢)j
d ) R
+ " (—5¢ cos t — tsin 1)k

= (t3 sin ¢ — 3¢ cos t)f — (t3 cos ¢ + 3¢*sin t)j
+ (512 sin t — 11¢cos t —sin t)lg

EXAMPLE 7.7

Find a unit tangent vector to any point on the curve
X = a cos ot, y = a sin wt, and z = bt, where a, b,
and o are constants.

Solution. Let 7# be the position vector of any point
(x, y, z) on the given curve. Then,

7 =xi+yj +zk = (a cos wt)i + (a sin wt)j + (bt)k.



Therefore,

dr

7 = (—aw sin wt)i + (aw cos wt)j + bk.

The vector —t’ is along the tangent at the point
(x, ¥, z) to the given curve. Hence, unit tangent
vector is given by

P 4z _ (—awsin wt)i + (aw cos wt)] + bk
7 N |
EXAMPLE 7.8

A particle moves along the curve x = 37, y = * — 2t
and z = £*. Find its velocity and acceleration at 7 = 1
in the direction of i +j — k.

Solution. Let 7# be the position vector of any point
(x, , z) on the given curve. Then,

F=xity+zk =32+ (P -20)j+ £k

and so, the velocity and acceleration of the particle
are, respectively,

di O
é:6zi+(2t—2)j+3t2k:6i+3kau:1

v

and
L 4 A oa . s e
azW:6z+2j+6tk:6z+2]+6katt:1.

The unit vector in the direction of i 4/ — k is
ik _ivj-k

li+j—k V3

Therefore, the components of velocity and accel-
eration in the direction of / 4/ — k are

h:

V= (a#sz%)wzi:ﬁ

V3 V3
and
R (R ) B W
EXAMPLE 7.9

Find the angle between the tangents to the curve
7 = 21 + 2tj — £k at the points ¢ = +1.

Vector Calculus 7.11

Solution. We have
7 =142t — £k

Therefore, the vector along the tangent at any
point is .

7 N N ~
— =241+ 2j — 3¢k.
7 i+2
Thus, the vectors along the tangents at = £1 are

Ty =2i+2j—3k and Th = —2i + 2/ — 3k.
The angle 0 between the tangents is given by
FF 2=2)+202)—-3(=3) 9
T ||| VA+4-9.4+14+9 17

0 = cos™! <9>
17
EXAMPLE 7.10

A particle moves along the curve

F=(F —4t)i+ (A +4t)]+ (82 - 38)k.
where t denotes time. Find the magnitude of accel-
eration along the tangent and normal at time ¢ = 2.

cosf =

Hence,

Solution. The curve is

F= (8 —41)i+ (A +41)) + (82 — 38)k.
Therefore,
, drf . o p
V= = (3 —4)i+ (2t +4)j + (16t — 97 )k
=8i+8 —4katr=2
and o
acceleration @ = I; = 61i + 2/ + (16 — 181)k

= 12i +2j — 20k at t = 2.

The velocity is along the tangent to the curve.
Therefore,
Component of ¢ along the tangent

v
:Cl.j
V
8i+ 8 — 4k
:<121+2j 20k>—f+{ i
|87 + 8/ — 4k|
8i + 8 — 4k
(121+2j 20k>L
V64 + 64+ 16
_96+16+80
==
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and
Component of d along the normal
= | @ — resolved part of d along the tangent |

8i+ 8 — 4k

= 12i+2j — 20k —16——2L =
12i+2 /64 + 64+ 16

1
5’41*

1
=3 [VI6+ 676 + 1936 ]

26] — 44k |

=2V73.

7.2 PARTIAL DERIVATIVES OF A VECTOR FUNCTION

Let;’ bea vector function of x, y, and z. Let 6;‘ be the
change in f corresponding to a small change éx in x.
Then, 6/ = f(x + éx, v, z) — /(x,,z). The limit

lim 6_f — lim f(x+6xa Vs Z) —f(X,)’aZ)
r—»0§x ox ox

3

if it exists, is called the partial derivative of the
vector function f with respect to x and is denoted by

Of orﬁr

Similarly, the partial derivatives of f with
respect to y and z are defined by

?(x7y+ §y7 Z) —J_;(x;%z)

Jy = jim, &
and
ﬁ _ limf(x7yaz + (SZ) _f(xayvz) ,
6z—0 6z

provided these limits exist.

If;‘ and g are differentiable vector functions of
the independent variables x, y, and z and ¢ is a
differentiable scalar function of x, y, and z, then

0 Z(F+2)=F+%
) 2(of) =o%+5%7
i) #(72) =7 F+% 2
) &(Fx2)=FxE+fxz.

Similar expressions for partial derivatives
with respect to y and z are valid. Higher partial

\Qv Q’I% &

derivatives of f may also be defined in the same
way. For example,
3f
8x Ox
EXAMPLE 7.11

If]‘ = xyzi + x2%] — y3l€, find ddxz—gy at the origin.

-

Jxx —
Ox?

Solution. We have

-

= xyzf—&—xzzf —y3/€.

Therefore,
o = xzi + 0 — 3y*k and
dy
.
aaxgy =zi=0at (0,0,0)

EXAMPLE 7.12
Ifd = x%yzi — 2xz j +xz%k and b = 2zi +y— X2k,
find the value of 2 (a X b) at the point (1, 0, 1).

Solution. We have

4 = x’yzi — 2x2°j 4 x2*k and b =2z +yj — k.
Therefore,
i bi k
axb= ¥yz =2z xZ?
2z y —x?
= (2)(323 — xyzz)f — (—x4yz — 2xz3)j'
+ (xzyzz + 4xz4)l€.
Hence,

aax(a X b) (6x*2°

+ (2xy2z + 4z4)l€

,yZZ)f, (74x3yz — 223)f

and

0? . R R
2 (a X b) (12xz3)i — (—12x2yz)j + (Zyzz)k

=12 at (1,0, 1).



7.3  GRADIENT OF A SCALAR FIELD

A variable quantity whose value at any point in a
region of space depends upon the position of the
point is called a point function. If for each point
P(x, y, z) of a region R, there corresponds a scalar
o(x, y, z), then ¢ is called a scalar-point function for
the region R. The region R is then called a scalar field.
For example, the temperature at any point within or
on the surface of the earth is a scalar-point function.
Similarly, atmospheric pressure in the space is a
scalar-point function. On the other hand, if for each
point P(x, y, z), of a region R, there exists a vector

}"(x, ¥,2), thenf is called a vector-point function and
the region R is then called a vector field. For
example, the gravitational force is a vector-point
function.

Let f(x, y, z), be a scalar-point function.
Then, the points satisfying an equation of the type
f(x, v, z)=c (constant) constitute a family of
surface in a three-dimensional space. The surfaces
of this family are called /evel surfaces. Since the
value of the function f at any point of the surface
is the same, these surfaces are also called iso-f-
surfaces.

The operator V, defined by

0 .0 .0

is called the vector differential operator and is read
as del or nabla.

Let ¢ be a scalar function defined and differ-
entiable at each point (x, y, z) in a certain region of
space. Then, the vector defined by

.0 L0 .0

ngS <la+]a—+k&>¢y
) ;09
—5“*52 o

is called the gradient of the scalar function ¢ and is
denoted by grad ¢ or V.

Thus, grad ¢ is a vector with components
99 9¢
dx 7 Oy?
function, whereas V¢ is a vector-point function.

and g—f. We note that ¢ is a scalar-point
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7.4 GEOMETRICAL INTERPRETATION OF A GRADIENT

Let? = xi +yj + zk be the position vector of a point
P through which a level surface ¢(x, y, z) =
(constant) passes. Then, differentiating ¢(x, y, z) = ¢
with respect to t, we get

do_, . 06 dx 09 dy+8¢ dz _
dar ox'dt ' Oy dt ' Oz
or
b, 0P ng dx . dyA dz »\
(8 +8yj+52 ) <dt "t +altk =0
or
dr
—=0
Ve dt

Since ‘;—f is the vector tangent to the curve at P and
since P is an arbitrary point on ¢(x, y, z) = ¢, it
follows that V¢ is perpendicular to ¢(x, y, z) = ¢
at every point. Hence, V¢ is normal to the surface

o(x, v, z) = c.

7.5 PROPERTIES OF A GRADIENT

The following theorem illustrates the properties
satisfied by a gradient.

Theorem 7.7. If ¢ and y are two scalar-point func-
tions, and c is a constant, then,

(i) V(6+w)=VotVy.
(i) V(ow) = 6V + Vo,
(iif) v(g) = Y009 provided that y # 0.

(iv) V(co) =cVo.
(v) V¢ is a constant if and only if ¢ is a
constant.

Proof: (i). By the definition of a gradient, we have
V(gL y)
0 0 0
— (it +hgr) (6w)
0 . 0 ~ 0
= la(qbi ) +]8—(¢i )+ 8—(¢i v)

0 .0 g ~0 0
<l+]8 +k )qbﬁ:(—k]a +ka)

0.
=Vo£Vy.
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. .0 .0 .0
i) Viow) = (i +i gt i) (ow)

N NG
=15 (oy) +ja—y(¢l//) +

=oVy+yVo.

N Y Y )
(‘“)V(E) ‘( gyt az)

[c(% - 00 Af%]

(+)

5@%5@%%@>

k= (o)

] 19}
v - %—q o

Y2

% .0
P i

(iv) We have
0 g -0
Vieo) = (i tig i) (

— g (co) g (e0) +

= cf—(b—i—cfa—(;ﬁ—i—c/}—
00, ;09 8¢) =cV ¢.

—c(za——i— 8_y+k6

)
.0
a—(Céb)
¢

¢3w
7

(v) We note that

09 06 065
V¢—0<:>za+a ka =0
L0, 00 96
o V=0

& ¢ is a constant.

7.6 DIRECTIONAL DERIVATIVES

Let A be any given point in the region of definition
of a scalar-point function ¢. Let P be a point on any
line drawn on one side of A. Then hrr/l1 P—) if
exists, is called the directional derzvanve of the
scalar-point function ¢ at A in the direction of AP.
The length of AP is regarded as positive. The
direction derivative in the direction of AP, where P’
is a point on the other side of A, is negative of that
in the direction of AP.

P

The directional derivative of the vector function} at
A 1in the direction of AP is defined as Il)in}l %,

provided the limit exists.

7.6.1 Directional Derivatives Along Coordinate Axes

Let A(x, y, z) be a point and let P(x + éx, y, z) be a
point on a line drawn through A and parallel to the
positive direction of x-axis. Then, AP = éx > 0.
Therefore, directional derivative of a scalar-point
function at A along AP is defined as

lim ¢(P) - ¢(A) — lim ¢(X + 6x,y,z) B ¢(X,Ya2)
P—4 AP §x—0 ox

_9¢

= a

Thus, the directional derivative of a scalar-point
function ¢ along the x-axis is the partial deriva-
tive of ¢ with respect to x.



Similarly, directional derivatives of ¢ along
y- and z-axis are, respectively, g—i and g—f.

The directional derivatives of a vector-point
ﬁmction]‘ along the coordinate axes are similarly
ox? Oy?

Further, if /, m, and n, are direction cosines of
AP = r, then the coordinates of P are x + Ir, y + mr,
and z + nr and so, the directional derivative of the
scalar-point function ¢ along AP becomes

o OP)—0(4)

and %, respectively.

P—A AP
:lim¢(x+lr»Y+mr»Z+nV)_¢(x7yaz)
r—0 r
S (B G 4 o)
_r~>0 r
op ~0¢ 0¢
=]/ - -
o "oy e

by the application of Taylor’s Theorem for function
of several variables under the assumption that ¢ has
a continuous first-order partial derivatives.
Similarly, the directional derivative of a vector-
point function ? along any line with direction

cosines 1, m, andnlsl +mdy+n

Theorem 7.8. The directional derivative of a scalar-
point function ¢ along the direction of unit vector a
is Vo - a.

Proof: The unit vector & along a line whose direction
cosines are /, m, and n is

&zlf—&—mj—i—nl}.

Therefore,
~0 . . .
Vo = ( 8—¢+ 8—¢+ka¢) (zi+mj+nk)
=190 4 00,09

ax oy "o

which is nothing but directional derivative of ¢ in
the direction of the unit vector a.

Theorem 7.9. Grad ¢ is a vector in the direction of
which the maximum value of the directional deri-
vative of ¢ occurs. Hence, the directional derivative

7.15

Vector Calculus

is maximum along the normal to the surface and the
maximum value is

lgrad ¢ = [V¢|.

Proof: Recall that 4.5 = |a||b\ cos 0, where 0 is the
angle between the vectors d and b. Since (grad ¢). a
gives the directional derivative in the direction of
unit vector &, that is, the rate of change of ¢(x, y, z) in
the direction of the unit vector a, it follows that the
rate of change of ¢(x, y, z) is zero along directions
perpendicular to grad ¢(since cosZ=0) and is
maximum along the direction parallel to grad ¢.
Since grad ¢ acts along the normal direction to the
level surface of ¢(x, y, z), the directional derivative is
maximum along the normal to the surface. The
maximum value is | grad ¢ | = |V

EXAMPLE 7.13
If7 = xi 4+ yj + zk and | 7 | = r, show that
(i) V£ (r) = f"(r)Vr and (i) V/(r) x 7 = 0.

Solution. (i) By the definition of gradient,

V() = i () )+ R 0)

or

=i 0 R0

— /' )( %gukgr) G\

(i1) As in part (i), we have

, ~Or .0Or ~0r
w0 = 0) (15 5+ K ).

Since r = | 7 | = \/x? + »* + 22, we have

8r_ 1 X x

a9, 1 (2x)
Ox  2(x2 4324 22)

/x2+y2+22 7’

and similarly, g—; =Yand % = £ Therefore,

V) =) (A D) =)
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Hence,

EXAMPLE 7.14
If £(7) = x*yz%, find V[ at the point (1,2,3). Hence
calculate
(1) the directional derivative of f(¥) at (1,2,3)
in the direction of the vector (— 2,3, — 6).

(i) the maximum rate of change of the func-
tion at (1,2,3) and its direction.

Solution. Since 8f =2xyz%, 5 A —x z2, and 3f:2x2yz,
we have

Vf = 2xy2%i + X2 + 2x2yzl€.
Therefore, at the point (1,2,3),
grad f = Vf = 36i + 9] + 12k.

(i) The unit vector a in the direction of the vector
(-23,-6)1s

—2Z+3j—61€ —2c 3. 6.

i 25 2%
JiTorie 7T

Therefore, the directional derivative at (1,2,3) in the
direction of the vector (— 2,3, —6) is

s N[ 2:. 3. 6.
Vf.a= (36i+9j+ 12k).<—z+j_k>

77
T2 271 T2 117

=T+ - =——.
77 7 7

(i) The maximum rate of change of the function at
(1,2,3) occurs along the direction parallel to V/ at
(1,2,3), that is, parallel to 36i+ 9/ + 12k. The

- . . . . 36i+9j+12k
unit vector in that direction is WisTsarreeyi
36i+9j+12k _ 12i+3j+4k

39 =13

The maximum rate of change of f(#) is

| grad f | = /1296 + 144 + 81 = 39.

EXAMPLE 7.15

If 7 is the usual position vector 7 = xi + yj + zk
with | 7 | = r, evaluate

(i) Vr, (i) V(Y), (@) V", and (iv) V(5).
Solution. Since | 7 | = r = y/x? + )2 + z2, we have

or_x or_y o
ox r'dy r oz r’

Therefore,

R 1 x\ - I y\ - 1z
=i ——.- ——== ) +k| ——=.-
"R r> j( r2 r>Jr < r2 r)
Aoa s 7
:——3<xl—|—yj+zk =—=.
r

) 4o 2) b )

=2 (xf +yj + zl%) ="



, 1 .0 .0 .0 1

v ()= (57545 (3)
_?2 l +A8 +k2 —
A jay 2 0z \r?

2/ 4 s 27
:fr—4(xl+y]+zk) =

EXAMPLE 7.16

Find the directional derivative of f'(x, y, z) = xy* +
yz> at the p01nt (2, = 1,1) in the direction of the
vector i + 2/ + 2k.

Solution. We have
g 40 0
Vf = ( +ja —|—ka)(xy2—|—yz3)
=i+ (ny —|—z3)j—|— (3y22)l€

= i — 3] — 3k at the point (2,—1,1).

The unit vector in the direction of the vector i +
2j + 2k is

L i+2i42k 1

a =— = —

vVi+4+4 3

Therefore, the directional derivative of fat (2, — 1,1)
in the direction of i + 2j + 2k is

(i+2/+2k).

V6 (Z ]—3k) (z+2j+2k)
%(176 6) = 131.
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EXAMPLE 7.17

Find the directional derivative of ¢ (x, y, z) = x)* +
yz' at the point (2, — 1,1) in the direction of the
normal to the surface xlogz—y* + 4 = 0 at (2, — 1,1).

Solution. We have ¢ =xy? +yz°, g—f ¥, g—‘*;

2xy +2° , and &~ 0@ = 3yz?. Therefore, as in Example
7.16,

Vo =i—3/—3kat (2,—1,1).
On the other hand,
V(xlogz —y* +4)
/;a /;a ~ 8 2
= (za+]8y+kaz) (xlogz —y* + 4)
= 2(xlogz—yz—f—4) +fg(xlogz—y2+4)
Ox dy

+k§ (xlogz —)* +4)

—logzi — 2y} + Sk = —4f — k at (—1,2,1).
zZ

But V(x log z — y* + 4) is normal to the surface
x log z—y* + 4. Unit vector along V(x log z — y* +
4) is

o 4 —k 4k
V16 + 1 V17

Therefore, the directional derivative of ¢ at (2,— 1,1)
in the direction of the normal to the surface x log
z—y +4=0at(-121)is

Vo= (1 _3j— 31}) (‘%ij

EXAMPLE 7.18

Find the angle between the surfaces x* + y* 4+ 2> =9
and z = x> + y* — 3 at the point (2, —1, 2).

Solution. Let ¢(x, v, 2) = x* + > + 22 -9 and v (x, y, 2)
= x* + y* — 3 — z. Then, the angle between the
surfaces at the given point (2,—1,2) is the angle
between the normal to the surfaces at that point.
Also V¢ and Vy are along the normal to ¢ and v,

1243 15
ViT VT
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respectively. But,

0

A S W S N N
Vo = (lax—l—]ay—i-kaZ) (P +ry+2-9)

= Qi + 2y + 2zk
= 4] — 2] + 4k at the point(2, —1,2)

and

a "8 2 2_ o

= 2xi + 2y — k
= 4i — 2j — k at the point (2,-1,2).
If 0 is the angle between V¢ and Vi, then

(42—2}+4l€).(42—2j—1€)

20 -
Vy = (lax+]

cosf = Vo-Vy
IVo|Vy|  V16+4+16V16+4+ 1
16+4-4 8
Toev2l 3v2l

. . _ -1(_8
Hence, the required angle is 6 = cos (3\/2—1)

EXAMPLE 7.19

In what direction from (3,1,-2) is the directional
derivative of ¢ = x* y* z* maximum and what is its
magnitude?

Solution. The directional derivative at a given point
of a given surface ¢ is maximum along the normal
to the surface and grad ¢ acts along the normal.
Therefore, the directional derivative is maximum
along V¢. We have

(000
v¢_(18x+jay+k82) (x*°z*)

= (2xy224)lA' + (2x2y24)j + (4x2y223)l€
= 96i + 288] — 288k at the point (3,1, —2).
Thus, the directional derivative is maximum in

the direction of 96 + 288; — 288k. The magnitude
of the maximum directional derivative is

V| = 96vT +9 +9 = 961/19.

EXAMPLE 7.20

Find the angles between the normal to the surface
xy = 2> at the points (4,1,2) and (3,3,-3).

Solution. Let ¢( x, y, z) = xy — z°. Since V¢ is along
the normal, it is sufficient to find angle between V¢
at (4, 1, 2) and V¢ at (3, 3, —3). Now,

R
V¢—<i—+j—+k
dy

g™ 8) (x _22) :y;'+x]'—22ic.

dz
Therefore,
Vat (4,1,2)is i +4j — 4k and
Véat (3,3,—3) is 3i + 3] + 6k.

Hence, the required angle 0 is the angle between i +
4j — 4k and 3i + 3] + 6k. Therefore,

) (i+47—4k). (437 +6k) g
O T iy —ak| it 3+ 6k V354
1
V2
Hence,

p=cos ! (- ).

EXAMPLE 7.21

Find the constants a and b so that the surface ax® —
byz = (a + 2)x is orthogonal to the surface 4x” y +
2> = 4 at the point (1,-1,2).

Solution. The two given surfaces will be orthogonal
if the angle between the normal to the surfaces
at the point (1,-1,2) is 7. Since V¢ acts along the
normal, it is sufficient to find V¢ and Vy at
(1,-1,2), where ¢ = ax® — byz — (a + 2)x and v =
4x* y+2° — 4. We have

Vo= (f%—i—ja —i—l:ra) (axz—byz—(a—l—Z)x)

ox oy "oz
=i(2ax —a —2) +j(—bz) +l€(—by)
= (a—2)i—2bj + bk at (1,—1,2),



and

_ /;a /;a Aa 2 3
Vy = <18x+]8y+k82> (4x°y +2° — 4)

= f(8xy) +j(4x2) + l€(3z2)
= —8i+4j+ 12k at (1,-1,2).
Since 0 = 7, we have

- ((a—z)f—zbj+b1€).(—82+4j+ 1212)
COS - = ~ = ~ < < T .
2 |(a—2)i—2bj + bk| |-8i +4j + 12k|

((a —2)i—2bj + b/%).(—82+4j+ 12/%) -0

or
(a—2) (—8) —8b+12b=0
or
—8a+4b = —16. (1)

Since the points (1, —1, 2) lie on both surfaces ¢
and y, we have from the surface ¢,

a+2b=a+2orb=1. (2)
Putting the value of b from (2) in (1), we get
20 5
—8a=-16—-4 =—=_.
a ora=--==5

Hence, a :gandb =1.

EXAMPLE 7.22

A paraboloid of revolution has the equation
2z = x*> +)?. Find the equation of the normal
and the tangent plane to the surface at the point
(1, 3,95).

Solution. Let ¢ = x* + y* — 2z. Then, V¢ gives the
vector normal to the surface. Thus, the normal
vector to the surface is

Vo = (Z%HQHE%) (x* + )7 —22)

= 2xi + 2y — 2k

= 2i + 6] — 2k, at the point (1,3, 5).
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Therefore, the unit normal vector at the point (1,3,5)
is

24+6/—2k i+3—k
vV44+36+4 V11

The equation of the line through the point (1,3,5) in
the direction of this normal vector is

&:

x—1 y—=-3 z-5
1 3 -1

Therefore, the equation of the tangent plane to the

surface at the point (1,3,5) is

lx—1)+3(—-3)+(-1)(z—5)=0

or
x+3y—z=>5.

EXAMPLE 7.23

Find the angle between the tangent planes to the sur-
faces x log z = y* — 1 and x* y = 2 — z at the point
(1, 1, 1).

Solution. The required angle will be the angle
between the vectors normal to the given surfaces at
the given point. The normal vectors to the surfaces ¢
=xlogz—)*+ 1and y = x> y— 2 + z are given by

.0 .0 .0
=(i=+j=—+4k=) (xlogz—»*+1
ve (lax—’_j@y—'_ 62) (xlogz )" +1)
:long—2yf+)—CI€
z
= —2j +k at the point (1,1,1)
and
.0 .0 .0
_ . U - U e 2 _9
Vy <lax+jay+ 82) (x*y —2+2z)
:2xyf+x2f+le
= 2i+] + k at the point (1,1, 1).
Therefore, the required angle is given by
(72j+12).<22+]'+1€> o4l 1

cosf = = =

V5.6 V30 30

0= cos! ().

Hence,
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7.7  DIVERGENCE OF A VECTOR-POINT FUNCTION

If we want to consider the rate of change of a vector-
point function]’, there are two ways of operating the
vector operator V to the vector ]7 Thus, we have
two cases to consider, namely,

V. fand V x f.

These two cases lead us to the two concepts called
Divergence of a Vector Function and curl of a
Vector Function. If we consider a vector field as a
fluid flow, then at every point in the flow, we need
to measure the rate of flow of the fluid from that
point and the amount of spin possessed by the
particles of the fluid at that point. The above two
concepts provide respectively, the two measures
called divergence of;‘ and curl of]‘.

Let f =fii+ 1 —+—f;l€ be a vector function,
where f}, f», and f3 are scalar-point functions, which
is defined and differentiable at each point of the
region of space. Then, the divergence off, denoted
by V- j’ or diV?, is a scalar given by

V. f= <z§+]§+k > (f,z+f2]+f3 )

O Of | Ofs
“ox Ty T oz

The Vectorf is called Solenoidal if V - ]7 =0.

7.8 PHYSICAL INTERPRETATION OF DIVERGENCE

Consider the steady motion of the fluid having velocity
V=i + v)f +v.k at a point P(x, y, z) Consider a
small parallelopiped with edges 6x, dy, and 6z parallel
to the axes, with one of its corner at P(x, y, z). The
mass of the fluid entering through the face PQRS per
unit time is v, 6x ¢z and the mass of the fluid that
flows out through the opposite face ABCD is v, 4 ¢,
Ox 0z. Therefore, the change in the mass of fluid
flowing across these two faces is equal to

Vyysy0x 02 — vy0x6z = (vy + %—j}y .6y> Ox 6z

— Vox b6z = aa—‘;)éy ox Oz.

Similarly, the changes in the mass of the fluid for the
other two pairs of faces are

Ov ov,
—ox 6y bz and = éx by éz.
Ox 0z
A7
R C
5x
oy
S D
v, loz v, toy
A
P
QB
0 » Y

Therefore, the total change in the mass of the fluid
inside the parallelopiped per unit time is equal to

Ovy 8vy Ov,
( pe + By 8 )5 by bz.

Hence, the rate of change of the mass of the fluid
per unit time per unit volume is

Ove  Ovy,  Ov, .
§+ Oy oz Oz =V

by the definition of divergence. Hence, div V gives
the rate at which the fluid (the vector field) is
flowing away at a point of the fluid.

EXAMPLE 7.24
Find div ¥, where ¥ = 3x2yi + 2/ + x2k.

Solution. We know that
v Ova | s
Ox Ody 0z

Here, v; = 3x> y, vy =2z, and vz = x%. Therefore,

divy =

div ¥ = 6xy.



EXAMPLE 7.25

Find the value of the constant A such that the vector
field defined by

7= (2x2y2 + zz)f + (3xy3 — xzz)f' + ()wyzz + xy)l:t

is solenoidal.

Solution. We have

fi=2x%%+2, fr=3x" —x’z, and fs = )’z +xy.
Therefore,
of  Ofh 0
div f—i—i—ﬁ-i- /3 =4y + 90”7 + Ayt

dy 0z

The vector field shall be a solenoidal if diV? =0.
So, we must have

dxy? + 907 + Ay =0,
which yields 4 = —

EXAMPLE 7.26

Find div 7, where f = grad(x* + y* + 22 — 3xyz).

Solution. We have

f=V{E 4+ +2 - 3x02)
o cg ?2 Ag 3 3 3 _
_(18x+jay+kaz) (x +y +z 3xyz)
= (3x2 — 3yz)f + (3y2 — 3xz)j—|— (322 — 3xy)l€

= fii + foj + fk, say.

Then,
2 06 Oh Of
dzvf—8—+ Dy +a—
=6x+6y+6z=6(x+y+z).
EXAMPLE 7.27

Find div (3xzf+ 5xy2j+xyz31€) at the point.
(1,2, 3).

Solution. Let /' =3x%i+ 50 +xy23k =fi i+ f3] + 13k,
say. Then,

div 7_%+%+%_6x+10xy+3xyzz
oy 0Oz

= 6+20+ 54 =80 at (1,2,3).
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7.9  CURL OF A VECTOR-POINT FUNCTION

Let ]‘ =fii+f) + f31€ be a vector-point function,
where f, f>, and f3 are scalar-point functions. If ;"
is defined and differentiable at each point (x, y, z)
of the region of space, then the curl (or rotation) of

?, denoted, by curl]‘, \% x?, or rot]‘ is defined by
Curl f =V xf

g .0

=(i=— k

< o + ] ay +

) (i -+

~
~.
bt

=0 9 9
ox Jy 0z

h L of
ofs  0f ofi I3\,
(w‘&)*(&‘w>

o ONh\;
(%)

IS5

Obviously, curl 7’ is a vector-point function.

7.10  PHYSICAL INTERPRETATION OF CURL

Consider a rigid body rotating about a fixed axis
through the origin with angular velocity @ = w;i+
w] + wsk. Let #=xi+ yj+zk be the position
vector of any point P(x,y,z) on the body. Then, the
velocity v of P is given by
ik
V=®OX? = W Wy w3
X y z
= (w2 — 03Y)i + (03x — 012)] + (w1y — W2x)k.
Therefore,
Curl v=V xv

i bi k
= 0 9 0
ox dy 0z

WrZ — W3y W3X—W1Z Wiy — WX
:2(w1i+w2j+w3k), since w1, w,, and

3 are constants

=20.
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Hence, & = % curl v. It follows, therefore, that the
angular velocity at any point is equal to half the
curl of the linear velocity at that point of the body.
Thus, curl is a measure of rotation. If curl v = 0,
then the vector V is called an irrotational vector.

7.11  THE LAPLACIAN OPERATOR V/*

If ¢ is a scalar-point function, then

grad p =V ¢ = —¢+ 8—¢—l—ka¢
(vector - point function)
and then,
div[grad ] =V -V ¢
a (0
_ 0 (00) 0 (90), 2 (00
Ox \ Ox dy \ Oy 0z \ 0z
82¢ ¢y 0%
T o2 T2 ? + o2
* o9 PP )
(G o ta)e =7

where V? :5927+30722+87
operator.

A scalar-point function possessing second-
order continuous partial derivatives and satisfying
the Laplacian equation V?¢ =0 is called a
harmonic function.

is called Laplacian

EXAMPLE 7.28

Find curl ¥, where F' = grad(x® +y* + 2 — 3 xyz).

Solution. We have

F = grad(x* +y° +2° — 3x2)

_(:9 9 Aﬁ 3.3 .3
(a ﬂaerkaz) (X +)° +2 = 3x2)
= (3x — 3yz)z + (3y2 — 3xz)j + (322 — 3xy)l€.

Therefore,

Curl F=V xF = (zaﬁ—i—jg l}ag x F
i j k
_ 0 0 0
- Ox dy Jz

3x2 —3yz 3y* —3xz 322 —3xy
= i(=3x43x) +/(=3y+3y) + k(=32 +3z)
0.

EXAMPLE 7.29

Show that the vector v = (yz)i +
irrotational.

(zx)] + (xp)k is

Solution. It is sufficient to show that the curl ¥ = 0.

We have
Curll v =V xv= ( (;9 +jaay+l€%>
X [(yz)i—i— (zx)] + (xy)lg}
i j k
=19 9 9
ox dy Oz
yz zx

EXAMPLE 7.30
If7 = xi+yj + zk, show that curl 7 = 0.

Solution. We have

curl 7=V x7= ; gly ;

Xy z
“il2@-g 0] +[Em -2

+i[ 20— )]

EXAMPLE 7.31
Show that curl curl]’ =0, Wheref =zi+x+ yl€.

Solution. Let / = zi + x/ + yk. Then

i J ok

7_1la o o
curlffa 5 &
z X y

Oy Ox 0z Oy Ox 0z],
5ol [ art 5 a )

(1 =0)i+ (1 —0)+(1—0)k =i+ +k.
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Hence, and so,
. curl (curl¥) =V x (V xV)
i ] k ~ ~ 7
- S 0 0 - i J k
— |0 0 0| = |— _
curl curl f = | 2 5 & [3y( ) 8Z(l)} s o 2
1 1 1 - ox dy 0z
) 9 Qs Ovy Ovi Jvs Ovy vy
Jy 0z 0z ox Ox Oy
[0 -50) [0 (2 o) 0 (m o
R 0 . 0 ol B l_(?y Ox 0dy/) 0z\0z Ox
o ) - ]

= 0i + 0j + 0k = 0.

EXAMPLE 7.32

If all second-order derivatives of ¢ and Vv are

continuous, show that

(i) curl (grad ¢) =0, (ii) curl (curl ¥) = grad
div v — V29, (iii) div (curl ¥) =0, and (iv) grad

(div ¥) = (f%ﬁ%w%%) (%—V;+%+%)

Solution. (i) We have

curl (grad ¢) =V x V¢

20 20 9
"ox oy T
Aa(b Aaﬁﬁ Aa(b
k

9
0z
¢
0z

0*¢

+

X

0z

Q@ o~

Ox
I
Ox

o ¢>f

e Sl ~o

:<w&_&@>-(&&_m&>

N )
tk (6x8y B 8y8x>
= 1(0) +/(0) + k(0) = 0.

(ii) If ¥ = vii + vof + vk, then

0*¢

.-(9 6\72 8V3 azvl 82\)1
o (5o 22 ) (Gt as
10x\ Oy Oz o2 072
;[0 (v Ova Ovs
0x\ Ox Oy Oz
62\/1 82\11 82v1
ox2 Oy 0z
~0 ., 2%
:Zla(dlvv)—zv ivy
L0 L0 L0\, . .
= (la"‘]a—y-i-k&) (leV)
v (}vl v +iW3) —graddivy— V9.
(iii) As in (ii),

curl 7= i3 92\ 5D
\dy 0z T\ oz ™ ox
~ 8\/2 Bvl
kl—=—=—-—).
+ <8x 8y>
Therefore,

div(curlv) =V - (V x V)

0 (v _om.
dy Oz

0
+—

~ox ay

o _om
0z Ox

2 0 (Ova 0Ovy
o 3 (5 %)
B Pvy v, v 0w
T Oxdy Ox0z  0Oydz Oydx
82\/2 62\/1
+ % - az—ay
- 82\/3 82\/2 82v1 821@
~ Oxdy  Ox0z 0y0z B OxQy
32\/2 32\/1 . . .
+ ENC @ since v 1s continuous
=0.
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(iv) If ¥ = vyi + voj + vsk, then

. _,_8v1 aVZ 8\23
div v = o + o + %

Therefore,
._,_A,a A.a 50 8v1 8v2 8\/3
grad (leV)— <la+]8_y+k§> (g"ﬁ‘a—y-‘—E)

EXAMPLE 7.33

If @ is a constant vector and 7 = xi + yj + zk, show
that

(i) div(@ x 7#) = 0 and (ii) curl(a x 7) = 2a.

Solution. (i) We have @ = ayi + ayj + ask. Therefore,
ij k
axX7= a a as

X z

(a1z — azx) + k(a1y — axx).

Yy
= f(azz —asy) -
Hence,

div (VX?)z%(azzf@y)f—(alzfa3 X)

Oy

+2(a1y—a2x):0—0+0:0
Oz
(i) curl(@ x7) =V x (a x7)

i ¥ k
= 0 0 0
ox dy 0z

Ayz—azy azx—da|z a1y—daxx

:;((11 —|—a1) +j'(a2 —|—a2) +l}(a3 +a3)
:2(a1;'+a2}'+a31}> =2a.

EXAMPLE 7.34

Determine curl curl ¥ if ¥ = x2yi 4 122/ + Z2yk.

Solution. Let v = x2yi + )22/ + z%yk. Then

ik

T — v —| 9 9 el
curl V=V xv=| & 5 %
XYy Yz 2y

~. o~

(2 ~2?) +7(0) + k()
(22 —yz) + 0/ — X’k

Hence, ) ) )
I J k
curl curl v = % aiy %
Z2 _ y2 0 _xz
= (224 2x)] + 2k
EXAMPLE 7.35

Show that 7'7 is irrotational.

Solution. It is sufficient to show that curl 77 = 0. We

have - .
curl ' 7=V x F'?

=V x [r" (x?+y7+z}>}

o>

~
|QJ ~.

|
—
Q
—
X
N
~—
I
§lo
—
N:
<
~
—

+ [ynr”_1 X —xnr"_lqlg
]"A -
=0i +0j + 0k = 0.

Hence, #" 7 is irrotational.

7.12  PROPERTIES OF DIVERGENCE AND CURL

(A) Properties of Divergence. Let / and  be two
vector-point functions and ¢ a scalar-point
function. Then, the divergence has the following
properties.

G) div (7+§)=v- (7+§)=v-7+v-§.
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Gi) div (qf)}) ~V. (@7) - (V¢)fj—¢(v -]f) (i) Let / = fi7 + ff + f3k. Then
=(grad ¢)-f +¢divf. 3f1 8fz I

(iii) divf = 0iff is a constant vector. vf= ay +E: 0, since 1" is constant.
(iv) div (7 X g) =g.curl f — f.curl 8. (iv) div (f X g) =V (f X §)
- X A A . . A e 2 i 0 =L
Proof: Let f =f1i+/f5j +/3k and g=gi+gyj +g3k. = la+ja—y+ pe .(f Xg)
(i) We have 9.
F4o= ; : 2 :Zi.—<f><§)
fHEg=H+ea)i+(h+)+B+ak dx
Therefore, B . 87 L. 58
V- (7+2) = (intim bk ). _Zl(axgﬂ(xa)
g)=Uax oy e: }
P =) i a—><§
[(i+e0i+(h+eli+(5+ei] \or
P P P (s OB
:a(fl-i-gl)“‘_(ﬁ‘i‘gz)"‘a—z(ﬁ—&-gs) —|—Zz.< xa>
Oh  Oh s AR
(8x+8y+82 B o) E
981 Og  Og3 (0% -
+<8x+3y+82 —Zl-(gxf>
=V/+v g ( a;)
= 1 X a .

)V (¢F) = ( Stk ) (it ofi+ i)

S @)+ () + 5 () (v7) a- w587
f1+<z>afl> (oo %) =g (VxF) -F (v x®)
f

( %
Do ofs (commutativity of dot product)
+o= - -
( e ) — 3 curl | —F.curl 8.
( (bf 1+ (bfz—&- f3> (B) Properties of Curl. Let;’ and g be two vector-
point functions and ¢ a scalar-point function, all
( ¢8f1 i ¢% ¢5f3) having continuous second-order partial derivatives.
Then,
(8¢ %, a¢ ) (f11+f2]+f3 ) (i) curl (7 +g) = curl 7 + curl 2.
10) oy 5 - -
08,0 (i) curl((bf) — (grad ¢) x / + ¢ curl 7.
+¢( Oy " 82) (iii) curl / =0, if /" is a constant vector.

(Vo) +6(VF) (v) Vx (fxg)=@VV- (V)
= (grad ¢)./ + ¢ div/. (V-3 - (V7)e
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Proof: If;’:fﬁ—i—fzf—i—fﬂ} and 2 = g1+ go) + g3k,

then

) /f+g=(i+a)i+(h+al+ (B +ek
and so,

curl (j‘+§) =V X (}7+§>

i j k
=| 2 0 0
Ox dy 0z

fitg L+e +g
o ) .
= {8—y(f3 +g3)—§(f2+gz)]l
+ [g(ﬁ +g1)*g(f3 +g3)]]’
)
+ [ax(fﬁgz (f1+g1 }
ofs afz 8f1 st .
G 0z j

Y
o o
+(a 5 }

gy 022\ g1 0g3\~
+Kay Bz)l+<8z ox )

Vxf+Vxg=curl f+curl 8.
(i) cur1(¢_7f) —Vx (@7)
=V x (ofii+ohi+ofk)
i

o0 0 0
ox Ody 0z

¢f1 oh ¢f3
= _8_y(¢f3)

o

~>

(¢f2)

\..>

0z

+ _%wﬁ)—gwfs)
0
o

>->

H2om-Lion)]

_ [0 9¢ 8fz 9¢
*_d’a_y 8_)13 ¢E__2

o o 96 14
[?y A ¢g**3]]
+ [¢"j,,f2 ¢%,6;¢ }k
z Ay
ofs 0fz ofi Ofs of Ifi\ A
(802 (-9
i) (-0
Pk
—o(vxr)+fe w
ik oA
—o(Vx7 )+ (VoS

:(;5curl]7 +(grad ¢) ><f.

(iii) Let ]‘ = fii+ /2] + f3k be a constant vector.
Then,
curl ]‘ =V x;’

<ia +j‘a% +I€§Z> X (fliJrfzf +f31€)

Ox
ij ok
=0 9 9
ox dy 0z
h L 5
(OB (0
dy 0z I\ 0z ™ ox

(06 Of
+k<8x By)
=1(0) +/(0) + k(0) = 0.
(iv) If f=fii+fj+fk and g=gii+g)+gsk,
then
SN (D 0 N
X (fxg) = (zaﬁ—]a—y—&-k) X (fxg)

i (f><g> 2 (fxg)



(by property of vector triple product)
~Teg- (T5):

+ (Z %)f’ > f %
= <g1%+gz§y+g3%>]’ (V 7)§

(V3] - (1 gt )

~@V)i-(Vi)g+(v-ai-(IV)z

EXAMPLE 7.36
Show that
div(grad ") = V - (V ") = V*(")
=n(n+1)r"2.

Deduce that V(1) = 0.

Vector Calculus 1.27

Solution. From the definition of the Laplacian
operator V2, we have
div(grad/")=V-(Vi")
’? 9
— 2 n = _ . 1
V)= (gt ) )

But,
i(,ﬂ)_g an _2 nr”*l@
Ox? Cox\Ox ) Ox Ox

*2<mf”’1 )f) since% ol
"~ Ox r)’ Ox r

0

or
— =2\ _ n—3 n—2
= (n""*x) =n {(n 2)r —ax.x—i—r }

=n(n—2)r""3 .)fc.x+m"’72

=n(n—=2)r""*+n"2.

Similarly,
82
m(r"):n(n 2)" 4?2 +n " ?and
y
62
82( ) =n(n—2)r"42 fn 2
Z

Hence, (1) reduces to
Vz(r") =n[(n— 2)r"’4 (xz +3* + 22) + 3r”’2]
2" 2+ 37720] = n(n+ 1) 2.

— n[(n
Putting n = —1, we get V> (%) =0.
Second Method: From Example 7.15, we have
V¥ = nr”" 7. Therefore,
V(") =V - (V)

=V- (nr"*z?)

=nV- (r‘”’z?). (2)
But, div (¢F) =V - (¢F) = (Vo). F + ¢(V - 7).
Therefore, (2) becomes

VA" =n[(VF"?) F+r (V7))
=n[(n—2)r"*F7+3r""?]since V-#=3

=n[(n—2)r""*? 43", since?.7 = r*

=n(n+1)r"?
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EXAMPLE 7.37

Show that curl(grad7) = V x V" = 0.

Solution. We have seen that
V" =n"2 P =2 (xf—kyj + zlg)

Therefore,

j k
n__ 9 9 0
VxVr'= o 5

(n—2)r"—3

:Z nz
zz:nz

= Z [n(n —2)r"*yz—n(n —2)r"74yz]Ai

=0i40j40k=0.

. 38r .
82

or
a—y—ny(n —2)r

o3 23 g
(n—2)r" . ny(n—2)r r}l

EXAMPLE 7.38
If ]’ and g are irrotational, show that ]‘ X g is

solenoidal.
Solution. Since]‘ and g are irrotational, we have
Vxf=0andV x g =0.
Now, 5 . .
div(f X g) :g.(v xf) — 7.V x8)
=30-70=0
Hence, / x g is solenoidal.
EXAMPLE 7.39
Show that
2
V) =1"0) + 10,
where 7 = xi + yj + zk.
Solution. We have 7% =x>+4)? +27°

Ir—x or—2 and % == Then,

Ox r’ Oy
0 8 - 3 Z0r .Or .O0r
gradr(zaJr]a +k8 >r za—+ja ka—

LW

and so,

AX A 1
:i—+j—+k—: (xz—l—y]—i—zk)
r’r r

Also, by Example 7.13,
grad f(r) =f'(r)V r = f(r)grad r. (2)
Therefore,
Vf(r)=V-(Vf(r)) =div(grad f(r))
=div Bf’(r)?} using(1)

=div(f'(r)Vr)

1 1
:;f’(r) divF+7.grad (;f’(r)) ,
by divergent property

3, J[d (1,
Z;f (r)+7. {5 (;f (r))gradr},
using (2)and div7=3.

R '<r>+1f”<r>F,

r r

using(1)

=—f’<r>+”— [—i )+ )]

=2 PO ) =1 () 1)
EXAMPLE 7.40
Show that div(+"7) = (n + 3)#"

Solution. We know that
div (gb]’) = (grad ¢). f + ¢ div f.
Therefore,
div(#"7) = (grad r").7 + #"div7.

But, grad 7" = n7"~2 7 and div 7 = 3. Therefore,

div(r"7) = n" 2 FF 43" =" 4 3"

= (n+3)r".

EXAMPLE 7.41
Show that curl(¢ grad ¢) = 0.



Solution. We have

gy 205, 00, 00
grad¢7v¢76xl+8y1+ﬁzk
and so, 06 . 06 . 8(;5

¢ grad ¢ = d)— +¢— +¢— )

Hence,

i
curl(¢ grad ¢) =| 7 %
b5 0% 0%

_ 9¢
Z{ay< az) <¢ ayﬂ’
99 09 P ¢ 0
Z{@y (92 8y(9z_5'(9_y_(ZS
= 0i=0i+0j+0k=0.

IS5
%9|Q3 ~.
SSCRE

%
0z0y

Also, it follows that ¢ grad ¢ is irrotational.

EXAMPLE 7.42
Show that the vector /() 7 is irrotational.

—

Solution. A vector ;’ is irrotational if curlj_ar =0.
Also, we know that

#x7=0, curl #=0and

grad f(r)

—

=f'(r)grad r=1'(r)"

Therefore,
curl[ f(r)7] = [grad f(r)] x 7+ f(r)curl 7
= [f'(r)grad ] x 7+ 0

1)
= %f’(r)(? x 7) = 0.

X740

Hence, /() ¥ is irrotational.

7.13  INTEGRATION OF VECTOR FUNCTIONS

If f and F are two vector funcnons of the scalar
variable ¢ such that dF f , then F is called the

indefinite integral of f with respect to ¢. Thus,

/7dt:f7

1.29
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If f=fii+fj+fik, where fi,f5, and f are
scalar functions of the scalar t, then

/7dt=3'/fidt+}'/f2dr+k/ﬁdz.

Hence, to integrate a vector function, we integrate
its components.

EXAMPLE 7.43

The acceleration of a particle at any time ¢ > 0 is
given by

d . o
5:7:: 12cos 24 — 8sin2¢) + 16tk.

Ifthe velocity v and displacement 7 are zero at t = 0,
find ¥ and 7 at any time ¢.

Solution. We have

dv L
a :7:: 12cos2t7 — 8sin 2t} + 16t

Integration with respect to ¢ yields
V=6sin2¢i+4 cos 2t] + 87 k + ¢,

where ¢ is a constant of integration. But v = 0 when
t = 0. Therefore,

0=0i+4/+0k+7¢
and so, ¢ = —4 j Therefore,
V=6sin2¢i+ (4cos 21 —4)j + 81 k

or

—

d CAn . .
7:: 6sin 2ti + (4cos2t —4)j + 822 k.
Integrating again with respect to #, we get
. ) . 8 ..
7= —3cos 2ti+ (2sin 2t—4t)j+§t3k+ﬁ,

where p is a constant of integration. But 7 = 0 when
t = 0. Therefore,

0=-3i4+0j4+0k+p

and so, p = 3 i. Hence,

~ ~ 8 44
7=(3—3cos 2t)i+(2sin2t—4t)j+§t3k.



7.30

Engineering Mathematics-1

EXAMPLE 7.44

If7 = Owhent=0and %’ = ﬁwhent— 0, find the
value of 7 satisfying the equatlon d;z = d,whered
is a constant vector.

Solution. Integrating < dtz = d with respect to ¢, we get

where ¢ is a constant vector of integration. When

t =0, 4% = 7. Therefore,
it = d(0)+¢and so ¢ =u.
Therefore,
dr dat+ 1
—=at+u
dt

Integrating again with respect to ¢, we get

:Eat +ut+p,

where p is the constant vector of integration. When
t = 0,7 = 0. Therefore, 0 = p. Hence,

I
r=ut+—-at.

2

7.14  LINE INTEGRAL

An integral which is evaluated along a curve is
called a line integral. Note, however, that a line
integral is not represented by the area under the
curve.

Consider any arc of the curve C enclosed
between two points A and B. Let a and b be the
values of the parameter t for A and B, respectively.
Partition the arc between A and B into n parts as
given in the following equation:

A=P,, P,,...,P,=B8B.
Let %y, 71,...,7, be the position vectors of the
points Py, Py,..., P, respectively. Let ; be any point
on the subarc P,_; P; and let 67 =7 —7#i_1.
Let 7(7) be a continuous vector-point function.
Then,

lim > /(&) .67, (1)
0
if exists, is called a line integral off along C and is

denoted by f 7.d7or f f.9%dr. Thus, the line

integral is a scalar and is also called the tangential
line integral of f along the curve C.

If f =/ z+f2]+f3 kand?=xi+yj+zk,
then d 7 = idx + jdy + kdz and so,

C/}.d? = /(ﬁdx + fody + f3dz)

(st

a

where a and b are, respectively, values of the
parameter t at the points A and B.

If we replace the dot product in (1) by a vector
product, then the vector line integral is defined as

[f x d7, which is a vector.
c
If C is a simple closed curve, then the tangent

line integral of the vector functionf around C is
called the circulation of f around C and denoted by

$7.d7.
c —
The vector function f is said to be irrotational

in a region R if the circulation of f* around any
closed curve in R is zero.

EXAMPLE 7.45
Iff = (3x2 + 6y)i — 14yz] + 20x22 k, evaluate [ 7.d7,

c
where C is given by x = ¢, y = £, and z = £, and

t varies from O to 1.
Solution. The parametric equation of C is
x=ty=~andz =7,

where ¢ varies from 0 to 1.

Now, 7 =xi+y]+zk =ti+ ]+ £ k. Therefore,

dr . R .
— =i+42tj+ 3 k.
ar 1+2t] +
Further,

? = (3x2 + 6y)f — l4yzj + 20xz° k
= (32 +642)i — 14£2.£ ] + 20t
= 9% — 14 ] + 207" k.



Therefore,
1

/fdr /( ) /9;}'—14t5}'+20ﬂk)

0
-(i+2t}'+3t2}'+3t2?c)}dt

1
= / (97 —281°+60¢%)dt
0

9,1

_[or 287 607’
R 10 |,

EXAMPLE 7.46

If 7 = (siny)i+x(1 4 cosy)j, evaluate the line

integral [ f.d7 along the circular path C given by
C

¥4y =da*andz = 0.

Solution. The parametric equation of the circular path
Carex =acost,y =asin t, and z = 0, where t
varies from 0 to 27. Now,
F=xi+yj+zk = (acost)i+ (asinr);.
Therefore,
d7v
dr

Also,?, in terms of parameter ¢, is given by

= (—asint)i + (acost);.

- ~

f = sin(asint)i + (acost) (14 cos(asint));.

Therefore,

- - d7
/f.dr—/(f.dt)dt
C C

2
:/ [sin(asin?)i+ (a cost(14cos(asint));)]

0

[(—asint)i+(acost)j]dt
27

:/ [—asintsin(asin?)

0
+a*cos’t(1+cos(asint))]dt
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2m
= / [—asintsin(asint) +a’ cos’t
0

+a*cos*tcos(asint)]dt
27

= / {dJacostsin(asint)]+a*cos’t }dt

2m
= [acostsin(asint)](z)ﬂ+/ a*cos’ tdt
0

2T
2/l+cos2tdt a? H_sinZt n
—=a T dt=—
2 21" 2,

0

2
:%(Zﬁ):ﬂaz.

EXAMPLE 7.47
Calculate f;‘.d?, where C is the part of the

C
spiral 7 = (acos 0, asinf, af) corresponding to
0< Qggand‘?:rzf.

Solution. We have

F=acos0i+asin0j+ abkso that
dr R . R
d—g: —asinfi+acoslj+ak.
Also,
f=ri=(acos’0+d’sin® 0+ a*0%)i
= [a2(1 + 02) i.
Therefore, _ B
d [ .
/7 dr-/(f d;)dO—/{[az(H—Oz)]i
C c 0
[(—asin@)i+(acosb)j+ak|}do
:—/a3(1+02)sin0d0
0

:—a3

(sin0+06sin0)d0

o\
(ST

=—a’[cos0+20sin0)— HZCOS]% =—ad*(r—1).
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EXAMPLE 7.48 Hence,
If f =xyi—zj+x*k and C is the curve x = ¢2, 2 J7 2
y=2t,andz = £ from = 0to ¢ = 1, find the vector /;’d 7= / (}7 —r)dt = /{ [(5¢* —61%)i
line integral fj_" x d7. /) ! dt |
C

+

—~

3 - N 9
Solution. We have 26 — 41)j] - (i +3¢%) }ar

F=xit+yjz+k =Fi+2]+7Fk,

-

J [(5¢* — 662) + 3228 — 4t))dt
14 ~ ~ ~
— =2ti+2j+3Pk
al I+2j+ )

and

;‘:xyf—zf+x2/€ :2t3f—t3j+t4/€.

—— T Y—

(67 + 5¢* — 128 — 6£] dt

Therefore,

£ I A 68
6—+5——12———
[6+ 5 43,

S iJ k

2

x| g =[+7 -3¢ —27]] =35.
: dt

2t 2 32

— (=36 =2+ (—46)j + (4 +2¢)k.  EXAMPLE7.50
Hence, Evaluate [ [2xydx + (x* —y?)dy] along the arc of
4

! J7 the circle x* + y* = 1 in the first quadrant from 4
/fxd?/( XE>dt (1, 0) to B(0, 1).
c 0

Solution. On the circle, y = v/1 — x2 so that % = —x

t
6 5 6
0
# 28] 2\1 2 2\~ 1
a4+ & z/[Zx(l—x)dx (2x* = 1)x(1 —x?) dx}
4 5], 1
9. Z,+7?{ 5 o O .
~100 375 2\3 2 2
10 375 = {—3(1—x )ZL—/< —2>2x(l—x) *dx
1
0
EXAlVlPLE 749 A A . :_%+ 5 , 1 (1_x2)%
If f = (5xy — 6x%)i + (2y — 4x)j, evaluate gf.d? 3 2 |
along the curve C in the xy plane y = x> from the 9 1
point (1, 1) to (2, 8). _2/2x<1_x2)7dx
Solution. Substituting x = 7, we get y = . When x = ! -0
1, t = land when x = 2, t = 2. Then, 2 (1—x%)
A T =—z—1+2|—F—
F=xi+yj+zk =ti+1], =30 and ) .
. ) L ) ) 2 41
f=5w—6x2)i+(2y—ax)j= (57 —62)i+ (27 —41)j. =—3-1+3=—3



EXAMPLE 7.51
Evaluate [[(x? 4 xy)dx + (x> +»*)dy], where C is
the squarec formed by the lines y = +1 and x = +1.

Solution. The curve C is as shown in the following
figure:

C(-1,1) B(1, 1)

D(-1,-1) A(1,-1)

We note that

/[(x2—|—xy)dx—|—(x2+y2)dy]:/+/—|—/+/.

C AB BC CD DA

Along AB, we have x = 1 and so, dx = 0. Also along
AB, y varies from —1 to 1. Thus,

/[(x2 +xy)dx + (x* +37)dy]

3

1 1
_ 2 _ yio_8
= /(1+y Ydy = {y+3}1—3.

Along BC, we have y = 1 so that dy = 0. Also along
BC, x varies from 1 to —1. Thus,

/ (2 +xp)dx + (x* + %) dy]
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Similarly,

/[(xz —|—xy)dx =+ (x2 —|—y2) dy}

= / (14y%)dy = —g and
1

/[(x2 +xp)dx + (x> +7) dy]

DA
1
~ /(x2+x)d -2
5
Hence,
8 2 8 2
/[(x2+xy)dx+(x2+y2) dy] =§—§—§+§:0.

c

7.15 WORK DONE BY A FORCE

The work done as the point of application of a force
;‘ moves along a given path C can be expressed as a
line integral. In fact, the work done, when the point
of application moves from P(#) to Q (¥4 &7),
where ﬁQ = 07, is

oW =| 67 ‘j"cos@ —f57

f(r)
P tangent
A
B
r o
Therefore, the total work done as P moves from A
to B is
B
W= / Fd7.
4

Now, suppose that the force? is conservative. Then,
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there exists a scalar function ¢ such that} = —grad ¢,
that is,? = —V(b = _|: d‘/’ _|_ ()d’ k()(,):|

Therefore, the work done in thls case is given by

B
W_/_[8_¢+ja_f+16_¢] (2dx+j‘dy+l€dz)

A

i op 0 O¢
:/{—dxﬁ-a—ydy-&-gdz}

B

A

B/d¢> 814 = 64— 0.

Hence, in a conservative field, the work done
depends on A and B and is the same for all paths
joining A and B. Thus, in the case of conservative
force,f’(?).d 7 is an exact differential —d¢. In such
a case, ¢ is called the potential energy. The forces
which do not have this property are said to be dis-
sipative or nonconservative.

EXAMPLE 7.52

Find the total work done in moving a particle in a
force field, given by f =3xyi—5zj + 10x k,
along the curve x = £+ l,y= 2¢,and z = £, from
t=1tot=2.

Solution. The parametric equation of the curve is

x=£+1,y=27 andz=17,, 1 <t<2.

We have
F=3xyi—5zj+10xk
=3(2 +1) (24)i — 567+ 10(2 + 1)k
=6(t* + )i — 565 + 10( + 1)k
and

F=xityj+zk=+1)i+28+ 7k

Therefore, 41 i =2t i+ 4¢ ] + 3¢ k and so, the total
work done is given by

W:C/f.d?:]/zf‘(dd—f)dt
2

6(¢* + )i — 567 +10( + l)k}

—_
—
—

2tl—|—4t]+3t2k}dt

[12(2 + ) — 206" +30(¢* + )] ar

\N _‘\I\)

(127 + 104 + 12 4 30¢*) it

# A1
12 10— 12— —
6+ 7303
0—17 = 303.

Il
L'~’|—|—‘

EXAMPLE 7.53
Find the work done by the force

f=(+3)i+xzj+ (yz—xk,

when it moves a particle from the point (0, 0, 0) to
the point (2, 1, 1) along the curve x = 2¢*, y = t, and
z=1~.
Solution. The parametric equations of the curve are
x =2,y =t and z = £. Further,
= (2y+3)1+x21+(yz—x)l€
= (2t +3)i + 265 + (¢ - 2/7)k
and
F=xit+yj+zk=2014+1tj+7 k.

Therefore,

d7 A .

— =A4ti+j+3F k.

7 i+j+

The given points (0, 0, 0) and (2, 1, 1) correspond to
t = 0 and ¢ = 1. Therefore, the work done by the



force is given by
W= / Fd7

1
:/Bh+3ﬁ+2ﬁ+(ﬁ—35
0

by
—

: [4t i+ 3tzl€}dt

1
/2t+34t+2t+3( —27%) Aldt
0

1
/[St + 12t + 26 + 365 — 6] dt
0

1

/[3t +2£

0
7 5P ak
- {37+2——6—+8—+12—
3
7

— 6" + 8¢ + 124 dt

6 5 3 2],

EXAMPLE 7.54
Find Ehe work done in moving a particle in the force
field f = 3x% i + (2xz — y)j + z k along
(i) the straight line from (0, 0, 0,) to (2, 1, 3)
and

(ii) the curve defined by x*> = 4y and 3x* = 8z
fromx =0tox = 2.

Solution. (i) The curve C is the line joining (0, 0, 0) to
(2, 1, 3) whose equation is

x—0 y-—0
2-0 1-0

z—0 X y z ;
= or — =% =-=1¢ say.
3002 1 3 0%

Thus, x = 2¢, y = t, and z = 3¢ are the parametric
equations of the line. The point (0, 0, 0) corresponds
to ¢ = 0 and the point (2, 1, 3) corresponds to ¢ = 1.
Also,

7 =32 i+ (2xz—y)j+zk

=127 i+ (122 —1)j + 3t k
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and

F=xi+yj+zk =2ti+1j+3tk.

= [{[122 i+ (122 = 0)j + 30 k]
i+j+3 l%]}dt

247 + (127 — 1) + 94 dt

O~ T o\_

/ (3612 + 8¢)dr = [126 + 47, =
0

(i1) Putting x = ¢ in the given curve, we get
y:% andz:%},whereogtgl Then,

?:3x22'—|—

. (3 2 3
=37 ] - £k
+(4 4)J+8

(2xz —y)j+zk

and
- 4 2 2 4 tzﬁ 35
:xl+y]+zk:tz+zj+gt k, 0<t<2.

Therefore,
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7.16  SURFACE INTEGRAL

An integral evaluated over a surface is called a
surface integral. Two types of surface integral
exist:

() J[f(x,y,2)dS
S
and

) [[f(F) .ndS= [[f(#)dS
S s
In case (i), we have a scalar field f, whereas
in case (i), we have a vector field f(7),
vector clement of area d S=7ndS, and n

the outward-drawn unit normal vector to the
element dS.

(i) Let f(x,y,z) be a scalar-point function defined
over a surface S of finite area. Partition the area S
into n subareas 05, 055,..., 0S,. In each area 65,
choose an arbitrary point Py(x;, ;, z;). Define f(P;)

n
= f(x;, Vi z;) and form the sum >_ f'(x1, y;, z;)6S;.
i=1
Then, the limit of this sum as » — oo in such a
way that the largest of the subarea 6S; approaches
zero is called the surface integral of f(x,y,z) over
S and is denoted by [[ f(x,y,z)dS.
s

(i1) Now, let]’ be a vector-point function defined
and continuous over a surface S. Let P be any
point on the surface S and let 72 be the unit vector
at P in the direction of the outward-drawn nor-
mal to the surface S at P. Then, ;’ n is the
normal component ofjr at P. The integral off”. n
over S is called the normal surface integral of/_"
over S and is denoted by ff f 7 dS. This integral

is also known as flux of f over S. If we associate
with the differential of surface area dS, a vector

d§, with magnitgde dS, and whose direction is
that of 7, then dS = ndS and hence,

/S/]fﬁds_/ F.dS.

The surface integrals are easily evaluated by expres-
sing them as double integrals, taken over an ortho-
gonal projection of the surface S on any of the
coordinate planes. But, the condition for this is

that any line perpendicular to the coordinate plane
chosen meets the surface S in not more than one
point. However, if S does not satisfy this condition,
then S can be subdivided into surfaces satisfying this
condition.

Let S be the surface such that any line perpendi-
cular to the xy-plane meets S in not more than one
point. Then, the equation of the surface S can be
written as z = h(x,y). Let R be the projection of S on
the xy-plane. Then, the projection of dS on the
xy-plane is dS cosy, where y is the acute angle which
the normal 7 at P to the surface S makes with z-axis.
Therefore,

dS cosy = dx dy.

z
t
s

N

»
0 by

_ —|_Ry
X TN

adxd)

Butcosy = ‘?t. l%}, where & is, as usual, a unit vector
along the z-axis. Thus,

S — dxdy
Hence,
//}.hdsz//f didy
K R

Similarly, if R, and Rj3 are projections of S on the
yz, and zx-plane, respectively, then

dxdy

/S/f‘.hdS:/R[]‘.h P
[ e ffr

b

and

dxdy




EXAMPLE 7.55
Evaluate ff} 7 dS, where f =yzi+zxj+zyk

s
and S is that part of the surface of the sphere x* + )*
+ z? = 1, which lies in the first octant.

Solution. A vector normal to the surface of the given

sphere is
Vi +y+2-1) = 2'2+j2+l€2
Ox ~ 0y 0z
X (x2 +y* 42— 1)
=2xi+2yj+2zk.
Therefore, the unit normal to any point (x,y,z) of the
surface is

2xf+2yj+2zl€ _2xf+2yf+221€

n = = — — =
|2x i 42y j + 2z k| 42+ 42 + 422
it j+2k . . -

_ Xi+2j+2z Cxityjtzh

N
since x> + > + 2> = 1 on S. Now,
? n= <yzf+zxj'+xy l%).(xf+yf+zl€)
= xyz +xyz + xyz = 3xpz

and R . ) N
h’.k:.(xi—i—yj—i—zk).k:

which gives |h . lg‘ = z. Hence, in the first quad-

rant,
dxdy

/S/]f.hdsz/s/}".m

3xyz

dxdy
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EXAMPLE 7.56
Evaluate ff]_" 71dS, where f =18z1— 12+ 3y k
s

and S is the surface 2x+ 3y + 6z = 12 in the first
octant.

Solution. A vector normal to the surface S is
V(x+3y+6z=12) =2zi+3j+6k

Therefore, the unit normal vector to the surface S is

h_zz2+3j+61€_222+3j+61€
VA r9+36 7
and so,
0 o [HEYAOKY . 6
7 7
Also, . . .
. . . 2143716k
Join= (182112} + 3y k) (%)
36 3618
7 7777
_36[12—2x—3y _§+§
7 6 7777
36 12x
R 7
zZ
A
Hence,

dxdy

[[ras-ffr
T
= /R/ (6 — 2x)dx dy.
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But, R is the region of projection of S (triangle) on
the xy plane. Thus, the projection is a triangle
bounded by x-axis, y-axis, and the line 2x + 3y = 12
and z = 0. Hence, the limits of x are from 0 to 6 and
that of y are from 0 to 123;2)“ Therefore,

12—2x
3

6 E
/S f.hdS:/ / (6 — 2x)dy | dx

0

6
/ [6y — 2xy dx
0

6
/ (72 — 36x + 4x )d
0

W\»—t

1 x> 4x
= |36l 4 T8
3[x 2+3}0

= 144 — 216 + 96 = 24.

EXAMPLE 7.57

Evaluate ff?d 3, Wherei_f; =zi4+xj—3z k and
S is the surface of the cylinder x* 4 y* = 16 in the
first octant between z = 0 and z = 5.

Solution. The surface S is shown in the following
figure:

p N

0,0,5)

-
e

A

=

(0, 4,0)

»y

(4,0,0)

v

A vector normal to the surface S is given by

V(e +)* —16) =2xi+2y],

so that the unit normal vector 7 at any point of S is

. 2xi+2yj _2xf+2yj'
n_\/4x2+4y2_2\/x2—|—y2
_2xf+2yj_xf+yj
8 4

Also,

. A A ) 4 A 1
fﬁ: (zi+xj—3yzzk). <XZ1—)/]) :Z(xz+xy).

Let R be the projection of the surface S on xz-plane.
Then

.o 1 2 2 h
W= eivyi) () =2
Hence

xz+xy dxdz
[[es= ] [raos=[ =
s R
// z+xy dxdz //xz+xy.dxdz,
R R 4

where R is the rectangular region in the xz-plane
bounded by 0 < x < 4, 0 <z < 5. Since the inte-
grand is still evaluated on the surface, we have

= /16 — x? and so,

4T 5
/S jds = | /(wm?)d dx

Bl

0
/ xz2 >
= Xz + ——— dx
0/{ 2\/16x2L
: 25
X
= 5)C+4 dx
0/( 2\/16—x2>
225 N
= {5)62—2\/16—)4 = 90.
0

EXAMPLE 7.58
Evaluate ﬂ;’ i dS, where f =4xi— 2% + 2k

and S is thg surface bounding the region x* + y° =
4,z=0,and z = 3.



Solution. The region is bounded by the cylinder x* +
y* =4, z = 0, and z = 3. Therefore, the surface S
consists of three parts:

(i) Sj, the circular base of the cylinder in the
plane z = 0,
(i1) S, the circular top in the plane z = 3, and

(iii)) 83, the curved surface of the cylinder
given by x* + y* = 4.

Novsiz for the subsurface S;, we havez =0, n = —k,
and f = 4x i — 2%/
Therefore,

Foi=(4xi-27%) . (— k) —0.
Hence, ff?iz ds = 0.
s

On Sy, we have z — 3, =4k, and f —4x i
—2)% 49 k. Therefore,

Fon= (4x2'—2y2j+91€).(1€) —9.

Hence,

//?. hdS = // 9dxdy = 9(m.4) = 36.

Sz SZ

For the surface S3, which is the curved surface of
the cylinder and is given by x* + y* = 4, the vector
normal to the surface is

V(x2+y2—4) =2xi+2yj.
Therefore, the unit normal vector to the surface S; is
given by
2xi+2y) 72xl?+2yj

VA 2 /e
C xi+2yj
22
xf+yf
==
Therefore,
]‘. n= (4x272y2j+z276). <)#) =22 -
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Now, on S5, x = 2cosf, y = 2 sinf, and dS = 2d0 dz.
For this surface, z varies from 0 to 3 and 0 varies from

0 to 27. Therefore,
3

/S / foids = 0/ / [2(2 cos 0)>— (2 sin 0)*]2d0 dz

0

16(cos? 0 — sin® 0) [z];d0

O\S’

=48 [ (cos® 0 —sin’ 0)d0
2

=48 c0529d0—48/sin39d0
0

= (48)(4) / cos?0 df — 0
0

:192.%.%
= 48m.
Hence,
/ 7 hdS:/ 7.hds+//7 i dS
N M S>
+/ F.nds
S3
=04+ 3671+ 487
= 84r.

EXAMPLE 7.59
Iff = 4xz i — % + yz k, evaluate [f. it dS, where

s
S is the surface of the cube bounded by x =0,x =1,
y=0,y=1z=0,andz=1.

Solution. The surface of the cube is bounded by
x=0,x=1,y=0,y=1,z=0,andz =1 and
so, the surface can be subdivided into six parts
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in the following manner:

AZ

A

X

(i) S; is the surface formed by the face OADB,
where

z—O, = —k, and ' = —?], so that

= () () =0
/}.hdsz/l/loczxdy:o.

(ii) Sz is the surface formed by the face GEFC,
where z=1n = k, and dz = 0. On this face, we

have

and

?:4xzf—y2j+yzl€ :4xf—y2j+yl€

and so,

7w = (sei=i4 k) (§) =

Hence,
1
7211
e
2]
0

11
/ _7.hd5=//ydxdy
S 00
1 1
:E/dxza
0

Hence,

11
//f hds=//4zdydx
Ss 00

(iv) S4 is the surface formed by OBFC, where
i=—i,x =0, and dx = 0. On this face,

F=dxzi—yj+yzk =—*+yzk and

Fon= (—y] +yz k) (=i) =0.

(v) Ss is the surt:ace formed by the face OCGA,
where 7 = —j, y = 0, and dy = 0. On this face,

(?:4xzf—y2f+yz/€:4xzfandso,
? n= (4xz f) . (—j) = 0. Hence,

//?.hdszo.

Ss
(vi) Sg is the sgrface formed by the face DBFE,
where n =4, y = 1, and dy = 0. On this face,

-,

f=dxzi—yj+yzk=4xzi—j+zkand
Fi=(4xzi=j4zk)- () =-1.

Therefore, 1 1
/ / Fnds= / )dzdx = — / [2]5dx
S 0 0
=-1 /dx =—1.
0
Hence,

oI )

(iii) Sz is the surface formed by the face ADEG,
where 7 = i, x = 1, and dx = 0. On this face,

S

R 2 4 A 1 3
f.n:<4Zl—y2]+yzk>.l:4z. =045+240+0+-1=2.

F=dxzi—y+yzk =4zi—)y*j+yzk and



7.17  VOLUME INTEGRAL

Let ¢ be a scalar-point function defined throughout a
given region of volume V. Partition the given region
into n subregions of volumes 6V, 67>, ..., 6V,. Let
P(x;, vi, z;) be any point inside or on the boundary of
the subregion of volume 6V;. Then the limit

lim Z (P

570 =
if exists, for all mode of subdivision (partition), is
called the volume integral of ¢ over the volume V,

and this integral is denoted by [| [ ¢ dV.

v
If we partition the region of volume V into small
cuboids, by drawing lines parallel to the coordinate
axes, then dV = dx dy dz and so,

//V/quV://V/quxdydz.

Similarly, if}" =fii+fj+/fs kisa vector-point
function, then

// de—l// fi(x,y,2)dx dy dz
+J///f2xy, Vdx dy d-

—|—/€// f3(x,y,z)dx dy dz.
4
EXAMPLE 7.60

If 7= (2x2 — 32)i — 2xp j — 4x k,  evaluate
[[[ 'V x fdV,where V is the region bounded by the
v

coordinate planes and the plane 2x + 2y + z = 4.

Solution. We have

i j k
Vxf= 2 % 2
2x* -3z —2xy —4x
NG, 0
(40 - (2]
[0 ., 0
+J |:6Z (2x* —3z) — ax(4x)]

+k {% (—2xp) — a% (2% - 32)}

=j- 2yl€.
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The region V is bounded by the planes x = 0,y = 0,
z = 0 and the plane 2x + 2y + z = 4. Therefore, the
limits of integration are:
z varies from 0 to 4 — 2x — 2y,
y varies from 0 to 2 — x, and
x varies from 0 to 2.

Hence,

// V xfdv

—x 4-2x-2y
/ j—Zyl})dxdydz
0

I
t‘\yo\w

=

(J 2y k)[ Jo = ¥dx dy

oo
|
=

—

[(4 —2x—2p)— (8y—dxy+ 4y2)ic] dxdy

2
<4y —2xy — 2%)}

2 2 3 2—x
y y Y \z
82 4x2—|—43)k}0

Il
\I\)/L\ o\mo\mo\wo\w

{(z —x)%— % (2 —x)%} dx

0
_|@-»’. 20@-x%
N -3 3 —4 o
8/; 8 ~ 8 ~ -~
=3i-5k=3(-4)
EXAMPLE 7.61
If /= (2x* —3z)i —2xy ] — 4x k, then evaluate

/v ]’ dV, where V is bounded by the coordinate
)
planes and the plane 2x + 2y + z = 4.

Solution. We have

8 0. 0.

: {(sz — 3z)f— 2xy j — 4x l}}
=4x — 2x = 2x.
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The limits of integration are as mentioned in

Example 7.60. Therefore,
2 2—x 4-2x-2

//V v-}dV:O// O/dxdydz

X

x(4 —2x — 2y)dxdy

Il
2o

Il
~
S, S, O~ -

=

x(2 —x —y)dxdy

S T

[NSNRE N

x(2 —x)%dx

[\J

x2 4x3 2_8
4 3 "2, 3

EXAMPLE 7.62
Evaluate [[['V Fdv if f=dxyi+yzj—xvk

and V is bounded by x = 0, x =2,y = 0, y = 2, z = 0
and z = 2.

Solution. We have

ffv7
/// (52 0+ 5 02)+ 5 (=) Jav

ffien-] ]

[4yz+ 2] dydx =2

(4y + z)dz dy dx

o\m

(4y + 1)dy dx

I
=
Q:

(=]
(=]

0

2
2

o\ -
8]

4y2
Rl

2
dx /de = 20[x]¢ = 40.
0
0

7.18  GAUSS'S DIVERGENCE THEOREM

The following theorem of Gauss is useful in evaluating
the surface integral over a closed surface by reducing it
to a volume integral (triple integral) and vice versa.

Theorem 7.10. (Gauss’s Divergence Theorem). Letj‘
be a vector-point function possessing continuous
first-order partial derivatives at each point of a
three-dimensional region ¥ enclosed in a closed
surface S. Then,

/S/]f.hdsz//V div}dV://V V.-fav,

where 7 is the outward-drawn unit normal vector to
the surface S.
The divergence theorem can be expressed in the
forrr_l' of Cartesian coordjnates as follows:
Let/ =fi i+f,j+/; k. Then

divi=vV f—%+%+%.

oy 0z

Let the outward-drawn unit normal vector 7z makes
angles o, f, and 7y, respectively, with positive
directions of x-, y-, and z-axis. Thus, cos o, cos f,
and cos y are the direction cosines of 7 and so,

n=cosa f—i—cosﬁf—}-cosyl%

and then,

7’ n= (fl i+hHj+f l}) (cosocf—l—cos/?j—&—cosyl})
=ficosa+f>cosf+f;cosy.

Hence, the Gauss’s Divergence Theorem takes the
form

JI] (it o

= / (fidvdz + frdz dx + fadx dy),

N
since cos o dS = dydz, cos § dS = dz dx, and cos
dS = dxdy. This form of Gauss’s Divergence Theorem
is also known as Green’s Theorem in Space.

Proof: Consider a closed surface S, which is such
that it is possible to introduce a rectangular coor-
dinate system, such that any line parallel to any
coordinate axis cuts S in, at the most, two points.
Let R be the projection of the surface S on the
xy-plane. Then, in accordance to our assumption, a
line through a point (X, y, 0) of R meets the boundary
of S in two points. Suppose that the z coordinates of
these points are z = ¢;(x, y) and z = ¢,(x, y), where



®a(x, ¥) > ¢1(x, y). Then,

][] [

// / aﬁdz dy dx
//f3 (x,,2) )dydx

://[ﬁ(x7y7¢2) _ﬁ(xﬂy7¢l)]dydx'

(1)
Let S; and S, be the portion of the surface S corre-
sponding to z = ¢; (x, y) and z = ¢, (x, y), respec-
tively. Let 71, be the outward-drawn unit normal
vector to S,, making an acute angle y, with the

positive direction (l%) of z-axis. If dS, is projected
on the xy-plane, then this projection dy dx of dS, is
dydx = cosp,dS, = k. ky dS,.

In the same fashion, let 72; be the outward-drawn
unit normal vector to S, making an obtuse angle 7,
with k. Then,

dydx = cos(m —y,)dS)

Therefore,

/R [ Ay oy = /S 2 £ kindS,

= —cosy,dS| = —k. 7 ds;.

and

/ ﬁ(xayv(rbl)dydx:*/ f3]€ ;11 dS1
R S

Hence, (1) reduces to

I 5

/ £ k.ny dS,
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Similarly, projecting S on the remaining two coordi-
nate planes, we have

///afldV:/flf.ﬁdS
///afde://fzj.hdS. (4)

Adding (2), (3), and (4), we obtain

(G a)e

://(ﬁ i+ j k)i ds
S

:/S 7. nds.

This proves the theorem. The Gauss’s Divergence
Theorem can be extended to the surfaces which are
such that lines parallel to the coordinate axes meet
them in more than two points. For this, the region
enclosed by S is partitioned into subregions whose
surfaces satisfy the condition assumed in the above
proof. Applying the theorem to each subregion and
adding will yield the required result.

and (3)

Deductions:
(1) If 72 is the outward-drawn unit normal vector to S,

then
//V F.Nedv = /S of . i dS
—//V ¢ divf dv.

Proof: By Gauss’s Divergence Theorem,

//thsz// div F av.
S V
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Putting F= c/)j‘, we have

//qs}".hdsz// div(qﬁ{?)dV
S 14
://V (¢ divi+7 vo)ar
= //V o div f dV
+///}f NodV
and so, '

//V/./q’.VtédV:/S/qﬁ‘?.hdS—//V/¢div_7’dV,

(i) [[f xndS=— [[[curl f av.
N 14

Proof: By Gauss’s Divergence Theorem,

/S/thsz//y/divﬁdlf.

Putting F=a x_?, where d is an arbitrary constant
vector, we have

/S/(ax}).hdsz//V v-(ax})dV
/S/a. (}xh)dsz—//s/a.(v x}")dV

or

a/s/ (?xh)dS:—Zz./[ (v xf)dV

or

a[/s/ (?xﬁ)ds+/[/(Vx?)dV] -0
/S/(jth).Jr//V/(vX]f)dV:o,

(o)

that is,

//fxndS— /// curl 7 dv.

(iii) ff¢ ndS=[[] grad ¢ dv.

Proof: By Gauss’s ﬁivergence Theorem

/S/?.ﬁdS://V/ div 7 av.

Putting? =4d ¢, where @ is on arbitrary constant
vector, we get

/S/(zicb) .hdS:/l/ div(@ ¢)dv
~J[[v-@oar
" ffms-s fffo

[// s [ w0
/S/ i)ds — //V (V¥ =0
[ sais- o

EXAMPLE 7.63

If S is a closed surface, 7 is the outward-drawn
normal to S and V is the volume enclosed by S,
show that

(i) // 7. i dS =3V,
i [ff awvnars
v
(iii) /S/il dS =0, and
(iv) /S/fn as =o6v,

wherej‘=xf+2yj+3zl€.

or



Solution. (i) By the divergence theorem,

/Z?Jnh:/y dW?dV:/]/V~?dV
///( o “‘aa)

: (xz-i—y]—i-zk) av

:3/Z/dV:3V.

(i1) By the divergence theorem,

/{ divth:/S/h.ﬁdS
:/S/dS:S.

(iii) If a is any constant vector, then

Zi.//hdSZ//Zi.hdS
s s
:// divadrv,
v

by divergence theorem
= 0, because div a = 0.

(iv) By the Gauss’s Divergence Theorem

/S/}’.hdsz// V.fdv
///(’_”a riz)

x1+2yj+3zk) av

fffoee
:6/[ dv =6V,

EXAMPLE 7.64
Verify the divergence theorem for;’ =d4xi—27%

+22k, taken over the region bounded by the cylinder
¥ +y*=4,z=0and z = 3.
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Solution. In Example 7.58, we have shown that

/S/]‘.hd5847r.

On the other hand,

// divfdv= // v-jav

Smce z varies from 0 to 3, y varies from

Zy)

///L? B
+8( )]dV
/// (4—4y+32)dvdy dz.

—V4 —x?

— x2 and x varies from — 2 to 2, we have

// div f av

VZE R
/ /4 4y+2z)dz} dy dx
Lo

3

dy dx
0

2
4z—4yz—|—2 }

[12 — 12y 4 9] dydx

Va2
dy| dx,

-2 | Va2

since 12y is an odd function of y

==
/dy dx—42/\/ 4 — x%dx

-2 0

84 / V4 — x? dx, since integrand is even

(=]

2
84[0 +2sin~" 1] = 84 E] — 84r.
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Therefore,
/?.hdsz// div / dv
S 4

and thus, Gauss’s Divergence Theorem is verified
for the given function.

EXAMPLE 7.65
Verify Gauss’s Dlvergence Theorem for the func-

tion f 4xz i — 2} + yz k over the surface S of the
cube bounded by x =0, x=1,y=0,y=1,z=0,
and z = 1.

Solution. In Example 7.59, we have shown that

//}.hd&:%
N

On the other hand,

/ / / div7 dv
e
_ / / / {%(mnﬁ y2)+%(yz)} av

:///(4z—2y+y)dV:///(4z—y)dV

1

1

1 1
2
/2 y)dy dx:/[2y— } dx
0
0 0

Therefore,
//_?.hdsz// div f dv
N 4

and thus, the Gauss’s Divergence Theorem is
verified.

<

|

\H o0 _°

dx——

l\.)l'—'

EXAMPLE 7.66
Evaluate ff? i1 dS, where f =axi+byj+czk

s
and S is the surface of the sphere x* + y* + 22 = 1.

1 11
= /42 y)dz dydx://{——yz} dydx
o Lo 0 0

Solution. Since S is closed, by the divergence theo-
rem, we have

/S/}.hds//V div f av
:// V. fdv
///[axax 2

+ ()}dV

///a+b+c
eov [ffar
“weosafts).

since [ f [dV = volume of the sphere x> + y* + z°

=1, whlch 1s37r 13,

EXAMPLE 7.67
Verify Gauss’s Divergence Theorem for / = (x* —yz)i

—2x2y7+ 2k, taken over the cube bounded by the
planesx =0, x=a,y =0,y =a,z=0,and z = a.

Solution. The surface F is a cube with six faces as
shown in the following figure:

A7z
C F
G
E
. /0 BY
A
D
X Figure 3.6

To calculate [[f. 7 dS, we evaluate [[f.7 dS

) s s
over the six faces and then add those values.



(i) For the face OADB, we have n = —k and
z = 0. Therefore,
/ F.ndS
OADB
= {(x3 —yz)?—2x2y}'+21}] . (—l}) ds
OADB
a a a
~ [ [ -2axty—-2 [ isas
0 0 0
= —Za/dx:—2a[x]g
0
=—24% (1)
(i1) For the face CGEF, we have n = k and

z = a. Therefore,
// jf.hdsz//zdxdy
CGEF 00
a
= Za/dx
0
2 2

a-. (2)

(iii) For the face ADEG, we have n = i
x = a, and dx = 0. Therefore,

// 7.hdS=/0/(a3—yz)dydz

ADEG 0

1.47
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(iv) For the face OBFC, we have i = —i,
x = 0, and dx = 0. Therefore,

a

// }.hdsz/

OBFC 0

0/ (vz)dydz

: @)

For the face OAGC, we have n = —f,
y =0, and dy = 0. Therefore,

4]

a

// ?.hdsz/

OAGC 0

/dedz =0. (5)
0

For the face DBFE, we have i =,
v = a, and dy = 0. Therefore,

/D BZE Fnds
/ [¥z]gdx

a a
= //foza dxdz = —2a
0 0 0
a x3 a
=24 /xzdx =-24° [—}
310

0

(vi)

a

2a°
-3 (6)

Adding (1)—(6), we get

//]f.h ds = —2d*> + 24> + @

S

4 Cl2 2615 a5
A S A

R T

a

4
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On the other hand,

Tl ffjesa

V/l/ 202 (2t L]
ffoe- i oo
[ oo [jou].

a

; 394 s
:a/[xz)/]g dx:az/xzdx:az[x—} =4
3], 3

0 0

Thus,
/S/f.n dS:/Z divfdV

and thereby, Gauss’s Divergence Theorem is
verified.

EXAMPLE 7.68
Evaluate [[(x*—yz)dydz—2x?ydzdx+zdxdy over

the surface bounded by the coordinate planes and
the planes x =y =z = a.

Solution. By giving divergence theorem in Cartesian
form, we have

/ ( fidydz + fodz dx + f3dx dy)

g
///[ X = yz) aa( —2x%y) + aaz(z)]dV
:///(x2+1)dV:///a(x2+l)dxdydz

0

0/0/[x22+z]g dydz/[/a(x2+1)dy]dx

0 0

a

a
:a/[x2y+y]g dx:az/(szrl)dx
0

0
3

a
2 X ’
= da _—

+x| =L 4+a
0_3 '

EXAMPLE 7.69

Using Green’s Theorem in space, evaluate
[ (4xzdy dz — y*dz dx + yzdx dy), where S is the
s

surface of a cube bounded by the planes x = 0,
y=0,z=0,x=1,y=1,andz = 1.

Solution. Let
f=4xz, L=

Then, by Green’s Theorem in space, we have

/ (fidy dz + fodz dx + fzdx dy)

T
/// (ax (4xz) + ( )+ (yz))dxdydz
:///(4z—y)dxdydz

—y”, and f; = yz

7.19  GREEN’S THEOREM IN A PLANE

A domain D is said to be a quadratic with respect to
y-axis, if it is bounded by the curves of the form

y=0(x), y=w(x):

where ¢ and y are continuous functions and ¢ (x)
> w (x) for all x € [a, b]. Thus, a domain which is
quadratic with respect to y-axis is such that a line
parallel to y-axis and lying betweenx = aand x = b
meets the boundary of D in just two points.
Similarly, we can define domains which are quad-
ratic with respect to x-axis.

xX=a, x=0>,



The Green’s Theorem is useful in changing a line
integral around a closed curve C into a double
integral over the region R enclosed by C.

Theorem 7.11. (Green’s Theorem). Let £, g, 3 af , and 5 ‘9f
are continuous in a region R, which can be spht up
in finite number of regions quadratic with respect to
either axis. Then,

?{nydx—&-gxydy //<a§ )dxd

Where the integral on the left is a line integral
around the boundary C of the region, taken in such a
way that the interior of the region remains on the
left as the boundary is described.

Proof: Consider the region R bounded by the curves
x=a,x=b,y = ¢(x), and y = y(x), such that ¢(x)
> y(x) for all x € [a, b]. Let f be a real-valued
continuous function defined in R, and let g'_; exists
and is continuous in R. Then,

y y=b(x)
y =¥(x)
X=a X=b>b
P x
o(x) 9
/ —dxdy —/ / fdy dx
w(x

:/f X, . dx—/f
_ / Flx, ¢(x))dx — / S (e, w(x))dx
J 2

b a
- / £ e, wlx))ds + b/ £6, $(x))dx
- j{f(xvy)dx
C
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Therefore,

ff(x,y)dx = —//%dxdy. (1)
c R

Similarly, it can be shown that

j{ x,y)dy = // dxdy. (2)

Adding (1) and (2), we obtaln
dg 0
f[f(xy)dxjtgxydy //[g f}

Deductions:
(1) If f(x, ) = —y and g (x, y) = x, then by Green’s
Theorem, we have

?{xdy ydx) = // (1 + 1)dxdy
=2 / dxdy =24,
where A denotes the area of the region R. Thus,

1
A= Z%[xdy — ydx].
c
(i1) Putting f (x, y) = —y and g (x, y) = 0, the
Green’s Theorem implies

- ]{ydx = // dxdy = Area of the region R.
R

(iii) Putting g (x, y) = x and f (x, y) = 0, we get
%xdy = // dx dy = Area of the region R.
C R

Hence, the area of a closed region R is given by any
of the three formulae

1
j{xdy, - %ydx, or E%(xdy — ydx),
c c c

where C denotes the boundary of the closed region
R described in the positive sense.

EXAMPLE 7.70

Verify Green’s theorem in the plane for
$1(xy + »*)dx + x*dy], where C is the closed curve
c

of the region bounded by y = x and y = x°.
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Solution. The region is bounded by the straight line
y = x and the parabola y = x*. The point of inter-
section of y = x and y = x* are (0, 0) and (1, 1).
We note that

y
A
(1,1
P
C X2 =y
G
0 > X
]{[(xy + ) dx + x*dy)]
c

= / [(xy + ) dx + x*dy)]

+ [l eP)aesal )

G
For the line integral along C, we have y = x
s0, dy = 2xdx and x varies from 0 to 1. Thus,

/ [(xy + ) dx + x*dy)]

2 and

[(o® +x*)dx + x? (2x)dx]

5 471
Sy [ 2D
(x +3x)dx—[5+4}0—20.

S S _

For the line integral along (2), we have y = x and so,
dy = dx, and x varies from 1 to 0. Therefore,

0
/[(xy+y dx+x2dy / x? +x dx+x2dx]

C, 1
3
/3x2dx {x] =—1.
3]
1

19 1
2 20— =
/[(xy+y )dx + x*dy] =5 | 30"

C

Hence, (1) yields

On the other hand,

i
Sl

// [2x— (x+2y)]dydx

nyz

xy+y )] dxdy

1

=/'/u—mew=/m~fmw

x2

1
5,471
4 3 x X 1 1 1
— — d = |——— =,
./kx x*)dx {5 4}0 5420
Hence,

f%7yﬁﬂiyw /yc%—%> x dy,

and thus, Green’s theorem is verified.

EXAMPLE 7.71

Apply Green’s Theorem to show that the area

bounded by a simple closed curve C is given by

1 $(xdy — ydx). Hence, find the area of the ellipse
c

2 2
Stp=1L

Solution. In Deduction (i) of Green’s Theorem, we
have shown that the area A bounded by a simple
closed curve C is equal to % $(xdy — ydx).

C

For the second part, we know that the parametric equa-
tions of the ellipse;%Jr%z =larex=acosfandy=>5
sin 0. Thus, dx = —a sin 0 df and dy = b cos 0 df.
Therefore, the area A of the ellipse is given by

1
A :—j{(xdy—ydx)
2Jc

1 2T
25/0 [(acos0)(bcos0)do

— (bsin 0)(—asin 0)d0)
1 2T
= 5/ [ab cos® 0 4 absin®0]d0
0

ab ab
7 A d@ 7[0}0 —7Tab



EXAMPLE 7.72
Verify Green’s theorem in the plane for §[(3x*—

C
8?)dx + (4y — 6xy)dy], where C is the boundary
of the region bounded by x = 0, y = 0, and
x+y=1

Solution. We have

fi(x,y) =3x* — 8% and f(x,p) = 4y — 6xy.

Therefore,

e
g
s/m—xﬁuz

0

1
21x
—6y + 16y)dy dx—lO/[ ] dx
0

S0-9=2 W

Further, the line integral splits into three parts:

f{ﬁdx+ﬁdy}:/+/+/.
c 04 AB BO

y
A

AT o *

Along OA, we have y = 0 so that dy = 0 and x varies
from O to 1. Hence,

1

2 x31
= [ 3x“dx=3|—| =1.
310

04 0
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Along AB, we have y = 1 — x and so dy = —dx and
x varies from 1 to 0. Therefore,

0

/:/[3x2—8(1—x)]2dx

AB 1

+ [4(1 —x) — 6x(1 — x)](—1)dx

0
:/}-nf+zw—1aw
1

0
[ 11—+26——12x
1

11 8
=——13+12==
3 * 3

Along BO, we have x = 0 so that dx = 0 and y varies
from 1 to 0. Therefore,
0 0

/)t/@@ 4FL -2.

BO 1

Hence,

j{[fzdxmdy} =1+§—2=§. 2)
C

From (1) and (2), it follows that

%[fzdx-kﬁdy // <%—%> dy,

and thus, Green’s theorem is verified.

EXAMPLE 7.73

Using Green’s theorem in a plane, evaluate
$[(y — sinx)dx + cosx dy], where C is the triangle
c

with vertices (0,0), (%,0), and (%, 1).

Solution. We have
fi(x,»)

The closed curve C is the triangle with vertices
(0,0), ( ) and ( ) as shown in the following
figure. The equation of the line OBis’g =1 8, that
IS y = ?

=y —sinx and f(x,y) = cosx.
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Y
A o r
(? )
7
P §
X=3
> X
0| (0,0) AZ,0)

By Green’s Theorem, we have

e o= [ (G55 e
=ﬁbmm
:// ~(sinx+ 1)dx dy

0 0

- C%(y - sinx)} dx dy

5
—/b/ —l—ysinx]?dx
0
3
= ——/x(l + sinx)dx
T
0

[xx—cosx / X — cosx)d.
0
s

2
= —§+7—T/(x—cosx)dx

EXAMPLE 7.74
Evaluate, by Green’s Theorem, §[(3x —y)dx+

C
(2x + y)dy], where C is the curve x*> + y* = a°.

Solution. We have
fix,y) =3x—yand fo(x, y) = 2x +y.
By Green’s Theorem,

/(/‘idx+fzdy)
//<%—%> dy:/ (2 — 1)dxdy
gl R
Va2 a Vid-x?
= / /dxdy:4/ dx dy
—a _\J2 32 0 0

:4/\/612 — x2dx

f=]
o \
[S1E

=4a*> [ cos* 0 dO, x = asin0
1«
— 4 2
a5y =ma
EXAMPLE 7.75

Compute the area of the loop of Descartes’s Folium,
X+ = 3axy.

Solution. Putting y = #x, we get the parametric

equations of the contour of the folium as
3at d 3af?
=——andy=——.
147 SRS

The loop is described as t varies from 0 to oo, since
t=2= tan@ where 0 varies from 0 to . Thus,
dx:3a( o7 ".dt and dy = 3a-2=L, dt. Hence, by

(1+£)°
Green’s Theorem,

1 o [ Pdt 3
A = — _—_— = — 2_
rea 2}g(xdy ydx) = 2/(1+t3)2 74
c 0

7.20  STOKE'S THEOREM

The Stoke’s Theorem provides a relation between a
surface integral taken over a surface to a line inte-
gral along the boundary curve of the surface.



Theorem 7.12. (Stoke’s Theorem). Letj‘ be a vector-
point function possessing continuous first-order
partial derivatives and S be a surface bounded by a
closed curve C. Then,

}[ 7.di = / / curl f.ndS,

where 7 is acunit normalS vector at any point of S,
drawn in the sense in which a right-handed screw
would move when rotated in the sense of descrip-
tion of the curve C.

Proof: Let the unit normal vector 7# makes angles
o, f and y with the positive directions of co-
ordinate axes X, y, and z, respectively. Then,
n= cosocz+cos[3]+c05/k Since 7= xz+y]+zk we
have di=idx+jdy+kdz. Let f =fi+f)+fik.
Then,

|~
Q ~.
o v

curl f=Vxf= 2 ay z

f1 2 fa
_;(%_%)y(%_%)
oy 8:) 7\ ox

- (0f Ofi
+"(a‘a—y)

On the other hand,
Fdr = (fli' +h +f31€) : (Z’dx +jdy + lédz)
= fidx + fody + f3dz.

Therefore, Stoke’s Theorem takes the form

7{(fldx + fody + f3dz)

1

9  Of
+ <8x — 8y> cos y] ds.

o 9
+ <8—2_8_{j> cos f8
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We now prove the theorem in this form. Suppose z = ¢
(x, v) be the equation of the surface S and R be the
projection of S on the xy-plane. Then, the projection
of the curve C on the xy-plane shall be the curve Cy,
which enclose the region R. Therefore,

riteradr = § ity o)
c C
~ [ lrero)ax — 0ay
C
0
- // ER
by Green’s theorem in plane)

/ Sy, ) dy

// o

Since the direction rat1os of the normal 7 to the

9]
- a_yﬁ (xaya ¢):| dx dy

+ 20 e dy. (1)

N 3¢}
0z Oy

surface S are ‘g—f, ‘g—¢, and —1, we have
y
coso  cosfi cosy and ¢ cosf
= = SO — = — .
¢ 0% —
& > 1 dy cosy

Moreover, dxdy being the projection of dS on the
xy-plane, we have
dxdy = cosdS.

Hence, (1) reduces to

}{ Fi(x, 2)dlx

=[5 5 () e
// {%c 0s cosy] ds. (2)

Similarly, it can be established that

j{fz xX,p,z)dx = //[afz osy—fzcoscx}dS (3)
}{ﬁ X, 0,2) //{ osoc——cosﬂ} ds. (4)
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Adding (2), (3), and (4), we get

f(fldx + f5dy + f3dz)

VIERI

i 0 h 0
+<£8_J:i> cos i + <8_j28_j;) cosy} ds.

This completes the proof of the theorem.

Remark 7.1. The equivalent statement of Stoke’s
Theorem is that

The line integral of the tangential component of a
vector-point function j‘ taken around a simple
closed curve C is equal to the surface integral of the
normal component of the curl of ]’ taken over any
surface S having C as its boundary.

EXAMPLE 7.76

Verify Stoke’s Theorem for the ﬁJnction?:szz#x)ﬁ,
integrated around the square in the plane z = 0,
whose sides are along the linesx = 0,x = a,y = 0,
and y = a.

Solution. Since /' = x? i + xy /, we have
j’.d 7= (x2 f—i—xyj) . (2 dx+j dy) = x%dx + xydy.

Therefore,

fﬁdr:f@wpww@y
C C

where C is the square shown in the figure.

Y
4 y=a B(a, a)
C(0, a)
x=0 =2
p X
©l (0,0 y=0  A@0)

Thus,

fﬁﬁ:/+/+/+/. (1)
C 04 AB  BC (4
Along OA, we have y = 0 and so, dy = 0. Thus,

- 34 3

F7d7—= | 2dc= 2| =&

/f.dr—/xalx-[s}0 3
AB 0

Along AB, x = a and so, dx = 0. Thus,

a

- a?
/f.d?:/aydyzz.
AB

0

Along BC, we have y = a and so, dy = 0. Thus,

3
fﬁ?:/ﬁw:—%.

BC a
Along CO, we have x = 0 and so, dx = 0. Thus,

0
/fd?:/b@:u
co a

Hence, (1) yields

- 613 a2 a a
dr=24 L ¢ _ v
%fr 327372
C

On the other hand,

i j ok A
curl f = % (% [)Q =yk
x> xy 0

Since the square (surface) lies in the xy-plane,
= k. Therefore,

curl?.ﬁ =y k. = y

Hence,

]{ _r’://curlf. nds.

C



EXAMPLE 7.77

Verifies Stoke’s Theorem for } —yitzj+x k,
where S is the upper-half surface of the surface x* +
y* + 2> =1 and C is its boundary.

Solution. Here, C is the boundary of the upper-half
surface of x* + y* + z* =1, that is, C is the boundary
of the circle x* + y* = 1 in the xy-plane. Thus, the
parametric equations of C are x = cos ¢, y = sin ¢,
z=20,and 0 < ¢t < 27. Therefore,

f}. d7= f(fldx + fody + f3dz)
C

C

= 7{ [vdx + zdy + xdz]

27

:/[Sint(— sin ¢)]dt

0
2T
:—/sinztdt

1 s
—4 tdt = —4.—. - = —m.
/sm 22 T
0
On the other hand,
ik
r—_lo o o
curl f = 5 5 5
y z x
~(Ox Oz 4 @_@ y 0z ('9)/
8y 0z 0z Ox ox y
—(i+j+k)
and so,
curl_?.h:—(f—i—j—i—l%)./;:—
Therefore,

// curl;‘. ndS= —//dx dy = —77(1)2: —T.
s
Hence,
f}. d?://curz]f. N
C s

and thus, Stoke’s theorem is verified.
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EXAMPLE 7.78

Verify Stoke’s theorem for the vector field
7 = (x* —y*)i + 2xy j, integrated around the rec-
tangle z = 0, and bounded by the linesx =0,y =0,
x=a,andy = b.

Solution. Since /' = (x? — 2)i + 2xy j, we have

7. d7v= [(x2 yz)f+ nyj] . (Z dx +j dy)
= (x* —)*)dx + 2xydy.
y
A
C0, b) y=b B(a, b)
x=a
x=0
P x
0| (0,0) y=0  A(@a0)
Therefore,

]{7 d7 = j{[(xz fyZ)dx + 2xydy)]
c

o[ ]

Along OA, we have y = 0 and dy = 0. Therefore,

314 3
/f.d?:/xzdx: [%L:%.
04 0

Along AB, we have x = a and dx = 0. Therefore,

/;‘ d7= /Zaydyzabz.
AB

0

Along BC, we have y = b and dy = 0. Therefore,
9 0

B{?. d?:/(xz—bZ)dx: ﬁ;-bzx]a

a
3

= —%—Fabz.

Along CO, we have x = 0 and dx = 0. Therefore,
/ F.d7=0.
co
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Hence,

- a3 a3
%f. d7:§+ab2—?+ab2 = 2ab*.
C

On the other hand,

S T
curl f =V x f = % % %:4yk.
¥—32 2xy 0
Therefore,

curl/_".h = (4y 12) (l}) =4y

and so,

a

b a
29 b
//curlf.ﬁdS:4/ /ydy dx—4/F}2] dx
s 0 \o 0 0

20? / dx = 2ab”.
0

Hence,

f}f. d?:/s/curlf. i dS

and thus, Stoke’s theorem is verified.

EXAMPLE 7.79
Apply Stoke’s Theorem to evaluate

/[(x +y)dx + (2x — z)dy + (y + z)dz],

where C is the boundary of the triangle with vertices
(2,0,0), (0,3,0), and (0,0,6).

Solution. Taking projection on three planes, we note
that the surface S consists of three triangles, OAB in
xy-plane, OBC in yz-plane, and OAC in xz-plane.
Using two-point formula (or intercept form), the
equations of the lines AB, BC, and CA are res-
pectively 3x + 2y = 6,2y +z =6 and 3x +z = 6.
We have

-,

f=G+p)i+@x—z2j+@y+2)k

Therefore,

i

curl f = 2

(SO

9z

\Sle: ~.

xX+y 2x—z y+z

:i[a%(yﬂ)—gz(zx—z)]

+ﬁ§w+w—%@+4

Now, by Stoke’s Theorem,

f]’.d?/s/curl.?.hds
[T

0AB OBC oAc
[ [ ih) - (Ba
0AB

+// (27+k) . (f)ds

OBC

+// (2i+k) . ())as

]

0AC

6-2y
3

/dx dy+0+2
0

6 [ %
//dy dz
0o |0



36 2 66

- ree 5

0 0

3 6

1 y 2 2
=3[or-23] +5[6Z‘3L
=3+18 =2I.

EXAMPLE 7.80

Evaluate f? d 7 by Stoke’s theorem, where ? =
c

32 i+x% — (x+2)k and C is the boundary of the
triangle with vertices at (0, 0, 0), (1, 0, 0), and (1, 1, 0).

Solution. We have

i k A
curl f = | & % 2 =j+2(x—y) k.
P e —(r+2)

Therefore, = X
curl f. n = {]’—&—Z(x—y)k] .
We note that the z-coordinate of each vertex of the
triangle is zero. Therefore, the triangle lies in the
xy-plane. Hence, #n = k. Thus,
curl f. = [j—&— 2(x —y)lg} k=2(x—y).
y

A

B(1, 1)

Vi

» X

(0] y=0 A(1,0)

The equation of OB is y = x. Therefore, by Stoke’s
theorem, we have

%fdr—//curlfndS // x —y)dy dx

1

:2/[xy—yﬂj)dx:2/( 2——>dx

0
1

371
S Ll
—/xdx—[3}0—3.
0

f=1
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7.21  MISCELLANEOUS EXAMPLES

EXAMPLE 7.81

Evaluate [ (x> 4+ yz)dz, where C is the curve
c

defined by x = ¢, y = £*, z = 3t for t lying in the

interval 1 <¢ < 2.

Solution. The parametric equation of the curve C are
x =1,y =t and z = 3¢. Therefore

2
(X? +yz)dz =3 | (2 +38)dt
[

EXAMPLE 7.82

Find the work done when a force F =
(x* —»* +x)i — (2xy + y)j moves a particle from
the origin to the point (1, 1) along y = x2.

Solution. We put x = 7 and gety = 2. Thenx = 0 =
t=0andx=1=¢=1.Thus

-
-~ A AN A A LA dr

=xi+yj+zk=ti+*j implies

A A — A A
=i4+2tj and F=F—t*+6)i -2 +)).

Therefore

1 d
W—/;«“'d7_/(1?'d—r>dt
dt
0

c
1

= /{{(ﬁ A )i +t2)JA} : (?+211A')}dt

0
1

:/[(t2 — 1) = 2128 + 7)) dt

0
1

:/[tz—t4+t—4t4

0

—28dt
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EXAMPLE 7.83
If /= (x+3y)i+ (v — 22)j + (x + J2)k is Sole-
noidal, find A

Solution. As in Example 7.25, we have

fH=x+3y,
fr=y—2z
fr=x+ iz
Then
div f—% Oh Oy 1524
dy 0z

The vector will be solenoidal if div / — 0, that s,
if24+A=0o0rif A = -2.

EXAMPLE 7.84

(a) Show that the vector field F = 2x(3% + 2)i +
2x2yj + 3x2z%k is conservative.

(b) Prove that (3? — 2%+ 3yz — 2x) i + (Bxz +
2xy)j + (3xy — 2xz +2z) k is both solenoidal
and irrotational.

Solution. (a) Since every irrotational field is con-
servative, it is sufficient to show that cur/ F =0.
We note that

i j k
curl F = % 8—‘7y E‘)—Z
2x(y? +2°) 2x 2y 3x22?

[ (r2) - 2 (20 y)]
_}[% (302) - 2 (ax(? +z3))}
+k[§ (2x%y) - i(zx(yu;))}

=0 — (6xz% — 6x2%)j + k (4xy — 4xy) = 0.
Hence the force F is conservative.

(b) f =(? —zz—|—3yz—2x)?
A
+ (3xz 4 20) ] +(xy — 25z +22) &
Then

- A D 0 ~O\ 7
Vf:(’a‘* Tyt a_>f
=-24+2x+2-2x=0.

Hence f is solenoidal. Further,

A A A
i J k
- 0 9 9
cur[f = Ox ay 0z
122
3xz42xy 3xy—2xz+2z
+3yz — 2x
A A
= i[3x —3x] — j[3y — 2z + 2z — 3]

A =
+k[3z+2y—2y—3z]=0

-
Hence f is irrotational.

EXAMPLE 7.85

Find the gradient of the sealer field f(x,y) =
y* —4xy at (1,2).

Solution.

Vf = <lg+jaa+k >()/2 4xy)

-0 .0
=i (” — 4xy) iy (v — 4xy)

L9

k= (* — 4

+ Bz(y xy)
= —4yi+ (2y —4x)j +0
= —8i+0j = —8iat(1,2).

EXAMPLE 7.86

A particle moves on the curve x = 22, y = > — 4t,
z =3¢t — 5, where ¢ is time. Find the components of
velocity and acceleration at time =1 in the
direction of i — 3;j + 2k.

Solution. Proceeding as in Example 7.8, we have

—

F=xi+tyj+zk =20+ (2 —4t)j+ (3t - 5)k.



Therefore
dr . SN
V=0 = afi+ (20— 4) + 3k
dt
=4i—2+3k at t=1,
L d¥
a= d2—4l+2j
The unit vector in the direction ofAi—3}'+27cis
. i-3j+2k i-3j+k
i —3j+2k]| V14

Therefore the components of velocity and accel-
eration in the direction of i — 3/ + 2 k are

W s =342k 44646
V= (4i—-2j+3k)- —
N Via
16
V14
or
3j+2k 2
a.n=(4i+2) -
( ) V14 V14

EXAMPLE 7.87
3

Find the values of @ and b so that the surfaces ax” —
by*z = (a+3)x* and 4x’y —z> =11 may cut
orthogonally at (2, —1, —3).

Solution. Following Example 7.21, we have

¢ = ax’ — by*z — (a + 3)x*
w=4axly -2 —11.

. A
V¢ = <i£+jg+22) (ax® — by*z —a +z)x*
Z

A A A )
=i [3ax’ — 2 (a+3)x] +j[-2byz] + k[-by’]
— P (8a—12)—6bj —bk at (2, =1, —3)
.0 N0 AD
Vy = za+18—y—|—k£> (4x°y —z7 — 11)

T (8uy) +7 (42) 4k (=32)

A A A
=167 +16j =27k at (2, —1, —=3).
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Then V¢ - Vi = 0 implies

A A A A A A
[(8a—12)i—6bj —bk].[-16i+16) —27k] =0
= 128a + 69b = 192. (1)
Also (2, —1, —3) lies on ¢. Therefore
8a+3b—4a—-12=0
or
4a+3b=12 (2)
Solving (1) and (2), we get a = —%,
EXAMPLE 7.88
(a) Find the directional derivative of ¢ =
X’ yz +4xz> at the point (1,-2,~1) in the
direction of the vector 2i — j — 2k.
(b) Find a unit normal vector 7 of the cone of revo-
lution z* = 4(x? +y?) at the point P(1,0,2).
(c) Find the directional derivative of f(x,y,z) =
2x% + 3y + 2% at the point P(2,1,3) in the
direction of the vector a = i — 2k.

Solution. (a) We have

Vf = ( a—|—]§—&—k(,?)(xzyz—|—4xzz)

=1(2yz 4+ 42%) +j(x’2) + k(x?y + 8xz)
=8i—j— 10k at (1,—-2,—1).

The unit vector in the direction of the given vector
2i—j—2kis

o 2i—j—2k 2i—j—2k
n = = .
VAT AT 3

Therefore the directional derivative of [ at
(1,—2,—1) in the direction of 2i —j — 2k is
W (2T =2k 37
Vf.ii = (8i —) — 10k). (”) ——
3 3
(b) Similar to Exercise 16 of Chapter 7.
Let ¢ = 2> — 4x> — 4)%. Then V¢ is along the
normal vector.
But
A9 AOD

9 2 2 2
= 4 4
Vo (za +]8y+k82> (z X )

A
= —8x i —8yj +2zk

AA
= —8i+4f at the point (1,0,2).
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. A .
Therefore unit normal vector n to the given cone at
(1,0,2) is

A A A A A A
n_—8i+4k _ -8i+4k _-2i+k
V64 £ 16 V80 NG

(c) Similar to Example 7.16.
We have

g N0 0
Vf = (AB +Ja +k8>(2x2+3y2+22)

—4x] +6yj +sz
= 8i+ 6 + 6k at the point (2,13).
A

Now unit vector in the direction of ? —2k1is
A i—2k 1 /A A
Vitd 5 (l )
Therefore, the directional derivative at (2, 1, 3) in

A A
the direction of i —2 k is

Vf.u= ! <8A'+6A'+61§> (A‘ 22)
U =— —
\/§ ! J !

1
—[B+0-12]=—

Vs
EXAMPLE 7.89

If r=| 7| and a is a constant vector, prove that

Sl =

Sy

ST T

V x

axr _2—n- n

7 - n a + 2 (
Solution. If » = |7| and & is a constant vector, then
using 7.12 (B) (ii), we have

—

ax r} —V x [ (@ x )]

MV X (ax F)

v |

Also by Example 7.33, (ii)

V X (d x#) = curl(@ X 7) = 2a.

Therefore
a x 7 -n n o .., 2a
VX[ " ]_ " +r"“(ar)wrr"
2—n no. ..
-— a+—rn+2(a.r) 7,

which is the required result.

EXAMPLE 7.90

Show that
grad(f.8) =f x curlg + 8 x curlf + (f.V)g

+ @Y.

Solution. We have

-

grad(f -8)=

or

) = (n 08\ (- r\0g
(f 8_i> z—fx(?x%)—&-(f-?)a—i.
Therefore
08\ 4 ([~ OB L\ 08
Z(fa)l X(lea)JrZ(f.l)a
:f X curlE—l—(F-V) g. (2)

Interchanging f and g in (2), we get

—.

If \ - . .
> (g.%) i=gxcurlf +(3.V)f. (3)



From (1), (2) and (3), it follows that
grad(f-?) :/7 xcurl§—|—§ xcurl;
+ (fﬁV) §+(§~V)f .

EXAMPLE 7.91
Verify divergence theorem for

F = (& —yz)i+ (" — x)j + (Z — )k,
taken over the rectangular parallelopiped 0 < x < a,
0<y<h 0<z<ec.

Solution. To verify Gauss divergence theorem, we
have to show that

///divﬁ dv:// F v ds.

Firstly, ' '
/// div F dv
Yol b
MRS
00 0

Now to calculate [[ F -7 ds, we divide the surface

s of the parallélepiped 0<x<a 0<y<h,
0 < z < cinto six parts.
AZ
C F

\4
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(i) For the face OADB, we have n = —k, z=0.
Therefore

// F . ds:// (i + y*) — xyk).(—k)ds

OADB OADB

b a 22
://xydxdy:aT.
0 0

(i1) For the face CGEF, we have z=c, n =k.
Therefore

/ / Fiu. ds

2b2
= / / (¢* — xy)dx dy = abc* — aT.
0

(iii) For the face ADEG, we have i1 =1,x = a and
dx = 0. Therefore

c b
/ / F .. ds ://(az—yz)dydz
ADEG 0 0 :
b*c?
= a*bc — 7
(iv) For the face OBFC, we have i = —i,x = 0,
dx = 0. Therefore
3 a b p22
/ / F.h.ds://yzdydz:T.
OBFC 0 0

(v) For the face OAGC, we have it = —j, y = 0,
dy = 0 Therefore

a

c
2.2
// E . dS://zxdzdx:%.
0

OAGC 0

(vi) For the face DBFE, we have it =, y = b,
dy = 0 Therefore

S [r a*c?
/ / F.h.ds://(bz—zx)dzdx:abzc—T.
00

DBFE
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Hence adding the values of the above integrals,
we get

//Fﬁ ds = abc(a+ b+ c).
s

///divi«“dv://ﬁ.h ds,
v s

which verifies the Gauss’s divergence theorem.

Hence

EXAMPLE 7.92

Evaluate usmg divergence theorem I ( s (V-7)dA,

where V' = x?zi + yj — xz% and S is the boundary
of the region bounded by the paraboloid z = x> + ?

and the plane z = 4y.

Solution. We have

-

V= x’zi —l—y}’ — xZk.

Therefore

e o o [(~0 O 50
divv=V V‘(’&”E)_y“”‘&)
><(xzzAi+y}'—xzz?c>:sz+1—2xz:l.

Using Divergence Theorem, we have

//(Vh)dA:///didev
:// dv,since divv=1.

Y A
= / / dz dx dy
0o _ / 2 x2+4y?

&~
i
<

|
I~

[4y —x’ —yz] dxdy

S
)

I
S}
o\?
<

[4y —x? —yz} dxdy

f=}

(even integrand is x)
4 3 VAy—y*
=2 / { 4y — y x——] dy
310
0

“Hw-pta=t[[-0-27 a

Substituting y — 2 = 2sin ¢, we have dy = 2 cos t dt
and so

// divvdv=— /( — sin’f) cost dt

64
:?/cos t costdt

EXAMPLE 7.93

(a) Using Green’s theorem in the plane evaluate
J1(2x* = y*)dx + (x* + y*)dy] where C is the

goundary of the region bounded by x =0,
y=0,x+y=1
(b) Using Green’s Theorem find the area of the
region in the first quadrant bounded by the curves
1 x

y:xmy:;ay:Z'

Solution. (a) We have

I (-2



(b) Using Green’s Theorem,

1
4 =5]{ (xdy — ydx),

c

g

Cl Cz c3

=5 / (xdy — ydx) + / (xdy — ydx)

LC1 (&)

+ / (xdy — ydx) |,

c3

where ¢; isy =%, c;isy=1andcsisy=x.

Along ¢y, we have y = 7 so that y = )lcdx and
x varies from 0 to 2. Therefore

de - 2dx> — 0.

Along ¢; we have y =1 so that dy = — Ldx and x
varies from 2 to 1. Therefore

f (xdy — ydx) =

€1

o\w

1

s [ (Zae L)

[} 2
1
2/1d 2log?2
= — —ax = .
X &

Along ¢3, we have y = x so that dy = dx and x
varies from 1 to 0. Therefore

f (xdy — ydx) = 7{ (xdx — xdx) = 0.
Hence

f(xdy—ydx) :%[O+2log2+0] = log 2.

c

EXAMPLE 7.94

Verify Gauss divergence theorem for the function
F =yi+xj+z°k over the cylmdrlcal region
bounded by x> +3> =9,z=0and z =

7.63
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Solution. We have

[[fors

Vo2 T 2
:/ / /2zdz dy dx
53 _Jomm LD
V9—x2 3 922
=4 / y) dx:8/ / dy | dx
Vo2 300
3 3
=16/\/9 dex—lél” V9% i ‘f]
) 2 270 3,
16{0+351 12] 7%:3677.

Similarly (Proceeding as in Example7.58), we have

//E‘rAlds:367r.
s

Hence the theorem is verified.

EXAMPLE.7.95 _ . . .
Evaluate [f 7.dSif f =yzi+2y*j +xz*k and S is

s
the surface of the cylinder x* 4 »* = 9 contained in
the first octant between the planes z = 0 and z = 2

Solution. By Gauss’s Divergence Theorem

/S/f-%dp/V//divfdv
e
/// [4y-+ 2xz]dz dy dx

VO—x2 2

// /4y+2xzdzdydx
0
0

0
n, 9 2
(2y )+8Z(xz )|dv

0
V9—x2
/ (8y+4x)dy dx

[4(9 —x2) +4x(9 — x2)?]dx = 108.

o\m S—_, °
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EXAMPLE 7.96

Verify Stoke’s theorem for F = i+ yj+ 2xk
for the surface of a rectangular lamina bounded by

x=0,y=0,x=1,y=2,z=0.

Solution. Similar to Example 7.78.
We have

—

A A A
[ =xi+yj+7xk.
Therefore
- — A A A A A A
fdr = i4+yj+2xk).(idx+jdy + kdz)
= xy*dx + ydy + 2*xdz.
Therefore

]{ f dr = ?{ (xy*dx + ydy + z*xdz)
C c

[«]+]+]

04 AB BC co

C(0,2)

B(1,2)

Y L x=1

-
L

0(0,0) A(1,0)

Along OA4, we have y = 0 and dy = 0. Therefore

1
/]f.d?:/oczx:o.
0A 0

Along AB, we have x = 1 and dx = 0. Therefore

Along BC, we have y = 2 and dy = 0. Therefore
0

/7.d7:/04xdx=4[xﬂ _ 5
1

BC 1

Along CO, we have x = 0 and dx = 0. Therefore
0

- 270
/f-dr/ydym -2
22
co 2

Hence

ff-d7=0+2—2—2=—2.
C

On the other hand,
i
— — Q
curlf =V xf=|x & o

0y

0] + 710 — 2] + k-2

A
1

A A
=22 j +2xyk.
Therefore
- A 5 A ANIEAN
curl f-n-ds=(—z"j+2xyk) k = —2xy

and so
1 2

//curl]?JAmds:fZ/ /xydy dx
s 0

0

Hence

}{f.ﬁ:/s/curzf-%ds

C

and Stoke’s Theorem is verified.

EXERCISES

Differentiation of Vectors

1. If 7 is a unit vector in the direction of 7, show

~ di _ 1 2 d7? -
that 7 x & = - 7 x &F, where [F| =r.



2. If a=~i—tj+(2t+1)k and b=(2:—3)i+
j—th, find (i) £ ( )and (ii)%(&'x?)),when
(=1

Ans. (i) —6, (i) 7j + 3 k.
3. Ifthe vector d has a constant magnitude, show that
d and £¢ "" are perpendicular, provided ‘ ‘ #£0.

Hint: .d=|d|* = constant 1mphes aa. a) 0
or d. d—“+"dd;’ -0 or 24.44 =0 and so, @ is
orthogonal to 44 it | ] #0.

4. 1f@,b, and ¢ are constant vectors, show that the
vector? =a * + b ¢+ ¢isthe position vector
ofa point moving with a constant acceleration.
Hint: d = 2 d (constant).

5. A pamcle moves along the curve x = £ + 1, y

% and z = 2 + 5, where t is the time. Find
the component of its Velomty and acceleration
at time ¢ = 1 in the direction i 4/ + 3k.

Ans. V11, \/81"1
6. A particle moves so that its position vector is
given by 7 = coswt i + sin wt j, where @ is
constant. Show that (i) the velocity v of the
particle is perpendicular to 7, (ii) the accelera-
tion is directed toward the origin and has a
magnitude proportional to the distance from the
origin, and (iii) # X ¥ is a constant vector.

Hint: 7v=0 and a@=9%'=—w’costi—

w*sinot j = —w?. 7

7. Find the unit tangent vector at any point on the
curve x = £ +2,y=4t—5,andz = 27 — 61,
where t is any variable.

Hint: 7 = ‘”

wherer—x1+yj+zk

Ans. 242 j+ k

8. Find the angle between the tangents3 to the
curvex:t,y:tZ, andz=~Fatt=+1.
Hint: r—x2+yj+zl€—tf+t2j+t3l€
Flnd d’ andputt =1and t = —1 to get T
and T 5. Then, the angle between T | and T 5 1S

T T
iven by cos 0 = -2
g Yy |T1 T2|

Ans. cos™'3.

9. Ifd = x?yz i — 2x2° j + xz° k, find the value of
5% (@ % B) at the point (1,0,-2).
Ans. —4 i — 8]
10. The position vector of a point at any time t is
given by 7 = ¢(cos i + sin 7 j). Show that (i)

7.65
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v, where d and v are respectively acceleration
and velocity of the particle and (ii) the angle
between the radius vector and the acceleration
is constant.

-

., d¥ L ) .
H1ntv:E:e’(cost—smt)i—l—et(smt—i—cost)j,

@ =sinh(t—1)i+2e' cost}.

Clearly @ = 2(Vv — 7).

11. The position vector of a particle at time t
is 7 = cos(t — 1)i + sinh(z — 1)j + K3k Find
the value of K such that at time ¢ = 1, the
acceleration is normal to the position vector 7.
Hint: ‘ihz’ att=1lis— i+ 6K kand7atz =1

(—+6Kk). (H—Kk)
VA(1+42)2

. For normality, 6K> — 1 =0 and SO,

is i + Kk. Therefore, cosf =

6K>—1
VI(14+K2)2
1
K= NG
12. A particle moves along the curve x = £ + 1,
y =7, and z = 2t + 5, where t represents the
time. Find the component of its velocity and
acceleration at time ¢ = 1 in the direction of

i+j+k
S (B 2] 7 d7
Hint: 7=(£+1)i+j+(2t+5)k and =

32742tj+2k. At t=1,9=3i+2]+2k. The

unit vector in the direction of Ai—i—]A'—i— 3kis Hﬁ—fk.

Therefore, the component of ¥ along i+ + 3k is

(3 i+27+2 k) (’+\’/J5§k) V/11. Similarly, pro-

ceed for acceleration, which will be \/—1_1.

13.If F=xyzi+x2*j—» k and §—x3 i—
xyz j +x%z lg, then determine g’; p £ at the
point (1, 1, 0).

Ans. —36;.

Gradient- and Fractional Derivatives

14. If 7 is the position vector of a point and d is any

vector, show that grad [? d 7;} =ad x b.
Hint: 7= xz+y]+zk and d=a, i+a>j+ask.

Then, d.7=ajx+ay+azz and V(d.7)=d.
Therefore,

v(7ab) =V [r.(axb)| =v|(axb) .7| =axb.
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15.

16.

17.

18.

19.

20.
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If ¢(x, v, z) = 3xp”> — y* 2%, find V ¢ at the point
(_ 1 5 29 - 1) .
Ans. 127 —24 416 k.
Find a unit normal to the surface x* y + 2xz = 4
at the point (2, —2, 3). Hence, find the equation

of the normal to the surface at (2, —2, 3).

Hint: Let ¢ = x°y + 2xz —4. Then, V¢ =
20xy +2)i+x} + 2x kand V ¢ at (2,—2,3) =
—2i+4j+4k. Thus, the unit normal vector to

_ o —2i4jHak
the surface at (2, —2, 3) is N

: (—2’+2}'+2 ic) . Thus, the equation of normal

x=2_y+2_z-3
-1 2 2

Find a unit normal vector to the surface x> + »°
+ 3xyz = 3 at the point (1, 2, —1).
— 342k

. ' . ‘ . Ans. T .
Flnd the directional derivative of ¢ (x, y, z) =
’yz 4 4xz’ at the point (1, =2, —1) in the
direction of 2 i —j — 2 k.
Hint: Proceed as in Example 7.16.

Ans. ¥,

Find the directional derivative of the function ¢
(x,y,2) = - y2 +22atP (1, 2, 3), in the
direction of the line PQ, where Q is the point (5,
0,4). In what direction the directional deriva-
tive will be maximum?
Hint: Vo = 2x i — 2y ] + 4z k. Therefore, V ¢
at (1, 2, 3) is 21—4]+12k Also, PQ—

00— OP=(5i+4)— <l+2j-‘r3k> —4i -2+

is

Unit vector a in the direction of };Q is 4i7\/22/;1+k.
Then, the required directional derivative

=V¢(ar(1,2,3)). a=2%y/21. It will be maximum
in the direction of the normal to ¢, that is, in the
direction of V ¢, which is equal to 27 — 4/ + 12 k.
Its maximum value is |[V¢|=+v/4+16+144=
V164 =2/41.

If ¢ (x, y, z) = 2xy + 2, find the directional
derivative of ¢ in the direction of i +2 j + 2 k.
Hint: V¢=2yi+2xj+2zk=—-2i+2j+6k
at (1, —1, 3) Unit vector a in the direction
of i+2j+2k is ’+2/3+2k Therefore, the
required directional derivative is V¢.a=

i+2j+2k
(2z+2j+6k)( L ) =4

21.

22.

23.

Find the greatest rate of increase of u = x* +
yz* at the point (1, —1, 3).

Ans. |V u| = V121,
Find the equation of the tangent plane to the
surface z = x* + )y at the point (2, —1, 5).
Hint: V ¢ at (2, —1,5)is4i -2/ — k The

4i- 2] k
unit normal vector at (2, —1, 5) isa = —AT
The equation of the line through (2, —1, 5) in

x=2 _y+l

the direction of normal vector @ is 3= = =5 =

Z:—]S. Therefore, the equation of tangent plane to
the surface at (2, —1,5)is4(x —2) —2(y + 1)
—(z—5)=0o0r4x — 2y — z=5. We may also
find a tangent plane using (# —d) .V¢ = 0.
Therefore, in the present case, we have

[(x?+yj+zic> — (22—j+5 k)}

. (4?—2}'—1}) =0or4(x—2)

—20+1)—(z—5)=0o0rdx—2y—z=5.
Divergence and Curl of Vector-Point Function
Show that the vector (—x?+ yz)i +

24.

25.

26.

27.

(4y — 22x)j 4 (2xz — 42)k is solenoidal.

Hint: Show that V - / = 0.

If f=(x* +y* 4+ %) ", find div grad fand also
n, so that div grad f'= 0.

2n(2n—1
Ans. 2271 andn = L

Show that div (%) =0, where 7 :x}'+y]+zk.

Hint: Usediv (¢f> =¢divf +gradd.f. We get
div (;) =div(r %) =rdivi+7.gradr =

347 [—3r‘4f] =
,

33,73 (r2) =0.

3347 (—3r_4gradr) =3r

3r73 —3r (P =3r"

Thus, it also follows that % is solenoidal.

Show that the function 1, where r=[F| =
v/x% 4+ y% + Z2, is a harmonic function, if  # 0.
Hint: Show that Vz( ) 0 (see Example 7.36).
If f 1 - Vv, where u and v are scalar fields and
f isa Vector field, show that? curl? =a.



28.
29.

30.

31.

32.

33.

Hint: curlf:V X (%Vu) .V% X Vv—&-%V xVy=
V1ixVy+0. Hence, f. Curl f=1Vy.(Vix
Vv)=0.

Show that the vector V ¢ x V  is solenoidal.
Find the value of a so that

j‘ = (axzy +yz)f+ (xy2 — xzz)j'
+ (nyz — 2x2y2)l€

is solenoidal. Also find the curl of this solenoi-
dal vector. . .
Hint: div /' =2(a +2)xy. Now, f will be
solenoidal if div f = 0, which yields a = 2.
curl ? can be found.
If 7=xi+yj+zk and r=|F|=+/x24+)?+22,
show that div(i) =2.

]A( —
Hint: 7= M —Land

7 1 1
div (Z) =—divi+grad—7
r r

Show that V2(r 7) = (%

Hint:
. >’
V2 (r7) = w(r )
o (0,
=25 <ax <”>)
_ 2 @7 + }"g
n Ox |Ox Ox

Show that the vector field v = (siny + z)i +
(xcosy —z)j +(x— )k is irrotational.

If 7= xi+y+zk, determine V- (£). (See
Exercise 25).
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Vector Integration and Line Integrals

34.

35.

36.

37.

38.

39.

If 7(t) =2i—j 42k for t = 2 and 7(t)=
4i—2j+3k for t = 3, show that f
2

Hint: i[(’r’) }:275 implies 7%:%%{(?)2}

@ dr=10.

dt
Therefore,

EEG

1
[29—9]=10, using

7(t) =4i—2j+3k for t = 3 and 2i —j+2k for t = 2.
Evaluate [f.d7, where f = (x* +)%)i — 2xyj

and the curve C is the rectangle bounded by

y=0,x=a,y=>b,and x = 0.

. Ans. —2ab”.
If /"= 2yi — zj + xk, find the vector line inte-
gral ff X dF along the curve x = cos t, y = sin

t, andz—2c0standfromt—0t0t—75r
Ans. (2 —2)i+ (7 — 1)/
Evaluate | 7.d7, where f = yzi + zxj + xvk and

C is the Cportion of the curve 7= acosti +
bsintf'Jrctlg from¢=0tot =7

Hint: Parametric equations of the curve are x =
acosty—bsmt andz—ct

Also ¥ o = —asin ti +bcostj + ck Putting the
values of x, y, z (in terms of t) in f we see that

[F.di= [F. (&)dt = abc(0) = 0.
C c
Evaluate [[y?dx — x*dy] along the triangle

C
whose vertices are (1, 0), (0, 1) and (-1, 0).

Hint: Find the equations of three sides by a
two-point formula and evaluate the integral

over those sides.
_2
Ans. —%.

Iff = (2x + y)i + (3y — x)/, evaluate f]’ dr,
where C is the curve in the xy-plane cor({sisting
of straight lines from (0, 0) to (2, 0) and (2, 0) to
(3, 2).

Hint: If O (0, 0), 4 (2, 0), and B (3, 2) are the
points, then C consists of two lines OA and AB.
On OA, we have y = 0 so that dy = 0 and
x varies from 0 to 2. The equation of AB is
y = 2x — 4 so that dy = 2dx and on this line, x
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40.

41.

42.

43.
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varies from 2 to 3. Therefore, ff‘ ai= [+ [,

) ) c 04 AB
which will come outtobe 4 + 7 = 11.

Find the circulation of 7 around the curve C,
where? = yi + zj 4 xk and C is the circle x* +
y*=1landz =0.

Hint: Parametric equations of C are x = cos ¢,
y =sint, and z = 0, where t varies from 0 to 2.

N 27
Then,ff.d?z—f#d;:_
C 0

Find the work done when a force ;‘ =
(x> — y* +x)i — (2xy +y)j moves a particle in
xy-plane from (0, 0) to (1, 1) along the parabola
¥ =x.
Hint: Proceed as in Example 7.49.

Ans. — %
Compute the work done by a force ]7 =
xi —zj + 2y1€ to displace a particle along a
closed path C consisting of the segments Cj,
C,, and C;, such that

0<x<1,y=x,z=0o0nCj,
0<z<l,x=1,y=1o0nC,, and
0<x<1l,y=z=xonCs.

3
Ans. 5

Find the work done in moving a particle once
around a circle C in the xy-plane, if the circle
has its center at the origin with a radius 3, and if
the force field is given by f= (2x —y+z)i+
(x+y—22)j+ (3x—2y+42)k.

Hint: Parametric equations of C are x = 3 cos ¢,
y=3sint,and 0 < ¢ < 27

Ans. 187.

Surface Integrals

44,

Evaluate [[f. 7 ds, where f = 12x%yi — 3yzj +
5

2zk and S is the portion of the plane x + y +
z = 1, included in the first octant.

Hint: anﬁk and f. 7

(12x y—3yz+2z)

[12x%y = 3p(1 —x—y)+2(1 —x—y).

&%

ik = L= Evaluate [| /. i ds.

Ans. 120.

45.

46.

47.

48.

Evaluate [[7. 7 dS, where f = (x+)2)i—

. .S

2xj + 2yzk and S is the surface of the plane 2x
+ y + 2z = 6, in the first octant.

Hint: Proceed as in Example 7.56. Ans. 81.

Evaluate ff f. ndS, where f =4xyi+yzj —

xy kandS1i 1s the surface bounded by the planes
x=0,x=2,y=0,y=2,z=0,and z = 2.
Hint: Proceed as in Example 7.59. Ans. 40.
Evaluate [['¢ i1 dS, where ¢ =3xyz and S is

the surface of the cylinder x* + y* = 16,
included in the first octant between z = 0 and
z=25.

Hint: V(x2+)2 —16)=2xi+2)), h =242

ond ( Y ) Y] \/m
A~ xAi—i— 7).

nn.j ( y]) j -4 Therefore

h.j=

// .y :/ ¢ndxdz
N

B / /gx (xz+yj) dxdz

B R R
R

/ / z(xi+ y]) dxdz

R

OOlL»J

5 4

3

:g// xzz+xzv16 XJ>dde—100(z—|—]).
00

Evaluate ff;’ .71 dS, where f = yi +2x j — zk

s
and S is the surface of the plane 2x + y = 6, in
the first octant cut off by the plane z = 4.
Ans. 108.

Volume Integral

49.

50.

Evaluate [[ ¢dV, where ¢ = 45x> y and V is the

region bousnded by the planes 4x + 2y +z =8,
x=0,y=0,and z = 0.

Ans. 128.
Evaluate [[[(2x + y)dV, where V is the closed

region bou’;1ded by the cylinder z = 4 —x” and
the planes x =0,y =0,y =2,and z = 0.

Hint: The limits of integration are x = 0 to x =
2,y:Otoy:2,andz:0toz:4—x2.

Ans. &



51. Evaluate [[[ div fdV, where f = (x* — yz)i —
v

2x%y} + 2k and the region V is enclosed by the
planesx=0,x=a,y=0,y =a.andz= 0, and
z=da.

Hint: See Example 7.67.
52. Iff = 2xzi — xj + y*k, evaluate [[[7dV, where

Z

V is the region bounded by the surfaces x = 0,

x:2,y:0,y:6,z:x2andz:4 R
Ans. 128i — 24; + 384k.

5
Ans. %

Gauss's Divergence Theorem
53. If f =xi+2yj+7zk, evaluate ff} . ndS,

s
where S is the surface enclosing volume V.
Hint: By Divergence Theorem,

/!f.hdS/l/(Vf)dV
et
:///(l+2+7)dV:10V.

4 > .

54. Verify divergence theorem for f = (x*> — yz)i+
()2 —zx)j+ (22 —xy)k, taken over the rectan-
gular parallelopiped 0 <x <a,0 <y <b,and 0

0
(2y) —|—§(7z)] dv

<z<ec.
Hint: div / = 2(x + -y I;i—z ). Therefore,
// div fav = /// X +y + z)dxdydz
0 0
=abc(a+b+c).

Evaluate ff f . ndS on all the six faces and
add. We shall get fff 7 dS = abc(a+b+c).

Thus, the theorem is verified.
55. Evaluate [[f.idS, where f = (2x 4 3z)i —

. S .
(xz + )] + (* + 22)k and S is the surface of
the sphere having a radius 3.

Hint: By divergence theorem,

/S/f’.hdS:///divf’dV

///[ (2x+32) (,;9( —xz+y)

7.69

Vector Calculus

+a (? +2z)]dV

S Jsor

=3y =3 <§7T(3)3) = 1087.

56. Verify Divergence Theorem for the function
j‘ = yi+x + 2k over the cylindrical region
bounded by x>+ ?=9,z =0, and z = 2.
Hint: Proceed as in Example 7.64.

~ f =
yi + xj + 2%k over the cylindrical region boun-
ded by x* +y* =a% z =0, and z = h. (Similar

to Exercise 56.)
58. Evaluate [[7.ndS, where [ = x%i + )3 + 2k
Lo S 2
and S is the surface of the sphere x* +1* + 2% = .

Hint: By divergence theorem,

//}.ﬁdsz// div 7 dv
S :/7/(3x2+3y2+3zz)d1/
= 3q4? // dv =3a*V

= 3d°. gﬂa = 47nd’.

57. Verify Divergence Theorem for

59. Evaluate ﬂ??z ds for ;’ =xi—yj + 2zk over
1 = 1.

Ans. §.

s
the sphere x> + y* + (z —

Green’s Theorem

60. Verify Green’s theorem in the xy-plane for
$[(xy* — 2xy)dx + (x*y + 3)dy] around the
c

boundary C of the region enclosed by y* = 8x

and x = 2.

Ans. §(fidx + fody) = ff(afz - af‘)dxdy =128

c
61. Evaluate by Green’s Theorem f e (sinydx+
~+cosydy), where C is the rectangle with ver-
tices (0,0), (m, 0), (7,3), and (0,3).
Ans. 2¢7" — 2.
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63.
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Verify Green’s theorem in the plane for
$1(2xy—x?)dx+ (x*+)?)dy], where C is the
C

boundary of the region enclosed by y = x* and
2

Yy o=x.

Hint: The two parabolas intersect at (0,0) and

(1,1).
v

Jf(afz A )avdy = I @x - 20)dsdy =0

0 y _Xz
Along the lower portion C;, we have P = ¥, SO
that 2xdx = dy and x varies from 0 to 1.

1

[ias+pan = [0

Xt 2x6 x31
Spop

=14+-—==1.
+3 3

Along the upper portion, we have y* = x so that
2 ydy = dx and y varies from 1 to 0. Thus,

/m&+ﬁm

(&)

/[(Zy =2+ (v +y7)]dy

0
=/[4y -2+ + ) dy

So, §(fidx + fody) =1—1=0.
C

Using Green’s theorem in a plane, evaluate
$1(2x* — y*)dx + (x* + »*)] dy, where C is the
C

boundary in the xy-plane of the area enclosed
by the x-axis and the semi-circle x* + y* = 1 in
the upper half of the xy-plane.

-+ (x2 +x4)2xd.x

64.

Hint:  §(fidx + fody) = ff(% - %) dxdy =
1 Vie €

;fl b[ 2(x +y)dydx = 5.

Verify Green’s theorem in the plane for
[(3x* — 8y?)dx + (4y — 6xy)dy, where C is the
c

boundary of the region bounded by the para-
bolas y = \/x and y = x°.
Ans. §(fidx + fody) = ff<% - %—’;) dxdy =

c

Stoke’s Theorem

65.

Verify Stoke’s Theorem for the function? =
(x> +-1?)i — 2xy j taken around the rectangle
bounded by x = +a, y = 0, and y = b.

T
Hint: curlf = % a% % = —4yk.
> +3y2 —2xy 0

For the given sulr)face, = k. Therefore,

[ curlf ndS = [ [ —4yxdy = —4ab® Tt can
N 0 —a -

be seen that the line integral §f. d7 = —4ab?.

C
66. Evaluate by Stoke’s Theorem, the integral

§(e*dx + 2ydy — dz), where C is the curve
c

x2+y2:ﬂandzz2 .
Hint: curlf = 0 and so, curlf. n

ﬂcurlj‘.hds =0.
s

= 0. Hence,

67. Verify Stoke’s Theorem for the function

F = (2x—y)i — yz% —y*zk, where S is the
upper-half surface of the sphere x* + y* + 2% =
1, bounded by its projection on the xy-plane.

Hint: Parametric equations of C are x = cos ¢,
y=sint,z=0,and 0 < ¢ < 27. Therefore,

f?.d?:/(fldx+f2dy+f3dz)
2
= / (—2 sinfcos ¢ + sin’ t)dt =
0

Further, curlf = k. Therefore, [[curlf.ndS=

ff” kdx

i where R is the projection of S on



68.

xy-plane. Then, [[7. icr:”g] = [[dxdy = area of
R=n(12=m " .
Transform the integral [[ curlf. ndS into a line

integral, if S is a partsof the surface of the
paraboloid z = 1 — x> — y* for which, z > 0 and

?:yquszrxl}.

Vector Calculus 7.71

Hint: Surface S is x> + »* = 1 and z = 0 with
parametric equations x = cos 0, y =sin 0, z =
0, and 0 < 0 < 2. Use Stoke’s Theorem to
transform the given integral into a line integral.
The value of the line integral will come out to
be —m.
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Note : Attempt all questions.

1. Attempt any two parts of the following:

(a) Reduce the matrix:

1 1 -1 1

—1 1 -3 -3

4= 1 0 1 2
1 -1 3 3

to column echelon form and find its rank.

(b) Verify the Cayley-Hamilton theorem for the matrix:

1 0 —4
A= 0 5 4
—4 4 3
And hence find 47!,

(c) Find the eigenvalues and the corresponding eigen vectors of the matrix

1 0 0
A=1(0 2 1
2 0 3

(xz — Dyng2 +2xp01 —n(n+ 1)y, =0

2. Attempt any two parts of the following:
(@) Ify= (x> —1)", prove that
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(b) Ifu=x3+y>+ 23+ 3xyz, show that
x@u n Oou . Oou 1

Ly

ax Y Jy 0z
(¢) Ifu=f(r) where > = x> + 2, prove that

Pu Pu 1,
@‘Fa—yz—f (r) +-1(r)

3. Attempt any two parts of the following:

(a) Ifx=rsinfcos¢, y =rsinfsin¢, z = rcos b, show that

0x,,2) =r2sin0

a(r,0,9)
(b) Determine the points where the function

flxy)=x+y —3xy
has a maximum or minimum.

(c) A rectangular box open at the top is to have a given capacity. Find the dimensions of the box
requiring least material for its construction.

4. Attempt any two parts of the following:

(a) Evaluate

//xydxxy
4

where A4 is the domain bounded by x-axis, ordinate x = 2a and the curve x> = 4ay.
(b) Find the volume bounded by the cylinder x> + 3> = 4 and the planes y +z = 4 and z = 0.

/// (x+y+z)dx dy dz, where
R

R:0<x<1,1<y<2,2<2z<3
5. Attempt any two parts of the following:

(¢) Evaluate:

(a) Find a unit normal vector 7 of the cone of revolution
2> = 4(x* + %) at the point P: (1,0,2).

(b) Using Green’s theorem evaluate

/ (o +xy)dx + (x* + y*)dy,
C
where C is the square formed by the lines y = +1,x = +1

(c) Verify Stock’s theorem for F= 21+ + Z2xk for the surface of a rectangular lamina bounded by
x=0,y=0,x=1,y=2,2z=0
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SOLUTIONS

1. (a) Please see Example 4.74(c). Matrix is said to be in column echelon form if

(i) The first non-zero entry in each non-zero column is 1.
(i1) The column containing only zeros occurs next to all non-zero columns.
(i) The number of zeros above the first non-zero entry in each column is less than the number of such
zeros in the next column.

The given matrix is

1 -1 1 1 0 0 Cy— Gy — €
-1 1 -3 -3 -1 2 -4 -
A= ~ C3—>C3+C1
10 1 2 1 -1 2 o ols
1 -1 3 3] |1 -2 4 27
1 0 00
-1 2 -4 0
Yl a1 2 0| TGt G
1 -2 40
1 0 0 0]
-1 200
~ 1 -1 0 0 C;— C3+2C
| 1 -2 0 0]
1 0 0 0]
-1 100 1
~ 2 —
I -1 0 o737
| 1 -1 0 0]

which is column echelon form. The number of non-zero column is two and therefore p(4) = 2.
(b) Cayley-Hamilton theorem states that ‘‘every matrix satisfies its characteristic equation’’. We are

given that
1 0 —4
A= 0 5 41.
-4 4 3
Therefore
1 0 —4 1 0 —4 17 —-16 -—16
A = 0 5 4 0 5 4| =|-16 41 32
-4 4 3 -4 4 3 —16 32 41
and

81 —144 —180
A =424=|-144 333 324
—180 324 315
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On the other hand

1-72 0 —4
0 5-4 4

—4 4 3-J
(1=2[5=23B—1) —16] —4[4(5 - 1))
=(1-2)(1*—84—1)—80+16/
=22 49)24+9)-38l.

| A=Al

Therefore, the characteristic equation of the matrix 4 is

P =927 —9)481=0. (1)
To verify Cayley Hamilton Theorem, we have to show that
A — 94> — 94 + 811 = 0. (2)
We note that
81 —144 —1807 17 —-16 -16 1 0 —4
—144 333  324| —-9|-16 41 32(-9| 0 5
—180 324 315 —-16 32 41 -4 4 3
1 00 [0 0 0
+81({0 1 0|=1(0 0 O
0 0 1 L0 0 O

Hence A satisfies its characteristic equation.

(c) We have

N
|
NN O =
SN O
W —= O

The characteristic equation of 4 is

|A—AI|=] 0 2-2 1 |=0

or
P62 +111-6=0,

which yields 4 = 1, 2, 3. Hence the characteristic roots are 1, 2 and 3.
The eigenvector corresponding to A = 1 is given by (4 — I)X = 0, that is, by

0 0 0] (x 0
01 1|[x|=1]0
2 0 2 X3 0
Thus, we have
X, +x3 =0,

2x1 +2x3 = 0.
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Hence x; = x, = —x3. Taking x3 = —1, we get the vector
17
X = 1
~1
The eigenvector corresponding to the eigenvalue 2 is given by (4 — 21)X = 0, that is, by
-1 0 0 x1 | 0
0 0 1 x| =10
2 0 1 X3 | 0
This equation yields
0
X, = | 1] as one of the vector.
0
Similarly, the eigenvector corresponding to 4 = 3 is given by (4 — 31)X = 0 or by
-2 0 0 X 0
0 -1 1 x| =101,
2 00 X2 0
0
which yield | 1 | as the of the solution. Hence X5 = | 1
1
2. (a) We have
y=(*-1"
Therefore
yi = 2nx(x* —1)"""
yo =22n(n — 1) — 1" 2 4 2n(x> — 1)".
Thus

(2 — Dyz =2(n — Dx2ax(x® — 1" ']+ 2n(x* = 1)"
=2(n— 1)xy; + 2ny. (1)
Differentiating (1) n times by Leibnitz’s Theorem, we get
(0 = Dyusz + "1y (26) + "cayn(2) = 2(n = Dyari (x) +"e1ya] = 219, = 0

or
(xz = Dyura +20xyn1 + n(n — Dy, — 2(n = Dxynir — 2n(n — 1)y, — 20y, =0
or
(x2 - 1)yn+2 + 2xyn+1 - n(n + 1)yn =0.
(b) We have

u=x>+y"+2 +3xz.
Replacing x by tx, y by #y and z by #z, we get
u(tx, ty, 1z) = £x° + £y + £ + 3taeyez
=20+ +2° 4 3xyz) = Lu(x,y,z).
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Hence u(x,y,z) is a homogeneous function of degree 3 in u(x,y,z). Therefore, by Euler’s Theorem,

@4_ @+ @—3
Yo Vo TFa T "

(c) Example 3.9

3. (a) Example 3.72
(b) Example 3.61 (putting a = 1)
(c) Example 3.63 (replacing 32 by V)

4. (a) Example 6.9
(b) Example 6.47

(c) We have
32 1
///x+y+zdxdyd
2 1 0

[ —|—xy+xz} dy dz
0

[ +y+z}dydz

J
/]

y+—= +yz} dz

N —

|

I 1
{1%—24—22— <2+2+2>]d

3

Il
I\)\u I\)\u N\u I\)\u N\u

2
[z42]dz = {ZerZZ

—_

2

9 9
=[(=+6 244)=—
(3+6)-@+a=3.
5. (a) Similar to Exercise 16 of Chapter 7.
Let ¢ = z> — 4x* — 4)%. Then V¢ is along the normal vector.
But
v P9 42 — 4

¢ = la—-i-]a—y-l-ka— (2 —4x )

A

A A
=—8xi—-8yj+2zk
AA
= —8 i +4f at the point (1,0,2).
Therefore unit normal vector 7 to the given cone at (1,0,2) is
AA A A AA
—8i+dk —8i+dk 2i+k
V64 +16 V80 V3

A
n—
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(b) Let
filh,y) =x*+xy and  fo(x,p) = x* +17
Then, by Green’s Theorem,

/(ﬂdx+ﬁdy // <8f2—afl>d dy
:/ /(Zx—x)dxdy

-1 -1

/ / xdx dy

-1 -1
xz 1
=/ Hr’y:‘)

(c) Please see Example 7.96.

We have
e A A
f=x"i+yj+zxk.
Therefore
- 2 A A A A A A
fdr = (0 i+yj+2xk)- (idx+jdy+kdz)
= xy2dx + ydy + z*xdz.
Therefore

f fdr 7{ (xy*dx + ydy + z*xdz)
C C

[«]+]+]

04 AB BC co

C(0,2) B(1,2)

Q.7
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Along OA, we have y = 0 and dy = 0. Therefore

Along AB, we have x = 1 and dx = 0. Therefore

- ; 272
/f-d?:/ydy: {y—} =2.
2]o
AB 0

Along BC, we have y = 2 and dy = 0. Therefore

= 2 21°
/f~d7/4xdx4{2} = -2
BC 1 !

Along CO, we have x = 0 and dx = 0. Therefore

Hence

On the other hand,

curl f =V x f
AN
i J k
2 9 2
= | Ox dy 0z

0wy X

/l\[O] +]A‘[0 — 2]+ l@[—ny]

2 A
—Z ] +2xyk .

Therefore

= A A AA
curl f-n.ds = (=2 j +2xvk) k = —2xy
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and so
1/ 2
//Curlf-%-dSZ—Z/ /xydy dx
s 0 \o
1
972
:—2/ [xy—] dx
2o
0
1
211
2/2xdx4{x—] -2
2]
0
Hence

%)

and Stoke’s Theorem is verified.

Q.9
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FIRST SEMESTER EXAMINATION, 2008—2009
MATHEMATICS—!
(PAPER ID: 9914)

Time : 3 Hours Total Marks : 100
Note: Attempt all Questions.

1. Attempt any two parts of the following:

(a) Find all values of u for which rank of the matrix.

u —1 0 0
0 n —1

0o 0 u -1
-6 11 -6 1

A= is equal to 3.

1 00
(b) IfA—{l 0 1],thensh0wthatA”—A”2+A2—If0rn23.
01 0

31 -1
(¢) Show that the matrix 4 = | =2 1 2 | is diagonalizable. Hence, find P such that P~' AP is a
0 1 2

diagonal matrix.
2. Attempt any two parts of the following:
(a) Find (y,), when y = sin(asin" x).
(b) If u = €Y%, show that %y“az = (1 + 3xyz + x*y?2%)e?”.
(c) Trace the curve y?(a + x) = x*(3a — x).
3. Attempt any two parts of the following:

(a) Show that the functions u = x*> +y? + z%, v =x + y 4z, w = yz + zx + xp are not independent of
one another.
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(b) The height 4 and the semi-vertical angle o of a cone are measured, and from them 4, the total
surface area of the cone, including the base, is calculated. If 7 and o are in error by small quantities
6h and 6o respectively, find corresponding error in the area. Show further that, o = ¢, an error of

+1 percent in /4 will be approximately compensated by an error of —0°.33 in «.

(c) Determine the points where the function x*> + y* — 3axy has a maximum or minimum.

(d) Find the point upon the plane ax + by + cz = p at which the function f = x*> +1? + 2> has a
mnimum value and find this minimum f.

4. Attempt any two parts of the following:
(a) Evaluate: [[; xydxdy
where R is the quadrant of the circle x*> + »* = a*> where x > 0 and y > 0.
(b) Find the volume common to the cylinders x*> + > = a? and x> 4 2> = d?
(c) Evaluate: ﬁR (x — 2y 4 z)dxdydz where R: 0 < x < 1,0 <y < ¥, 0<z< x4+ y.
5. Attempt any two parts of the following:
(a) Find the directional derivative of / (x,¥,z) = 2x> + 3)? + 22 at the point P(2,1,3) in the direction
of the vector a =i — 2k.
(b) Show that ffs F-ndS = % ,where F' = 4xzi — Y+ yz7c and S is the surface of the cube bounded by
the planes x =0, x=1, y=0, y=1,z=0, z= 1.

(c) Use the Stoke’s theorem to evaluate [ [(x+2y)dx+ (x — z)dy + (v — z)dz] where C is the
boundary of the triangle with vertices (2,0, 0), (0,3, 0) and (0,0, 6) oriented in the anti-clockwise
direction.

SOLUTIONS

1. (a) Similar to Remark 4.5
We are given that

n -1 0 0
0 u -1 0

A=19 o n -1
-6 11 —6 1
Therefore
w -1 0 0 -1 0
[A=u 0 pu —1|+1] 0 pu —1|=p@ -6 +1lu—6=0if u=1, 2, 3.
-6 11 —6 -6 -6 1

For yt = 3, we have the singular matrix

3 -1 0 0

0 3 -1 0

0 0 3 -1\
-6 11 -6 1
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which has non-singular sub-matrix

3 -1 0
0 3 -1
0 0 3

Thus for u = 3, the rank of the matrix 4 is 3. Similarly, the rank is 3 for 4 = 2 and u = 1. For other
values of u, we have |4| # 0 and so p(4) = 4 for other values of p.

(b) We have
1 0 0 1 00 1 00
A=1 0 1[|1L 0 1l=]110
010 010 1 0 1
Then
1 00 1 00 1 00 1 00
A+A4—I=|1 0 1|+ |1 1 0|—|0 1 O|=1[2 0 1
01 0 1 0 1 0 0 1 1 10
Also
1 00 1 00 1 00
ALA=A£4={1 10| |1 0 1|=|2 0 1
1 0 1 010 1 10
Hence for n = 3, the relation
A=A A -1 (1)
holds. We want to show that it holds for » > 3 We prove the result using mathematical induction.

We have
AN = A" A = [A4"2 + 4> - 14
— A2 L g3 oy
=AMV LA+ 4> -1 -4
:A(n+1)72+A2 I

Hence, by mathematical induction, the result holds for all n > 3.

(c) The characteristic matrix of the given matrix A4 is

3-4 1 -l
A—i|=| -2 1-4 2 [=0
0 12—

or

B[l =2)2=71) —2]—1[-4+2)] —1(=2) =0
or

B-A1=AQ2=2)—6+2i+4-21+2=0
or

(3—A)(1—2)2—2) =0.
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Hence the given matrix 4 has distinct characteristic roots A = 1, 2, 3. Consequently it is diagonalizable. Now
the eigenvector corresponding to A = 1 is given by (4 — I)X = 0, that is, by

2 1 -1 X 0
-2 0 2 x| =10
0 1 1 X3 0
Thus
2x1 +x—x3=0
—2x1 +0x; +2x3 =0
Ox; +x+x3=0
and so x; = x3 = —x,. Taking x, = —1, we get an eigenvector corresponding to A = 1 as

1
X =| -1
1
Now eigenvector corresponding to A = 2 is given by (4 — 2I)X = 0, that is, by

1 I -1 X1 0
-2 -1 2 x| =10
0 1 0 X3 0

Thus
X1 +x—x3=0
—2x1 —x+2x3=0
x=0
For this system x; = 1, x, = 0, x3 = 1 is a solution. Therefore
M1
Xx=10
1
An eigenvector corresponding to 4 = 3 is given by (4 — 3/)X = 0, that is, by

0 1 —17 [x 0
2 =2 2| |x|=1]0
0 1 1] [x 0
Thus
XZ—X3:0
—2x1 — 2% +2x3 =0
xz—x3:0,

which yields x; =0, x, = 1, x3 = 1 as one of the solution. Thus
0
X;=|1
1
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Therefore the transforming matrix is

1 10
P=|-1 0 1
I 1 1
and so the diagonal matrix is
-1 -1 1 31 -1 1 10 1
Pl4pP = 2 1 -1 -2 1 2 -1 0 1|=]0
-1 0 1 0 1 2 1 11 0

2. (a) We are given that

y = sin(asin~" x)

Therefore

y1 = cos(a sin”! x) a

V1-x2

or

V1 —x2y; = acos(a sin"'x)
or

(1 —x*)y? = a* cos®(asin™' x) = a*[1 — sin*(asin~" x)]

or

(1 =2y} =d*(1=5?).
Differentiating again with respect to x, we get
(1 = x*)2y1p7 — 2xp7 = —2a*yy,
or
(1=x)y2 =1 +d’y =0
Differentiating (2), n times by Leibnitz-theorem, we have
a2(1 =) +"eryun (=2x) + "caya(-2)]
= Du1 () +"eyu(D)] + @y, = 0
or
(1 =3z = @1+ Dyt — (2 = @)y, = 0

Putting x = 0 in (1), (2) and (3) we get

71(0) = a(l = a?), »2(0)=0

ya(0) = a(1? —a®)(3%* —a?) ... [(n — 2)* — &?] for odd n
and

vn(0) = 0 for even n.

(b) We have
u=er’.



Therefore

and then
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Ou
— Xyz
5, = e,
32” yz vz vz 2
oy 02 = (xp)(x2)e"* +xe"F = e x + x7y 2]
631/’ yz 2 Xyz
8x8yﬁz: eV (yz)[x + x7yz] + €71 + 2x y 2]

=V xyz + x5 + 1+ 2xyz]
= (14 3xyz 4 x%?22)e"?,

Q.15

(c) Similar to Example 2.24. The only difference is that the curve intersect the x-axis at x = 0 and x = 3a,
that is, at the points (0,0) and (3a,0). Tangent at (3a, 0) is parallel to y-axis. Also, y = 4-1/3x are two
real and distinct tangents at the origin and so origin is a node. Also x = —a is asymptote parallel to the
x-axis. There is no oblique asymptote.

3. (a) We have

u=x2+y2—|—zz, Vv=Xx+y+z, w=yz+zx+xy.

Then

ou
ox

O(u,v,w) .

ox,y,z) | ™

dw
ox

Ou  Ou
Ay 0z
2x 2y 2z
o) v
0—; %1 =11 1 1
z+y z+x x—+y
ow  Ow
Ay 0z

=2ux+y) = E+x) =Dl +y) = E+2)] + 22z +x) = (2 +)]

=0.

Since Jacobian J(u, v, w) = 0, there exists a functional relation connecting some or all of the variables
x, y and z. Hence u, v, w are not independent.

(b) Radius of the base = r = htan «. Further, slant height = / = & sec o. Therefore

Total area = w2 +7rl=mr(r+1)
=mh tana(h tan o + h sec o)

= mwh*(tan® o 4 sec o« tan ).

Then the error in 4 is given by

04 04
64 —%51’!4-%5(1

= 27 h(tan® o + sec o« tan o)d h 4+ 7 h*(2 tan o sec® o + sec® o + sec atan?)d o

For the second part of the question,
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Therefore
1 2] & 2 (4 8 2
bA=27h|=+~= ——|—7rh2(— <_> +—
[3 3} 100 V3\3 33 33
h?
v +2V31h*Sa.
But after compensation 6 A = 0. Therefore (1) implies
1 57.3°
o0 = ———— radians = —0.33°.
100v/3 132

4. (a) Example 6.8
(b) Example 6.50
(c) We want to evaluate / = | f [ (x =2y +z)dxdydz,

where
R :0<x<1, 0§y§x, 0<z<x+y.
We have
X2 [ x+y
1= / /(x—2y+z)dz dydx
o Lo

22 x+y
xz—2yz—|——} dy dx
21

32
/x —xy—2y+ +xy+ }dydx
0

2

1
3
25//(x2—y)dydx
0 0
1 2
3 2 y3x
== ——=| d
2/[xy 3}0 )
0
3 , X
—E/ (x —?)dx
3 x> X! 1_ 8
205 21, 35
5. (a) Similar to Example 7.16.
We have
e, g ArO
Vf = (;—ﬂa +k6>(2x2—|—3y2+22)

= 4xi+6yj +22k
= 8i 4 6] + 6k at the point (2,1,3).
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A A
Now unit vector in the direction of § —2k is

Tk 1
P — A
no 172k —(?—21;).

Vitd s
Therefore, the directional derivative at (2, 1, 3) in the direction of ? -2 l@ is
Vf b= (SA'+6A'+61§) (A' 21@) P gso—1=-2
U= — — = — — = ——
AN ’ Vs V3
(b) Example 7.59
(c) Similar to Example to 7.79. Here
A A A
- i J k
= 0
curl f % 2 %
x+2y x—z y—z
AT O 0
~ipv-a- g2
Alo 0 e, 0
= 2y) —— (@ — —(x—z)— = 2
il ) = =] +h[ -2 - )
A A
=2i-2k.

Now, by Stoke’s Theorem,

?{f-d?://curlf-zds
s
= // +// +/ (see figure of Example 7.79)

OAB OBC 0AC

:/04 (28-24).(k)as
+/0/ (z?z;@).(?)ds

Q.17
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SECTION A
All parts of the question are compulsory: 2 x 10=20)

1. (a) For which value of ‘b’ the rank of the martix

1 5 4
A=10 3 2 |is2,b=...

b 13 10
(b) Determine the constants a and b such that the curl of vector 4 = (2xy + 3yz)i + (x* + axz — 42%)j+
(Bxy + 2byz) kis zero,a= ..., b=....
(c) The nt derivative (y,) of the function y = x*sinx at x = 0 is ... .

(d) With usual notations, match the items on right hand side with those on left had side for properties of
Max™ and minimum:

(i) Max” (p) rt—s*=0

(i) Min" (q) 1t—s*<0
(iii) Saddle point (r) rt—s>>0,r>0
(iv) Failure case (s) rt—s*>0andr<0

(e) Match the items on the right hand side with those on left hand side for the following special
functions: (Full marks is awarded if all matching are correct)

@ Bp.q) () T(1/2),
(i) +rg (@) o ey
(i) /7 (r) Blp.q)
V) G (s) IpL(1—p)
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Indicate True of False for the following statements:

() () If]d4]| =0, then at least on eigen value is zero. (True/False)
(ii) A~! exists if 0 is an eigen value of 4 (True/False)
(iii) If |[A| # O, then 4 is known as singular matrix (True/False)
(iv) Two vectors X and Y is said to be orthogonal ¥, X7Y = YTX #£ 0. (True/False)
(2) (i) The curve y* = 4ax is symmetric about x-axis. (True/False)
(i) The curve x* + 3 = 3axy is symmetric about the line y = —x (True/False)
(iii) The curve x* +1? = 42 is symmetric about both the axis x and y. (True/False)
(iv) The curve x* — y* = 3axy is symmetric about the line y = x. (True/False)

Pick the correct answer of the choice given bolow:
(h) If7 = Xi + yj + zk is position vector, then value of V(logr) is

(i & (i) 5
(i) —% (iv) None of the above
(1) The Jacobian % for the function u = ¢* siny,v = (x + logsiny) is
G 1 (i) sinxsiny — xycosxcosy
(iii) 0 (iv) <
(j) The volume of the solid under the surface az = x*> + »* and whose base R is the circle x> + )* = a?
is given as
(i) 7/2a (i) 7a®/2
(iii) §ma’® (iv) None of the above.
SECTION B
2. Attempt any three parts of the following: 3 x10=30)
(a) Ify = (sin”'x)?, prove that y,(0) = 0 for b odd and y,(0) = 2.22.42.6> ... (n —2)* n # 2 for n is
even.

(b) Find the dimension of rectangular box of maximum capacity whose surface area is given when
(a) box is open at the top (b) box is closed.

(¢) Find a matrix P which diagonalizes the matrix 4 = B ;], verify P~'4P = D where D is the
diagonal matrix.

(d) Find the area and the mass contained in the first quadrant enclosed by the curve (’;;)“—i—(%)ﬂ =1
where o > 0, > 0 given that density at any point p(x,y) is k/Xy.

(e) Using the divergence theorem, evaluate the surface integral [J s zdydz + zx dz dx + xy dy dx)
where S: x> + )% + 22 = 4.
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SECTION C

Attempt any two parts from each question. All questions are compulsory: (5 x 10 =50)

3. (a)
(b)
(c)
4. (a)

(b)
(©)

(b)
(©)

(b)

(©)

(b)
(©)

2

Trace the curve 2 = a? cos 26

If u =log ((’ﬁf)) prove that xa“ +yd“ =1

If V= f(2x — 3y,3y — 4z,4z — 2x), compute the value of 6V, + 4V, + 3V..

The temperature ‘T at any point (x, , z) in space is T(x, y, z) = Kxyz?> where K is constant. Find the

highest temperature on the surface of the sphere x? + y* + 2> = a?.

Verify the chain rule for Jacobians if x = u,y = utanv,z = w.
The time ‘T’ of a complete oscillation of a simple pendulum of length ‘L’ is governed by the
equation T = 271'\/%, g is constant, find the approximate error in the calculated value of T corre-

sponding to an error of 2% in the value of L.
Determine ‘b’ such that the system of homogeneous equation 2x +y + 2z = 0;x + y + 3z = 0;

4x 4 3y + bz = 0 has (i) Trivial solution (ii) Non-Trivial solution. Find the Non-Trivial solution
using matrix method.

1 2
2 -1
Find the eigen value and corresponding eigen vectors of the matrix

=(3 %)

Find the directional derivative of V(Vf) at the point (1, —2, 1) in the direction of the normal to the
surface xy’z = 3x + z% where f = 2x%)?z*.

Verify Cayley—Hamilton theorem for the matrix 4 = ( > and hence find 47!

Using Green’s theorem, find the area of the region in the first quadrant bounded by the curves
y=x,y=1, y=4%

Prove that (2 — 22 + 3yz — 2x)i + (3xz + 2xp)j + (3xy — 2xz + 22)k is both solenoidal and
irrotational.

Changing the order of 1ntegrat10n of [ [ e sinnxdxdy
Show that [* (S82Y)gx = 2
Determine the area bounded by the curves xy = 2,4y = x* and y = 4.

For a f§ function, show that

ﬁ(paq) :ﬁ<p+ lvq) +ﬁ(pvq+ 1)
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SOLUTIONS

1. (a) We have to show that |4| = 0. But

1 5 4
4 =0 3 2
b 13 10

= 1[30 — 26] — 5[—2b] 4 4[—3b]
=4+ 10b—12b =4 —2b.

Thus |[4] =0if2b =4 or b =2.

(b) We note that

A A A

- 1 J k
curl 4 = Kl a K}
4 Ox dy 0z

2xy +3yz  x* +axz — 422 2xy + 2byz

—i a(3 +2bz)—2( + axz — 47
=i oy Xy 2% % x~ 4+ ax

2 oy 2ym) - 2 2y 4 302
J x Xy Yz Oz Xy Vz

+

Ao, 0
k[a(x +axz — 4z°) —a—y(2xy—|— 3yz)}

i[(3x + 2bz) — (ax — 8z)]

jA[3y 3y + k[(Zx +az) — (2x + 3z2)]
T3 — a) +2(2b — 8)] + kl(a — 3)]
=0fora=23and b =4.

(c) Let y = x? sinx. Take

u=sinx and v=2x>

Then

) nm
u, =sin (x +—), vi =2x, v, =2, v; =0.

)
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Therefore, by Leibnitz-theorem, we have
. . -1
Yp = sin (x + n77r) (x?) + "¢y sin <x + u) (2x)

+ ey sin <x e 2)7T> 2) 2

2
2w nw . (n— 1)
=X sm(x+ 2)+2nxsm{x+ > ]
-2
—&—n(n—l)sin{x—i—w}

Hence

(Vn)g = n(n — 1)sin (n —2) = (n—n?) sin .

(d) Matching yields
i. Max —rt—s>>0, r<0
ii. Min —rt —s> >0, r<0
iii. saddle point — rt — s> < 0
iv. Failure case — rt — s* = 0

(e) The Matching yields

p—

0 fp.a) = | s
(i) T2 — B(p, q)
(iii) /7 — ()

(iv) 5557 — T(p) (1 = p)

¢y
(1) True
(i1) False
(iii) False
(iv) The statement is wrong

€9
(1) False
(i1) False
(ii1) True
(iv) False
h A A A
& V(logr) = (i%Jrjagerk%)(logr)

(107 (10 (10r
—"\rox / rdy r oz
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r=\rl= \/m
or
r2:x2—|—y2+22.
Thus
or
2r—=2
T 2
or
or x
ox r
Similarly,
ar _y or z
dy r 19)
Therefore
AT rx A AT sz
V(logr) =i {— (—)} +j[— ()_/)} +k[— (—)]
r\r r\r r\r
=i(3) +1(5) +4(3)
=i\z) T2 2
1L/ A A A\ 7
Hence choice (ii) is true
(1) We have
u=e¢'siny, v =x+ logsiny.
Therefore
o(u,v) Qu % ‘e"siny e“cosy
(x,y) o o B 1 coty

Hence the choice (iii) is correct
(j) (iii) is correct.
2. (a) We have

=e'cosy—e'cosy=0

y = (sin"'x)%.

Q.23
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Then

yp =2sin " x.
1 —x2

or

(1 - xz)yf = 4(s.in_1 x)2 =4y

Differentiating (1) again, we get
(1=x*)ys—xy1 —2=0

Differentiating (2) n times by Leibnitz Theorem, we get

(1 - xz)yn+2 + nclyn+1(_2x) + nCZyn(_z) — XVn+1 — nclyn =0

or

(1 = x*)Ypia — 204 Dy, — n*y, = 0.

Therefore (1), (2), (3) imply
O’l)o =0, ()’2)0 =2, (yn+2)0 = nz(yn)O'

Taking n = 1,2,3,...in (¥,42) = 1*(Vn)o» We get

3)g=01)y=0

(4)o = 2°(12)g = 2.27
(rs)o = 32()’3)0 =0
(V6)o = 4*(va)y = 2.2% 47

and so on. Hence, in general

(Vn)p = 0 for odd n
and

(n)g = 2.22.42.6°.8% ... (n — 2)%.

(b) Please see Example 3.63
Replace 32 by V in this Example and get

(2r)

x=y= (2V)-%7 z="" (for open at the top)

For the closed box
S =2xy + 2yz 4 2zx

Now proceed as in Example 3.63
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(c) Please see Example 4.87(b). We have
4 1
=13 3)
The characteristic equation of 4 is

4—2 1

AM" 2 3-)

o

4-N3-2)-2=0

or
2—7,410=0

The characteristic roots are 4 = % = 2, 5. Since the eigenvalues are distinct, the matrix 4 is diag-
onalizable. The eigenvector corresponding to 4 = 2 is given by (4 — 2I)X = 0, that is, by

2] =

2x1+x, =0 or X =——.

-1
x=[]
Similarly, eigenvector corresponding to A = 5 is given by (4 — 51)X = 0 or by

2 ) ()=

—x1+x =0
2x1 —2)(?2 =0

or by

Putting x, = 2, we get

or by

and so x; = x;. Putting x, = 1, we get

Thus the transforming matrix is
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and
1 1
Pl 33
2 1
3 3
Then
T
. o4 1771 1
Plap =
. 1|23 2 1
L 3 3
-
B 303 [—1 1}_{2 0}
0 s 2 1 0 5
L 3 3

(d) The equation of the curve is
x B
() +()=1, g0
a b

The parametric form of the curve is

2 .2
X =acos't, y=bsinit.

Therefore, the required area is

0
dx
A= dx = —dt
/y ) /ydt
3 5
’ 2
:/(bsin%t)<—?acos(il) t) sin ¢ dt

2

2
= @ sin(%H) t cos(%fl) tdt
o

0

(3+2) E-1+1)
2 |P()r(5)

2 2
2142142
o or (/: % )

2
2 [ PO T()
2B r(t4d41)
b TOT()
RN F(§+%)
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(e) By Divergence Theorem,

// (yzdydz + zx dz dx + xy dx dy)
s

— [[] 5091+ g0+ g | av

:/V//(w:o.

3. (a) Hints: The given curve is 7 = a® cos 20. It is symmetrical about the initial line. It is symmetrical about
the origin. Intersects the initial line at the points (i %) The curve has no asymptote. At (a,0) and
(—a,0) the tangents are perpendicular to the initial line. Tangents at the pole are 0 = £7. The curve
passes through the pole. The figure of the curve is similar to the figure of Example 2.20.

(b) We have
2 412
u= log( + >
xX+y
Therefore
. 242
=53y

which is homogeneous function of degree 1 in x and y. Therefore, by Euler’s Theorem, we have

6 u a u\
xa(@ )+y8_y(e )=e

U

or
xe"@—i— e”@—e“
ox Y oy
or
x%—i- %—1
Ox y@y_ ’
(c) We have
V =f02x—3y, 3y —4z, 4z — 2x).
Let
r=2x—-3y, s=3y—4z and t=4z-2x
Then

V =f(rs,t).
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Further,
oV _ov or
Ox  Or ox
av

or
ov._ov or

av

av

Os OV ot

Ds0x 01 ox
=2—+0-— 28—V:28—V—28—V.

ov

Ot Or Ot
Os 9OV Ot

Os 8y+5'87y
ov v av

= 32432

or

and

Os

ov. oV or

0z Or 0z T

v

=0—-4—

0

Os
V

- 74g

The relations (1), (2) and (3) yields

+0=3—+3—.
6r+ Os

ovos oV ot

Os 82+ ot "0z

ov
A ot

ov
+4—.
ot

6V, + 4V, +3V—6< -2

4. (a) We have

ov 8_V
or ot

T(x,y,2) = kyz*

and

¢(X7y,2) :x2 +y2 +22 —a

Taking 4 as the Lagrange’s multiplier, we have
= ko2 + A+ + 22— ).

For maxima or minima of F'(x,y,z), we should have

8F78T+/1
Oox  Ox
oF 0T
dy oy
OF (’9T+/1
0z 0Oz

¢
ox
,9¢
ay
¢
Oz

=Ky +2x. =0
=k +2/y =0
=2kxyz+21z=0
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Multiplying (3) by x, (4) by y and (5) by z and adding we get
dhxyz? 4203+ +2%) =0

or
doxyz? +2)a* =0 (using x* +)? + 22 = d%).
Therefore
2kxyz?
p=-E
a
Substituting this value of 4 in (3), we have
dkx?yz?
2 _
kyz 2 = 0
or
4x?
1-z=0

Hence x = £4. Similarly y = £ §. Substituting the value of x, y, and 4 is (5), we get
z2 a
1-2—=0 andso z==+—r.
a

V2

Then the highest temperature on the sphere is
= ky? = k(D) (D) (%) = kg
T=kxyz" =k ( ) 5) (3 A a

(b) We are given thet

X=u,y=utanvy, z=w.

Then

Ox Ox Ox
Ou v ow

5 1 0 0
J:M: P B W |tany wusecty 0

8(1,{, v, W) Ju v ow

0 0 1
Oz 0z Oz
Ju v ow
= usec’v.
Also, from (1), we have
1Y

u=x,v=tan ‘= and w = z.
X

Q.29
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Therefore
Qu  Qu  Ou
Ox dy 0z
1 0
—y
J = 8(14,\), W) _ |l v | _ x2+)? ch-)ic—y2
a(x7y7 Z) Ox dy 0z
0 0
dw  ow  Odw
Ox dy 0z
X 1
T T
1
=————— since Y_ tanv
u(1 + tan?v) u
1
usec?v’
Hence
J J' =1, which proves the chain rule.
(c) We have

T=2r 1
g

1 1
logT = 10g27r+§log l—ilogg.

Taking logarithm, we get

Differentiating (1), we get

or
6T 1[61 lég
— x 100 = = |— x 100 — =—= x 100
T 217" 2g
1
=-[2-0]=1
S2-0
Hence the approximate error is 1%.
5. (a) The give system of equation is
x+y+3z=0
2x+y+2z=0

4x +3y+bz=0.
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The system in matrix form is

1 1 3 X 0
2 1 2 vyl =10
4 3 b z 0

This homogenous system will have a non-trivial solution only if | 4| = 0. Thus for non-trivial solution

113
2 1 2[=0
4 3 b
or
1(b—6)—1(2b—8) +3(6—4) =0
or

—b + 8 = 0, which yields b = 8.

Thus for non-trivial solution & = 8. The coefficient matrix for non-trivial solution is

1 1 3 1 1 3
Ry — Ry — 2Ry

21 2| ~|0 -1 -4
R3—>R3*4R1

4 38 0 —1 —4]

1 1 3]
~ |0 -1 —4|R;—R;—R,

0 0 0]

The last matrix is of rank 2. Thus the given system is equivalent to
x+y+3z=0
—y—4z=0.

Hence y = —4z and then x = z. Taking z = ¢ the general solution is
x=t y=-4 z=t.

(b) We have

=y 2

1—-4 2
2 —1-2

The characteristic equation is

|A—M|:‘ ’:0
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or
A —5=0. (1)

el 20 3=

We note that

Then

2 _[5 0] [50]_J0o 0
A_SI_[O 5] [o 5}_[0 o}

Hence A satisfies its characteristic equation. Premultiplication by 4~! yields

A-547""=0
or
1 2
5 5
AV =-A=
2 1
5 5
(c) The characteristic equation is
—5—-1 2
|4 — | = ) Ly =0
or
(=5=2)(-2-2)—-4=0
or
P +Ti+6=0
or
, —T7+£+v49-24 6. —1
f=——————— = -6, —1.
2 b

The characteristic vector corresponding to A = —2 is given by (4 + I)X = 0, that is, by
-4 2| |x| _ |0
2 -1 X2 o 0

—4x1 +2x, =0
2x1 —xp = 0.

or by
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Thus
% O 1
A=) 12
The characteristic vector corresponding to A = —6 is given by
I 2 |x]| |0
2 4 X2 o 0
or by
X14+2x =0
2x1+4x, =0

These equations imply

6 (a) We have

=28y
Therefore
% = 6x?y%z*, g—/;: 4x’yz*  and % = 8x°y’2}
and so
V[ =6x3%z* ? —|—4x3yz4]A' +8x3)%2° k
Then

A A
¢ =V(Vf) = (z 82 +7J (‘()9 + 25) <6x2y2z4 ? +4x3y2* j +8x%°7 k>

= 12072 + 4x’2* + 24x%)%22

Now

_09r 094, 002
Vo= oy Tk

A
= (12y%2* + 1242 + 48x)°2?) /l\ +(24zyz* + 48x7y2%) j
A
+ (48xy%2° + 16x°2° + 48x%°2) k

A A A
— 567144 +16k.

Q.33
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Now normal to the surface y = x)?z — 3x — z° is

B 0 N0 AD ) )
Vl//—(za +]ay+k8>(xyz 3x —z°)

A
=(z-3) i—|—(2xyz)j +(x* —22) k.

The unit vector in the direction of Vi is

A A A
n (Pz2=3)i +(2xyz)] +(0? —22)k

a =
\/ (122 —3)* + (202)” + (2 — 22)°
—l—4j-|-2k 1 ( A A)
—i—4j+2k
T Tri6+4 v\

Therefore directional derivative of V(Vf) at (1, -2, 1) in the given direction is

V¢A—(56A‘ 144A'+161§) ! ( i 4%21@)
.a= - — =i
! / NG T

1 542
= [-56+576+32] = 2=
NeTh =

(b) Using Green’s Theorem,
1
A= 5}1{ (xdy — ydx),

c

g

Cl CZ c3

= % /(xdy — ydx) + /(xdy — ydx) + /(xdy — ydx)|,

LCy (&) 3

where ci isy =%, o isy:%andq isy=x.
Along c;, we have y = ¢ so that y = )lcdx and x varies from 0 to 2. Therefore
2

j{(xdy—ydx) :/de—;dx) —0.

1 0

Along ¢; we have y =1 so that dy = — % dx and x varies from 2 to 1. Therefore

1 1
-1 1 1
f(xdy—ydx)-/(—dx——dx) = —2/ —dx =2log?2.
x x x
2 0

)
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Along c3, we have y = x so that dy = dx and x varies from 1 to 0. Therefore

% (xdy — ydx) = % (xdx — xdx) = 0.

3 3

Hence

]{(xdy—ydx) :%[0+2log2+0] = log2.

c

(c)
Y A
i

A A
=022 4+3yz—2x) i +(Bxz +2x)j +(Bxy — 2xz + 22) k

Then

=-24+2x+2-2x=0.

Hence f is solenoidal. Further,

A A A

i J k

- 9 9 0

curl f = Ox dy 0z

V=22 4+ 3yz—2x 3xz+2xy 3xy—2xz+2z
A A N —
=i[Bx—3x]—jBy — 224223y +k[B3z+2y—2y—3z] = 0

=
Hence f is irrotational.

7 (a).

1

o o
/ / e Vsinnx dx dy
0 0

o0

o]

sin nx / e Vdy|dx
0

o/
0 S
:/sinnx[e } dx
—x |,
0
0/

sin nx

dx.

X

Q.35
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On the other hand,

/

From (1) and (2), it follows that

(b)

(c) Example 5.5

Z =

o0 o0
/ / e Vsinnx dx dy
0

0
o0

{ / “Ysinnx dx | dy
0

n
n2+y

[

(ncosnx + ysin nx)}

dy = {tanlz} —_
Plo

sin nx

oo

0

dy
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