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Preface

All branches of Engineering, Technology and Science require mathematics as a tool for the description 
of their contents. Therefore thorough knowledge of various topics in mathematics is essential to pursue 
study in Engineering, Technology and Science. The aim of this book is to provide the students with 
sound mathematics skills and their applications. Although the book is designed primarily for use by 
engineering students, it is also suitable for students pursuing bachelor degrees with mathematics as one 
of the subject and also for those who prepare for various competitive examinations. The material has 
been arranged to ensure the suitability of the book for class use and for individual self study. Accord-
ingly, the contents of the book have been divided into eight chapters covering the complete syllabus 
prescribed for B.Tech. Semester-III of U.P. Technical University, Lucknow. A sufficient number of 
examples, figures, tables, and exercises have been provided to enable students to develop problem-
solving skills. The language used is simple and amicable. Suggestions and feedback on this book are 
welcome.

ACKNOWLEDGEMENTS
I am extremely grateful to the reviewers for their valuable comments. My family members provided 
moral support during the preparation of this book. My son, Aman Kumar, Software Engineer, Adobe 
India Ltd., offered wise comments on some of the contents of the book. I am thankful to Sushma 
S. Pradeep for excellently typing the manuscript. Special thanks are due to Thomas Mathew Rajesh, 
Anita Yadav, and Vamanan Namboodiri of Pearson for their constructive support.

 BABU RAM
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In this chapter, we deal with functions of complex variables which are useful in evaluating a large 
number of new definite integrals, the theory of differential equations, the study of electric fields, ther-
modynamics, and fluid mechanics.

1.1 BASIC CONCEPTS
Definition 1.1. A complex number z is an ordered pair (x, y) of real numbers x and y.
If z = (x, y) and w = (u, v) are two complex numbers, then their addition and multiplication are defined as

     

    ( , )  ( , )  (   ,   )
  ( , )  ( , )  (   ,   ).

z w x y u v x u y v

zw x y u v xu yv xv yu

+ = + = + +
= = − +

With these operations of addition and multiplication, the complex numbers satisfy the same arithmetic 
properties as do the real numbers.

If we write the real number x as (x, 0) and denote i = (0, 1) (called imaginary number), then
( , ) ( ,0) (0, )

             ( , 0) ( , 0) (0, 1)
              . 

z x y x y

x y

x iy

= = +
= +
= +

Thus, a complex number z can be expressed as z = x + iy, where x is called the real part of z and y is 
called the imaginary part of z. Thus

( ) ( )Re , Im .z x z y= =

Further,
2 (0,1) (0,1) ( 1,0) 1i = = − = −

and so 1.i = −
The set of complex numbers is denoted by C. Since a real number x can be written as x = (x, 0) = 

x + i0, the set C is an extension of R. Further, since the complex number z = x + iy is an ordered pair 
(x, y), we can represent such numbers by points in xy plane, called the complex plane or Argand dia-
gram (Fig. 1.1).

The modulus (or absolute value) of z is

     
2 2| |z r x y= = +

and

                                             | | | | | |.zw z w=

Further,
| | | | | | (triangle inequality).z w z w+ ≤ +

Since x = r cos q, y = r sin q, we have

1 Functions of Complex 
Variables
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cos sin
(cos sin ),

z x iy r i r

r i

q q
q q

= + = +
= +

which is called as the polar form of the complex number z. The angle q is called the amplitude or argu-
ment of the complex number z and we have

tan .y

x
q =

Let z = r (cos q + i sin q) and w = R(cos f + i sin f) be two complex numbers. Then
[(cos cos sin sin ) (sin cos cos sin )
[cos( ) sin( )].

zw rR i

rR i

q f q f q f q f
q f q f

= − + +
= + + +

Hence, the arguments are additive under multiplication, that is,
arg( ) arg arg .zw z w= +

Similarly, we can show that

arg arg argz
z w

w
⎛ ⎞ = −⎜ ⎟⎝ ⎠

and

                                              

| |
.

| |
zz

w w
=

Definition 1.2. The conjugate of a complex number z is defined by
.z x iy= −

We note that
2 2 2( ) ( ) | | ,

,

.

zz x iy x iy x y z

z w z w

zw z w

= + − = + =

+ = +

=

Consider complex numbers z with |z| = 1. All these numbers have distance 1 to the origin (0, 0) and so 
they form a circle with radius 1 and centre at the origin. This circle is called the unit circle.

0
x

θ

−θ

|z | = r

z  = x  + iy  = (x, y)

z  = x −− iy

y

Figure 1.1 (Argand Diagram)
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Definition 1.3. For each y ∈R, the complex number eiy is defined as
cos sin ,iye y i y= +

which gives
cos sin , 0 2 ,ie iq q q q p= + ≤ <

known as Euler’s formula. We note that
2 2

2 ( 2 )

| | cos sin 1,

arg( ) , 1, ,

1, , , .

i

i i i i

ik i k i

e

e e e e

e k e e k

q

q p q q

p q p q

q q

q −

+

= + =

= = =

= ∈ = ∈� �

Since e−iq = cos q − i sin q, we have

cos , sin .
2 2

i i i ie e e e

i

q q q q
q q

− −+ −
= =

For z = x + iy, we define ez by
(cos sin )z x iy x i y xe e e e e y i y+= = = +

and so
( ) ( )
( ) ( )Re

Re cos , Im sin ,

arg Im , .

z x z z

zz z x

e e y e e y

e z e e e

= =

= = =

Definition 1.4. The complex number z = r(cos q + i sin q), with r = |z| can be written as z = r eiq = |z| 
eiq, which is called exponential form of the complex number z.

For any non-zero complex number z, we define
0 11 for 0·n nz z z z n+= = ≥

and

                               ( )1 0, 0.
nnz z if z n− −= ≠ >

Theorem 1.1. For any complex number z = reiq and n = 0, ±1, ±2,…, we have

.n n inz r e q=

Proof: For n = 0, the result is trivial since z0 = 1. For n = 1,2, … it can be proved by mathematical 
induction. For n = −1, −2, … let n = −m, where m = 1, 2, …

Then

( )
( )

1 1 1

.

m m
mn m i im

i mm n in

z z z e e
r r

r e r e

q q

q q

− − − −

−−

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= =

Substituting r = 1, we have

( )
( )cos sin cos sin , ,

nn i in

n

z e e

i n i n n I

q q

q q q q

= =

⇒ + = + ∈
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which is known as De-Moivre’s theorem for integral index.
The De-Moivre’s theorem also holds for rational index. To show it let p

n q=  be a rational number. 
Then

cos sin cos sin .

cos sin

q

i q i q qq q q

i

q q q q

q q

⎛ ⎞
+ = +⎜ ⎟⎝ ⎠

= +

and so taking qth root of both sides, we note that cos siniq q
q q

+  is one of the values of ( )
1
.cos sin qiq q+  

Therefore, cos sin
p

i qq
q q⎛ ⎞

+⎜ ⎟⎝ ⎠
is one of the values of ( )cos sin

p
qiq q+ , that is, cos sinp p

iq qq q+ is one 

of the values of ( )cos sin
p
qiq q+ . Hence, cos nq + i sin nq is one of the values of (cos q + i sin q)n. This 

proves De-Moivre’s theorem for rational index .
p
q  However, in general, the restriction − p < q ≤ p is 

necessary. For example, if q = − p, 1
2

n = , then the result is not valid.

If n is a positive integer, then De-Moivre’s formula

( ) ( )cos sin cos sinni n i nq q q q+ = +

implies

( )2
0,

cos 1 cos sin
n k

n k k

k even

n

k
nq q q−

=

⎛ ⎞
= − ⎜ ⎟⎝ ⎠∑

and

    
( )

1
2

1,
sin 1 cos sin .

n k
n k k

k odd

n

k
nq q q

−
−

=

⎛ ⎞
= − ⎜ ⎟⎝ ⎠∑

Thus, expansion of cos nq and sin nq can be obtained using the above formulas. For example,

( )

( ) ( ) ( )

7
72

0,

7 5 2 3 4 6

7 5 2 3 4 6

2 37 5 2 3 2 2

cos 7 1 cos sin

cos cos sin cos sin cos sin

cos 21cos sin 35cos sin 7cos sin

cos 21cos 1 cos 35cos 1 cos 7cos 1 cos

7

7 7 7
2 4 6

cos

k
k k

k even k
q q q

q q q q q q q

q q q q q q q

q q q q q q q

−

=

⎛ ⎞
= − ⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − + −

= − − + − − −

=

∑

( )
( )

7 5 7 3 2 4

2 4 6

7 5 2

21cos 21cos 35cos 1 2cos cos

7cos 1 3cos 3cos cos

64cos 112cos 56cos 7cos .

q q q q q q

q q q q

q q q q

− + + − +

− − + −

= − + −
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Similarly,

( )
7 1

72
1,

6 4 3 2 5 7

3 5 7

sin 7 1 cos sin

7cos sin 35cos sin 21cos sin sin

7sin 56sin 112sin 64sin .

7k
k k

k odd k
q q q

q q q q q q q

q q q q

−
−

=

⎛ ⎞
= − ⎜ ⎟⎝ ⎠

= − + −

= − + −

∑

Substituting z = eiq, we have

cos sin and cos sin .n nz n i n z i nq q q q−= + = −

Therefore,
1 12cos and 2 sin .n n
n n

z n z i n
z z

q q+ = − =

Thus,

                           

1 12cos and 2 sin .z z i
z z

q q+ = − =

These expressions are useful in finding the expansion of cosn q and sinn q. For example,

( ) ( ) ( ) ( )
7

7 7 5 5 3 3 11 7 21 35z z z z z z z z z
z

− − − −⎛ ⎞+ = + + + + + + +⎜ ⎟⎝ ⎠

or
( )72cos 2cos 7 14cos5 42cos3 70cosq q q q q= + + +

or
7 7

6

cos 2 [2cos 7 14cos5 42cos3 70cos ]

2 [cos 7 7cos5 21cos3 35cos ].

q q q q q

q q q q

−

−

= + + +

= + + +

Similarly, the expansion of 
1 n

z
z

⎛ ⎞−⎜ ⎟⎝ ⎠  gives sinn q. For example,

5
5 3

5 3
1 1 1 15 10z z z z
z zz z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

or

( )52 sin 2 sin 5 10 sin 3 20 sini i i iq q q q= − +

or

              
5 4sin 2 [sin 5 5sin 3 10sin ].q q q q−= − +

The following theorem is helpful to determine the nth root of a non-zero complex number.

Theorem 1.2. For z0 ≠ 0, there exist n values of z satisfying the equation zn = z0.

Proof: We have zn = z0, that is, 
1

0
nz z= . Let 0

0 0
iz r e q= , − p < q0 ≤ p, and z = reiq. Then



6 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M01\LAYOUT_M01\M01_BABUISBN_10_C01.indd

Modif cation Date: April 29, 2010 11:52 AM Modif cation Date: 29-04-10, 13:19

( ) 0

0

0 0

0

0 0 2 , .

n in i

in in

n

z z re r e

r e r e

r r and n k k I

qq

qq

q q p

= ⇒ =

⇒ =

⇒ = = + ∈

Therefore,

( )
1

0
0

2, ,n
k

r r
n n

q p
q= = +

where ( )
1

0 nr denotes the positive nth root of r0. Hence, all values z given by

( )
0 21

0 , 0, 1, 2, , 1
k

i
nnz r e k n

q p+⎛ ⎞
⎜ ⎟⎝ ⎠= = … −

satisfy the given equation zn = z0. These n values of z are called nth roots of z0. The root corresponding 

to k = 0, that is, ( )
01

0
i

nnc r e
q

= is called the principal root. In terms of the principal root, the nth roots 
of z0 are

2
2 1, , , , .

i
n n

n n n nc cw cw cw where w e
p

−… =

For the values of k other than 0, 1,…, n – 1, the roots start repeating.
For example, to find the fifth roots of unity, we put z0 = 1 so that z0 = 1(cos 0 + i sin 0). Thus, 

( )
1

050 1c r e= =  and 
2
5

i

nw e
p

= . Hence, the fifth roots are
2 4 6 8
5 5 5 51, , , ,

i i i i

e e e e
p p p p

or
2 2 4 4cos 0 sin 0,cos sin ,cos sin ,
5 5 5 5

6 6 8 8cos sin ,cos sin .
5 5 5 5

i i i

i i

p p p p

p p p p

+ + +

+ +

As another example, we find fourth roots of the complex number 8 8 3 i− − . We have

( )22 28 8 3 256 so 16.r r= + = =

Therefore, we can write 
2
3

0 16
i

z e
p−

= . Then ( )
21

612416 2
ii

c e e
pp− −

= =  and 
2
4

i

nw e
p

= . Hence the roots 
are

3
6 6 62 2 42 , 2 . , 2 . , 2 .

i ii i ii
ie e e e e e e

p pp p pp
p

−− −−

or

2 cos sin , 2 cos sin
6 6 3 3
5 5 4 42 cos sin , 2 cos sin .
6 6 3 3

i i

i i

p p p p

p p p p

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤− + − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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De-Moivre’s theorem can also be used to solve equations. For example, consider the equation z4 – z3 + 
z2 – z + 1 = 0. Multiplying both sides by (z + 1), we get z5 + 1 = 0. Therefore,

( )
( ) ( )

5 1 cos sin
cos 2 1 sin 2 1 ,
0, 1, 2,

z i

n i n

n

p p
p p

= − = +
= + + +
= …

Therefore, the roots of the equation are given by

( ) ( )

( ) ( )

1
5[cos 2 1 sin 2 1 ]

cos 2 1 sin 2 1 .
5 5

n i n

n i n

p p
p p

+ + +

⎡ ⎤= + + +⎢ ⎥⎣ ⎦

Hence, the roots are

3 3cos sin , cos sin
5 5 5 5

7 7cos sin 1, cos sin
5 5

9 9cos sin .
5 5

i i

i i

i

p p p p

p p
p p

p p

+ +

− = − +

+

But the root –1 corresponds to the factor (z + 1). Therefore, the required roots are

3 3cos sin , cos sin
5 5 5 5

3 3cos sin and cos sin .
5 5 5 5

i i

i i

p p p p

p p p p

+ +

− −

Logarithms of Complex Numbers
Let z and w be complex numbers. If w = ez, then z is called a logarithm of w to the base e. Thus loge 
w = z. If w = ez, then

2 2. .z n i z n i ze e e e wp p+ = = =

Therefore,

log 2 , 0, 1, 2 ,e w z n i np= + = ± ± …

Thus if z is logarithm of w, then z + 2np i is also logarithm of w. Hence, the logarithm of a complex 
number has infinite values and so is a many-valued function. The value z + 2np i is called the general 
value of loge w and is denoted by Loge w. Thus

Log 2 2 log .e ew z n i n i wp p= + = +

Substituting n = 0 in the general value, we get the principal value of z, that is, loge w.



8 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M01\LAYOUT_M01\M01_BABUISBN_10_C01.indd

Modif cation Date: April 29, 2010 11:40 AM Modif cation Date: 29-04-10, 11:49

Real and Imaginary Parts of Log (x + iy)
Let x + iy = r(cos q + i sin q) so that 2 2r x y= + , 1tan y

x
q −= . Then

( ) ( )
( )

( )

( )
( )

1
2 2 2

2 2 1

Log log 2
log[ cos sin ] 2

log 2

log log 2
log 2

log 2

1 log 2 tan .
2

i

i

x iy x iy n i

r i n i

re n i

r e n i

r n i i

x y n i i

y
x y n i i

x

q

q

p
q q p

p

p
p q

p q

p −

+ = + +
= + +

= +

= + +
= + +

= + + +

= + + +

Hence

( ) 2 21Re[Log ] l  (
2

)ogx iy x y+ = +

and

( ) 1Im[Log ] 2 tan .y
x iy n

x
p −+ = +

EXAMPLE 1.1
Separate the following into real and imaginary parts:
(i) Log (1 + i) (ii) Log (4 + 3i).

Solution. (i) We have x + iy = 1 + i so that r2 = x2 + y2 = 1 + 1 = 2.
Therefore

( ) ( )2 21 1Re[Log 1 ] log log2
2 2

i x y+ = + =

and

( )

( )

1 1 1Im[Log 1 ] 2 tan 2 tan
1

2 8 1 .
4 4

y
i n n

x

n n

p p

p p
p

− −+ = + = +

= + = −

(ii) We have x + iy = 4 + 3i so that r2 = x2 + y2 = 25.
Therefore

( ) 21Re[log 4 3 ] log5 log 5
2

i+ =

and

( ) 1 3Im[log 4 3 ] 2 tan .
4

i np −+ = +
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EXAMPLE 1.2
Find the general value of
(i) log (−3) (ii) log (− i).

Solution.  (i) Since

          ( ) ( )3 3 1 3 cos sin 3 ,ii e pp p− = − = + =

therefore
( ) ( ) ( )

( )
Log 3 Log 3 2 log 3

2 log3 log3 2 1 .

i ie n i e

n i i i n

p pp

p p p

− = = +

= + + = + +

(ii) Since 2cos sin
2 2

i

i i e
pp p −⎛ ⎞ ⎛ ⎞− = − + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, therefore

( )

( )

2Log 2 log 2
2

4 1 .
2

i
i

i n i e n i

i
n

p p
p p

p

−⎛ ⎞
− = + = −⎜ ⎟

⎝ ⎠

= −

EXAMPLE 1.3
Show that

2 2
2tan log .a ib ab

i
a ib a b

−⎛ ⎞ =⎜ ⎟⎝ ⎠+ −

Solution. Let a + ib = r(cos q + i sin q). Therefore a = r cos q, b = r sin q and tan b
aq = . Then

( )
( )

( )

2

2

2 2 2

2

cos sin
tan log tan log

cos sin

tan log

tan log

tan 2 log
2 tantan 2 .

1 tan
2

2 .
1

i

i

i

r ia ib
i i

a ib r i

e
i

e

i e

i i e

b
a ab

b a b

a

q

q

q

q q
q q

q
q

q
q

−

−

⎡ ⎤−−⎛ ⎞ = ⎢ ⎥⎜ ⎟⎝ ⎠+ +⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤= ⎣ ⎦

= −⎡ ⎤⎣ ⎦

= =
−

= =
−−

EXAMPLE 1.4
Show that

2 2

2 2cos log .a ib a b
i

a ib a b

+ −⎡ ⎤ =⎢ ⎥− +⎣ ⎦
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Solution. Setting a = r cos q, b = r sin q, so that tan b

a
q = , we have

( )
( )
2 1

cos sin
log log log

cos sin

log 2 2 tan .

i

i

i

r ia ib re

a ib r i re

b
e i i

a

q

q

q

q q
q q

q

−

−

++⎛ ⎞ = =⎜ ⎟⎝ ⎠− −

= = =

Therefore

( )
2

2 2 22

2 2 2 2

2

cos log cos[ 2 ] cos 2

11 tan .
1 tan 1

a ib
i i i

a ib

b
a ba

b a b

a

q q

q
q

+⎡ ⎤ = =⎢ ⎥−⎣ ⎦

−− −
= = =

+ ++

Hyperbolic Functions
Let z be real or complex. Then

(i) 
2

z ze e−−  is called the hyperbolic sine of z and is denoted as sinh z

(ii) 
2

z ze e−+  is called the hyperbolic cosine of z and is denoted by cosh z

The other hyperbolic functions are defined in terms of hyperbolic sine and cosine as follows:

     

sinhtanh
cosh
coshcoth
sinh

1 2sech
cosh

1 2cosech .
sinh

z z

z z

z z

z z

z z

z z

z e e
z

z e e

z e e
z

z e e

z
z e e

z
z e e

−

−

−

−

−

−

−
= =

+
+

= =
−

= =
+

= =
−

If follows from the above definitions that

(i) 
0 0 1 1sinh 0 0

2 2
e e−− −

= = =

(ii) 
0 0 1 1cosh 0 1

2 2
e e−+ +

= = =

(iii) cosh sinh
2 2

z z z z
ze e e e

z z e
− −+ −

+ = + =

(iv) cosh sinh .
2 2

z z z z
ze e e e

z z e
− −

−+ −
− = − =
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Relations Between Hyperbolic and Circular Functions
(i) By definition

sinh .
2

e eq q
q

−−
=

Substituting q = iz, we have

( )sinh sin .
2 2

iz iz iz ize e e e
iz i i z

i

− −− −
= = =

Similarly, by definition of circular function sinq, we have

sin .
2

i ie e

i

q q
q

−−
=

Substituting q = iz, we get

( )
2

(sin
2 2

sinh
2

)

( )
2

z z z z

z z z z

e e e e
iz

i i

i e e e e
i i z

i

− −

− −

− −
= = −

− −
= = =

(ii) By definition

cosh .
2

e eq q
q

−+
=

Substituting q = iz, we get

( )cosh cos .
2

iz ize e
iz z

−+
= =

Similarly, by definition

cos .
2

i ie eq q
q

−+
=

Substituting q = iz, we get

( )cos cosh .
2

z ze e
iz z

− +
= =

(iii) We note that

( ) ( )
( )

sin sinhtan tanh
cos cosh

iz i z
iz i z

iz z
= = =

and

( ) sin2tanh tan .
cos

2

iz iz

iz iz

iz iz iz iz

e e
e e ziiz i i i z

ze e e e

−

− −

−
−

= = = =
+ +

(iv) We have

( ) ( )
( ) 2

cos cosh coshcot coth
sin sinh sinh

iz z i z
iz i z

iz i z i z
= = = = −
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(v) We have

( ) ( )
1 1sec sech

cos cosh
iz z

iz z
= = =

(vi) Lastly

( ) ( ) 2
1 1cosec cosech .

sin sinh sinh
i

iz i z
iz i z i z

= = = = −

Periodicity of Hyperbolic Function
We note that

(i) sinh (z + 2np i) = sinh z. Therefore, sinh z is a periodic function with period 2p i
(ii) cosh (z + 2np i) = cosh z and so cosh z is also periodic with period 2p i.

(iii) tanh (z + np i) = tanh z and so is periodic with period p i.
Further cosech z, sech z and coth z are reciprocals of sinh z, cosh z and tanh z, respectively, and are, 
therefore, periodic with period 2p i, 2p i, and p i, respectively.

EXAMPLE 1.5
Show that

(i) cosh2 z − sinh2 z = 1
(ii) sech2 z + tanh2 z = 1

(iii) coth2 z − cosech2 z = 1.

Solution.  (i) Since cos2 q + sin2 q = 1, substituting q = iz, we get

( ) ( )2 2cos sin 1iz iz+ =

or

                                   ( ) ( )2 2cosh sinh 1z i z+ =

or
       2 2 2cosh sinh 1z i z+ =
or
            2 2cosh sinh 1.z z− =

(ii) Dividing both sides of the above expression by cosh2 z, we get
2 21 tanh sechz z− =

or
2 2sech tanh 1.z z+ =

(iii) Dividing both sides of (i) by sinh2 z, we get
2

2
2

cosh 1 cosech
sinh

z
z

z
− =

or
2 2coth cosech 1.z z− =
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EXAMPLE 1.6
Show that

2
2 tanhsinh 2 2sinh cosh .

1 tanh
z

z z z
z

= =
−

Solution. Substitute q = iz in trigonometric relation sin 2q = 2 sin q cos q to get

( ) ( ) ( )sin 2 2sin cosiz iz iz=
or

sinh 2 2 sinh coshi z i z z=
or

sinh 2 2sinh cosh .z z z=
Also, we know that

 2
2 tansin 2 .

1 tan
q

q
q

=
+

Substituting q = iz, we get

( )
( )2 2

2 tan 2 tanhsin 2
1 tan 1 tanh

iz i z
iz

iz i z
= =

+ +
or

 2 2 2
2 tanh 2 tanhsinh 2

1 tanh 1 tanh
i z i z

i z
i z z

= =
+ −

or

 2
2 tanhsinh 2 .

1 tanh
z

z
z

=
−

EXAMPLE 1.7
Show that

3

2
3tanh tanhtanh3 .

1 3tanh
z z

z
z

+
=

+

Solution.  Substituting q = iz in the trigonometric relation 
3

2
3tan tantan 3

1 3tan
q q

q
q

−
=

−
, we get

( ) ( ) ( )
( )

3

2
3tan tan

tan 3
1 3tan

iz iz
iz

iz

−
=

−

or

 

( )
( )

3

2
3 tanh tanh

tanh3
1 3 tanh

i z i z
i z

i z

−
=

−

or

 

3

2
3 tanh tanhtanh3

1 3tanh
i z i z

i z
z

+
=

+
or

2

2
3tanh tanhtanh3 .

1 3tanh
z z

z
z

+
=

+
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Remark 1.1. Proceeding as in the above example, the following formulae of hyperbolic function can 
also be derived.

(i) sinh (x ± y) = sinh x cosh y ± cosh x sinh y
(ii) cosh (x ± y) = cosh x cosh y ± sinh x sinh y

(iii) ( ) tanh tanhtanh
1 tanh tanh

x y
x y

x y

±
± =

±
(iv) cosh 2x = cosh2 x + sinh2 x = 2cosh2 x − 1

                              

2
2

2
1 tanh1 2sinh
1 tanh

x
x

x

+
= + =

−

(v) 2
2 tanhtanh 2

1 tanh
x

x
x

=
+

(vi) sinh 3x = 3 sinh x + 4 sinh3 x
(vii) cosh 3x = 4 cosh2 x − 3 cosh x

(viii) ( ) ( )sinh sinh 2sinh coshA B A B A B+ + − =
(ix) ( ) ( )sinh sinh 2cosh sinhA B A B A B+ − − =
(x) ( ) ( )cosh cosh 2cosh coshA B A B A B+ + − =

(xi) ( ) ( )cosh cosh 2sinh sinhA B A B A B+ − − =

(xii) sinh sinh 2sinh cosh
2 2

C D C D
C D

+ −
+ =

(xiii) sinh sinh 2cosh sinh
2 2

C D C D
C D

+ −
− =

(xiv) cosh cosh 2cosh cosh
2 2

C D C D
C D

+ −
+ =

(xv) cosh cosh 2sinh sinh .
2 2

C D C D
C D

+ −
− =

EXAMPLE 1.8
Separate the following into real and imaginary parts.
(i) tan(x + iy) (ii) sec(x + iy) (iii) tan−1(x + iy).
Solution.  (i) We have

( ) ( )
( )

( )
( )

( )
( )

sin 2sin cos
tan .

cos 2cos cos
sin 2 sin 2 sin 2 sinh 2
cos 2 cos 2 cos 2 cosh 2

sin 2 sinh 2 .
cos 2 cosh 2 cos 2 cosh 2

x iy x iy x iy
x iy

x iy x iy x iy

x iy x i y

x iy x y

x y
i

x y x y

+ + −
+ = =

+ + −
+ +

= =
+ +

= +
+ +

Hence

( )

( )

sin 2Re tan( )
cos 2 cosh 2

sinh 2Im tan( ) .
cos 2 cosh 2

x
x iy

x y

y
x iy

x y

+ =
+

+ =
+
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(ii)

( ) ( ) ( )
( )

( )
( )

( )

2cos1 1sec .
cos 2cos cos

2 cos cos sin sin
cos 2 cos 2

2 cos cosh sin sinh
cos 2 cosh 2

2cos cosh 2sin sinh
.

cos 2 cosh 2 cos 2 cosh 2

x iy
x iy

x iy x iy x iy

x iy x iy

x iy

x y i x y

x y

x y x y
i

x y x y

−
+ = =

+ + −

+
=

+
+

=
+

= +
+ +

Therefore,

( )

( )

2cos cosh
Re[sec ]

cos 2 cosh 2
2sin sinh

Im[sec ] .
cos 2 cosh 2

x y
x iy

x y

x y
x iy

x y

+ =
+

+ =
+

(iii) Suppose ( )1tan .i x iya b −+ = +  Then ( )1tan .i x iya b −− = −
Addition of these two expressions yields

( ) ( )
( ) ( )

( ) ( )

1 1

1

2 tan tan

tan .
1

x iy x iy

x iy x iy

x iy x iy

a − −

−

= + + −
+ + −

=
− + −

Therefore, 1
2 2

1 2tan
2 1

x

x y
a −=

− −
.

Similarly, subtracting a − ib from a + ib, we get

( ) ( )
( ) ( )

( ) ( )

1 1

1

1 1
2 2 2 2

2 tan tan

tan
1

2 2tan tanh .
1 1

i x iy x iy

x iy x iy

x iy x iy

y y
i i

x y x y

b − −

−

− −

= + − −
+ − −

=
+ + −

= =
+ + + +

Hence

                       
1

2 2
1 2tanh .
2 1

x

x y
b −=

+ +

EXAMPLE 1.9
Separate the following into real and imaginary parts. (i) sinh(x + iy) (ii) coth(x + iy)

Solution. (i) Since sin i q = i sinh q, we have

( ) ( ) ( )
( )

2

2

1 1sinh sin sin

sin

x iy i x iy ix i y
i i
i

ix y
i

+ = + = +

= −
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( )
( )
sin cos cos sin
sinh cos cosh sin

sinh cos cosh sin .

i ix y ix y

i i x y x y

x y i x y

= − −
= − −
= +

Hence
( )
( )

Re[sinh ] sinh cos
Im[sinh ] cosh sin .

x iy x y

x iy x y

+ =
+ =

(ii) coth (x + iy)
( )
( )

( )
( )

( )
( )

( ) ( )
( ) ( )

cosh cos
1sinh sin

cos 2sin cos
sin 2sin sin
sin 2 sin 2 sinh 2 sin 2
cos 2 cos 2 cos 2 cosh 2

sinh 2 sin 2
cos 2 cosh 2 cos 2 cosh 2

sinh 2 sin
cosh 2 cos 2

x iy i x iy

x iy i x iy
i

ix y ix y ix y
i i

ix y ix y ix y

ix y i x y
i i

y ix y x

x y
i

y x y x

x
i

x y

+ +
= =

+ +

− + −
= =

− + −
+ +

= =
− −

−
= +

− −

= −
−

2 .
cosh 2 cos 2

y

x y−

EXAMPLE 1.10
If ( )sin A iB x iy+ = + , show that

    (i) 2 2 2 2cosec sec 1x A y A− =

 (ii) 
2 2

2 2 1.
cosh sinh

x y

B B
+ =

Solution.  We have

( )sin sin cos cos sin
sin cosh cos sinh .

x iy A iB A iB A iB

A B i A B

+ = + = +
= +

Therefore, real and imaginary parts are
sin cosh and cos sinhx A B y A B= =

(i) Form above, we have

cosh and sinh .
sin cos

x y
B B

A A
= =

Squaring and subtracting, we get
2 2

2 2
2 2 cosh sinh 1

sin cos
x y

B B
A A

− = − =

or
2 2 2 2cosec sec 1.x A y A− =
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 (ii) Again, from (i), we have

sin and cos .
cosh sinh

x y
A A

B B
= =

Squaring and adding we get
2 2

2 2 1.
cosh sinh

x y

B B
+ =

EXAMPLE 1.11
Show that

( )cosh sinh cosh sinh ,nx x nx nx+ = +

where n is a positive integer.

Solution.  We have

( )

( )

cosh sin
2 2

cosh sinh .

nx x x x
n

nx xn

e e e e
x nhx

e e nx nx

− −⎛ ⎞+ −
+ = +⎜ ⎟⎝ ⎠

= = = +

EXAMPLE 1.12
If x + iy = cosh (u + iv), show that

  (i)   2 2 2 2sec cosec 1x v y v− =

(ii)   
2 2

2 2 1
cosh sinh

x y

u u
+ =

Solution. We are given that
( ) ( ) ( )cosh cos cos

cos cos sin sin
cosh cos sinh sin .

x iy u iv i u iv iu v

iu v iu v

u v i u v

+ = + = + = −
= −
= +

Equating the real and imaginary parts, we get
cosh cos and sinh sinx u v y u v= =

  (i) From above, we have

cosh and sinh .
cos sin

x y
u u

v v
= =

Squaring and subtracting, we get
2 2

2 2
2 2 cosh sinh 1

cos sin
x y

u u
v v

− = − =

or
2 2 2 2sec cosec 1x v y v− =

(ii) From above, we also have

cos and sin .
cosh sinh

x y
v v

u u
= =
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Squaring and adding, we get
2 2

2 2
2 2 sin cos 1.

cosh sinh
x y

v v
u u

+ = + =

Definition 1.5. Let z0 be a point in the complex plane and let e be any positive number. Then the set of 
all points z such that |z − z0| < e is called e-neighbourhood of z0.

A neighbourhood of a point z0 from which z0 is omitted is called a deleted neighbourhood of z0. 
Thus 0 < |z − z0| < e is a deleted neighbourhood of z0.

Definition 1.6. A point z0 is called a limit point, cluster point, or point of accumulation of a point set 
S if every deleted neighbourhood of z0 contains points of S.

We observe that if z0 is a limit point of the point set S, then since e is any positive number, S con-
tains an infinite number of points. Hence, a finite set has no limit point.

Definition 1.7. The union of a set S and the set of its limit points is called the closure of S.

Definition 1.8. A set S is said to be closed if it contains all of its limit points.

Definition 1.9. A point z0 is called an interior point of a point set S if there exists a neighbourhood of 
z0 lying wholly in S.

Definition 1.10. A set S is said to be open if every point of S is an interior point.
Thus, a set S is open if for every z ∈S, there exists a neighbourhood lying wholly in S.

Definition 1.11. An open set is said to be connected if any two points of the set can be joined by a 
polynomial arc (path) lying entirely in the set.

Definition 1.12. An open connected set is called a domain or open region.

Definition 1.13. The closure of an open region or domain is called closed region.

Definition 1.14. If to a domain we add some, all, or none of its limit points, then the set obtained is 
called the region.

Definition 1.15. A function w = f (z), which assign a complex number w to each complex variable z is 
called a complex-valued function of a complex variable z.

If only one value of w corresponds to each value of z, we say that w = f (z) is a single-valued func-
tion of z or that f (z) is single valued.

If more than one value of w corresponds to a value of z, then f (z) is called multiple-valued or many-
valued function of z.

EXAMPLE 1.13
The function f (z) = z2 is single-valued function whereas the function f (z) = z1/2 = 

2

21/2
k

r e
q p+

, 
 k = 0, 1,…, n – 1 is multiple-valued having n branches (one for each value of k).

Consider
2 2 2 2( ) ( ) 2 .f z z x iy x y xiy= = + = − +

This shows that a complex-valued function can be expressed as

( ) ( , ) ( , ),f z x y i x yf y= +

where f(x, y), y(x, y) are real functions of the real variables x and y. The function f is called real part 
and y is called imaginary part of f (z).
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Definition 1.16. The function f (z) is said to have the limit l as z approaches z0 if given e > 0, there 
exists a d > 0 such that

0 | ( ) | 0 | | .f z l whenever z ze d−< < <−

We then write 
0

lim ( )
z z

f z l
→

= , provided that the limit is independent of the direction of approach of z 
to z0.

Definition 1.17. The function f (z) is said to be continuous at z0 if ( )
0

0lim ( )
z z

f z f z
→

= , provided that 

the limit is independent of the direction of approach of z to z0.
For example, let f (z) = z2 for all z. Then, we note that ( )lim ( ) 1

z i
f z f i

→
= = − . Hence f is continuous 

at z = i.

Definition 1.18. The single-valued function f (z) defined on a domain (open connected set) D is said 
to be differentiable at z0 if

0
0

0

( ) ( )lim
z z

f z f z

z z
→

−
−

exists and is independent of the direction of approach of z to z0.
If this limit exists, then the same is called derivative of f (z) at z0 and is denoted by f �(z0).

1.2 ANALYTIC FUNCTIONS
Definition 1.19.  If f (z) is differentiable at all points of some neighbourhood | z – z0 | < r of z0, then f (z) 
is said to be analytic (or holomorphic) at z0.

If f (z) is analytic at each point of a domain D, then f (z) is called analytic in that domain.

EXAMPLE 1.14
Consider

1( ) .
1

z
f z

z

+
=

−
We note that

( ) ( )

( )
( )

( )( ) ( )

0

0

20

( ) lim

1 1
1 1

lim

2 2lim ,
1 1 1

z

z

z

f z z f z
z

z
z z z
z z z

z

z z z z

f
Δ →

Δ →

Δ →

+ Δ −
=

Δ
+ + Δ +−
− + Δ −

=
Δ

= =
− − Δ − −

�

independent of the direction of approach of Δz to 0, provided that z ≠ 1. Thus f (z) is analytic for all 
finite value of z except z = 1, where the derivative does not exist.

On the other hand, the function f (z) = |z|2 is not analytic at any point since its derivative exists only 
at the point z = 0 and not throughout any neighbourhood.
Definition 1.20. A function which is analytic everywhere in the finite plane (that is everywhere except 
at ∞) is called an entire function or integral function.

For example, ez, sin z, and cos z are entire functions.
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Definition 1.21. The point at which the function f (z) is not analytic is called singular point of f (z).
We notice that z = 1 is the singular point of f (z) in Example 1.14.

Definition 1.22. The point z0 is called an isolated singularity or isolated singular point of f (z) if we 
can find d > 0 such that the circle |z – z0| = d encloses no singular point other than z0.

If no such d can be found, then z0 is called non-isolated singularity.

Definition 1.23. The point z0 is called a pole of order n of f (z) if there exists a positive integer n such 
that 

0
0lim ( ) ( ) 0n

z z
z z f z A

→
− = ≠ .

If n = 1, then z0 is called a simple pole.

EXAMPLE 1.15

 (i) 1( )
( 1) ( 3)

f z
z z

=
− −

 has simple poles at z = 1 and z = 3.

(ii) 3
1( )

( 2)
f z

z
=

−
 has a pole of order 3 at z = 2.

Regarding analyticity of a function f (z), we have the following results.

Theorem 1.3. A necessary condition that f (z) = u(x, y) + iv(x, y) be analytic in a domain D is that in D, 
the functions u, and v satisfy the Cauchy-Riemann equations

, .u v u v

x y y x

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂

Proof: Let f (z) be analytic in the domain D. Therefore, the limit

0

( ) ( )lim
z

f z z f z

zΔ →

+ Δ −
Δ

must exist independent of the manner in which Δz approaches zero. Since Δz = Δx + iΔy,

0

( ) ( )lim
z

f z z f z

zΔ →

+ Δ −
Δ

   
0
0

[ ( , ) ( , ) [ ( , ) ( , )]
lim
x
y

u x x y y iv x x y y u x y iv x y

x i yΔ →
Δ →

+ Δ + Δ + + Δ + Δ − +
=

Δ + Δ
 

(1.1)

must exist independent of the manner in which Δx and Δy approach zero.
Two cases arise:

(i) If Δy = 0, Δx → 0, then (1.1) becomes

0

0 0

[ ( , ) ( , ) [ ( , ) ( , )]

( , ) ( , ) [ ( , ) ( , )]lim lim

lim

x

x

x

u x x y iv x x y u x y iv x y

x
u x x y u x y i v x x y v x y

x xΔ → Δ

Δ →

→

+ Δ + + Δ − +
Δ

+ Δ − + Δ −
= +

Δ Δ

     
,u v

i
x x

∂ ∂
∂ ∂

= +
 

(1.2)

provided the partial derivatives exist.
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 (ii) If Δx = 0 and Δy → 0, then (1.1) becomes

     

0

( , ( , ) ( , ) ( , )lim

1
y

u x y y u x y v x y y v x y

i y y

u v

i y y

Δ →

⎡ ⎤+ Δ − + Δ −
+⎢ ⎥Δ Δ⎣ ⎦

∂ ∂
= +

∂ ∂  
(1.3)

For f (z) to be analytic, these two limits should be identical. Hence a necessary condition for f (z) to be 
analytic is

u v u v
i i

x x y y

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂
and so

     
andu v v u

x y x y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = −
 (1.4)

The equations given in (1.4) are called Cauchy-Riemann Equations.

Remark 1.2. The Cauchy-Riemann equations are not sufficient conditions for analyticity of a func-
tion. For example, we shall see that the function ( ) | |f z x y=  is not analytic at the origin although 
Cauchy-Riemann equations are satisfied.

The following theorem provides us with sufficient conditions for a function to be analytic.

Theorem 1.4. If f (z) = u(x, y) + iv(x, y) is defined in a domain D and the partial derivatives 

, , ,u u v v

x y x y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 are continuous and satisfy Cauchy-Riemann equations, then f (z) is analytic in D.

Proof: Since u

x

∂
∂

 and u

y

∂
∂

 are continuous, we have

1 1

1 1

( , ) ( , )
[ ( , ) ( , )] [ ( , ) ( , )]

,

u u x x y y u x y

u x x y y u x y y u x y y u x y

u u
x y

x y

u u
x y x y

x y

e h

e h

Δ = + Δ + Δ −
= + Δ + Δ − + Δ + + Δ −

⎛ ⎞∂ ∂⎛ ⎞= + Δ + + Δ⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ⎝ ∂ ⎠
∂ ∂

= Δ + Δ + Δ + Δ
∂ ∂

where e1 → 0 and h1 → 0 as Δx → 0 and Δy → 0, respectively.

Similarly, the continuity of v

x

∂
∂

and v

y

∂
∂

 implies

2 2 ,v v
v x y x y

x y
e h

∂ ∂
Δ = Δ + Δ + Δ + Δ

∂ ∂

where e2 → 0 and h2 → 0 as Δx → 0 and Δy → 0, respectively. Hence
( )

,

f z w u i u

u i u u u
x i y x y

x x y y

∂ ∂ ∂ ∂
e h

∂ ∂ ∂ ∂

Δ = Δ = Δ + Δ

⎛ ⎞⎛ ⎞= + Δ + + Δ + Δ + Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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where e = e1 + ie2 → 0 and h = h1 + ih2 → 0 as Δx→ 0 and Δy → 0. But, by Cauchy-Riemann equations

and .u v v u

x y x y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = −

Therefore,

( ) .

u v v u
w i x i y x y

x x x x

u v
i x i y x y

x x

∂ ∂ ∂ ∂
e h

∂ ∂ ∂ ∂
∂ ∂

e h
∂ ∂

⎛ ⎞ ⎛ ⎞Δ = + Δ + − + Δ + Δ + Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞= + Δ + Δ + Δ + Δ⎜ ⎟⎝ ⎠

Dividing by Δz = Δx + iΔy and taking the limit as Δz → 0, we get

( )
0

lim

.

z

dw w
f ' z

dz z
u v

i
x x

Δ →

Δ
= =

Δ
∂ ∂

= +
∂ ∂

Thus, the derivative exists and is unique. Hence f (z) is analytic in D.

Remark 1.3. From above, we note that

( )

using Cauchy Riemann equati n o s

u v
f ' z i

x x
u u

i
x y

∂ ∂
= +

∂ ∂
∂ ∂

= − −
∂ ∂

and

( )

using Cauchy Riemann equation s.

u v
f ' z i

x x
v v

i
x y

∂ ∂
= +

∂ ∂
∂ ∂

= + −
∂ ∂

EXAMPLE 1.16
Show that the function ( )f z z= is not analytic at any point.
Solution.  We have

( )
0

0
0

0
0

0
0

lim

lim

( )lim

lim .

z

x
y

x
y

x
y

z z z
f ' z

z

x iy x i y x iy

x i y

x iy x i y x iy

x i y

x i y

x i y

Δ →

Δ →
Δ →

Δ →
Δ →

Δ →
Δ →

+ Δ −
=

Δ
+ + Δ + Δ − +

=
Δ + Δ

− + Δ − Δ − −
=

Δ + Δ

Δ − Δ
=

Δ + Δ

If we take Δx = 0, then the above limit is −1 and if we take Δy = 0, then this limit is 1. Since the limit 
depends on the manner in which Δz → 0, the derivative does not exist and so f (z) is not analytic.
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Second Method: We have
( ) ,f z u iv z x iy= + = = −

and so
, ,

1, 1.

u x v y

u v

x y

∂ ∂
∂ ∂

= = −

= = −

Thus Cauchy-Riemann equations are not satisfied. Hence the function is not analytic.

Theorem 1.5. If f (z) = u(x, y) + iv (x, y) is analytic in a domain D, then u and v are harmonic, that is, 
they satisfy

2 2 2 2

2 2 2 20 and 0.u u v v

x y x y

∂ ∂ ∂ ∂
∂ ∂ ∂

+ = + =
∂

Thus, for an analytic function f (z), u, and v satisfy Laplace-equation
2 2

2 2 0.
x y

∂ f ∂ f
∂ ∂

+ =

Proof:  Since f (z) is analytic in D, Cauchy-Riemann equations are satisfied and so

     
,u v

x y

∂ ∂
∂ ∂

=
 

(1.5)

     
.v u

x y

∂ ∂
∂ ∂

= −
 

(1.6)

Assuming that u and v have continuous second order partial derivatives, we differentiate both sides of 
(1.5) and (1.6) with respect to x and y, respectively, and get

     

2 2

2
u v

x yx

∂ ∂
∂ ∂∂

=
 

(1.7)

and

     

2 2

2 .v u

y x y

∂ ∂
∂ ∂ ∂

= −
 

(1.8)

The equations (1.7) and (1.8) imply
2 2

2 2
u u

x y

∂ ∂
∂ ∂

= −

and so
2 2

2 2 0.u u

x y

∂ ∂
∂ ∂

+ =

Hence u is harmonic.
Similarly, differentiating (1.5) and (1.6) w.r.t. y and x respectively, we get

2 2

2 2 0.v v

x y

∂ ∂
∂ ∂

+ =

Hence v is harmonic.
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Definition 1.24. If f (z) = u + iv is analytic and u and v both satisfy Laplace’s equation, then u and v are 
called conjugate harmonic functions or simply conjugate functions.
EXAMPLE 1.17
Show that

( sin cos )xu e x y y y−= −
is harmonic.
Solution.  We are given that

( sin cos ).xu e x y y y−= −
Therefore,

2

2

2

2

sin sin cos ,

2 sin sin cos ,

cos sin cos ,

sin 2 sin cos .

x x x

x x x

x x x

x x x

u
e y x e y y e y

x

u
e y x e y y e y

x
u

x e y y e y e y
y

u
xe y e y y e y

y

∂
∂

∂
∂
∂
∂

∂
∂

− − −

− − −

− − −

− − −

= − +

= − + −

= + −

= − + +

Thus, we have
2 2

2 2 0u u

x y

∂ ∂
∂ ∂

+ =

and so u is harmonic.
EXAMPLE 1.18
If

( cos sin ),xu e x y y y= −
find v such that f (z) = u + iv is analytic.

Solution.  We want f (z) to be analytic. So, by Cauchy-Riemann equations

and .u v v u

x y x y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = −

Thus

( cos sin ) cos

cos sin cos ,

sin sin cos .

x x

x x x

x x x

v u
e x y y y e y

y x

x e y e y y e y

v u
x e y e y e y y

x y

∂ ∂
∂ ∂

∂ ∂
∂ ∂

= = − +

= − +

= − = + +

Now

dv

( sin sin cos )

( cos sin cos )

x x x

x x x

v v
dx dy

x y

x e y e y e y y dx

x e y e y y e y dy

∂ ∂
∂ ∂

= +

= + +

+ − +
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Therefore,

constant

[ sin sin cos ]

( cos sin cos )

( sin sin cos ) sin

( sin cos ) C (constant).

x x x

y

x x x

x x

x

v xe y e y e y y dx

xe y e y y e y dy

e x y y y y e y C

e x y y y

= + +

+ − +

= + + − +

= + +

∫

∫

Hence
( ) [ cos sin sin cos ]

( ) (cos sin )

( )

.

x

x

x iy

z

f z u iv e x y y y ix y iy y Ci

e x iy y i y Ci

x iy e Ci

z e Ci

+

= + = − + + +

= + + +

= + +

= +

EXAMPLE 1.19
           If  u1(x, y) = u

y

∂
∂

 and u2 (x, y) = u

x

∂
∂

, show that

1 2( ) ( ,0) ( ,0).f z u z i u z= −�

Solution.  By Remark 1.3 we have

1 2

( )

( , ) ( , )

u u
f z i

x y

u x y iu x y

∂ ∂
= −

∂ ∂
= −

�

Substituting y = 0, we get
1 2( ) ( ,0) ( ,0)f x u x iu x= −�

Replacing x by z, we have

     1 2( ) ( ,0) ( ,0)f z u z iu z= −�  (1.9)

Remark 1.4.  (i) If v

y

∂
∂

= v1(x, y) and v

x

∂
∂

= v2(x, y), then as in Example 1.19, we have

     1 2( ) ( ,0) ( ,0)f z v z iv z= +�  (1.10)

(ii) Integrating (1.9) and (1.10), we get f (z). This method of constructing an analytic function is called 
Milne-Thomson’s method.

EXAMPLE 1.20
If u = e−x (x sin y – y cos y), determine the analytic function u + iv.

Solution.  We have

1

2

( , ) sin sin cos

( , ) cos sin cos

x x x

x x x

u
u x y e y x e y y e y

x
u

u x y x e y y e y e y
y

∂
∂
∂
∂

− − −

− − −

= = − +

= = + −
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so that, by Example 1.19, we get

1 2( ) ( ,0) ( ,0)

0 ( ) .z z z z

f z u z iu z

i z e e i e i z e− − − −

= −

= − − = −

�

Integrating, we get
( )

.

z z z

z

f z ie dz ize ie dz Ci

i z e Ci

− − −

−

= + − +

= +

∫ ∫

Also, on separating real and imaginary parts, we get
( sin cos )xv e y y x y C−= + +

EXAMPLE 1.21
Find the analytic function of which the imaginary part is v = 3x2 y – y3.

Solution.  We are given that
2 33 .v x y y= −

Therefore,
2 26 , 3 3 .v v

xy x y
x y

∂ ∂
= = −

∂ ∂
Thus

2 2
1

2

( , ) 3 3 ,

( , ) 6 .

v
v x y x y

y

v
v x y xy

x

∂
= = −

∂
∂

= =
∂

Therefore,
2

1 2( ) ( ,0) ( ,0) 3 .f z v z i v z z= + =�

Hence
2

2

3 3

3 2 2 3

( ) 3 3
3

( )

3 3

z
f z z dz C

z C x iy C

x xy ix y iy C

= = +

= + = + +

= − + − +

∫

Comparing real and imaginary parts, we have
3 2

2 3

3

3 .

u x x C

v x y y

= − +

= −

EXAMPLE 1.22
Show that the function u = 1

2 log (x2 + y2) is harmonic and find its harmonic conjugate and the analytic 
function.

Solution.  We have

2 21 log( ).
2

u x y= +
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Therefore,

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

, ,

, .

u x u y

x yx y x y

u y x u x y

x x y y x y

∂ ∂
= =

∂ ∂+ +

∂ − ∂ −
= =

∂ + ∂ +

Thus
2 2

2 2 0,u u

x y

∂ ∂
+ =

∂ ∂

and so u is harmonic. Further,

1 22 2 2 2( , ) , ( , ) .x y
u x y u x y

x y x y
= =

+ +

Therefore,

1 2( ) ( ,0) ( ,0)
1 10 .

f z u z iu z

i
z z

′ = −

= − =

Hence the integration yields

2 2 1/2 1

2 2 1

)

1( ) log

log(
log

log ( ) tan

1 log ( ) tan .
2

i

f z dz z C
z

r e C

r i C

y
x y i C

x
y

x y i C
x

q

q

−

−

= = +

= +
= + +

= + + +

= + + +

∫

Comparing real and imaginary parts, we get

2 2 11 log ( ) and tan
2

y
u x y v C

x
−= + = +

EXAMPLE 1.23
Find analytic function whose real part is

sin 2 .
cosh 2 cos 2

x
u

y x
=

−

Solution.  We have

sin 2
cosh 2 cos 2

x
u

y x
=

−
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So

2

2

2

(cosh 2 cos 2 )2cos 2 sin 2 (2sin 2 )
(cosh 2 cos 2 )

2cos 2 cosh 2 2 , and
(cosh 2 cos 2 )

2sin 2 sinh 2 .
(cosh 2 cos 2 )

u y x x x x

x y x

x y

y x

u x y

y y x

∂
∂

∂
∂

− −
=

−
−

=
−

−
=

−

Therefore,

1 2 2

2
2

2cos 2 2( ) ( ,0) ( ,0) (0)
(1 cos 2 )

2 2 cosec .
1 cos 2 2sin

z
f z u z iu z i

z

z
z z

−
= − = +

−
−

= − = = −
−

�

Integrating w.r.t. z, we get
2( ) cosec cot .f z z dz z Ci= − = +∫

EXAMPLE 1.24
Find regular (analytic) function whose imaginary part is

2 2 .x y
v

x y

−
=

+

Solution.  We are given that

2 2 .x y
v

x y

−
=

+

Therefore,
2 2 2 2 2

2 2 2 2 2 2

2 2

2 2 2

2 2 2

2 2 2

( ) ( )2 2 2 ,
( ) ( )

( )( 1) ( ) (2 )
( )

2 2 .
( )

v x y x y x x y x xy

x x y x y

x y x y yv

y x y

x y xy y

x y

∂
∂

∂
∂

+ − − + − +
= =

+ +

+ − − −
=

+

− − − +
=

+

Then

1 2
2 2

4 4

2

4 2

( ) ( ,0) ( ,0)

( )

(1 )(1 ) .

f z v z iv z

z i z

z z

iz i

z z

= +

−
= − +

− +− +
= =

�

Hence, integration of ( )f z�  yields
1( ) .i

f z C
z

+
= +
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EXAMPLE 1.25
Find the regular function where imaginary part is

sin .xv e y=

Solution.  We have

1 2( , ) cos , ( , ) sin .x xv v
v x y e y v x y e y

y x

∂ ∂
= = = =

∂ ∂
Therefore,

1 2( ) ( ,0) ( ,0)

0.z

f z v z iv z

e

′ = +

= +

Hence
( ) .z zf z e dz e C= = +∫

EXAMPLE 1.26
In a two-dimensional fluid flow, the stream function y is given by y = 1tan y

x
− . Find the velocity 

potential.

Solution.  The two-dimensional flow is represented by the function
( ) ,f z if y= +

where f is velocity potential and y is the stream potential. Thus, the imaginary part of the function is 
given as

1tan .y

x
y −=

So
y

y

∂ ⎛ ⎞= = −⎜ ⎟⎝ ⎠∂ ++

∂ ⎛ ⎞= = −⎜ ⎟⎝ ⎠∂ ++

2 2 2

2

2 2 2

2

1

1

1 .
1

d y y

yx dx x x y
x

d y x

yy dy x x y
x

Therefore,

1 2

2

( ) ( ,0) ( ,0)
10 .

f z z i z

z
i

zz

y y′ = +

= + =

Integrating, we get
( ) log

log(
log .

)i

f z z C

r e C

r i

q

q

= +

= +
= +
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Hence, real part          = f = log r
2 2 1/2

2 2

log ( )
1 log ( ).
2

x y

x y

= +

= +

EXAMPLE 1.27
If the potential function is log (x2 +y2), find the flux function and the complex potential function.

Solution.  The complex potential function is given by
( ) ,f z if y= +

where f is potential function and y is flux function. We are given that
2 2log ( ).x yf = +

To find f (z) and y, we proceed as in Example 1.26 and get

1

( ) 2 log ,

2 tan .

f z z C

y

x
y −

= +

=

EXAMPLE 1.28
If u – v = (x – y) (x2 + 4xy + y2) and f (z) = u + iv is analytic function if z = x + iy, find f (z) in terms of z.

Solution.  We have

     ( )u iv f z+ =  (1.11)
and so
      ( )iu v if z− =  (1.12)

Adding (1.11) and (1.12), we get
( ) ( ) (1 ) ( ) ( )

, say.
u v i u v i f z F z

U iV

− + + = + =
= +

Then F(z) = U + i V is analytic function. We have
2 2( ) ( 4 ).U u v x y x xy y= − = − + +

Therefore,

2 2
1

2 2
2

3 6 3 ( , ),

3 6 3 ( , ).

U
x xy y x y

x
U

x xy y x y
y

f

f

∂
= + − =

∂
∂

= − − =
∂

Therefore, by Milne’s method

1 2

2 2

3

( ) ( ( ,0) ( ,0)]

(3 3 )

(1 ) .

F z z i z dz

z i z dz

i z C

f f= −

= −

= − +

∫
∫

Thus,
3(1 ) ( ) (1 ) .i f z i z C+ = − +
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Hence
3

3

1( )
1

.

i
f z z C

i

iz C

−
= +

+
= − +

EXAMPLE 1.29
If f (z) = u + iv is an analytic function of z = x + iy, show that the family of curves u(x, y) = C1 and 
v(x, y) = C2 form an orthogonal system.

Solution. Recall that two family of curves form an orthogonal system if they intersect at right angles 
at each of their points of intersection. Differentiating u(x, y) = C1, we get

. 0u u dy

x y dx

∂ ∂
∂ ∂

+ =

or

1, say.

u
dy x m

udx
y

∂
∂

∂
∂

−
= =

Similarly, differentiating v(x, y) = C2, we get

2 , say.

v
dy x m

vdx
y

∂
∂
∂
∂

= − =

Using Cauchy-Riemann equations, we have

1 2 · · 1.

v uu v
y yx xm m

u v u v
y y y y

∂ ∂∂ ∂ −− − ∂ ∂∂ ∂= = = −∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

Hence, the two curves u(x, y) = C1 and u(x, y) = C2 are orthogonal.
Remark 1.5.  If f (z) = u + iv is an analytic function, then Example 1.29 implies that u = constant and 
v = constant intersect at right angle in the z-plane.

EXAMPLE 1.30
Obtain polar form of Cauchy-Riemann equations.

Solution.  Since x = r cos q, y = r sin q, we have

2 2 2 1and tan .y
x y r

x
q −+ = =

Therefore,

cos ,

sin ,

r x

x r
r y

y r

q

q

∂
= =

∂
∂

= =
∂
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2 2

2

2 2

2 2

1 ,
1

sin ,

cos .

y

x y x

x
y

rx y

x

y rx y

∂q
∂

q

∂q q
∂

⎛ ⎞= −⎜ ⎟⎝ ⎠
+

= − = −
+

= =
+

Now
sin· · cos ,

cossin · ,

sincos ,

cossin · .

∂ ∂ q ∂ q
q

∂ ∂ q ∂ q
∂ ∂ q

q
∂ ∂ q
∂ ∂ q

q
∂ ∂ q
∂ ∂ q

q
∂ ∂ q

∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂
∂

= +
∂
∂

= −
∂
∂

= +
∂

u u r u u u

x r x x r r
u u u

y r r

v v v

x r r
v v v

y r r

But, by Cauchy-Riemann equations

, .u v u v

x y y x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = −

Hence

     
sin coscos sin ,u u v v

r r r r

∂ ∂ q ∂ ∂ q
q q

∂ ∂q ∂ ∂q
− = +

 
(1.13)

and

     
cos sinsin cos .u u v v

r r r r

∂ ∂ q ∂ ∂ q
q q

∂ ∂q ∂ ∂q
+ = − +

 
(1.14)

Multiplying (1.13) by cos q and (1.14) by sin q and adding, we get

     
1u v

r r

∂ ∂
∂ ∂q

=
 

(1.15)

Now multiplying (1.13) by – sin q and (1.14) by cos q and adding, we get

     
1 .u v

r r

∂ ∂
∂q ∂

= −
 

(1.16)

The equations (1.15) and (1.16) are called Cauchy-Riemann equations in polar form.

EXAMPLE 1.31
Deduce from Example 1.30 that

2 2

2 2 2
1 1 0.u u u

r rr r

∂ ∂ ∂
∂∂ ∂q

+ + =

Solution.  The polar form of Cauchy-Riemann equations is
1 1, ,u v u v

r r r r

∂ ∂ ∂ ∂
∂ ∂q ∂q ∂

= = −
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that is,

     
1u v

r r

∂ ∂
∂ ∂q

=
 

(1.17)

and

     
u v

r
r

∂ ∂
∂q ∂

= −
 

(1.18)

Differentiating (1.17) with respect to r, we get

     

2 2

2 2
1 1u v v

r rr r

∂ ∂ ∂
∂q ∂q ∂∂

= − +
 

(1.19)

Differentiating (1.18) with respect to q, we have

     

2 2

2
u v

r
r

∂ ∂
∂ ∂q∂q

= −
 

(1.20)

Using (1.17), (1.19), and (1.20), we have
2 2

2 2 2
1 1 0.u u u

r rr r

∂ ∂ ∂
∂∂ ∂q

+ + =

EXAMPLE 1.32
Find the analytic function f (z) = u + iv if u = a(1+cos q).

Solution.  By polar form of Cauchy-Riemann equations, we have

     
1 , andu v

r r

∂ ∂
∂ ∂q

=
 

(1.21)

                                           
.u v

r
r

∂ ∂
∂q ∂

= −
 

(1.22)

From (1.22), we have
1 1 sin( sin ) .v u a

a
r r r r

∂ ∂ q
q

∂ ∂q
= − = − − =

Integrating w.r.t r, we get
sin log ( ).v a rq f q= +

Hence, f (z) = u + iv = a (1 + cos q + i sin q log r) + f(q).

EXAMPLE 1.33
Show that the function ex(cos y + i sin y) is holomorphic and find its derivative.

Solution.  Let

( ) (cos sin )

cos sin .

x

x x

f z u iv e y i y

e y i e y

= + = +

= +

Thus

cos , sin ,x xu e y v e y= =
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and so

cos , sin ,

sin , cos .

x x

x x

u u
e y e y

x y

v v
e y e y

x y

∂ ∂
∂ ∂
∂ ∂
∂ ∂

= = −

= =

We note that

and
uu v v

x y y x

∂∂ ∂ ∂
∂ ∂ ∂ ∂

= = −

and, hence, Cauchy-Riemann equations are satisfied. Since, partial derivative are continuous and 
Cauchy-Riemann equations are satisfied, it follows that f (z) is analytic. Further,

( )

cos sin
(cos sin ) .

x x

x x iy z

u v
f z i

x x
e y ie y

e y i y e e

∂ ∂
∂ ∂

+

= +′

= +

= + = =

We note that f ′(z) = f(z).

EXAMPLE 1.34
Show that the function

3 3

2 2
(1 ) (1 )( ) ( 0), (0) 0x i y i

f z z f
x y

+ − −
= ≠ =

+

is continuous and satisfies Cauchy-Riemann equations at the origin, yet f  ′(0) does not exist.
Solution.  We observe that

0
0

0
0

3 3

2 20

3

20 0

3 3

2 20

3

20 0

(1 ) (1 )lim ( ) lim

(1 )lim lim[ (1 )] 0,

(1 ) (1 )lim ( ) lim

(1 )lim lim (1 )] 0.

x
y

y
x

z

y y

z

x x

x i y i
f z

x y

y i
y i

y

x i y i
f z

x y

x i
x i

x

→
→

→
→

→

→ →

→

→ →

+ − −
=

+

− −
= = − − =

+ − −
=

+

+
= = + =

Also f (0) = 0. Now let both x and y tend to zero along the path y = mx. Then,

( )
3 3

2 2

3 3 3

2 2 20

3

20

0
0

(1 ) (1 )

(1

lim l

) (1 )lim

[1 (1 )]lim 0.
1

im
z y

x

x

mx
x

x i y i

x y

x i m x i

x m x

x i m i

m

f z
→ →

→

→

→

+ − −
+

+ − −
=

+
+ − −

=
+

=

=

Thus 
0

lim
z→

 f (z) = f (0), whatever may be the path of z tending to zero. Hence f is continuous at the origin.
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Now let
 ( ) ,f z u iv= +

where
3 3 3 3

2 2 2 2, .x y x y
u v

x y x y

− +
= =

+ +

Then
 (0,0) 0,  (0,0) 0.u v= =

Now, at the origin (0,0), we have

0 0

0 0

0 0

0 0

( ,0) (0,0)lim lim 1,

(0, ) (0,0)
lim lim 1,

( ,0) (0,0)lim lim 1,

(0, ) (0,0)
lim lim 1.

x x

y y

x x

y y

u u x u x
xx x

u y uu y
yy y

v v x v x
xx x

v y vv y
yy y

∂
∂
∂
∂
∂
∂
∂
∂

→ →

→ →

→ →

→ →

−
= = =

− −
= = = −

−
= = =

−
= = =

Hence at the origin
u v u v

and
x y y x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = −

and so the Cauchy-Riemann equations are satisfied.
But

                          

0
3 3 3 3

2 20

( ) (0)(0) lim

( )lim .
( ) ( )

z

z

f z f
f

z

x y i x y

x y x iy

→

→

−
=

− + +
=

+ +

�

If z → 0 along y = mx, then
3 3 3 3 3 3

2 2 20

3 3

2

( )(0) lim
( ) ( )

1 (1 )
(1 ) (1 )

x

x m x i x m x
f

x m x x imx

m i m

m im

→

− + +
=

+ +

− + +
=

+ +

�

and so that limit is not unique since it depends on m. Hence f  ′(0) does not exist.

EXAMPLE 1.35
Show that function f (z) = | |xy is not regular at the origin, although the Cauchy-Riemann equations 
are satisfied at the origin.

Solution.  We have

( ) | |.f z u iv xy= + =

Therefore,
( , ) | | ( , ) 0.u x y xy and v x y= =
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Then, at the origin

0 0

0 0

( ,0) (0,0) 0 0lim lim 0,

(0, ) (0,0) 0 0lim lim 0,

0 and 0.

x x

y y

u u x u

x x x
u y uu

y y y

v v

x y

∂
∂
∂
∂
∂
∂

→ →

→ →

− −
= = =

− −
= = =

∂
= =

∂

Hence, Cauchy-Riemann equations are satisfied at the origin. But

     

0

0

( ) (0)(0) lim

| |
lim .

( )

z

z

f z f
f

z

xy

x iy

→

→

−
=

=
+

�

If z → 0 along y = mx, then
2

0 0

| | | |
(0) lim lim .

1z z

mx m
f

x imx im→ →
= =

+ +
�

The limit is not unique since it depends on m. Hence f  ′(0) does not exist.

EXAMPLE 1.36
Show that the function

4

( ) ( 0), (0) 0zf z e z f
−−= ≠ =

is not analytic at the origin, although Cauchy-Riemann equations are satisfied at that point.

Solution.  We have
4

4 4 2 2 4

4 4 2 2
2 2 88

4 4 2 2
8

1 ( )
( ) ( )

1 ( 6 ) 4 ( )/

1 2 2 2 2( 6 )

8 8

( )

.

4 ( ) 4 ( )cos sin .

x iy
z x iy x y

x y x y ixy x y rr

x y x y
r

f z e e e

e e

xy x y xy x y
e i

r r

−
−− −

− + +

− + − −

− + −

= = =

=

⎡ ⎤− −
= +⎢ ⎥

⎣ ⎦
Thus

4 4 2 2
8

4 4 2 2
8

1 2 2( 6 )

8

1 2 2( 6 )

8

4 ( )( , ) cos ,

4 ( )( , ) sin .

x y x y
r

x y x y
r

xy x y
u x y e

r

xy x y
v x y e

r

− + −

− + −

−
=

−
=

Hence, at the origin,

     

4

0 0

0
4 8

( ,0) (0,0)lim lim

1 1lim 0.
1 11

2

x

x x

x

u u x u e

x x x

x
x x

−

→ →

→

∂ −
= =

∂

= = =
∞⎡ ⎤+ + +…⎢ ⎥⎣ ⎦
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Similarly,

0, 0, 0.u v v

y x y

∂ ∂ ∂
= = =

∂ ∂ ∂
Hence, Cauchy-Riemann equations are satisfied at the origin. But, taking z = /4ire p , we have

4 4

/40 0

0(0) lim lim .
z r

iz r

e e
f

z re p

− −−

→ →

−
= = = ∞�

Hence f (z) is not analytic at z = (0, 0).

EXAMPLE 1.37
Show that an analytic function with constant modulus is constant.

Solution.  Let f (z) be analytic with constant modulus. 

Thus
| ( ) | | | (constant)f z u iv C= + =

and so
2 2 2 .u v C+ =

Then, we have

2 2 0 2 2 0.u v u v
u v and u v

x x y y

∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂

Using Cauchy-Riemann equation, the above relations reduce to

     
0u u

u v
x y

∂ ∂
− =

∂ ∂  
(1.23)

and

     
0.u u

u v
y x

∂ ∂
∂ ∂

+ =
 

(1.24)

Multipling (1.23) by u, (1.24) by v and adding, we get

2 2( ) 0.u
u v

x

∂
∂

+ =

Thus u

x

∂
∂

 = 0 [if f (z) ≠ 0]. Similarly, 0, 0,u v

y x

∂ ∂
∂ ∂

= =  0.v

y

∂
∂

=  Since all the four partial derivatives are 

zero, the functions u and v are constant and consequently u + iv is constant.

EXAMPLE 1.38
If f (z) = u + iv is an analytic function of z = x + iy and y any function of x and y with differential coef-
ficient of first and second orders, then

22 2 2
2| ( ) |f z

x y u v

∂y ∂y ∂y ∂y
∂ ∂ ∂ ∂

⎧ ⎫⎛ ⎞ ⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎪ ⎪⎩ ⎭

�

and
2 2 2 2

2
2 2 2 2 | ( ) | .f z

x y x v

∂ y ∂ y ∂ y ∂ y
∂ ∂ ∂ ∂

⎛ ⎞
+ = +⎜ ⎟⎝ ⎠

�
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Solution.  We have

· ·u v

x u x v x

∂y ∂y ∂ ∂y ∂
∂ ∂ ∂ ∂ ∂

= +

and

· ·

· · by Cauchy-Riemann equations.

u v

y u y v y

v u

u x v x

∂y ∂y ∂ ∂y ∂
∂ ∂ ∂ ∂ ∂

∂y ∂ ∂y ∂
∂ ∂ ∂ ∂

= +

= − +

Therefore,
22

2 2 2 2

2 2
2| ( ) | ,

since ( ) .

x y

u v

u v x x

f z
u v

u v
f z i

x x

∂y ∂y
∂ ∂

∂y ∂y ∂ ∂
∂ ∂ ∂ ∂

∂y ∂y
∂ ∂

∂ ∂
∂ ∂

⎛ ⎞⎛ ⎞ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

= +

�

�

Now let us prove the second result. We have

( ) ,andf z w u iv w u iv= = + = −

and so
1 1( ), ( ).
2 2

u w w v w w
i

= + = −

Therefore

1· ,
2
1· · .
2

u v
i

u v u v

u v
i

w u w v w u v

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂w ∂ ∂w ∂ ∂w ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞= + = −⎜ ⎟⎝ ⎠

⎛ ⎞= + = +⎜ ⎟⎝ ⎠

Thus

1· ,
4

i i
w w u v u v

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

that is,
2 2

2 24 · .
w w u u

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= +

Hence

     

2 2 2

2 2 4
w wu v

∂ y ∂ y ∂ y
∂ ∂∂ ∂

+ =
 

(1.25)
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But
2

2

2

2

2 2

2 2 2

4 4 · ·

1 14 · ·
( ) ( )

14 .
( ) ( )

4 · ·
| ( ) |

4 1 1.
2 2| ( ) |

1 .
| ( ) |

z z

w w z w z w

f z z f z z

f z f z z z

z zf z

i i
x y x yf z

f z x y

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
∂ ∂

∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂
∂ ∂

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎝ ⎠

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
= +⎜ ⎟⎝ ⎠

� �

� �

�

�

�

Hence (1.25) yields
2 2 2 2

2 2 2 2 2
1

| ( ) |u v f z x y

∂ y ∂ y ∂ y ∂ y
∂ ∂ ∂ ∂

⎛ ⎞
+ = +⎜ ⎟⎝ ⎠�

and so

       

2 2 2 2
2

2 2 2 2 | ( ) | .f z
x y u v

∂ y ∂ y ∂ y ∂ y
∂ ∂ ∂ ∂

⎛ ⎞
+ = +⎜ ⎟⎝ ⎠

�

EXAMPLE 1.39
If f (z) is a regular function of z, show that

2 2
2 2

2 2 | ( ) | 4 | ( ) | .f z f z
x y

∂ ∂
∂ ∂

⎛ ⎞
+ =⎜ ⎟⎝ ⎠

�

Solution.  Since z = x + iy, we have
1 ( ) and ( ).
2 2

i
x z z y z z= + = − −

Therefore,
1· · ,
2

1· · .
2

x y
i

z x z y z x y

x y
i

z x z y z x y

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞
= + = −⎜ ⎟⎝ ⎠

⎛ ⎞
= + = +⎜ ⎟⎝ ⎠

Thus

2 2

2 2

1·
4

1 .
4

i i
z z x y x y

x y

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
∂ ∂

⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞
= +⎜ ⎟⎝ ⎠
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Hence
2 2 2

2
2 2

2

| ( ) | 4 [ ( ) ( )]

4 [ ( ) ( )]

4[ ( ) ( ) 4 | ( ) | .

f z f z f z
z zx y

f z f z
z

f z f z f z

∂ ∂ ∂
∂ ∂∂ ∂
∂
∂

′

⎛ ⎞
+ =⎜ ⎟⎝ ⎠

=

= =

�

� �

EXAMPLE 1.40
If f (z) is a regular function of z such that f  ′(z) ≠ 0, show that

2 2

2 2 log | ( ) | 0.f z
x y

∂ ∂
∂ ∂

⎛ ⎞
+ =⎜ ⎟⎝ ⎠

�

Solution.  We have

1 1, .
2 2

i i
z x y z x y

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
= − = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Therefore
2 2 2

2 2
1 ,
4z z x y

∂ ∂ ∂
∂ ∂ ∂ ∂

⎛ ⎞
= +⎜ ⎟⎝ ⎠

that is,

     

2 2 2

2 2 4
z zx y

∂ ∂ ∂
∂ ∂∂ ∂

+ =
 

(1.26)

But
21 1log | ( ) | log | ( ) | log[ ( ) ( )]

2 2
1 1log ( ) log ( ).
2 2

f z f z f z f z

f z f z

= =

= +

� � � �

� �

Therefore (1.26) yields
2 2

2 2

2

log | ( ) |

1 14 log ( ) log ( ) 0.
2 2

f z
x y

f z f z
z z

∂ ∂
∂ ∂

∂
∂ ∂

⎛ ⎞
+⎜ ⎟⎝ ⎠

⎡ ⎤= + =⎢ ⎥⎣ ⎦

�

� �

1.3 INTEGRATION OF COMPLEX-VALUED FUNCTIONS
The theory of Riemann-integrals can be extended to complex-valued functions. Integrals of complex-
valued functions are calculated over certain types of curves in the complex plane. The following defini-
tions are required for the complex integration.

Definition 1.25.  A continuous curve or arc C in the complex plane joining the points z(a) and z(b) are 
defined by the parametric representation

( ) ( ) ( ), ,z t x t iy t ta b= + ≤ ≤
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where x(t) and y(t) are continuous real functions. The point z(a) is the initial point and z(b) is the ter-
minal point (Fig. 1.2).

If z(a) = z(b), a ≠ b, then the endpoints coincide and the curve is called closed curve. A closed 
curve which does not intersect itself anywhere is called a simple closed curve (Fig. 1.3). The curve is 
traversed counterclockwise.

0

y

x

z (α)

z (β )

C

Figure 1.2 Curve C

0

y

x

C

Figure 1.3 Simple Closed Curve

Definition 1.26.  A continuous curve C: z (t) = x(t) + iy(t), a ≤ t ≤ b is called smooth curve or smooth 
arc if z ′(t) is continuous in [a, b] and z ′(t) ≠ 0 in (a, b).

Definition 1.27.  A piecewise smooth curve C is called a contour.
Thus, a curve C: z (t) = x (t) + iy (t), a ≤ t ≤ b is a contour if there is a partition a = t0 < t1 < … < tn = b 

such that z (t) is smooth on each subinterval [ti−1, ti], i = 1, 2, …, n.

Definition 1.28.  A region in which every closed curve can be contracted to a point without passing out 
of the region is called a simply connected region.

A region which is not simply connected is called multiply connected.
Figure 1.4 illustrates the simply-connected and multiply-connected regions.

Simply-connected
region 

Multiply-connected 
region 

Figure 1.4
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Thus, simply-connected region does not have any hole in it.

Definition 1.29.  The Riemann-integral of f (z) over a contour C is defined as

( ) ( ( )) ( ) .
C

f z dz f z t z t dt
b

a

=∫ ∫ �

The integral on the right-hand side exists because the integrand is piecewise continuous.
We note that the following properties hold for the integral.

  (i)  ( ) ( )
C C

f z dz f z dz
−

− =∫ ∫
   (ii)  if C1, C2, …, Cn are disjoint contours, then

1 2 1 2

( ) ( ) ( ) ( )
n nC C C C C C

f z dz f z dz f z dz f z dz
+ +…+

= + +… +∫ ∫ ∫ ∫

(iii)  if f (z) is continuous on contour C, then

| ( ) | | ( ( )) ( ) | | ( ( )) | | ( ) |

| ( ) | | |,
C

C

f z dz f z t z t dt f z t z t dt

f z dz

b b

a a

= ≤

=

∫ ∫ ∫

∫

� �

where

2 2| | | ( ) | [ ( )] [ ( )]

,  length of the curve .
C

c

dz z t dt x t y t dt

L C

b b

a a

= = +

=

∫ ∫ ∫� � �

Therefore, if | f (z)| ≤ M on C, then

| ( ) | | ( ) | | | .c
C C

f z dz f z dz M L≤ ≤∫ ∫

EXAMPLE 1.41

Evaluate 
C

z dz∫  from z = 0 to z = 4 + 2i along the curve C given by z = t2 + it.

Solution.  We have
4 2

2

0

2

( )

( ) (2 )

i

C

C

z dz t it dz

t it t i dt

+

= +

= + +

∫ ∫

∫

The point z = 0 and z = 4 + 2i correspond to t = 0 and t = 2, respectively. Hence the given integral is 
equal to

2 2
2 3 2

0 0

8( ) (2 ) (2 ) 10 .
3
i

t it t i dt t it t dt− + = − + = −∫ ∫
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EXAMPLE 1.42

Evaluate 
2

2

0

( )
i

z dz
+

∫  along the line y = 
2
x .

Solution.  Along the given line, we have x = 2y and so z = x + iy = 2y + iy = (2 + i)y, z = (2 – i)y, and 
dz = (2 + i)dy. Thus

12 1 3
2 2 2

0 0 0

5( ) (2 ) .(2 ) 5(2 ) (2 ).
3 3

i y
z dz i y i dy i i

+ ⎡ ⎤
= − + = − = −⎢ ⎥

⎣ ⎦
∫ ∫

EXAMPLE 1.43

Evaluate 
1

2

0

( )
i

x y ix dz
+

− +∫  along the straight line from z = 0 to z = 1 + i.

Solution.  As shown in Figure 1.5, the straight line from z = 0 to z = 1 + i is OA. On this line, we have 
y = x and so z = x + iy. Thus

  (1 ) .dz dx i dy dx i dx i dx= + = + = +

0

A(1, 1)

B

Figure 1.5

Hence
11 3

2 2

0 0

1
( ) ( ) (1 ) ( 1) .

3 3
OA

ix
x y ix dz ix i dx i

⎡ ⎤ −
− + = + = − =⎢ ⎥

⎣ ⎦
∫ ∫

EXAMPLE 1.44

Evaluate 
1

2

0

( )
i

x iy dz
+

+∫  along the path y = x2.

Solution.  We have z = x + iy = x + ix2 and so dz = dx+2ixdx = (2ix + 1)dx. Hence
11 1 4 3

2 2 2

0 0 0

5 1
( ) ( )(2 1) (2 2) (1 ) .

4 3 6

i ix x
x iy dz x ix ix dx i i

+ ⎡ ⎤ −
+ = + + = − + + =⎢ ⎥

⎣ ⎦
∫ ∫

EXAMPLE 1.45

Show that 
C

dz

z∫  = –pi or pi according as C is the semi-circular arc of |z| = 1 above or below the x-axis.

Solution.  Taking z = reiq, we have (Fig. 1.6) dz = ir eiq dq. Therefore, for the semi-circular arc above 
the x-axis, we have

1

0 0

1
1 .i

i
C

dz
I i r e d i d i

z re
q

q
p p

q q p= = = = −∫ ∫ ∫
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1−1
x

y

O

C1

C2

Figure 1.6
For the lower semi-circular arc, we have

2

2

2I .
C

dz
i d i

z

p

p

q p= = =∫ ∫

EXAMPLE 1.46

Evaluate 
(2, 4)

2

(0, 3)

[(2 ) (3 ) ]y x dx x y dy+ + −∫  along the parabola x = 2t, y = t2 + 3.

Solution.  The points (0, 3) and (2, 4) on the parabola correspond to t = 0 and t = 1, respectively. Thus, 
the given integral becomes

1 1
3 2 3 2 3

0 0

33[2( 3) 4 ] 2 (6 3) 2 (24 2 6 12) .
2

t t dt t t t dt t t t dt+ + + − − = − − + =∫ ∫

EXAMPLE 1.47

Evaluate 2( ) ,
C

z z dz−∫  where C is the upper half of the unit circle | z | = 1.

Solution.  The contour is | z | = 1. So let z = eiq. Then dz = i eiq dq. As shown in the Figure 1.7, the limits 
of integration become 0 to p. Hence

2 2

0

( ) ( )i i i

C

z z dz e e i e d
p

q q q q− = −∫ ∫

1−1
x

y

O

Figure 1.7



Functions of Complex Variables � 45

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M01\LAYOUT_M01\M01_BABUISBN_10_C01.indd

Modif cation Date: April 29, 2010 11:40 AM Modif cation Date: 29-04-10, 11:49

2 3
2 3

0 0

2 3

( )
2 3

1 2[3 2 3 2] .
6 3

i i
i i

i i

e e
i e e d i

i i

e e

pp q q
q q

p p

q
⎡ ⎤

= − = −⎢ ⎥
⎣ ⎦

= − − + =

∫

EXAMPLE 1.48

Show that ( ) 0,n

C

z a dz− =∫  where n is any integer not equal to –1 and C is the circle | z – a | = r with 

radius r and centre at a.

Solution.  Substituting z – a = r eiq, we have dz = ir eiq and so the given integral reduces to
2

0
22 ( 1)

1 ( 1) 1

0 0
1

2( 1)

.

( 1)

[ 1] 0, 1.
1

n ni i

n i
n n i n

n
n i

r e ir e d

e
i r e d i r

i n

r
e n

n

p
q q

pp q
q

p

q

q
+

+ + +

+
+

⎡ ⎤
= = ⎢ ⎥+⎣ ⎦

= − = ≠ −
+

∫

∫

Theorem 1.6.  If f (z) is continuous on a contour C of length L and | f (z)| ≤ M, then

( ) .
C

f z dz ML≤∫

Proof:  Since

1 1
1 1

( ) ( ) | ( ) | | |,
n n

r r r r r r
s r

f z z f z zx x− −
= =

− ≤ −∑ ∑
taking limit as n → ∞, we get

( ) | ( ) || |

M | |

ML, since | | L.

C C

C

C

f z dz f z dz

dz

dz

≤

≤

≤ =

∫ ∫

∫

∫

Theorem 1.7.  (Cauchy’s Integral Theorem). If f (z) is an analytic function and if f  ′(z) is continuous at 
each point within and on a closed contour C, then

( ) 0.
C

f z dz =∫
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Proof:  Since z = x + iy, we can write

( ) ( ) ( )

[( ) ( )]

( ) ( )

C C

C

C C

f z dz u iv dx idy

u dx v dy i v dx udy

u dx v dy i v dx u dy

= + +

= − + +

= − + +

∫ ∫

∫

∫ ∫
Since f ′(z) = u v u u

i i
x x x y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ = −  and f ′(z) in continuous, it follows that ux, uy, vx, and vy are all con-

tinuous in the region D enclosed by the curve C. Hence, by Green’s Theorem, we have

( )

0,

C

D D

D D

f z dz

u v u v
dx dy i dx dy

y x x y

v v u u
dx dy i dx dy

x x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
= − + + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
the last but one step being the consequence of Cauchy-Riemann equations.

Theorem 1.7 was further generalized by Goursat in the form of the following theorem:

Theorem 1.8.  (Cauchy-Goursat). Let f (z) be analytic in a region R. Then for any closed contour C in R,

( ) 0.
C

f z dz =∫
(For proof, see E.C.Titchmarsh, Theory of Functions, Oxford University, Press).

Theorem 1.9.  The function F(z) defined by F(z) = ( )
z

a

f dx x∫ , where z and a both are in domain D is 
an analytic function of z such that F ′(z) = f (z).

Proof:  We have

( ) ( ) .
z

a

F z f dx x= ∫
Therefore,

0

0

0
0 0

0 0

0
0

( ) ( )
( ) ( )

( ) ( )

( )

( ).

zz

a a

z

z

f d f d
F z F z

f z f z
z z z z

f d

f z
z z

x x x x

x x

−
−

− = −
− −

= −
−

∫ ∫

∫

But,

             0

0 0
0

1( ) ( ) .
z

z

f z f z d
z z

x=
− ∫
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Hence

0

0

0
0

0 0

( ) ( )
( ) ( )

( ) .

z

z

f f z
F z F z

f z d
z z z z

x

x

⎡ ⎤
⎢ ⎥−
⎢ ⎥− ⎣ ⎦− =

− −

∫

Since f is continuous, we have
0 0| ( ) ( ) | for | | .f f z zx e x d−<− <

Therefore

0

0
0

0 0

( ) ( )
( ) .

z

z

F z F z
f z d

z z z z

e
x e<

−
− =

− − ∫

Thus, F ′(z0) = f (z0) and so F(z) is differentiable and has f (z0) as its derivative. Hence F(z) is analytic.
Theorem 1.10.  (Cauchy’s Integral Formula). If f (z) is analytic within and on any closed contour C and 
if a is a point within the contour C, then

1 ( )( ) .
2

C

f z
f a dzz aip

= −∫

Proof:  Let z = a be any point within the contour C. Describe a small circle g about z = a, whose radius 
is r and which lies entirely within C. Consider the function

( )( ) .f z
z

z a
f =

−
This function is analytic at all points in the ring-shaped region between C and g but it has a simple pole 
at z = a. Now, we take a cross cut by joining any point of C to any point of g. Thus, we obtain a closed 
contour Γ as shown in Figure 1.8.

ar
C

Γ

g

Figure 1.8
Hence, by Cauchy-Goursat theorem, we have

( ) 0,z dzf
Γ

=∫
which yields

( ) ( ) 0.
C

z dz z dz
g

f f− =∫ ∫
Thus,

     

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
C

f z f z f z f a f a
dz dz dz

z a z a z a

f a f z f a
dz dz

z a z a

g g

g g

− +
= =

− − −

−
= +

− −

∫ ∫ ∫

∫ ∫
 

(1.27)
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Since f (z) is continuous at z = a, to each e > 0 there exists a positive d such that
| ( ) ( ) | whenever | | .f z f a z ae d< − <−

Moreover, by substituting z – a = r eiq, we get
2

0

2

0

( ) ( ) ( )

( ) 2 ( ).

i

i

ir ef a dz
dz f a f a d

z a z a re

i f a d i f a

p q

q
g g

p

q

q p

= =
− −

= =

∫ ∫ ∫

∫
Hence (1.27) yields

( ) ( ) ( )2 ( )
C

f z f z f a
dz i f a dz

z a z ag

p
−

− =
− −∫ ∫

and so

2

0

( ) ( ) ( )2 ( )

,

2 .

C

i

f z f z f a
dz i f a dz

z a z a

d z a r e

g

p
q

p

e q

pe

−
− ≤

− −

− =<

<

∫ ∫

∫

The left-hand side is independent of e, and so vanishes. Consequently,

( ) 2 ( ),
C

f z
dz i f a

z a
p=

−∫

and, therefore,
1 ( )( ) .

2
C

f z
f a dz

i z ap
=

−∫

Theorem 1.11.  (Cauchy’s Formula for Derivative of Analytic Function). If f (z) is an analytic function 
in a region D, then its derivative at any point z = a is represented by

2
1 ( )( ) ,

2 ( )C

f z
f a dz

i z ap
′ =

−∫

where C is any closed contour in D surrounding the point z = a.

Proof:  Suppose that 2d is the shortest distance from the point a to the contour C. Thus |z – a| ≥ 2d for 
every point z on C. If | h | ≤ d, the point a + h also lies within C, at a distance not less than d from C 
(Fig. 1.9). Therefore, by Cauchy’s integral formula, we have

1 ( )( ) , and so
2

1 ( )( ) .
2

C

f z
f a dz

i z a
f z

f a h dz
i z a h

p

p

=
−

+ =
− −

∫

∫
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0
x

y

a
δ

a+h

D

C

Figure 1.9

Thus

2

2 2

2 2

( ) ( ) 1 ( ) ( )
2

( )1
2 ( ) ( )
1 ( )

2 ( ) ( )
1 1 ( )( )

2 2( ) ( ) ( ) ( )
1 ( ) 1 ( )

2 2( ) ( ) ( )

C

C

C

f a h f a f z f z
dz

h i h z a h z a

f z dz

i z a z a h

z a h h
f z dz

i z a z a h

z a h hf z
f z dz dz

i iz a z a h z a z a h

f z hf z
dz

i iz a z a z a h

p

p

p

p p

p p

⎛ ⎞+ −
= −⎜ ⎟− − −⎝ ⎠

=
− − −

− − +
=

− − −
− −

= +
− − − − − −

= +
− − − −

∫

∫

∫

∫ ∫

∫
C

dz∫

and so

2 2
( ) ( ) 1 ( ) 1 ( ) .

2 2( ) ( ) ( )C C

f a h f a f z hf z
dz dz

h i iz a z a z a hp p
+ −

− =
− − − −∫ ∫

Now
| | | | | | 2 .z a h z a h d d d− − ≥ − − ≥ − =

Since f (z) is analytic on C, it is continuous and so is bounded. Thus there exists a constant M > 0 such 
that | f (z)| ≤ M. Therefore,

2

2 2 2

3

( ) ( ) 1 ( )| |
2 ( )

| | | ( ) | | | | |1 ( )| | | |
2 2 2( ) ( ) | | | | 4 ( )

| |
· since | | L(length of C).

2 4

C

C a C

C

f a h f a f z
dz

h i z a

h f z M h dzhf z
dz dz

i z a z a h z a z a h

h ML
dz

p

p p p d d

p d

+ −
−

−

= ≤ ≤
− − − − − −

= =

∫

∫ ∫ ∫

∫
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Letting h → 0, we get

20

( ) ( ) 1 ( )lim .
2 ( )h

C

f a h f a f z
dz

h i z ap→

+ −
=

−∫

Hence

2
1 ( )( ) .

2 ( )C

f z
f a dz

i z ap
′ =

−∫

Theorem 1.12.  If f (z) is analytic in a domain D, then f (z) has, at any point z = a of D, derivatives of 
all orders given by

( )
1

! ( )( ) ,
2 ( )

n
n

C

n f z
f a dz

i z ap +=
−∫

where C is any closed contour in D surrounding the point z = a.

Proof:  By Cauchy’s integral formulae, we have

2

2

1 ( )( ) ,
2 ( )
1 ( )( ) .

2 ( )

C

C

f z
f a dz

i z a

f z
f a dz

i z a

p

p

=
−

=
−

∫

∫�

Thus the result is true for n = 0 and n = 1. We use mathematical induction on n. Suppose that the result 
is true for n = m. Thus

( )
1

! ( )( ) .
2 ( )

m
m

C

m f z
f a dz

i z ap +=
−∫

Then
( ) ( )

( 1)

0

1 10

1

10

2
10

( ) ( )( ) lim

! ( ) ( )lim
2 ( ) ( )

! 1lim 1 1 ( )
2 ( )

! 1lim ( 1) ( )
2 ( )

m m
m

h

m mh
C C

m

mh
C

mh

f a h f a
f a

h

m f z dz f z dz

ih z a h z a

m h
f z dz

ih z az a

m h
m O h

ih z az a

p

p

p

+

→

+ +→

− +

+→

+→

+ −
=

⎡ ⎤
= −⎢ ⎥

− − −⎢ ⎥⎣ ⎦

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= − −⎨ ⎬⎜ ⎟−⎝ ⎠⎢ ⎥− ⎪ ⎪⎩ ⎭⎣ ⎦

⎡ ⎧ ⎫
= + +⎨ ⎬−− ⎩ ⎭

∫ ∫

∫

1

( )

( 1) ! ( ) ,
2 ( )

C

m
C

f z dz

m f z
dz

i z ap +

⎤
⎢ ⎥
⎣ ⎦

+
=

−

∫

∫
which shows that the theorem is also true for n = m + 1. Hence it is true for all values of n and we have

( )
1

( )!( ) .
2 ( )

n
n

f z dzn
f a

i z ap +=
−∫



Functions of Complex Variables � 51

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M01\LAYOUT_M01\M01_BABUISBN_10_C01.indd

Modif cation Date: April 29, 2010 11:40 AM Modif cation Date: 29-04-10, 11:49

Remark 1.6.  Since each of f  ′(a), f  ′(a) …, f  (n) (a) have unique differential coefficient, it follows that 
derivatives of an analytic function are also analytic functions.

The following theorem is a sort of converse of Cauchy’s theorem.

Theorem 1.13.  (Morera’s Theorem). If f (z) is continuous in a region D and if the integral ( )f z dz∫  
taken round any closed contour in D is zero, then f (z) is analytic inside D.

Proof:  Let z0 be any fixed and z any variable point of the domain D and let C1, C2 be any two continu-
ous rectifiable curves in D joining z0 to z (Fig. 1.10).

O
x

y

D

C

z

z0

C2 C1

Figure 1.10

Then

1 2

( ) ( ) ( ) 0.
C C C

f z dz f z dz f z dz= − =∫ ∫ ∫

Thus the value of the integral is independent of the path. So, let

0

( ) ( ) .
z

z

F z f dx x= ∫

Since f (z) = ( )z h

z

f z

h

+

∫  dx, we have

0 0

( ) ( )
( )

1 ( )( ) ( )

1 [ ( ) ( )] .

z h z z h

z z z

z h

z

F z h F z
f z

h

f z
f d f d d

h h

f f z d
h

x x x x x

x x

+ +

+

+ −
−

⎡ ⎤
⎢ ⎥= − −
⎢ ⎥⎣ ⎦

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫

Since f (z) is continuous, to every e > 0 there exists h > 0 such that

| ( ) ( ) | whenever | | .f f z zx e x h< − <−
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Thus

( ) ( ) 1 1( ) | | | ( ) ( ) | | | | | .
| |

z h

z

F z h F z
f z f f z d h

h h h
x x e e

++ −
− ≤ − ≤ =∫

Hence

( ) ( ).F z f z′ =

Since F(z) is analytic, its derivative is also analytic. Therefore, F ′(z) is analytic and consequently f (z) 
is analytic.

Theorem 1.14.  (Cauchy’s Inequality). If f (z) is analytic within a circle |z – a| = R and if | f (z) | ≤ M on 
C, then

( ) . !| ( ) | .n
n

M n
f a

R
≤

Proof:  We know that

( )
1

! ( )( ) .
2 ( )

n
n

C

n f z
f a dz

i z ap +=
−∫

Therefore,
( )

1 1

1

1

| ( ) |! ( ) !| ( ) | | | | |
2 2( ) | ( ) |

! . | |
2

! . 2
2

!.

n
n n

C

n
C

n

n

f zn f z n
f a dz dz

i z a z a

n M
dz

R

n M
R

R

Mn

R

p p

p

p
p

+ +

+

+

= ≤
− −

=

=

=

∫ ∫

∫

Theorem 1.15.  (Liouville’s Theorem). A bounded entire function is constant.

Proof:  Let f (z) be bounded entire function. Then there exists a positive constant M such that 
| f (z)| ≤ M. Let a be any point of the z-plane and C be the circumference of the circle |z – a| = R. Then, 
by Cauchy’s integral formula, we have

2 2 2

2

| ( ) |1 ( ) 1| ( ) | | | | | | |
2 2( ) | ( ) | 2

.2
2

.

C C

f zf z M
f a dz dz dz

i z a z a R

M
R

R

M

R

p p p

p
p

= ≤ ≤
− −

=

=

∫ ∫ ∫�
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Since f (z) is an entire function, R may be taken arbitrarily large and, therefore, M/R tends to zero as 
R → ∞. Hence, | f (z)| ≤ M leads us to | f ′(a) | = 0. Since a is arbitrary, we have f ′(a) = 0 for all points in 
the z-plane. Hence f (z) is constant.

Second Proof: By Cauchy inequality, we have

( ) !| ( ) | .n
n

n M
f a

R
≤

Thus, for n = 1, we get

| ( ) | 0 .M
f a as R

R
→< → ∞�

Therefore, | f (z) | ≤ M implies | f  ′(a)| = 0. Since a is arbitrary, f  ′(a) = 0 for all points in the z-plane. 
Hence f (z) is constant.

Remark 1.7.  Since cos z and sin z are entire functions of complex variable z, it follows from Liou-
ville’s Theorem that cos z and sin z are not bounded for complex z.

Theorem 1.16.  (Poisson’s Integral Formula). Let f (z) be analytic in the region | z | ≤ R and let u(r, q) be 
the real part of f (r eiq), z = reiq. Then for 0 < r < R,

2 2 2

2 2
0

( ) ( , )1( , ) ,
2 2 cos( )

R r u R
u r d

R Rr r

p f
q f

p q f
−

=
− − +∫

where f is the value of q on the circle |z| = R.

Proof:  Let C be the circle | z | = R. Suppose z = reiq is a point within the domain | z | < R and let 
x = R eif be a point on the circle | z | = R (Fig. 1.11). Then, Cauchy’s integral formula yields

     

1 ( )( )
2 ( )

C

f
f z u iv d

i z

x
x

p x
= + =

−∫
 

(1.28)

R2/z

Z = rei

R

φ

0

θ

C

x=Reif

q

Figure 1.11

Now the point z being interior, the point R2/ z  is the inverse point of z with respect to | z | = R and, 

hence, lies outside the circle. Therefore, 
2

( )f

R
z

x

x −
 is analytic within C. Hence, by Cauchy’sGoursat 

theorem, we have
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2
1 ( )0 .

2
C

f

i R
d

z

x
p

x x
=

⎛ ⎞
− ⎜ ⎟⎝ ⎠

∫

 (1.29)

Subtracting (1.29) from (1.28), we have

2

2

2

2

( )
1( )

2
( )

1 ( ) .
2 ( ) ( )

R
f z

z
f z d

i R
z

z

R z z
f d

i z R z

x
x

p
x x

x x
p x x

⎛ ⎞
−⎜ ⎟⎝ ⎠

=
⎛ ⎞

− −⎜ ⎟⎝ ⎠

−
=

− −

∫

∫

Substituting x = Reif, z = reiq, we get
2 2 2

2
0

2 2 2

0

2 2 2

2 2
0

( ) ( )1( )
2 ( ) ( . )

( )( )1
2 ( ) ( )

( ) ( )1 .
2 2 cos( )

i i
i

i i i i

i

i i i i

i

f Re R r Re
f re id

i Re re R Re re

f Re R r
d

Re re re Re

f Re R r
d

R r R r

p f f
q

f q q q

p f

f q q f

p f

f
p

f
p

f
p q f

−

− −

−
=

− −

−
=

− − +

−
=

+ − −

∫

∫

∫
Thus

2 2 2

2 2
0

( , ) ( , )

( ) [ ( , ) ( , )]1
2 2 cos( )

u r iv r

R r u R iv R
d

R r R r

p

q q

f f
f

p q f

+

− +
=

+ − −∫

Equating real and imaginary parts, we get

2 2 2

2 2
0

( ) ( , )1( , )
2 2 cos( )

R r u R
u r d

R r R r

p f
q f

p q f
−

=
+ − −∫

and
2 2 2

2 2
0

( ) ( , )1( , ) .
2 2 cos( )

R r v R
v r d

R r R r

p f
q f

p q f
−

=
+ − −∫

EXAMPLE 1.49
If C is any simple closed curve, evaluate 

C

dz

z a−∫  if (a) a is outside C and (b) a is inside C.
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Solution.  Let

1( ) .f z
z a

=
−

 (i) If z = a is outside C, then f (z) is analytic everywhere inside C. Hence, by Cauchy’s integral theo-

rem 
C

dz

z a−∫  = 0.

(ii) If z = a is inside C, let Γ be the circle of radius r with centre at a so that Γ is inside C. Then

.
C

dz dz

z a z aΓ

=
− −∫ ∫

Substituting z – a = r eiq, we get dz = ir eiq dq and so

2 2

0 0

2 .
i

i
C

ir edz dz
d i d i

z a z a re

p pq

q q q p
Γ

= = = =
− −∫ ∫ ∫ ∫

EXAMPLE 1.50

Evaluate 
2

z

C

e

z −∫ dz, where C is the circle

(i) | z | = 3 and (ii) | z | = 1.

Solution.  (i) Let f (z) = ez. Then f (z) is analytic and z = 2 lies inside the circle | z | = 3. Therefore, by 
Cauchy’s integral formula

1 ( ) 1(2) .
2 2 2 2

z

C C

f z e
f dz dz

i z i zp p
= =

− −∫ ∫
Thus

22 (2) 2 .
2

z

C

e
dz i f i e

z
p p= =

−∫

(ii)   The point z = 2 lies outside the circle | z | = 1. Also the function 
2

ze

z −
 is analytic within and on | z | = 1. 

Hence, by Cauchy’s integral theorem

0.
2

z

C

e
dz

z
=

−∫

EXAMPLE 1.51

Evaluate       2
| | 1/2

.
1

z

z

e
dz

z= +∫

Solution.  The function 2 ( ) ( )1

z ze e

z i z iz
=

+ −+
 is analytic at all points except z = ± i. Also the points ± i 

lie outside | z | = 1/2. Hence, by Cauchy-Goursat theorem, the given integral is equal to zero.
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EXAMPLE 1.52
Using Cauchy’s integral formula and Cauchy-Goursat theorem, evaluate the integral

2 1 ,
1

C

z z
dz

z

− +
−∫

where C is the circle
(i) | z | = 1 and (ii) = | z | = 1

.
2

Solution.  (i) Let f (z) = z2 – z + 1. Then f is analytic as the circle | z | = 1 and z = 1 lies on C. Therefore, 
by Cauchy’s integral formula,

1 ( )(1) .
2 1

C

f z
f dz

i zp
=

−∫

But, f (1) = 1. Hence

0

( ) 2 ,
1

f z
dz i

z
p=

−∫

that is,
2 1 2 .

1
C

z z
dz i

z
p

− +
=

−∫

(ii) The function f (z) = z2 – z+1 is analytic everywhere within | z |= .
1

2
 Since z = 1 lies outside | z | = .

1

2
 

2 1
1

z z

z

− +
−

 is also analytic within |z| = .
1

2
 Hence, by Cauchy-Goursat integral theorem

2

1| |
2

1 0.
1

z

z z
dz

z
=

− +
=

−∫

EXAMPLE 1.53
Evaluate

2 2

| | 3

sin cos .
( 1) ( 2)

z

z z
dz

z z

p p

=

+
− −∫

Solution.  Since

1 1 1 ,
( 1) ( 2) 2 1z z z z

= −
− − − −

the given integral can be written as
2 2 2 2 2 2sin cos sin cos sin cos .

( 1) ( 2) 2 1
C C C

z z z z z z
dz dz dz

z z z z

p p p p p p+ + +
= −

− − − −∫ ∫ ∫

The points z = 2 and z = 1 lie within the circle | z |= 3 and the function f (z) = sin pz2 + cos pz2 is analytic  
within and on | z | = 3. Hence, by Cauchy’s integral formula,
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2 2sin cos 2 (2)
2

2 [sin cos ]
2 ,

C

z z
dz i f

z

i

i

p p
p

p p p
p

+
=

−

= +
= −

∫

and
2 2sin cos 2 (1)

2

2 [sin cos ]

2 ,

C

z z
dz i f

z

i

i

p p
p

p p p

p

+
=

−

= +

= −

∫

Hence
2 2sin cos 2 ( 2 ) 4 .

( 1) ( 2)
C

z z
dz i i i

z z

p p
p p p

+
= − − =

− −∫

EXAMPLE 1.54
Using Cauchy integral formula, evaluate the integral 

2

( 1) ( 2)

z

C

e
dz

z z− −∫ , where C is the circle | z | = 3.

Solution.  Let f (z) = e2z. Then f is analytic within the circle | z | = 3. Also z = 1, z = 2 lie within | z | = 3. 
Hence, by Cauchy’s integral formula, we have

2 2 2

| | 3 | | 3 | | 3

4 2

( 1) ( 2) 2 1

2 (2) 2 (1)

2 ( ).

z z z

z z z

e e e
dz dz dz

z z z z

i f i f

i e e

p p

p

= = =

= −
− − − −

= −

= −

∫ ∫ ∫

EXAMPLE 1.55
Evaluate the integral 3( )

z

C

ze
dz

z a−∫ , where the point a lies within the closed contour C.

Solution.  Let f (z) = zez. Then f is analytic (rather entire). The point a lies within C. Therefore,

3
2! ( )( )

2 ( )C

f z
f a dz

i z ap
′′ =

−∫
But,

( ) , ( ) 2 .z z z zf a ze e f z ze e′ ′′= + = +

So
( ) ( 2) .af a a e′′ = +

Hence

3 ( 2) .
( )

z
a

C

ze
dz i a e

z a
p= +

−∫
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EXAMPLE 1.56

Evaluate        
2

4
| | 3 ( 1)

z

z

e
dz

z= +∫

Solution.  The function f (z) = e2z is entire. The point z = –1 lies within the circle | z | = 3. Therefore, by 
Cauchy’s integral formula, we have

2

4
| | 3

3!( 1) .
2 ( 1)

z

z

e
f dz

i zp =

− =
+∫���

But
2 2 2( ) 2 , ( ) 4 , ( ) 8z z zf a e f z e f z e′′ ′′′= = =�

and so f ′′′(–1) = 8 e−2. Hence

22

4
| | 3

8
.

3( 1)

z

z

i ee
dz

z

p −

=

=
+∫

EXAMPLE 1.57
Evaluate

2
| 1 | 2

4
2 5z i

z
I dz

z z+ − =

+
=

+ +∫

Solution.  We have

2
| 1 | 2

| 1 | 2

| 1 | 2

4
2 5

4
( 1 2 ) ( 1 2 )

( ) ,
( 1 2 )

z i

z i

z i

z
I dz

z z

z
dz

z i z i

f z
dz

z i

+ − =

+ − =

+ − =

+
=

+ +

+
=

+ + + −

=
+ −

∫

∫

∫

where f (z) = 4
( 1 2 )

z

z i

+
+ +

. The point – 1 – 2i lies outside the contour | z + 1 – i | = 2, whereas the point 

–1 + 2i lies within the contour (infact taking z = –1 + 2i in | z + 1 – i |, the value is less than 2). Hence, 

by Cauchy’s integral formula, we have

2 ( 1 2 )
1 2 42 (3 2 ).

1 2 1 2 2

I i f i

i
i i

i i

p
p

p

= − +
− + +⎛ ⎞= = +⎜ ⎟⎝ ⎠− + + +

EXAMPLE 1.58

Evaluate, 
( )n

C

dz

z a−∫ , n = 2, 3, where C is closed curve containing a.
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Solution.  Here f (z) = 1 so that f  ′(z) = f  ′′(z) = f  ′′′(z) = 0. By Cauchy’s integral formula

( )
1

!( ) .
2 ( )

n
n

C

n dz
f a

i z ap +=
−∫

Therefore,

2

3

2 ( ) 0
( )

2 ( ) 0.
2( )

C

C

dz
i f a

z a

dz i
f a

z a

p

p

′

′′

= =
−

= =
−

∫

∫

EXAMPLE 1.59
Evaluate        

2

1| |
2

3 7 1 .
1

z

z z
dz

z
=

+ +
+∫

Solution.  Let f (z) = 3z2 + 7z + 1. Then f (z) is analytic within | z | = 1

2
. The point z = –1 lies outside the 

curve |z| = 1

2
. The function 

23 7 1
1

z z

z

+ +
+

 is analytic within and on |z| = 
1

2
. Hence, by Cauchy-Goursat 

theorem
2

1| |
2

3 7 1 0.
1

z

z z
dz

z
=

+ +
=

+∫

EXAMPLE 1.60

Evaluate I = 2
| 1| 3 ( 1) ( 2)

z

z

e
dz

z z− = + −∫

Solution.  By partial fractions

2 2
1 1 1 1 .

9( 2) 9( 1)( 1) ( 2) 3( 1)z zz z z
= − −

− ++ − +

Hence

2
| 1| 3 | 1| 3 | 1| 3

1 1 1 .
9 2 9 1 3 ( 1)

z z z

z z z

e e e
I dz dz dz

z z z− = − = − =

= − −
− + +∫ ∫ ∫

The function f (z) = ez is an entire function and the points z = –1 and z = 2 lies in | z – 1 | = 3. Also f  ′(z) = ez 
and f  ′(–1) = e−1. Hence, by Cauchy’s integral formula,

2 1 1 2

1 1 1I ·2 (2) 2 ( 1) ·2 ( 1)
9 9 3

2 2 4( 3 ) .
9 9

i f i f i f

i i
e e e e

e

p p p

p p− −

= − − − −

⎛ ⎞= − − = −⎜ ⎟⎝ ⎠

�
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1.4  POWER SERIES REPRESENTATION OF AN ANALYTIC FUNCTION

Definition 1.30.  A series of the form 0
0

( ) ,n
n

n

a z z
∞

=
−∑  where an and z0 are fixed complex numbers and 

z is a complex variable, is called a power series in (z – z0).
The radius of the power series is given by

     
1/

1
lim (| |) n

n
n

R
a

→∞

=

or by

     1
lim ,n

n n

a
R

a→∞ +
=

provided that the limit exists. If R = 0, the series converges only for z = z0. It converges absolutely if 
| z – z0 | < R and uniformly if | z – z0 | ≤ R0 < R. The series diverges for | z – z0 | > R.

The circle | z – z0 | = R, 0 < R < ∞, is called the circle of convergence.
Theorem 1.17.  A power series represents an analytic function inside its circle of convergence.

Proof: Suppose the power series f (z) = 
0

n
n

n

a z
∞

=
∑  converges for | z | < R. Then if r < R, an r n is bounded 

and so | an r
n | ≤ K for K > 0. Let g(z) = 1

1
.n

n
n

na z
∞

−

=
∑  Then if | z | < r and | z | + | h | < r, we have

     

1

0

( ) ( ) ( ) .( )
n n

n
n

n

f z h f z z h z
g z a n z

h h

∞
−

=

⎡ ⎤+ − + −
− = −⎢ ⎥

⎣ ⎦
∑

But

     

1 1(| | | |) | |( ) .| | | |
| |

n nn n
n nz h zz h z

nz n z
h h

− −+ −+ −
− ≤

 
Hence

     

1

0

2

2

(| | | |) | |( ) ( ) 1| ( ) | | |
| |

1
| | | | | | | | ( | |)

| |
0 0.

( | | | |) ( | |)

n n
n

n
n

z h zf z h f z
g z n z

h h

K
h z h z z

K h
as h

z h z

r

r r r
r r r

r
r r

∞
−

=

⎡ ⎤+ −+ −
− ≤ −⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟− − −⎝ ⎠ −⎣ ⎦

= → →
− − −

∑

Hence f (z) has the derivative g (z) and so is analytic within the circle of convergence with radius R.
The converse of Theorem 1.17 is the following theorem due to Taylor.

Theorem 1.18.  (Taylor). If f (z) is analytic inside a disk | z – z0 | < R with centre at z0 , then for all z in the 
disk

     

( )
0

0
0

( )
( ) ( ) ,

!

n
n

n

f z
f z z z

n

∞

=
= −∑

where f (n)(z0) represents nth derivative of f (z) at z0 .
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The coefficients 
( )

0( )
!

nf z

n
are called Taylor’s coefficients. The infinite series is convergent if 

| z – z0 | < d, where d is the distance from z0 to the nearest point of C. If d1 < d, then the series converges 
uniformly in the region | z – z0 | ≤ d1.

Proof:  Choose d2 = 1

2
d d+  so that 0 < d1 < d2 < d (Fig. 1.12). Then, by the given hypothesis, f (z) is 

analytic within and on a circle Γ defined by | z – z0 | = d2.

R

Γ

δ

δ1

δ 2

Z 0

Z0+ h

Figure 1.12

Let z0 + h be any point of the region defined by | z – z0 | ≤  d1. Since z0 + h lies within the circle Γ, the 
Cauchy’s integral formula yields

     

0
0

0
0

2

2
0 0 0 0

1

0 0

2 1
0 0 0

1

1 ( )( )
2

1 ( )
2

( ) 1

1 ( ) 1
2 ( ) ( )

( ) ( )

1 ( ) ( ) ( )
2 2 2( ) ( )

2

n

n

n

n

n

n

n

f z
f z h dz

i z z h

f z
dz

i h
z z

z z

f z h h h

i z z z z z z z z

h
dz

z z z z h

f z h f z h f z
dz dz dz

i z z i iz z z z

h

i

p

p

p

p p p

p

Γ

Γ

Γ
+

+
Γ Γ Γ

+

+ =
− −

=
⎛ ⎞

− −⎜ ⎟−⎝ ⎠

⎡
= + + +…+⎢− − − −⎣

⎤
+ ⎥

− − − ⎦

= + +…+
− − −

+

∫

∫

∫

∫ ∫ ∫

1
0 0

2
( )

0 0 0 0

( )
( ) ( )

( ) ( ) ( ) ( )
2! !

n

n
n

n

f z
dz

z z z z h

h h
f z h f z f z f z

n

+
Γ

′ ′′

− − −

= + + +…+ + Δ

∫

where

     

1

1
0 0

( ) .
2 ( ) ( )

n

n n

f z dzh

i z z z z hp

+

+
Γ

Δ =
− − −∫
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Hence

     

( )
0

0 0
0

( ) .( ) ( )
!

n
n

n
n

f z
f z h z z

n

∞

=
+ = − + Δ∑

But f (z) is bounded by virtue of its continuity. Thus, there exists a positive M such that | f (z) | ≤ M on 
Γ. Further,

     0 0 2 1| | | | | |z z h z z h d d− − ≥ − − > −

and since |z – z0| ≤ d1, we have

     0 0 1| | | | .h z h z d= + − ≤

Since d1 < d2, we get

     

1

1
0 0

1
1

21
2 2 1

1 1

2 2 1

| | | ( ) |
| | | |

| 2 | | | | |

2
2 ( )

0 .
( )

 .

n

n n

n

n

n

h f z
dz

i z z z z h

M

M as n

p

d
pd

pd d d

d d
d d d

+

+
Γ

+

+

Δ ≤
− − −

≤
−

⎛ ⎞
≤ → → ∞⎜ ⎟ −⎝ ⎠

∫

Hence

     

( )
0

0 0
0

( )
( ) ( ) .

!

n
n

n

f z
f z h z z

n

∞

=
+ = −∑

Substituting z0 + h = z, we get

              

( )
0

0
0

( )
( ) ( ) .

!

n
n

n

f z
f z z z

n

∞

=
= −∑

 
(1.30)

Remark 1.8.  (i) Theorem 1.18 was actually invented by Cauchy when he was in exile.
(ii) Substituting z0 = 0, the Taylor’s series reduces to

     

( )

0

(0)( ) ,
!

n
n

n

f
f z z

n

∞

=
= ∑

which is known as Maclaurin’s series.
(iii) Using Cauchy’s integral formula,

     

( )
0 1

0

! ( )( ) ,
2 ( )

n
n

C

n f z
f z dz

i z zp +=
−∫

the Taylor’s series (1.30) reduces to

     
0

0
( ) ( ) ,n

n
n

f z a z z
∞

=
= −∑

 
(1.31)

where

     

( )
0

1
0

( ) 1 ( ) .
! 2 ( )

n

n n

f z f z
a dz

n i z zp += =
−∫
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Theorem 1.19.  On the circumference of the circle of convergence of a power series, there must be at 
least one singular point of the function, represented by the series.

Proof:  Suppose on the contrary that there is no singularity on the circumference |z – z0| = R of the circle 
of convergence of the power series

     
0

0
( ) ( ) .n

n
n

f z a z z
∞

=
= −∑

 
(1.32)

Then f (z) is analytic in the disk | z – z0 | < R + e, e > 0. But, this implies that the series (1.32) converges 
in the disk | z – z0 | < R + e. This contradicts the assumption that |z – z0| = R is the circle of convergence. 
Hence, there is at least one singular point of the function f (z) on the circle of convergence of the power 

series 0
0

( ) .n
n

n

a z z
∞

=
−∑

EXAMPLE 1.61
If the function f (z) is regular for | z | < R and has the Taylor’s expansion 

0

n
n

n

a z
∞

=
∑ , show that for r < R

     

2
2 2 2

00

1 | ( ) | | | .
2

i n
n

n

f re d a r
p

q q
p

∞

=
= ∑∫

Hence, show that if | f (z) | ≤ M, | z | < R, then

     

2 2 2

0
| | .n

n
n

a r M
∞

=
≤∑

 
(1.33)

[The relation (1.33) is called Parseval’s inequality].

Solution.  Since f(z) is regular in the region |z| = r < R, it has the Taylor’s series expansion

     0 0
( ) , .n n in i

n n
n n

f z a z a r e z r eq q
∞ ∞

= =
= = =∑ ∑

If na enotes the conjugate of an, we have

     0
( ) .p i p

p
p

f z a r e q
∞

−

=
= ∑

Hence

     

2

0 0
| ( ) | ( ) ( ) .n in p ip

n p
n p

f z f z f z a r e a r eq q
∞ ∞

−

= =
= = ∑ ∑

The two series for f (z) and f ( )z are absolutely convergent and, hence, their product is uniformly con-
vergent for the range 0 ≤ q ≤ 2p. Thus, term-by-term integration is justified. On integration, all the 
terms for which n ≠ p vanish, for

     

2

0

0, 0ile d l
p

q q = ≠∫
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Hence, we have

     

2 2
2 2

00 0

2 2

0

2 2

0

1 1| ( ) |
2 2

1 | | 2
2

| | .

n
n n

n

n
n

n

n
n

n

f z d a a r d

a r

a r

p p

q q
p p

p
p

∞

=

∞

=
∞

=

=

=

=

∑∫ ∫

∑

∑
 

(1.34)

If | f (z) | ≤ M, then (1.34) gives

     

2
2 2 2

0 0
2

2 2

0

1| | | ( ) |
2

1 .
2

n
n

n

a r f z d

M d M

p

p

q
p

q
p

∞

=
=

≤ =

∑ ∫

∫

EXAMPLE 1.62
Show that a function which has no singularities in the finite part of the plane or at ∞ is a constant.

Solution.  Since the function f (z) has no singularities in the finite part of the plane, it can be expanded 
in the Taylor’s series in any circle | z | = K (arbitrarily large). Thus

     0
( ) r

r
r

f z A z
∞

=
= ∑

and so

     0

1 .r
r

r

f A z
z

∞
−

=

⎛ ⎞ =⎜ ⎟⎝ ⎠ ∑
 

(1.35)

Further, if f (z) has no singularity at z = ∞,  f 1

z

⎛ ⎞
⎜ ⎟⎝ ⎠

has no singularity at z = 0. Since, f (z) has no  singularity 

in finite plane, f 1

z

⎛ ⎞
⎜ ⎟⎝ ⎠

also has none in the finite plane. Hence, by Taylor’s theorem,

     0

1 r
r

r

f B z
z

∞

=

⎛ ⎞ =⎜ ⎟⎝ ⎠ ∑
 

(1.36)

From (1.35) and (1.36), we have

     0 0
.r r

r r
r r

B z A z
∞ ∞

−

= =
=∑ ∑

But this is not possible unless Br = Ar = 0 for all values of r except zero in which case A0 = B0 and then 
f(z) = A0 = B0 = constant.

EXAMPLE 1.63
If a function is analytic for all finite value of z as | z | → ∞, and | f (z) | = A| z |k, then show that f (z) is a 
 polynomial of degree less than or equal to k.

Solution.  Let f (z) be analytic in the finite part of z-plane and let 
| |
lim
z →∞

 | f (z) | = A | .|kz  We assume that 

f (z) is analytic inside a circle | z | = R, where R is large but finite. Then f (z) has Taylor’s series
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     0
( ) ,n

n
n

f z a z
∞

=
= ∑

 
(1.37)

where

     
1

1 ( ) .
2n n

C

f z
a dz

i zp += ∫

Hence

     

1

1

1

| ( ) |1| | | |
2 | |

| |, max | ( ) | on .
2

.2
2

| |

0 for .

n n

n
C

n

k k

n n n

n k

f z
a dz

z

M
dz M f z C

R

M
R

R

A zM AR

R R R
A

as R n k
R

p

p

p
p

+

+

+

−

≤

= =

=

= = =

= → → ∞ >

∫

∫

Thus, an = 0 for all n > k. Hence (1.37) implies that f (z) is a polynomial of degree ≤ k.

EXAMPLE 1.64
Expand sin z in Taylor series about z = .

4
p

Solution.  We have f (z) = sin z. So,

     
(4)

( ) cos , ( ) sin ,

( ) cos , ( ) sin ,

f z z f z z

f z z f z z

′ ′′

′′′

= = −

= − = …

and

     

(4)

2 2, ,
4 2 4 2

2 2, ,
4 2 4 2

2 ,
4 2

f f

f f

f

p p

p p

p

′

′′ ′′′

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ …=⎜ ⎟⎝ ⎠

Hence,

     

2 3

2 3

1 1( )
4 4 4 2! 4 4 3! 4 4

2 [ ( / 4)] [ ( / 4)]1 [ ( / 4)] ,
2 2! 3!

f z f f z f z f z

z z
z

p p p p p p p

p p
p

′ ′′ ′′′⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + − + − +…⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡ ⎤− −
= + − − − +…⎢ ⎥

⎣ ⎦

which is the required expansion.
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Now suppose that f (z) is not analytic in a disk but only in an annular region (ring-shaped region) 
bounded by two concentric circles C1 and C2 and is also analytic on C1 and C2. The function f (z) can 
then be expressed in terms of two series by the following theorem known as Laurent theorem.

Theorem 1.20.  (Laurent). Let f (z) be analytic in the annular region bounded by two concentric circles 
C1 and C2 with centre z0 and radii R1 and R2, respectively, with 0 < R1 < R2. If z is any point of the 
annulus, we have

     
0

0 1 0

,( ) ( )
( )

n n
n n

n n

b
f z a z z

z z

∞ ∞

= =
= − +

−∑ ∑

where

     

2

1

1
0

1
0

1 ( ) , 0,1,2,
2 ( )

1 ( ) , 1,2,3,
2 ( )

n n
C

n n
C

f d
a n

i z

f d
b n

i z

x x
p x

x x
p x

+

−

= = …
−

= = …
−

∫

∫

and integration over C1 and C2 is taken in anti-clockwise direction.

Proof:  Since f(z) is analytic on the circles and within the annular region between the two circles, the 
Cauchy integral formula yields

     2 1

1 ( ) ( )( ) ,
2

C C

f f
f z d d

i z z

x x
x x

p x x

⎡ ⎤
⎢ ⎥= −

− −⎢ ⎥⎣ ⎦
∫ ∫

 

(1.38)

where z is any point in the region D (Fig. 1.13).

Figure 1.13

C2

C1

R2 R1

D

z

Now

     

0 0
1

0

0 00
0

0

1 1
( )

1 1 1
( ) 1

z z z z

z z

z zz z
z

z

x x

x x
x

x

−

=
− − − −

⎛ ⎞−
= = −⎜ ⎟− −⎛ ⎞ ⎝ ⎠−

− −⎜ ⎟−⎝ ⎠
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2
0 0 0

0 0 0 0

0 0
1

0 00 0 0

1 1

( )1 .
( )

n

n n

n
n n

z z z z z z

z z z z

z z z z

z z z

x x x x

x x x

∞ ∞

+
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎢ ⎥= + + +…+ +…⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞− −
= =⎜ ⎟− −⎝ ⎠ −∑ ∑

Therefore,

     

2 2
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0
1

0 0

0
1

0 0

0
0

( )1 ( ) 1 ( )
2 2 ( )

( ) ( )1
2 ( )

( ) ,

n

n
nC C

n

n
n C

n
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n

z zf
d f d

i z i z

f z z
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i z

a z z

x
x x x

p x p x

x
x

p x

∞

+
=

∞

+
=

∞

=

−
=

− −

−
=

−

= −

∑∫ ∫

∑ ∫

∑

where

     2

1
0

1 ( ) , 0,1,2, .
2 ( )n n

C

f
a d n

i z

x
x

p x += = …
−∫

Further,

     

1
0

0 0 0 0

2
0 0

0 0 0

0

0 00
1

0 0
1

0 10 0

1 1 1 1
( )

1 1

1

( ) ( )
.

( ) ( )

n

n

n n
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z

z z z z z z z z

z z

z z z z z z

z

z z z z

z z

z z z z

x
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x
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−

∞

=
−∞ ∞

+
= =

⎛ ⎞−
− = = −⎜ ⎟− − − − − −⎝ ⎠

⎡ ⎤⎛ ⎞− −⎢ ⎥= + + +…⎜ ⎟− − −⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞−
= ⎜ ⎟− −⎝ ⎠

− −
= =

− −

∑

∑ ∑

Therefore,

     

1 1

1
0

1 0

1 0

( )1 ( ) 1 ( )
2 2 ( )

,
( )

n

n
nC C

n
n

n
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d f d

i z i z z

b

z z
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−
− =
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=
−

∑∫ ∫

∑

where

     1

1
0

1 ( ) .
2 ( )n n

C

f
b d

i z

x
x

p x −=
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Hence (1.38) becomes

     
0 0

0 1
( ) ( ) ( ) ,n n

n n
n n

f z a z z b z z
∞ ∞

−

= =
= − + −∑ ∑

 
(1.39)

where

     

2

1

1
0

1
0

1 ( ) ,
2 ( )

1 ( ) .
2 ( )

n n
C

n n
C

f
a d

i z

f
b d

i z

x
x

p x

x
x

p x

+

−

=
−

=
−

∫

∫

Remark 1.9.  Laurent’s theorem is a generalization of Taylor’s theorem. In fact, if f (z) were analytic 
within and on C2, then all the bn are zero by Cauchy’s theorem since the integrands are analytic within 
and on C1. Also, then

     

( )
0( )

, 0,1,2,
!

n

n
f z

a n
n

= = …

EXAMPLE 1.65

Expand 
2
1z

z

− in a Taylor series in powers of z – 1 and determine the region of convergence.

Solution.  We have

     

2 2

2 3

3 4

1
( )

1 2

1 1 1( ) ,

1 2( ) ,

2 3.2( ) ,

..........

( 1) ( 1)!( 1) ! .( )
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n
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z
f z

zz z

f z
z z
z

f z
z z
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f z

z z

′

′′

+

+ +

−
= = −

= − +

= −

− +−
= +

Hence

     

( )
1(1)(1) 0, ( 1) .

!

n
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f n
n

+= = −

Hence
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1

1

1

(1)( ) (1) ( 1)
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( 1) ( 1) .

n
n
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n

f
f z f z
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n z

∞

=
∞

+

=

= + −

= − −

∑

∑

The region of convergence is | z – 1 | < 1.
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EXAMPLE 1.66
Determine the two Laurent series expansions in power of z of the function

     
2

1 .( )
(1 )

f z
z z

=
+

Solution.  The function ceases to be regular at z = 0 and z = ± i.
When 0 < | z | < 1, then

     

2 1
2

2 4 6

3 5

2 1

1

1 1( ) (1 )
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1 [1 ]
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1 ( 1) .n n
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f z z
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z z z
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z z z
z

z
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∞
−

=

= = +
+

= − + − +…

= − + − +…

= + −∑

When | z | > 1, then |
1

z
| < 1 and so

     

1

3 2
3
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3 2 4

3 5 7

1
2 1

1

1 1 1( ) 1
11

1 1 11

1 1 1

1 .( 1  )n
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∞
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+
=

⎛ ⎞= = +⎜ ⎟⎝ ⎠⎛ ⎞+⎜ ⎟⎝ ⎠

⎡ ⎤= − + −…⎢ ⎥⎣ ⎦

= − + −…

= −∑

EXAMPLE 1.67

Expand f (z) = 
1

( 1) ( 3)z z+ +
in Taylor’s/Laurent’s series valid for the region

(i) | z | < 1,  (ii) 1 < | z | < 3,  (iii) | z | > 3, (iv) 0 < | z + 1 | < 2.

Solution.  We have

     

1 1 1 .( )
( 1) ( 3) 2( 1) 2( 3)

f z
z z z z

= = −
+ + + +

(i) When | z | < 1, we have

     

1 1

1
1

1 1( ) ( 1) ( 3)
2 2
1 1(1 ) 1
2 6 3

f z z z

z
z

− −

−
−

= + − +

⎛ ⎞= + − +⎜ ⎟⎝ ⎠
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2 3
2 3

2

1 1[1 ] 1
2 6 3 3 3

1 4 13
3 9 27

z z z
z z z

z z

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − +… − − + − +…⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

= − + +…

This is a Taylor’s series valid for | z | < 1.
(ii) When 1 < | z | < 3, we have for | z | > 1,

     

2 3

2 3 4

1 1 1 1 1 11
12( 1) 22 1

1 1 1 1
2 2 2 2

z z z z zz
z

z z z z

⎛ ⎞= = − + − +…⎜ ⎟⎝ ⎠+ ⎛ ⎞+⎜ ⎟⎝ ⎠

= − + − +…

and for | z | < 3,

     

1

2 3

1 1 1 1
2( 3) 6 36 1

3

1
6 18 54 162

z
zz

z z z

−⎛ ⎞= = +⎜ ⎟⎝ ⎠+ ⎛ ⎞+⎜ ⎟⎝ ⎠

= − + − +…

Hence the Laurent series for f (z) for the annulus 1 < | z | < 3 is

     

2 3

4 3 2
1 1 1 1 1( )

2 6 18 54 1622 2 2
z z z

f z
zz z z

= …− + − + − + − + +…

(iii) For | z | > 3, we have
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f z
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z z z z
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−
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= − + −…

(iv) When 0 < | z + 1 | < 2, we substitute z + 1 = u, then we have 0 < |u| < 2
and
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2

2

1 1 1( ) 1
( 2) 2 22 1

2

1 1
2 4 8 16

1 1 1 ( 1) .
2( 1) 4 8 16

u
f z

uu u u
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u u
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z z
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EXAMPLE 1.68
Obtain Taylor’s/Laurent’s series expansion for f (z) = 

( 2) ( 2)
( 1) ( 4)
z z

z z

− +
+ +

which are valid
(i) When | z | < 1

(ii) When 1 < | z | < 4
(iii) When | z | > 4.

Solution.  (i) We have

     

( 2) ( 2) 1 4( ) 1 .
( 1) ( 4) 1 4
z z

f z
z z z z

− +
= = − −

+ + + +

When | z | < 1,

     

1
1

2
2

2
2

1

1

4( ) 1 (1 ) 1
4 4

1 [1 ] 1
4 4

1 ( )
4 4

1 ( 1) (1 4 ) ,n n n
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z z
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−
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∞
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⎛ ⎞= − + − −⎜ ⎟⎝ ⎠

⎡ ⎤⎛ ⎞= − − + −… − − + −…⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞= − + − +… + − +…⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

= − + − +∑
which is a Maclaurine’s series.
(ii) When 1 < |z| < 4, we have 1

| |z
 < 1 and 

| |
4
z

 < 1. Thus
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2 3 2 3
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1 1 4( ) 1 1 1
4 4

1

 

1 1
4 4 4

1( 1) ,
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∞
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∑

which is a Laurent series.
(iii) When |z| > 4, we have 

4
| |z

 < 1. Hence
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n z

∞

=
= + − +∑

which is again a Laurent’s series.
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EXAMPLE 1.69

Find series expansion of f (z) = 
1

( 1) ( 2)z z− −
 in the regions

(i) 1 < | z | < 2, (ii) | z | > 2, (iii) 0 < | z – 1 | < 1.

Solution.  (i) We have

     

1 1 1 .( )
( 1) ( 2) 2 1

f z
z z z z

= = −
− − − −

Now |z| > 1 implies 1
| |z

 < 1 and |z| < 2 implies 
2
z

< 1. Hence
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⎛ ⎞ ⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − + + + +… − + + + +…⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= …− − − − − − − −…

which is a Laurent’s series

(ii) When |z| > 2, then 2
z

 < 1 and so
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2
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⎛ ⎞= + + −… − + + +…⎜ ⎟⎝ ⎠

= …+ + − − − −…

(iii) When 0 < |z – 1| < 1, we substitute z – 1 = u and get 0 < | u | < 1. Then
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1 1 1 1( )
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1 1(1 ) (1 )

f z
u u u u

u u u
u u
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= − = − −
− −

= − − − = − + + +… −
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2

2

1 1

1 1 ( 1) ( 1) ,
1

u u
u

z z
z

= − − − − −…

= − − − − − − −…
−

which is a Laurent’s series.

1.5  ZEROS AND POLES
Let f (z) be analytic in a domain D. Then it can be expanded in Taylor’s series about any point z0 in D as

     
0

0
( ) ( ) , ...n

n
n

f z a z z
∞

=
= −∑

where

       
1

0

1 ( ) .
2 ( )n n

f z
a dz

i z zp +=
−∫

If a0 = a1 = a2 = … = am−1 = 0 but am ≠ 0, then the first term in the above expansion is am(z – z0)
m and we 

say that f (z) has a zero of order m at z = z0.
If f (z) satisfies the conditions of the Laurent’s theorem, then
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∞ ∞
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where
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1
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2 ( )

n n
C
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= = …
−

= = …
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∫

∫

The term 0
1

( ) n
n

n

b z z
∞

−

=
−∑  is called the principal part of the function f (z) at z = z0.

Now there are the following three possibilities:
  (i)  If the principal part has only a finite number of terms given by

     

1 2
2

0 0
, 0,

( ) ( )
n

nn

bb b
b

z z z z z a
+ +…+ ≠

− − −

 then the point z = z0 is called a pole of order n. If n = 1, then z0 is called a simple pole.
 (ii)   If the principal part in Laurent expansion of f(z) contains an infinite number of terms, then z = z0 

is called as isolated essential singularity.
(iii)   If the principal part in Laurent expansion of f (z) does not contain any term, that is, all bn are zeros, 

then

     
2 2

0 1 0 2 0 0( ) ( ) ( ) ( )nf z a a z z a z z a z z= + − + − +…+ − +…

and z = z0 is called a removable singularity. Setting f (z0) = a0 makes f (z) analytic at z0.
From the Laurent expansion, it follows that a function f (z) has a pole of order m at z0 if and only if

     0

( )( ) ,
( )m

g z
f z

z z
=

−

where g(z) is analytic at z0 and g(z0) ≠ 0.
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EXAMPLE 1.70
Find Laurent expansion of 

( 1) ( 2)
z

z z+ +
 about z = –2 and name the singularity.

Solution.  We have

     
( ) .

( 1) ( 2)
z

f z
z z

=
+ +

Substitute z + 2 = u. Then

     

2 3

2 3

2

2 2
( 1) ( 2) ( 1) (1 )

2 (1 )

2 1

2 1 ( 2) ( 2)
2

z u u

z z u u u u

u
u u u

u

u u u
u

z z
z

− −
= =

+ + − −
−

= + + + +…

= + + + + +…

= + + + + + +…
+

Thus, the Laurent expansion about z = –2 has only one term in the principal part. Hence z = –2 is a 
simple pole.

EXAMPLE 1.71
Find Laurent’s expansion of f (z) = 

2

3( 1)

ze

z −
 about z = 1 and name the singularity.

Solution.  We have

     

2

3( ) .
( 1)

ze
f z

z
=

−

Substituting z – 1 = u, we get

     

2 2( 1) 2
2

3 3 3

2 2 3

3

2 2 2 2 2

3 2

2 2 2 2 2

3 2

.
( 1)

(2 ) (2 )1 2
2! 3!

2 2 4 2
3 3

2 2 4 2 ( 1) .
1 3 3( 1) ( 1)

z u
ue e e

e
z u u

e u u
u

u

e e e e e u

uu u

e e e e e z

zz z

+
= =

−

⎡ ⎤
= + + + +…⎢ ⎥

⎣ ⎦

= + + + + +…

−
= + + + + +…

−− −

Thus, we obtain Laurent’s series whose principal part consists of three terms. Hence, f (z) has a 
pole of order 3 at z = 1. The function is analytic everywhere except for the pole of order 3 at z = 1. 
Hence, the series converges for all z ≠ 1.
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EXAMPLE 1.72
Find the Taylor and Laurent’s series which represent the function 

2

2
1

5 6
z

z z

−
+ +

 in the region

 (i) | z | < 2   (ii) 2 < | z | < 3   (iii) | z | > 3.

Solution.  We have

     

2 1( )
( 3) ( 2)

3 81 .
2 3

z
f z

z z

z z

−
=

+ +

= + −
+ +

(i) When | z | < 2, we have
2
z

< 1 and

     

1 1

2 2

2

1 1
1

3 8( ) 1
2 1 3 1

2 3

3 81 1 1
2 2 3 3

3 81 1 1
2 2 4 3 3 9

3 8 3 8 3 81
2 3 4 9 8 27

1 3 8( 1) .
6 2 3

n n
n n

n

f z
z z

z z

z z z z

z z

z

− −

∞

+ +
=

= + −
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + + − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + − + −… − − + −…⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − − − + − −…⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞= − + − −⎜ ⎟⎝ ⎠∑

(ii) When 2 < | z | < 3, we have 2
z

 < 1 and 
3
z  < 1. Hence

     

1 1

2

2

1
1

1
1 1

3 8( ) 1
21 3 1

3

3 2 81 1 1
3 3

3 2 4 81 1 1
3 9

5 8 3( 2)( 1) ,
3 3

3
n

n n
n n

n n

f z
z

z
z

z

z z

z z

z z z

z
z

− −

+∞ ∞
+

+
= =

= + −
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + + − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞= + − + −… − − + −…⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−
= − + − +∑ ∑

which is a Laurent’s series
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(iii) When | z | > 3, we have 3
z

 < 1. Hence

     

2 2

1 1

1

3 8( ) 1
2 31 1

3 2 4 8 3 91 1 1

8(3) 3(2)1 ( 1) ,
n n

n
n

n

f z
z z

z z

z z z zz z

z

− −∞

=

= + −
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + − + −… − − + −…⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ⎤⎧ ⎫−⎪ ⎪= + −⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

∑

which is a Laurent’s series.

EXAMPLE 1.73
Find the singularities of f (z) = 2 2( 4)

z

z +
 and indicate the character of the singularities.

Solution.  We have

     

2 2 2

2 2

( )
( 4) [( 2 ) ( 2 )]

.
( 2 ) ( 2 )

z z
f z

z z i z i

z

z i z i

= =
+ + −

=
+ −

Since 
2

lim
z i→

 (z – 2i)2 f (z) = 
2

lim
z i→

 2( 2 )
z

z i+
 = 1

8i
 ≠ 0, it follows that z = 2i is a pole of order 2. Similarly, 

z = –2i is a pole of order 2. Further, we can find d such that no other singularity other than z = 2i lies 
inside the circle | z – 2i | = d (for example, we may take d =1). Hence z = 2i is an isolated singularity. 
Similarly, z = –2i is also an isolated singularity.

EXAMPLE 1.74
Find the nature and the location of the singularities of f (z) = 

1 .
( 1)zz e −

 Show that if 0 < |z| < 2p, the 
function can be expanded in Laurent’s series.
Solution.  We have

     

1 .( )
( 1)z

f z
z e

=
−

The function ceases to be regular at z = 0 and ez – 1 = 0, that is, ez = 1 or for 2z n ie e p±= or for 
z = ± 2npi, n = 0, ±1, ±2, … Thus, z = 0 is a double pole (pole of order 2). The other singularities 
are simple poles. Hence, the function can be expanded in Laurent’s series in the annulus 0 < |z| < 2p. 
We note that

     

2 3

2
2

1( )
1 1

2! 3!

1

1
2! 3!

f z
z z

z z

z z
z

=
⎛ ⎞

+ + + +…−⎜ ⎟⎝ ⎠

=
⎛ ⎞

+ + +…⎜ ⎟⎝ ⎠
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12

2

22 2

2

2 3
2

2

1 1
2! 3!

1 1
2! 3! 2! 3!

1 1 1 1 1 11
2! 4 6 24 6 8

1 1 1 1
2 12 120

z z

z

z z z z

z

z
z z

z

z
zz

−⎡ ⎤
= + + +…⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − + +… + + +… +…⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − + + − +…⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= − + − +…

EXAMPLE 1.75

Show that 3

ze

z
has a pole of order 3 at z = 0.

Solution.  We have

     

2 3

3 3

3 2

1 1
2! 3!

1 1 1 1 1
2! 3! 4!

ze z z
z

z z

z
zz z

⎛ ⎞
= + + + +…⎜ ⎟⎝ ⎠

= + + + + +…

Thus, the principal part of the Laurent expansion consists of three terms and so 3

ze

z
 has a pole of order 

3 at z = 0.

EXAMPLE 1.76

Show that z sin 1
z

has essential singularity at z = 0.

Solution.  We have

     

3 5

2 4

1 1 1 1sin
3! 5!

1 11
3! 5!

z z
z z z z

z z

⎧ ⎫= − + −…⎨ ⎬
⎩ ⎭

= − + +…

Since the series does not terminate, z = 0 is an essential singularity.
Definition 1.31.  A function f (z) is said to be meromorphic if it is analytic in the finite part of the plane 
except at a finite number of poles.

1.6  RESIDUES AND CAUCHY’S RESIDUE THEOREM
Definition 1.32.  Let the Laurent series expansion of a function f (z) at isolated singularity z0 be

     
0

1 00
( ) ( )

( )
nn

nn
n n

b
f z a z z

z z

∞ ∞

= =
= + −

−∑ ∑
 

(1.40)

The coefficient b1, in the principal part of the expansion, given by

     
1

1 ( )
2

C

b f d
i

x x
p

= ∫
 

(1.41)

for the contour C: | z – z0 | = r < R is called residue of f (z) at z0 and is denoted by Res(z0).
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The residue of f (z) at z = ∞ is defined by

     
1

1 ( ) .
2

C

b f d
i

x x
p

−
− = ∫

It is the coefficient of 1
z

with its sign changed in the expansion of f ( z) in the neighbourhood of 
z = ∞.

If f (z) has a pole of order m at z0, then the Laurent expansion of f (z) is

     

1 1
1

00 0
2

0 1 0 2 0

( )
( )( ) ( )

( ) ( )

m m
m m

b b b
f z

z zz z z z

a a z z a z z

−
−= + +…+

−− −

+ + − + − +…

Multiplying both sides by (z – z0)
m, we have

     

1
0 1 0 1 0

1
0 0 1 0

( ) ( ) ( ) ( )

( ) ( ) ,

m m
m m

m m

z z f z b b z z b z z

a z z a z z

−
−

+

− = + − +…+ −

+ − + − +…

which is Taylor’s series of the analytic function (z – z0)
mf (z). Differentiating both sides m – 1 times with 

respect to z, we have

     

1

0 1 0 01 [( ) ( )] ( 1)! ( 1) 2 ( )
m

m
m

d
z z f z b m m m a z z

dz

−

− − = − + − … − +…

Letting z → z0, we get

     0

1

0 11lim [( ) ( )] ( 1)!
m

m
mz z

d
z z f z b m

dz

−

−→
− = −

and so

     0

1 0
1

01

Res( )

1 lim [( ) ( )].
( 1)!

m
m

mz z

b z

d
z z f z

m dz

−

−→

=

= −
−  

(1.42)

If z0 is a simple pole, that is, m = 1, then

     0
0 1 0Res( ) lim ( ) ( ).

z z
z b z z f z

→
= = −

 
(1.43)

If

     

( )( ) ,
( )

p z
f z

q z
=

where p(z) and q(z) are analytic at z = z0, p(z0) ≠ 0 and q(z) has a simple zero at z0, that is, f (z) has a 
simple pole at z0. Then q(z) = (z – z0) g(z), g(z0) ≠ 0 and q(z0) = 0. Hence (1.43) reduces to

     

0 0

0

0 0 0

0

0 0

0

( )Res( ) lim ( ) ( ) lim ( )
( )

( )( )lim ( ) ( ) ( )

z z z z

z z

p z
z z z f z z z

q z

p zp z
q z q z q z

z z

→ →

→

= − = −

= =−
−

�

 

(1.44)

Thus, the residues at poles can be calculated using the formulas (1.42), (1.43), and (1.44).
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EXAMPLE 1.77
Find residues of

 (i) f (z) = 
2

2 2
2

( 1) ( 4)
z z

z z

−
+ +

 (ii) f (z) = 
2

3( )

ze

z i−
at all its poles.

Solution.  (i) The function f (z) has a pole of order 2 at z = −1 and simple poles at z = ±2i. Therefore,

     

2
2

2 21

2 2

2 21

2Res( 1) lim ( 1)
( 1) ( 4)

( 4) (2 2) ( 2 )(2 )
lim

( 4)
14
25

z

z

d z z
z

dz z z

z z z z z

z

→−

→−

⎡ ⎤−
− = +⎢ ⎥

+ +⎣ ⎦
+ − − −

=
+

= −

     

2

2 22

2

22

2

22

2
Res(2 ) lim ( 2 )

( 1) ( 4)

2 7lim
25( 1) ( 2 )

2Res( 2 ) lim ( 2 )
( 1) ( 2 ) ( 2 )

7
25

z i

z i

z i

z z
i z i

z z

z z i

z z i

z z
i z i

z z i z i

i

→

→

→−

−
= −

+ +

− +
= =

+ +

−
− = +

+ − +
−

=

(ii) f (z) has a pole of order 3 at z = i. Hence

     

2

2 2

2
3

2

2

2

2

1Res( ) lim [( ) ( )]
2!
1 lim ( )
2

lim[2 ]

1 .

z i

z

z i

z z

z i

d
i z i f z

dz

d
e

dz

z e e

e

→

→

→

= −

=

= +

= −

EXAMPLE 1.78
Find the residue of f (z) = cot z at its poles.

Solution.  We have

     

cos .( ) cot
sin

z
f z z

z
= =
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The poles of f (z) are given by sin z = 0. Thus z = np, n = 0, ± 1, ±2, … are the simple poles. Using 
formula (1.44), the residue at z = np is given by

     

cos cosRes( ) lim lim 1.
cos(sin )z n z n

z z
n

d zz
dz

p p
p

→ →
= = =

EXAMPLE 1.79
Find the residue at each pole of f (z) = 2 2

.
izze

z a+
Solution.  We have

     
( )

( ) ( )

izze
f z

z ai z ai
=

+ −

Therefore, f (z) has simple poles at z = ± ai. Now

     

Res( ) lim ( ) ( )

lim ( )
( ) ( )

lim ,
2

Res( ) lim ( ) ( )

lim .
2

z ai

iz

z ai

iz a

z ai

z ai

iz a

z ai

ai z ai f z

ze
z ai

z ai z ai

ze e

z ai
ai z ai f z

ze e

z ai

→

→

−

→

→−

→−

= −

= −
+ −

= =
+

− = +

= =
−

EXAMPLE 1.80
Find the residue of f (z) = 

2

4
1 ze

z

−  at its poles.

Solution.  The function f (z) has a pole of order 4 at z = 0. Therefore,

     

3
4

30

3
2

30

3 4
2 3

30

3
2 3 4

30

0

1Res(0) lim [( 0) ( )]
3!
1 lim [1 ]
6

1 16lim 1 1 2 4 8
6 4 !

1 8 16lim 2 2
6 6 24
1 294 4 .lim 8
6 24 3

z

z

z

z

z

z

d
z f z

dz

d
e

dz

d z
z z z

dz

d
z z z z

dz

z

→

→

→

→

→

= −

= −

⎡ ⎤⎧ ⎫⎪ ⎪= − + + + + +…⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

⎡ ⎤= − − − − −…⎢ ⎥⎣ ⎦
⎡ ⎤= − − −… = −⎢ ⎥⎣ ⎦

EXAMPLE 1.81
Find the residues of

     

3
.( )

( 1) ( 2) ( 3)
z

f z
z z z

=
− − −

at z = 1, 2, and 3 and ∞ and show that their sum is zero.
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Solution.  The function

     

3
( )

( 1) ( 2) ( 3)
z

f z
z z z

=
− − −

has simple poles at z = 1, 2, and 3. Now

     

3

1 1

1Res(1) lim( 1) ( ) lim
( 2) ( 3) 2z z

z
z f z

z z→ →
= − = =

− −

     

3

2 2

3

3 3

Res(2) lim ( 2) ( ) lim 8
( 1) ( 3)

27 .Res(3) lim ( 3) ( ) lim
( 1) ( 2) 2

z z

z z

z
z f z

z z

z
z f z

z z

→ →

→ →

= − = = −
− −

= − = =
− −

To find residue at ∞, we expand f (z) in the neighbourhood of z = ∞ as follows:

     

3

3

1 1 1

( )
1 2 31 1 1

1 2 31 1 1

6 11 of .

z
f z

z
z z z

z z z

higher powers
z z

− − −

=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + +

Now residue at ∞ is coefficient of 1
z

with sign changed. Thus Res(∞) = −6. Hence, the sum of the 
 residues equals 1 278 6

2 2
− + −  = 0.

To compute the values of integrals in our study, we shall require the following theorem.
Theorem 1.21.  (Cauchy’s Residue Theorem). If f (z) is analytic within and on a closed contour C 
except at finitely many poles lying in C, then

     
( ) 2 ,

C

f z dz i Rp= Σ∫

where ΣR denotes the sum of residues of f (z) at the poles within C.

Proof:  Let z1, z2, …, zn be the n poles lying in C. Let C1, C2, …, Cn be the circles with centre z1, z2, …, zn 
and radius r such that all these circles lie entirely within C and do not overlap (Fig. 1.14)

Figure 1.14

Cn

zn

C2

z

C1

z1
C

r
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Then f (z) is analytic in the region between C and the circles. Hence, by Cauchy-Goursat theorem

     1 2

( ) ( ) ( ) ( ) .
nC C C C

f z dz f z dz f z dz f z dz= + +…+∫ ∫ ∫ ∫
 

(1.45)

If f (z) has a pole of order m1 at z = z1, then

     

1

1
1 1

( ) ( ) ,
( )

m
r

r
r

b
f z z

z z
f

=
= +

−∑

where f1(z) is regular within and on C1. Therefore,

     1 1 1 1 1

1 2 1
1 2

1 2 1
( ) ( ) .

( ) ( ) ( )r
C C C C C

b b bm
f z dz z dz dz dz dz

z z z z z z
f= + + +…+

− − −∫ ∫ ∫ ∫ ∫
 

(1.46)

Since f (z) is analytic within and on C1, by Cauchy-Goursat theorem

     1

1( ) 0.
C

z dzf =∫

Moreover, substituting z – z1 = r eiq, we have

     

1 1

1

1

1

2
1 1

1 0

2
( 1)1

11
0

.
( )

0 for 1

i

r m m i
C

m i
m

bm bm ie
dz d

z z e e

ibm
e d m

e

p q

q

p
q

r
q

q− −
−

=
−

= = ≠

∫ ∫

∫
and

     1

2
1 1

1
1 0

2 .
( )

i

i
C

b b ie d
dz i b

z z e

p q

q
r q

p
r

= =
−∫ ∫

Hence (1.46) reduces to

     1

1( ) 2 ,
C

f z dz iRp=∫

where R1 is the residue of f (z) at z = z1. Similarly,

     

2

2( ) 2 ,

...............

( ) 2 ,
n

C

n
C

f z dz i R

f z dz i R

p

p

=

=

∫

∫

where Ri is the residue of f (z) at z = zi. Hence (1.45) becomes

     
1 2( ) 2 ( ) 2 ,n

C

f z dz i R R R i Rp p= + +…+ = Σ∫

where ΣR = R1 + R2 + … + Rn.
Remark 1.10.  In the assumptions of Cauchy’s integral formula, f (z) is assumed to be analytic within 

and on a closed curve. Therefore, ( )f z

z a−
 has a simple pole at z = a. Then

      

( )Res( ) lim ( ) ( ).
( )z a

f z
a z a f a

z a→
= − =

−
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Hence, by Cauchy’s Residue theorem, we have

     

( ) 2 ( ),
C

f z
dz i f a

z a
p=

−∫

that is,

     

1 ( )( ) .
2

C

f z
f a dz

i z ap
=

−∫

It follows, therefore, that Cauchy’s integral formula is a particular case of Cauchy’s Residue theorem.

EXAMPLE 1.82
Evaluate

     
2 , :| | 3.
( 1) ( 1)C

dz
C z

z z z
=

+ −∫

Solution.  The integrand has simple poles at z = 1 and z = −1 and double poles at z = 0 lying in C. 
Therefore,

     

1

21

1

21

2

0

0

2 20

Res(1) lim( 1) ( )

1 1lim ,
2( 1)

Res( 1) lim ( 1) ( )

1 1lim ,
2( 1)

Res(0) lim [( 0) ( )]

1lim
( 2) ( 1)
2 1 1

lim .
4( 2)

z

z

z

z

z

z

z

z f z

z z

z f z

z z

d
z f z

dz

d

dz z z

z

z z

→

→

→−

→ −

→

→

→

= −

= =
+

− = +

= = −
−

= −

⎡ ⎤
= ⎢ ⎥+ −⎣ ⎦

− − −
= =

+ −

Hence, by Cauchy-Residue theorem,

     
2

1 1 12 .
2 2 4 2( 1) ( 1)C

dz i
i

z z z

p
p ⎡ ⎤= − − = −⎢ ⎥+ − ⎣ ⎦∫

EXAMPLE 1.83
Evaluate the integral

     

2

2
| | 1

4 4 1 .
( 2) (4 )z

z z
dz

z z=

− +
− +∫

Solution.  Let

     

2

2
4 4 1( ) .

( 2) (4 )
z z

f z
z z

− +
=

− +
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The poles of f (z) are z = 2, z = ± 2i. We note that none of these poles lie in the curve |z| = 1. Thus the 
function is analytic within and on |z| = 1. Hence, by Cauchy-Goursat theorem,

     

2

2
| | 1

4 4 1 0.
( 2) (4 )z

z z
dz

z z=

− +
=

− +∫

EXAMPLE 1.84

Evaluate 2 2 ,
( 4)C

dz

z +∫  where C is the curve |z − i| = 2.

Solution.  Let

     
2 2 2 2

1 1( ) .
( 4) ( 2 ) ( 2 )

f z
z z i z i

= =
+ + −

Thus f (z) has two double poles at z = 2i and z = −2i, out of which only z = 2i lies within |z − i| = 2. Now

     

2

2

22

42

Res(2 ) lim [( 2 ) . ( )]

1lim
( 2 )

2 4lim .
32( 2 )

z i

z i

z i

d
i z i f z

dz

d

dz z i

z i i

z i

→

→

→

= −

⎡ ⎤
= ⎢ ⎥

+⎣ ⎦
⎡ ⎤− − −

= =⎢ ⎥
+⎣ ⎦

Hence, by Cauchy’s Residue theorem, we have

     
2 2 2 .

32 16( 4)C

dz i
i

z

p
p ⎛ ⎞= − =⎜ ⎟⎝ ⎠+∫

EXAMPLE 1.85
Evaluate

     
3

1 cos 2( 3) ,
( 3)C

z
dz

z

− −
−∫

where C is the curve |z − 3| = 1.
Solution.  Expanding cos 2(z − 3), we have

     

3

2 4

3

1 cos 2( 3)( )
( 3)

1 4( 3) 16( 3)1 1
2! 4 !( 3)

2 16 ( 3) .
3 4 !

z
f z

z

z z

z

z
z

− −
=

−

⎡ ⎤− −
= − + − +…⎢ ⎥

− ⎣ ⎦

= − − +…
−

Thus f (z) has a simple pole at z = 3. The Laurent’s series is in the power of z − 3. The coefficient of 
1

3z −
is 2. Hence, the residue of f (z) at z = 3 is 2 and so by Cauchy Residue theorem

     
( ) 2 (2) 4 .

C

f z dz i ip p= =∫
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EXAMPLE 1.86
Evaluate

     

2 2

2
| | 3

sin cos .
( 1) ( 2)z

z z
dz

z z

p p

=

+
− −∫

Solution.  The integrand has simple pole at z = 2 and a pole of order 2 at z = 1. But these poles lie 
within |z| = 3. Now

     

2 2

22 2

2 2
2

1 1

2 2 2 2

21

sin cosRes(2) lim ( 2) ( ) lim
( 1)

sin 4 cos 4 1,

sin cosRes(1) lim [( 1) ( )] lim
2

( 2) (2 cos 2 sin ) (sin cos )
lim

( 2)
2 1.

z z

z z

z

z z
z f z

z

d d i z
z f z

dz dz z

z z z z z z z

z

p p

p p

p p

p p p p p p

p

→ →

→ →

→

+
= − =

−
= + =

⎡ ⎤+
= − = ⎢ ⎥−⎣ ⎦

⎡ ⎤− − − +
= ⎢ ⎥

−⎣ ⎦
= +

Hence, by Cauchy’s Residue theorem, we have

     

2 2

2
| | 3

sin cos 2 (2 2) 4 ( 1).
( 1) ( 2)z

z z
dz i i

z z

p p
p p p p

=

+
= + = +

− −∫

EXAMPLE 1.87

Evaluate I = 2
| | 3

sec
(1 )z

z z
dz

z= −∫

Solution.  The integrand has a double pole at z = 1, which lies within the contour |z| = 3. Now

     

2
21

1

1

secRes(1) lim ( 1)
(1 )

lim [ sec ]

lim[ sec tan sec ] sec1[1 tan1].

z

z

z

d z z
z dz

dz z

d
z z

dz
z z z z

→

→

→

⎡ ⎤
= −⎢ ⎥

−⎣ ⎦

=

= + = +

Hence, by Cauchy’s Residue theorem

     2 [sec1(1 tan1)].I ip= +

EXAMPLE 1.88

Evaluate 2
| 1| 2

.
sinhz

dz

z z− =
∫
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Solution.  Since

     

3 5 7

2 3 5 7
2

12 4

3

22 4 2 4

3

2 4 4

3

2

3

sin ,
3! 5! 7!

1 1( )
sinh

3! 5! 7!

1 1
3! 5!

1 1
3! 5! 3! 5!

1 1
6 120 36

1 1 11
6 36 120

z z z
hz z

f z
z z z z z

z z

z z

z

z z z z

z

z z z

z

z

z

−

= + + + + …

= =
⎡ ⎤

+ + + + …⎢ ⎥
⎣ ⎦

⎡ ⎤⎛ ⎞
= + + + …⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − + + … + + + … −…⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤

= − − + + …⎢ ⎥
⎣ ⎦

⎛ ⎞= − −⎜⎝
4

4
3

1 1 7
6 360

z

z
zz

⎡ ⎤
+ …⎢ ⎥⎟⎠⎣ ⎦

= − + −…

The coefficient of 1
z

in this Laurent series in the powers of z is 1 .
6

−  Hence, residue at the pole z = 0 is

     

1Res(0) .
6

= −

Hence, by Cauchy’s Residue theorem,

     

12 .
6 3

i
I i

p
p ⎛ ⎞= − = −⎜ ⎟⎝ ⎠

1.7 EVALUATION OF REAL DEFINITE INTEGRALS
We shall now discuss the application of Cauchy’s Residue theorem to evaluate real definite integrals.

(A)  Integration Around the Unit Circle
We consider the integrals of the type

     

2

0

(cos , sin ) ,f d
p

q q q∫
 

(1.47)

where the integrand is a rational function of sin q and cos q. Substitutet z = eiq. Then, dz = i eiq 
dq = iz dq and

     

1 1cos ,
2
1 1sin .
2

z
z

z
i z

q

q

⎛ ⎞= +⎜ ⎟⎝ ⎠

⎛ ⎞= −⎜ ⎟⎝ ⎠

Thus (1.47) converts into the integral

     
( ) ,

C

z dzf∫
 

(1.48)
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where f(z) is a rational function of z and C is the unit circle |z| = 1. The integral (1.48) can be solved 
using Cauchy’s Residue theorem.

EXAMPLE 1.89
Show that

     

2

2 2
0

2 , 0.
cos

d
I a b

a b a b

p q p
q

= = > >
+ −

∫

Solution.  Substituting z = eiq, we get dq = dz

i z
 and so

     

| | 1

2
| | 1

1
1

2
2 .

2

z

z

dz
I

i b
z a z

z

dz

i bz az b

=

=

=
⎡ ⎤⎛ ⎞+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=
+ +

∫

∫

The poles of the integrand are given by

     

2 2 2 22 4 4 .
2

a a b a a b
z

b b

− ± − − ± −
= =

Thus the poles are

        

2 2 2 2
anda a b a a b

b b
a b

− + − − − −
= =

Since a > b > 0, |b| > 1. But |ab| = 1 (product of roots) so that |a| < 1. Hence, z = a is the only simple 
pole lying within |z| = 1. Further

     
2 2

2Res( ) lim ( ).
( ) ( )

2 1 .
( )

z
z

bi z z

bi i a b

a
a a

a b

a b

→
= −

− −

= =
− −

Hence

           
2 2 2 2

1 22 .I i
i a b a b

p
p

⎛ ⎞
= =⎜ ⎟⎜ ⎟− −⎝ ⎠

EXAMPLE 1.90
Use calculus of residues to show that

     

2

0

cos 2 .
5 4 cos 6

d
p q p

q
q

=
+∫

Solution.  We have

     

2 2 2

0 0

cos 2 real part of .
5 4cos 5 4cos

ie
d d

p p qq
q q

q q
=

+ +∫ ∫
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Now substituting z = eiq, we get

     

2 2

0
2 2

2
| | 1 | | 1

2 2

| | 1 | | 1

5 4 cos

1.
1 2 5 25 2

1 1 .
1(2 1) ( 2) 2 ( 2)
2

i

z z

z z

e
d

z dz z
dz

iz i z zz
z

z z
dz dz

i z z i
z z

p q
q

q

= =

= =

+

= =
⎛ ⎞ + ++ +⎜ ⎟⎝ ⎠

= =
+ + ⎛ ⎞+ +⎜ ⎟⎝ ⎠

∫

∫ ∫

∫ ∫

The integrand has simple poles at z = − 1
2

and z = −2 of which only z = − 1
2

lies inside |z| = 1. Now

     

2

1 1
2 2

1 1Res( ) lim ( ) lim
2 2 2 ( 2)

1 .
12

z z

z
z f z

i z

i

→ − → −

⎛ ⎞− = + =⎜ ⎟⎝ ⎠ +

=

Hence

     

2 2

0

12 . .
5 4 cos 12 6

ie
i

i

p q p
p

q
= =

+∫

Equating real and imaginary parts, we have

     

2 2

0 0

cos 2 sin 2and 0.
5 4cos 6 5 4cos

d d
p pq p q

q q
q q

= =
+ +∫ ∫

EXAMPLE 1.91
Show that

     

2
cos

0

2cos( sin ) .
!

e n d
n

p
q p

q q q− =∫

Solution.  The given integral is the real part of the integral

     

2 2
cos ( sin ) cos sin

0 0
2

1
0 | | 1

.

1. , .
i

n i i in

z
e in i

n
z

e e d e e d

e
e e d dz z e

i z

q

p p
q q q q q q

p
q q

q q

q

− − + −

−
+

=

=

= = =

∫ ∫

∫ ∫

The integrand has a pole of order n + 1 at z = 0 which lies in |z| = 1. Then

     

1
10

0

1Res(0) lim .
!

1 1lim { } .
! !

n z
n

n nz

n
z

nz

d e
z

n dz z

d
e

n ndz

+
+→

→

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

= =
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Hence

     

1 1 22 . .
! !

I i
i n n

p
p= =

Equating real and imaginary parts, we get

     

2
cos

0

2cos( sin )
!

e n d
n

p
q p

q q q− =∫

and

     

2
cos

0

sin( sin ) 0.e n d
p

q q q q− =∫

EXAMPLE 1.92
Show that

     

2 2
2 2

2
0

sin 2 { },0 .
cos

d a a b b a
a b b

p q p
q

q
<− −

+
<=∫

Solution.  Let

     

2 2

0

sin .
cos

I d
a b

p q
q

q
=

+∫

Substitute z = eiq so that cos q = 1 1 ,
2

z
z

⎛ ⎞+⎜ ⎟⎝ ⎠
 sin q = 1 1

2
z

i z
⎛ ⎞−⎜ ⎟⎝ ⎠

, and dz = iz dq. So

     

2

| | 1

2 2

2 2
| | 1

2 2

2 2| | 1

1 1
21 .

1
2

( 1)1
2 (2 )

( 1)1 .
22 1

z

z

z

z
i z dz

I
bi z

a z
z

z
dz

i z az bz b

z
dz

aib
z z z

b

=

=

=

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=
⎛ ⎞+ +⎜ ⎟⎝ ⎠

−
= −

+ +

−
= −

⎛ ⎞+ +⎜ ⎟⎝ ⎠

∫

∫

∫

The integrand has a double pole at z = 0 and simple poles at z = a and z = b, where

     

2 2 2 2
, .a a b a a b

b b
a b

− + − − − −
= =

Since a > b > 0, |b| > 1. But |ab| = 1 so that |a| < 1. Thus, the pole inside |z| = 1 is a double pole at z = 0 
and a simple pole at z = a. Now

     

2 2

2 2

1 ( 1)Res(0) coefficient of in
22 1

z
az

ibz z z
b

−
= −

⎛ ⎞+ +⎜ ⎟⎝ ⎠
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1
4 2 2

2

2 4 2
2

2 2

2 2

2

2 2

2

1 1 2coefficient of  in ( 1 2 ) 1
2

1 1 2coefficient of  in (1 2 ) 1
2

,

1 ( 1)Res( ) lim ( )
2 ( 2) ( )

1
( 1) 1

22 ( )

z

az
z z z

z bibz

a
z z z z

z bibz
a ai

i b b

z
z

ib z z z

ibib

a
a a

b

a
a a
a a b

−

→

⎛ ⎞= − + − + +⎜ ⎟⎝ ⎠

⎛ ⎞= − − + − − −…⎜ ⎟⎝ ⎠

= = −

⎡ ⎤−
= − −⎢ ⎥

− −⎣ ⎦

⎛ −
−

= − = −
−

2

2

2 2
2

( )

1 ( ) 1since
2
1 ( ) .

2

ib

i
a b

ib b

a b

a b
b

a b a

a b

⎞
⎜ ⎟⎝ ⎠

−

−
= − =

−

= − − = −

Hence

          

2 2
2 2

2 2
2

2

2 [ ]

i ai
I i a b

b b

a a b
b

p

p

⎡ ⎤= − −⎢ ⎥⎣ ⎦

= − −

EXAMPLE 1.93
Evaluate

     

2

0

cos3
5 4 cos

d
p q

q
q−∫

Solution.  Let

     

2 3

0 5 4 cos

ie
I d

p q
q

q
=

−∫

Putting z = eiq, we get

     

3 3

2
| | 1 | | 1

3

2| | 1

1 1
1 5 2 25 2

1 .
52 1
2

z z

z

z dz z
I dz

i z i z zz
z

z
dz

i
z z

= =

=

= =
⎛ ⎞ − −− +⎜ ⎟⎝ ⎠

= −
⎛ ⎞− +⎜ ⎟⎝ ⎠

∫ ∫

∫
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The poles of the integrand are given by 2z2 − 5z + 2 = 0 and so are z = 2 and z = 1 .
2

 Out of these poles, 

z = 1
2

lies within |z| = 1. Then

     

3

1/2

3

1/2

1 1 1Res lim
12 2 2 ( 2)
2

1 1lim .
2( 2) 24

z

z

z
z

i
z z

z

i z i

→

→

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎛ ⎞− −⎜ ⎟⎝ ⎠

= − =
−

Hence

     

2 .
24 12

i
I

i

p p
= =

EXAMPLE 1.94
Evaluate

     

2

2
0

.
(5 3cos )

dp q
q−∫

Solution.  Substituting z = eiq, we have dz = iz dq and so

     

2

2 2
0 | | 1

2

2 2
| | 1

2
2| | 1

1 1
(5 3cos ) 3 15

2

4
[10 3 3]

4 .
9 10 1

3

z

z

z

d dz
I

i z
z

z

z
dz

i z z

z
dz

i
z z

p q
q =

=

=

= =
− ⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=
− −

= −
⎡ ⎤− +⎢ ⎥⎣ ⎦

∫ ∫

∫

∫

The double poles of the integrand are given by z2 − 10
3

 + 1 = 0 and so the double poles are at z = 3 and 

z = 
1 .
3

 The double pole at z = 1
3

lies in |z| = 1. Now

     

2

2 21
3

21/3

2

41/3

1 4 1Res lim
3 9 3 [ (1/ 3)] ( 3)

4 lim
9 ( 3)

4 ( 3) [2( 3)]lim
9 ( 3)

z

z

z

d z
z

i dz z z

d z

i dz z

z z z

i z

→

→

→

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ − −⎢ ⎥⎣ ⎦

⎡ ⎤
= − ⎢ ⎥

−⎣ ⎦
⎡ ⎤− − −

= − ⎢ ⎥
−⎣ ⎦
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3 31 1/3
3

3

( 3) 24 4 3lim lim
9 9( 3) ( 3)

4 10 / 3 40 .
9 512( 8 / 3)

zz

z z z

i iz z

i i

→→

⎡ ⎤ ⎡ ⎤− − − −
= − = −⎢ ⎥ ⎢ ⎥

− −⎣ ⎦ ⎣ ⎦

⎡ ⎤−
= − = −⎢ ⎥

−⎣ ⎦

Hence

     

40 52 .
512 32

I i
i

p
p ⎛ ⎞= = −⎜ ⎟⎝ ⎠

EXAMPLE 1.95
Evaluate

     
2 2

0

, 0.
sin

a d
a

a

p q
q

>
+∫

Solution.  Let

     

2 2 2 2
0 0

2

2 2
0 0

2
sin 2 2sin

2
, 2 .

2 (1 cos 2 ) 2 1 cos

a d a d
I

a a

a d ad

a a

p p

p p

q q
q q

q f
q f

q f

= =
+ +

= = =
+ − + −

∫ ∫

∫ ∫

Substituting z = eif, we get

     

2| | 1

2 2
| | 1

2 2
| | 1

1
1 12 1
2

2
2 (2 1) 1

2 .
2 (2 1) 1

z

z

z

adz
I

i
z a z

z

a dz

i z a z

dz
ai

z z a

=

=

=

=
⎡ ⎤⎛ ⎞+ − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=
+ − −

=
− + −

∫

∫

∫

The poles a and b of the integrand are z = 2a2 + 1 ± 2a 2 1.a +  We note that |a| = |2a2 + 1 + 2 2 1a + | > 1. 
Since |ab| = 1, we have |b| = |2a2 + 1 − 2 2 1a + | < 1. Hence the pole b lies in |z| = 1.

     
2 2

Res( ) 2 lim ( ) ( )

12 lim ( )
( ) ( )

1 12 lim 2
( ) ( )

12 .
4 1 2 1

z

z

z

ai z f z

ai z
z z

ai ai
z

i
ai

a a a

b

b

b

b b

b
a b

a b a

→

→

→

= −

= −
− −

⎡ ⎤
= = ⎢ ⎥− −⎣ ⎦

⎛ ⎞
= = −⎜ ⎟⎜ ⎟− + +⎝ ⎠
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Hence, by Cauchy’s residue theorem,

     
2 2

2 .
2 1 1

i
I i

a a

p
p

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠+ +

EXAMPLE 1.96
Evaluate

     

2

2
0

(0 1).
1 2 sin

d
p

p p

p q
q

< <
− +∫

Solution.  We have

     

2

2
0

.
1 2 sin

d
I

p p

p q
q

=
− +∫

Substitute z = eiq so that dz = iz dq. Thus

     

2| | 1

2| | 1

2 2
| | 1

2 2
| | 1

1 1 ·
2 11
2

1 1

1
( 1)

( 1)

.
( ) ( )

z

z

z

z

dz
I

pi z
z p

i z

dz
pi

z i pz ip
z

i dz

i pz p z p i

dz

pz z p i p

dz

pz i z pi

=

=

=

=

=
⎛ ⎞− − +⎜ ⎟⎝ ⎠

=
⎛ ⎞− + +⎜ ⎟⎝ ⎠

=
− + + +

= −
− + −

= −
− −

∫

∫

∫

∫

∫
The poles of the integrand are given by z = pi and z = .i

p
 Out of these simple poles, the pole at z = pi 

lies in |z| = 1.

     
2 2

1Res( ) lim ( )
( ) ( )

1 1 1lim .
( 1)

z pi

z pi

pi z pi
pz i z pi

pz i p i i i p

→

→

= −
− −

= = =
− − −

Hence, by Cauchy Residue theorems, we have

     
2 2
1 22 .

( 1) 1
I i

i p p

p
p

⎛ ⎞
= − =⎜ ⎟⎝ − ⎠ −

(B)  Definite Integral of the Type ( )
∞

−∞
∫ F x dx

We know that if |F(z)| ≤ M on a contour C and if L is the length of the curve C, then

     
| ( ) | .

C

F z dz ML≤∫
 

(1.49)
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Now, suppose, that |F(z)| ≤ M/Rk for z = R eiq, k > 1 and constant M. Then (1.49) implies

     
1| ( ) | ( ) ,

k k

M M
F z dz R

R R

p
p −

Γ

≤ =∫

where Γ is the semi-circular arc of radius R and length pR as shown in Figure 1.15.

−R R

Γ

y

x
0

Figure 1.15
Then

     
lim | ( ) | 0
R

F z dz
→∞

Γ

=∫

and so

     
lim ( ) 0.
R

F z dz
→∞

Γ

=∫

We have thus proved the following result.

Theorem 1.22.  If |F(z)| ≤ M/Rk for z = R eiq, k > 1 and constant M, then lim ( )
R

F z
→∞

Γ
∫ dz = 0, where Γ is 

the circular arc of radius R shown in Figure 1.15.
Equally important results are the following theorems:
Theorem 1.23.  If C is an arc q1 ≤ q ≤ q2 of the circle |z| = R and if lim

R→∞
zF(z) = A, then

     
2 1lim ( ) ( ) .

R
C

F z dz i Aq q
→∞

= −∫

Proof:  For sufficiently large value of R, we have

     | ( ) | , 0zF z A e e< >−

or equivalently

     ( ) where | | .z F z A h h e= + <

Therefore, substituting z = R eiq

     

2

1

2 1 2 1

( )
( ) ,

( ) ( ).

i

i
C C

A i R eA
F z dz dz d

z R e

Ai i

q q

q
q

hh
q

q q h q q

++
= =

= − + −

∫ ∫ ∫

Thus

     

2 1 2 1 2 1

2 1 2 1

| ( ) ( )| | ( )| | || ( )|

| | ( ) ( ) .

F z dz Ai i iq q h q q h q q

h q q q q e<

− − = − = −

= − −
∫
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Hence

     
2 1lim ( ) ( ).

R
C

F z dz Ai q q
→∞

= −∫

Remark 1.11.  (i) If lim
R→∞

F(z) = 0, then Theorem 1.23 implies that lim ( ) 0.
R

C

F z dz
→∞

=∫

(ii) The Theorem 1.23 shall be applied to integrals of the form ( ) ,
( )

P x
dx

Q x

∞

−∞
∫  where P(x) and Q(x) are 

polynomials such that
(i) The polynomial Q(x) has no real root

(ii) The degree of P(x) is at least two less than that of the degree of Q(x).

Theorem 1.24.  (Jordan’s Lemma). If f (z) → 0 as z → ∞ and f (z) is meromorphic in the upper  half-plane, 
then

     
lim ( ) 0, 0,imz

R
e f z dz m

→∞
Γ

= >∫

where Γ denotes the semi-circle | z | = R, Im(z) > 0.
Proof:  We shall use Jordan’s inequality

     

2 sin , 0
2

q p
q q q

p
≤ ≤ ≤ ≤

to prove our theorem. We assume that f (z) has no singularities on Γ for sufficiently large value of R. 
Since f (z) → 0 as R → ∞, there exists e > 0 such that | f (z)| < e when | z | = R ≤ R0, R0 > 0. Let Γ be any 
semi-circle with radius R ≥ R0. Substituting z = R eiq, we get

     

Re

0

(cos sin )

0

cos sin

0

( ) ( )

( )

. ( ) .

iim z im i i

imR i i i

i mR m R i i

e f z dz e f R e R i e d

e f R e Rie d

e e f R e Rie d

q q q

p
q q q q

p
q q q q

q

q

q

∞

Γ

+

−

=

=

=

∫ ∫

∫

∫

Thus, using Jordan’s inequality, we have

     

cos sin

0

sin

0
/2 /2

sin 2 /

0 0

| ( ) |

| | | | | (Re | | | | |

using | ( ) | .

2 2

12 (1 ) .
2 /

imz

i mz mR i i

mR i

m R mR

mR
mR

e f z dz

e e f Ri e d

e R d f R e

R e d R e

e
R e

mR m m

p
q q q q

p
q q

p p
q q p

q

e q e

e q e

ep ep
e

p

Γ

−

−

− −

−
−

≤

≤ <

= =

−
= = − <

∫

∫

∫

∫ ∫
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Hence

     
lim ( ) 0.imz

R
e f z dz

→∞
Γ

=∫

Remark 1.12.  Jordan’s lemma should be used to evaluate integrals of the form

     

( ) ( )sin or cos , 0,
( ) ( )

P x P x
mx dx mx dx m

Q x Q x

∞ ∞

−∞ −∞

>∫ ∫

where P(x) and Q(x) are polynomials such that
(i) degree of Q(x) exceeds the degree of P(x)

(ii) the polynomial Q(x) has no real roots.
We shall make use of Theorem 1.22, 1.23, and 1.24 in evaluating the definite integrals of the 

form ( ) .F x dx
∞

−∞
∫

EXAMPLE 1.97
Using contour integration, show that

     
2 2

0

.
4(1 )

dx

x

p∞

=
+∫

Solution.  Consider the integral

     
2 2 ,

(1 )C

dz

z+∫

where C is the contour consisting of a large semi-circle C of radius R together with the part of real axis 
from −R to R traversed in the counter-clockwise sense (Fig. 1.15).

The double poles of the integrand are z = ± i, out of which the double pole z = i lies within the 
contour C. Now

     

2
2 2

2 4

3 3

1Res ( ) lim ( )
( ) ( )

1 2( )lim lim
( ) ( )

2 2 1lim .
4( ) (2 )

z i

z i z i

z i

d
i z i

dx z i z i

d z i

dx z i z i

iz i i

→

→ →

→

⎡ ⎤
= −⎢ ⎥

+ −⎣ ⎦
⎡ ⎤ ⎡ ⎤+

= =⎢ ⎥ ⎢ ⎥
+ +⎣ ⎦ ⎣ ⎦

− −
= = =

+

Hence, by Cauchy’s Residue theorem

     
2 2

12 ,
4 2(1 )C

dz
i

iz

p
p ⎛ ⎞= =⎜ ⎟⎝ ⎠+∫

that is,

     
2 2 2 2 .

2(1 ) (1 )

R

R

dz dx

z x

p

Γ −

+ =
+ +∫ ∫

 
(1.50)
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But, substituting z = R eiq, we have

     
2 2 2 2 2 2 2 4

1 1 1 1 0 as .
(1 ) (1 ) ( 1)i

R
z R e R Rq= ≤ ≤ → → ∞

+ + −

Hence, letting R → ∞ in (1.50), we get

     
2 2 2(1 )

dx

x

p∞

−∞

=
+∫

and so

     
2 2

0

.
4(1 )

dx

x

p∞

=
+∫

EXAMPLE 1.98

Evaluate 
6

0

.
1

dx

x

∞

+∫

Solution.  Consider 6 ,
1C

dz

z +∫  where C is the closed contour consisting of the line from −R to R and the 

semi-circle Γ traversed in the positive sense. The simple poles of 6
1

1z +
 are

     
/6 3 /6 5 /6 7 /6 9 /6 11 /6, , , , .i i i i i iz e e e e e ep p p p p p=

But only three simple poles /6 3 /6, ,i ie ep p and 5 /6ie p  lie within C. Now

     

/6 /6

3 /6

5 /6

/6
56

5 /6

3 /6 5 /2
5

5 /6 25 /6
5

1 1Res( ) lim lim
6( 1)

1 .
6

1 1Res( ) lim ,
66

1 1Res( ) lim .
66

i i

i

i

i

z e z e

i

i i

z e

i i

z e

e
d zz
dz

e

e e
z

e e
z

p p

p

p

p

p

p p

p p

→ →

−

−

→

−

→

= =
+

=

= =

= =

Thus

     
6
1 2 2 / 3,

1C

dz i R
z

p p= Σ =
+∫

that is,

     
6 6
1 1 2 .

31 1

R

R

dz dx
z x

p

Γ −

+ =
+ +∫ ∫

But, 6lim F( ) lim 0.
1z z

z
z z

z→∞ →∞
= =

+
Therefore by Theorem 1.23,

     
6
1 0 as .

1
dz R

zΓ

→ → ∞
+∫
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Hence, letting R → ∞, we get

     
6
1 2

31
dx

x

p∞

−∞

=
+∫

and so

     
6

0

1 .
31

dx
x

p∞

=
+∫

EXAMPLE 1.99
Show that

     

2

4 2
2 5 .

210 9
x x

x x

p∞

−∞

− +
=

+ +∫

Solution.  Consider the integral

     

2 2 2

4 2 4 2 4 2
2 2 2 .

10 9 10 9 10 9

R

C R

z z z z z z
dz dz dz

z z z z z zΓ −

− + − + − +
= +

+ + + + + +∫ ∫ ∫

The poles of the integrand are given by z4 + 10z2 + 9 = 0 which yields the simple poles at z = ± 3i, ±i. 
Out of these poles only 3i and i lie within semi-circle with radius R. Now

     

3

1Res(3 ) lim ( 3 )
( 3 ) ( 3 ) ( ) ( )

7 3
48

1Res( ) ( )lim
( ) ( ) ( 3 ) ( 3 )

1 .
16

z i

z i

i z i
z i z i z i z i

i

i

i z i
z i z i z i z i

i

i

→

→

= −
− + − +

+
=

= −
− + − +

−
=

Thus

     

2 2

4 2 4 2
2 2

10 9 10 9

7 3 1 52 i .
48 16 12

R

R

z z x x
dz dx

z z x x

i i

i i

p
p

Γ −

− + − +
+

+ + + +

+ −⎡ ⎤= + =⎢ ⎥⎣ ⎦

∫ ∫

Further, z F(z) → 0 as z → ∞. Therefore, by Theorem 1.23, we have

     

2

4 2
2 0 as .

10 9
z z

dz R
z zΓ

− +
→ → ∞

+ +∫

Hence, letting R → ∞, we get

     

2

4 2
2 5 .

1210 9
x x

dx
x x

p∞

−∞

− +
=

+ +∫
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EXAMPLE 1.100

Evaluate 2
0

cos .
1

ax
dx

x

∞

+∫
Solution.  Consider the integral

     
2 2 2 .

1 1 1

Riaz iaz iaz

C R

e e e
dz dz dz

z z zΓ −

= +
+ + +∫ ∫ ∫

The poles of the integrand are z = ±i of which z = i lies in C. Hence

     
2 2

cos 2 . (residue at )
1 1

Riaz

R

e ax
dz dz i i

z x
p

Γ −

+ =
+ +∫ ∫

But

     
Res(i) lim( ) .

( ) ( ) 2

iaz a

z i

e e
z i

z i z i i

−

→
= − =

− +

Since f (z) → 0 as z → ∞, by Jordan’s lemma, the integral 2 1

iaze
dz

zΓ

→
+∫ 0 as R → ∞. Hence, in the limit 

as R → ∞, we get

     
2

cos 2
21

a
aax e

dx i e
ix

p p
∞ −

−

−∞

= =
+∫

and

     
2

0

cos .
21

aeax
dx

x

p∞ −
=

+∫

EXAMPLE 1.101

Evaluate 
2

2 2 2 2 , , 0.
( ) ( )

x
dx a b

x a x b

∞

− ∞ + +
>∫

Solution.  Consider

     

2

2 2 2 2 ,
( ) ( )C

z
dz

z a z b+ +∫

where C is the contour consisting of the line from −R to R and semi-circle Γ of radius R traversed in 
the positive sense. Then

     

2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 .
( ) ( ) ( ) ( ) ( ) ( )

R

C R

z x z
dz dx dz

z a z b x a x b z a z b− Γ

= +
+ + + + + +∫ ∫ ∫

But since z f (z) → ∞ as z → ∞, the second integral on the right tends to zero. Thus

     

2 2

2 2 2 2 2 2 2 2 .
( ) ( ) ( ) ( )

R

C R

z x
dz dx

z a z b x a x b−

=
+ + + +∫ ∫

But the poles of the integrand of the integral on the left are z = ± ai and z = ± bi out of which z = ai and 
z = bi lie within C. Now
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2

2 2

2 2

2

2 2

2 2

Res( ) lim ( )
( ) ( ) ( )

,
2 ( )

Res( ) lim ( )
( ) ( ) ( )

.
2 ( )

z ai

z bi

z
ai z ai

z ai z ai z b

a

i a b

z
bi z bi

z a z bi z bi

b

i a b

→

→

= −
− + +

=
−

= −
+ + −

−
=

−

Hence

     

2

2 2 2 2 2 2 2 2

2 2

2
( ) ( ) 2 ( ) 2 ( )

( )
.

C

z a b
dz i

z a z b i a b i a b

a b

a ba b

p

p p

⎡ ⎤
= −⎢ ⎥

+ + − −⎢ ⎥⎣ ⎦
−

= =
+−

∫

Hence, as R → ∞ ,

     

2

2 2 2 2 .
( ))(

x
dx

a bx a x b

p∞

−∞

=
++ +∫

EXAMPLE 1.102

Evaluate 2 2
0

sin ,x x
dx

x a

∞

+∫  a > 0.

Solution.  Consider

     
2 2 ,

iz

C

z e
dz

z a+∫

where C is contour consisting of line from −R to R and semi-circle with radius R traversed in positive 
sense. Then

     
2 2 2 2 2 2

sin .
Riz iz

C R

z e z ex x
dz dx dz

z a x a z a− Γ

= +
+ + +∫ ∫ ∫

Since 2 2lim 0,
z

z

z a→∞
=

+
we have, by Jordan’s lemma,

     
( ) 0.f z dz

Γ

=∫

The integrand has simple poles at z = ± ai of which z = ai lies within C. Further

     

Res( ) lim ( )
( ) ( )

lim .
2

iz

z ai

iz a

z ai

z e
ai z ai

z ai z ai

z e e

z ai

→

−

→

= −
− +

= =
+
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Hence

     
2 2 2 i .

2

iz a
a

C

z e e
dz i e

z a
p p

−
−⎛ ⎞

= =⎜ ⎟+ ⎝ ⎠∫

Equating imaginary parts, we have

     
2 2
sin ax x

e
x a

p
∞

−

−∞

=
+∫

and so

     
2 2

0

sin .
2

ax x
dx e

x a

p∞
−=

+∫

EXAMPLE 1.103
Use calculus of residue to show that

     

2 2 2 2

2 2

cos
( ) ( )

, 0.
b a

x
dx

x a x b

e e
a b

b aa b

p

∞

− ∞

− −

+ +

⎛ ⎞
= − > >⎜ ⎟− ⎝ ⎠

∫

Solution.  The integrand is of the form ( ) .
( )

P x

Q x
 So let us consider

     
2 2 2 2( ) ,

( ) ( )

iz

C C

e
f z dz dz

z a z b
=

+ +∫ ∫

where C is semi-circle Γ with radius R and the line from −R to R. We have

     
( ) ( ) 2 R.

R

R

f x dx f z dz ip
− Γ

+ = Σ∫ ∫

But, by Jordan’s lemma

     
( ) 0 as .f z dz R

Γ

→ → ∞∫

Further, the poles of f (z) are z = ± ai, ± bi, out of which z = ai and z = bi lie in the upper half-plane. Now

     

2 2

2 2

2 2

2 2

Res( ) lim ( )
( ) ( ) ( )

,
2 ( )

Res( ) lim ( )
( ) ( ) ( )

.
2 ( )

iz

z ai

a

iz

z bi

b

e
ai z ai

z ai z b z ai

e

ai b a

e
bi z bi

z bi z a z bi

e

bi a b

→

−

→

−

= −
+ + −

=
−

= −
+ + −

=
−
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Hence

     

2 2 2 2

2 2 2 2

2 2

cos
( ) ( )

2
2 ( ) 2 ( )

.

a b

b a

x
dx

x a x b

e e
i

ai b a bi a b

e e

b aa b

p

p

∞

−∞
− −

− −

+ +

⎡ ⎤
= +⎢ ⎥

− −⎣ ⎦
⎡ ⎤

= −⎢ ⎥
− ⎣ ⎦

∫

EXAMPLE 1.104
Show that

     
2

sin sin 2 .
4 5

x
dx

ex x

p∞

−∞

= −
+ +∫

Solution.  Consider

     
2( ) ,

4 5

iz

C

e dz
f z dz

z z
=

+ +∫ ∫

where C is the contour as in the above examples. Then

     
( ) ( ) ( ) 2 R.

R

C R

f z dz f x dx f z dz ip
− Γ

= + = Σ∫ ∫ ∫

Since 2
1 0
4 5z z

→
+ +

as z → ∞, by Jordan’s lemma, ( ) 0f z dz
Γ

→∫  as R → ∞. Further, the poles of 

f (z) are −2± i. The pole z = −2 + i lie in the upper half-plane. Then

     

22

(1 2 )

Res(2 ) lim ( 2 )
4 5

.
2

iz

z i

i

e
i z i

z z

e

i

→ − +

− +

+ = + −
+ +

=

Hence

     

(1 2 )( ) (cos 2 sin 2).i

C

f z dz e i
e

p
p − += = −∫

Equating the imaginary parts, we get

     
2

sin sin 2.
4 5

x
dx

ex x

p∞

−∞

= −
+ +∫

EXAMPLE 1.105
Evaluate

     
2 2
sin 1 cosand .

( 2 2) ( 2 2)
x x

dx dx
x x x x x

∞ ∞

−∞ −∞

−
− + − +∫ ∫
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Solution.  Consider

     
2
1( ) ,

( 2 2)

iz

C C

e
f z dz dz

z z z

−
=

− +∫ ∫

where C is the contour consisting of a large semi-circle Γ of radius R in the upper half-plane and the 
real axis from −R to R. We have

     
( ) ( ) ( ) 2 i R.

R

C R

f z dz f x dx f z dz p
− Γ

= + = Σ∫ ∫ ∫

We observe that

     

0
2 2

sin

2
0

1
| ( ) | | |

( 2 2)

1
0 ,

2 2

ii R e
i

i i i

R

e
f z dz R ie d

Re R e Re

e
d as R

R R

qp
q

q q q

p q

q

q

Γ
−

−
≤

− +

−
≤ → → ∞

− +∫

∫∫

since sin q is positive
Hence, when R → ∞, we have

     
( ) ( ) 2 i R.

C

f z dz f x dx p
∞

−∞

= = Σ∫ ∫

The function f (z) has simple poles at z = 1 ± i of which z = 1 + i lies in the upper half-plane. However, 
z = 0 is not a pole because expanding 1−eiz we see that z is a common factor of numerator and 
denominator. Let a =1 + i and b = 1 −i. Then

     

11

1Res( ) lim ( )
( ) ( )

1 1lim
( ) ( )

(1 ) (1 )1
(1 ) (2 ) 4
1 11
4

1 11 (cos1 sin1) .
4

iz

z

iz i

z

ii

i

e
z

z z z

e e

z z

i ee

i i i

i
e

i e

i
i

i e

a

a

a

a a
b a

b a a b

→

→

−−

−
= −

− −

− −
= =

− −

− −−
= =

+
− ⎡ ⎤= −⎢ ⎥⎣ ⎦
− ⎡ ⎤= − +⎢ ⎥⎣ ⎦

Thus

     

2
1

( 2 2)

1 12 1 (cos1 sin1)
4

(1 ) [ cos1 sin1].
2

ixe
dx

x x x

i
i i

i e

i e i
e

p

p

∞

−∞

−
− +

−⎡ ⎤⎧ ⎫= − +⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

= − − −

∫
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Equating real and imaginary parts, we get

     
2

1 cos
[e-cos1 sin1]

2( 2 2)
x

dx
ex x x

p∞

− ∞

−
= −

− +∫

and

     
2
sin [e-cos1 sin1].

2( 2 2)
x

dx
ex x x

p∞

−∞

= +
− +∫

EXAMPLE 1.106
Show that

     

2

2
0

log(1 ) log2.
1

x
dx

x
p

∞ +
=

+∫

Solution.  Consider

     
2

log( )( ) ,
1C C

z i
f z dz dz

z

+
=

+∫ ∫

where C is the contour as in the above examples. We have

     
( ) ( ) ( ) 2 R.

R

C R

f z dz f x dx f z dz ip
− Γ

= + = Σ∫ ∫ ∫

Substituting z = Reiq, we can show that ( ) 0f z dz
Γ

→∫ as R → ∞. Hence when R → ∞, we get

     
( ) 2 R.f x dx ip

∞

−∞

= Σ∫

But f (z) has simple pole at z = +i and a logarithmic singularity at z = −i, out of which z = i lies inside 
C. Now

     

log( )Res( ) lim( )
( ) ( )

log( ) log2 1lim log2 .
2 2 2

z i

z i

z i
i z i

z i z i

z i i
i

z i i i

p

→

→

+
= −

− +
+ ⎡ ⎤= = = +⎢ ⎥+ ⎣ ⎦

Thus

     

2
log( ) 12 log2

2 21

log2 .
2

x i
dx i i

ix

i

p
p

p
p

∞

−∞

+ ⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠+ ⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

∫

Comparing real parts

     

2

2

1 log(1 )
2 log2

1

x
dx

x
p

∞

−∞

+
=

+∫



Functions of Complex Variables � 105

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M01\LAYOUT_M01\M01_BABUISBN_10_C01.indd

Modif cation Date: April 29, 2010 11:40 AM Modif cation Date: 29-04-10, 11:49

and so

     

2

2
0

log(1 ) log2.
1

x
dx

x
p

∞ +
=

+∫

(C)  Poles on the Real Axis
When the integrand has a simple pole on a real axis, we delete it from the region by indenting the 
contour. Indenting is done by drawing a small semi-circle having the pole as the centre. The procedure 
followed is called “indenting at a point.”

EXAMPLE 1.107
Show that

     0 0

sin cosand 0.
2

x x
dx dx

x x

p∞ ∞

= =∫ ∫

Solution.  Consider the integral

     
( ) ,

iz

C C

e
f z dz dz

z
=∫ ∫

where C is the contour (shown in Fig. 1.16) consisting of
(i) real axis from r to R, where r is small and R is large

(ii) the upper half of the circle |z| = R
(iii) the real axis from −R to −r
(iv) the upper half of the circle | z | = r.

x
R 

y

− R −ρ ρ

γ

0

Γ

Figure 1.16

Since there is no singularity inside C, the Cauchy-Goursat theorem implies

     
( ) ( ) ( ) ( ) ( ) 0.

R

C R

f z dz f x dx f z dz f x dx f z dz
r

r gΓ −

= + + + =∫ ∫ ∫ ∫ ∫

By Jordan’s lemma, we have

     
lim ( ) 0.
R

f z dz
→∞

Γ

=∫

Further, since, lim 0 ( ) 1,
x

z zf z
→∞

→ =  we have

     
0

lim ( ) (0 ).1 .f z dz i i
r

g

p p
→

= − = −∫
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Hence as r → 0 and R → ∞, we get

     

0

0

( ) ( ) 0f x dx f x dx ip
∞

− ∞

+ − =∫ ∫

and so

     
( ) ,f x dx ip

∞

− ∞

=∫

that is,

     
i.

ixe
dx

x
p

∞

− ∞

=∫

Equating real and imaginary parts, we get

     

cos sin0 and .x x
dx dx

x x
p

∞ ∞

− ∞ − ∞

= =∫ ∫

Hence       
0 0

cos sin0 and .
2

x x
dx dx

x x

p∞ ∞

= =∫ ∫
EXAMPLE 1.108
Evaluate

     
2 2 2 2

0 0

sin cosand , 0
( ) ( )

x x
dx dx a

x x a x x a

∞ ∞

>
+ +∫ ∫

Solution.  Consider the integral

     
2 2( ) ,

( )

iz

C C

e
f z dz dz

z z a
=

+∫ ∫

where C is the contour as shown in Figure 1.16.
Now f (z) has simple poles at z = 0, ± ai. Out of these, z = 0 lie on x-axis and z = ai lies in the upper 

half-plane. Residue at z = ai is

     
2

Res( ) lim ( )
( ) ( )

lim .
( ) 2

iz

z ai

iz a

z ai

e
ai z ai

z z ai z ai

e e

z z ai a

→

−

→

= −
− +

= =
+ −

Hence

     
2 2  

( ) ( ) ( ) ( ) ( )

2 .
2

R

C R

a
a

f z dz f x dx f z dz f x dx f z dz

e i
i e

a a

r

r g

p
p

−

Γ −

−
−

= + + +

⎡ ⎤
= = −⎢ ⎥

−⎣ ⎦

∫ ∫ ∫ ∫ ∫

Now

     
( ) 0 as R .f z dz

Γ

→ → ∞∫
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Also substituting z = reiq, we note that

     
2( ) as 0.i

f z dz
ag

p
r= − →∫

Hence as r → 0 and R → ∞, we have

     

0

2 2
0

( ) ( ) ai i
f x dx f x dx e

a a

p p∞
−

−∞

+ − = −∫ ∫

and so

     
2( ) (1 ),ai

f x dx e
a

p∞
−

−∞

= −∫

that is,

     
2 2 2 (1 ).

( )

ix
ae i

dx e
x x a a

p∞
−

−∞

= −
+∫

Equating real and imaginary parts, we get

     
2 2 2 2 2

cos sin0 and (1 ).
( ) ( )

ax x
dx dx e

x x a x x a a

p∞ ∞
−

− ∞ − ∞

= = −
+ +∫ ∫

Thus

     
2 2 2 2 2

0 0

cos sin0 and (1 ).
( ) ( ) 2

ax x
dx dx e

x x a x x a a

p∞ ∞
−= = −

+ +∫ ∫

EXAMPLE 1.109
Show that

     

1

0

, 0 1.
1 sin

px
dx p

x px

p∞ −
= ≤ ≤

+∫

Solution.  Consider the integral 
1

,
1

p

C

z
dz

z

−

+∫  where C is the contour shown in Figure 1.17 and where 

AB and GH are actually coincident with the x-axis. Here z = 0 is a branch point and the real axis is the 
branch line. The integrand has a simple pole at z = −1= iep  ying on the x-axis and inside C. Now

     

1

1

1 1 ( 1)

1

Res( ) lim ( 1)
1

lim ( ) .

p
i

z

p i p p i

z

z
e z

z

z e e

p

p p

−

→ −

− − −

→ −

= +
+

= = =
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Hence

     

1
( 1)2 .

1

p
p i

C

z
dz ie

z
pp

−
−=

+∫

x

y

D

A

H

R

− 1

F

E

B

G

e

Figure 1.17
Thus

     

2 01 2 11 1

2
0 2

( 1)

( ) ( ) ( )
1 1 1 1

2 .

R i p i i pp i p i

i i i
R

p

Re i R e d x ex e i e
dx dx d

x R e xe e

ie i

p eq q p q q

q p q
e p

q e e
q

e

p p

− −− −

−

+ + +
+ + + +

=

∫ ∫ ∫ ∫

Now taking the limit as R → ∞ and e → 0, the second and fourth integral approaches zero. Therefore,

     

01 2 ( 1) 1
( 1)

0

2 ,
1 1

p i p p
p ix xe x

dx dx ie
x x

p
pp

∞ − − −
−

∞

+ =
+ +∫ ∫

that is,

     

1
2 ( 1) ( 1)

0

[1 ] 2 ,
1

p
i p p ix

e dx ie
x

p pp
∞ −

− −− =
+∫

which yields

     

1

0

2 .
1 sin

p

p i p i

x i
dx

x pe ep p
p p

p

∞ −

−= =
+ −∫

EXAMPLE 1.110
Using calculus of residue, evaluate

     

2 2

0 0

sin and cos .x dx x dx
∞ ∞

∫ ∫

Solution.  Consider the integral 
2

,iz

C

e dz∫  where C is the contour as shown in Figure 1.18. Here, AP is 

the arc of a circle with centre at the origin O and radius R.
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O R

C

P

R

x

y

π /4

A

Figure 1.18
The function 

2ize has no singularities within and on C. Hence by Cauchy-Goursat theorem

     

2

0.iz

C

e dz =∫
Thus

     

2 2 2

0,iz iz iz

OA AP PO

e dz e dz e dz+ + =∫ ∫ ∫
that is,

     

2 2 2 2
/4 0

/2 /4

0 0

0,
i

R
ix dx iR e i ir i i

R

e e iR e d e e e dr
q

p
q p pq+ + =∫ ∫ ∫

or

     

2 22 2 /4 2

0 0 0

(cos sin ) Re
R R

i r iR i ix i x dx e e dr e e i d
p

p q q q−+ = −∫ ∫ ∫
As R → ∞

     

2/4 /4

0

,
2

i r ie e dr ep pp∞
− =∫

and

     

2 2

2

2

2

/4 /4
2 sin2

0 0
/2

sin

0
/2

2 /

0

| |

, 2
2

, 0
2 2

(1 ) 0 as R .
4

iR i i R

R

R

R

e e i R e d e R d

R
e d

R
e d

e
R

p p
q q q

p
f

p
f p

q q

f f q

p
f f

p

−

−

−

−

≤

= =

≤ ≤ ≤

= − → → ∞

∫ ∫

∫

∫

Hence

     

2 2 /4

0

1(cos sin ) .
2 2 2 2 2

i i
x i x dx epp p p∞

+ = = +∫
Equating real and imaginary parts, we get

     

2 2

0 0

1 1cos and sin .
2 2 2 2

x dx x dx
p p∞ ∞

= =∫ ∫
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1.8    CONFORMAL MAPPING
We know that a real-valued function y = f (x) of a real variable x determines a curve in the xy-plane 
if x and y are interpreted as rectangular co-ordinates. But in case of analytic function w = f (z) of a 
complex variable z, no such simple geometric interpretation is possible. In fact in this case, both z 
and w are complex numbers and, therefore, geometric representation of the function requires four real 
co-ordinates. But our geometry fails in a space of more than three dimensions. Thus, no geometric 
interpretation is possible of w = f (z).

Suppose that we regard the points z and w as points in two different planes—the z-plane and the 
w-plane. Then we can interpret the functional relationship w = f (z) as a mapping of points in the z-plane 
onto the points in the w-plane. Thus f (z) if is regular on some set S in z-plane, there exists a set of points 
S ′ in the w-plane. The set S ′ is called the image of the set S under the function w = f (x).

Let f (z) be regular and single-valued in a domain D. If z = x + iy and w = u(x, y) + iv(x, y), the image 
of the continuous arc x = x(t), y = y(t), (t1 ≤ t ≤ t2) is the arc u = u(x(t), y(t)), v = v (x(t), y(t)) under the 
mapping w = f (z). Further, u and v are continuous in t if x(t) and y(t) are continuous. Therefore, w = f (z) 
maps a continuous arc into a continuous arc.

Let the two curves C1 and C2 in the z-plane intersect at the point P(x0, y0) at an angle and let C1 
and C2 be mapped under w = f (z) into the curves Γ1 and Γ2, respectively, in the w-plane. If Γ1 and Γ2 
intersect at (u0, v0) at the same angle a such that the sense of angle is same in both cases, then w = f (z) 
is called conformal mapping. Thus, a mapping which preserves both the magnitude and the sense of the 
angles is called conformal.

But, if a mapping preserves only the magnitude of angles but not necessarily the sense, then it is 
called isogonal mapping.

Theorem 1.25.  The mapping w = f (z) is conformal at every point z of a domain where f (z) is analytic 
and f  �(z) ≠ 0.

Proof:  Consider a smooth arc z = z(t), which terminates at a point z0 = z(t0) at which f (z) is analytic. 
Let w0 = f (z0) and w = w(t) = f (z(t)). Then

( ) ( ) ( )0
0 0

0

f z f z
w w z z

z z

−
− = −

−

and so

     
( ) ( ) ( ) ( )0

0 0
0

arg arg arg
f x f z

w w z z
z z

⎡ ⎤−
− = + −⎢ ⎥−⎣ ⎦  

(1.51)

where arg (z – z0) is the angle between the positive axis and the vector pointing from z0 to z. If z → z0 
along the smooth arc z(t), then ( )

0
0lim arg

z z
z z

→
−  is the angle q between the positive axis and the tangent 

to the arc at z0. Similarly, arg (w – w0) tends to the angle ϕ between the positive axis and the tangent to 
w(t) at w0. Hence, taking limit as z → z0, (1.51) reduces to

( ) ( )arg , provided 0.f z f zf q= + ≠� �

Thus, the difference φ – q depends only on the point z0 and not on the smooth arc z = f (t) for which the 
angle q and φ were computed. If z1(t) is another smooth arc terminating at z0 and if the corresponding 
tangential directions are given by the angles q1 and φ1, then

( ) ( )1 1 arg , provided 0.f z f zf q− = ≠� �
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Figure 1.19

Hence
1 1f q f q− = −

or
     1 1 ,f f q q− = −  (1.52)

where q1 − q is the angle between the arcs z1(t) and z(t) and φ1 − φ is the angle between the images of 
these arcs. The expression (1.52) shows that the angle between the arcs is not changed by the mapping 
w = f (z), provided f  ′ ≠ 0 at the point of intersection. Also (1.52) shows that the sense of angles is also 
preserved. Hence the mapping is conformal.

Bilinear (Mobius or Fractional) Transformation
Consider the transformation

     
, 0,az b

w ad bc
cz d

+
= − ≠

+  (1.53)
where a, b, and c are complex constants. This can be written as

     0,cwz dw az b+ − − =  (1.54)

which is linear in both w and z. Therefore, the mapping (1.53) is called Bilinear or Mobius Transforma-
tion. Also (1.53) can be written as

     ( )
, 0.

bc ada
w ad bc

c c cz d

−
= + − ≠

+  
(1.55)

The condition ad – bc ≠ 0, called the determinant of the transformation, prevents (1.53) from degener-
ating into a constant.

A transformation w = f (z) is said to be univalent if z1 ≠ z2 implies f (z1) ≠ f (z2).

EXAMPLE 1.111
Show that the linear transformation az b

w
cz d

+
=

+
 is a univalent transformation.

Solution.  We have

( ) ( )1 2
1 2

1 2
, .

az b az b
w z w z

cz d cz d

+ +
= =

+ +

Therefore,

( ) ( ) ( )( )
( )( )

1 2
1 2

2 1
.

z z ad bc
w z w z

cz d cz d

− −
− =

+ +

y

x
z-planeO

z

z (t )

z0

θ

w -plane

w

w(t )

u
O

v

φ
w0
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Since ad – bc ≠ 0, we note that z1 ≠ z2 implies w (z1) ≠ w (z2). Hence az b
w

cz d

+
=

+
 is univalent.

Particular cases of w = , 0
a z b

ad bc
c z d

+
- π

+
(i) Substituting c = 0, d = 1, we get the transformation

     .w az b= +  (1.56)

To find the effect of this transformation on a point in the z-plane, let us assume that b = 0. Thus w = az. 
Introducing polar co-ordinates we have z = reiq. If a = | a | eia, then

( )iw r a e q a+=

and so
and arg .w r a w q a= = +

Thus, under the mapping w = az, all distances from the origin are multiplied by the same factor | a | and 
the argument of all numbers z are increased by the same amount a. Hence the transformation z → az 
results in a magnification or contraction according as | a | > 1 or | a | < 1 and rotation of any geometric 
figure in the z-plane. In particular, the mapping z → az maps a circle into a circle. The addition of b 
to w = az amounts only to a translation. If b is real, all points are translated horizontally by the same 
amount and if b is complex, then we will also have vertical translation. Hence w = az + b will always 
transform a circle into circle.
(ii) Substituting a = d = 0, b = c in , 0az b

w ad bc
cz d

+
= − ≠

+
, we get

     
1 ,w
z

=
 

(1.57)

which is the translation, called inversion. Setting z = reiq, (1.57) reduces to

     
.

ie
w

r

q−
=

 
(1.58)

Thus
1 1 or 1 and arg .w w z w
r z

q= = = = −

This means that the points of the w-plane corresponding to z has a modulus which is the reciprocal of 
the modulus of z. Thus the mapping 

1
w

z
=  transforms points in the interior of the unit circle into the 

points in its exterior and vice- versa. The circumference of the unit circle is transformed into itself. But 
since arg w = – arg z, the circumference | w | = 1 is described in the negative sense if | z | = 1 is described 
in the positive sense.

We note that z = 0 is mapped by 1w z=  to ∞ in the w-plane and w = 0 is mapped to ∞ in the 

z-plane. If we apply the mapping twice, we get the identity mapping. For any point z0 in the z-plane, 

0

1
z

 is called the inverse of z0 with respect to the circle | z | = 1. That is why, the mapping 1
w

z
=  is 

called inversion. The fixed points of the mapping are given by 1
z

z
= , that is, by z2 = 1. Hence ± 1 are 

the fixed points of the inversion.
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Figure 1.20

The mapping 1
w

z
=  transforms circles into circles. To prove it, let the equation of circle in 

xy-plane be
2 2 0,x y Ax By C+ + + + =

where A, B, and C are real constants. Changing to polar co-ordinates, we have

     ( )2 cos sin 0.r r A B Cq q+ + + =  (1.59)

If r, φ are polar coordinates in w-plane, then 
1 ie

w
z r

q−
= =  implies that 

1
r

r =  and φ = – q. Therefore, 

under the transformation 1
w

z
= , the circle’s equation (1.59) transforms to

     
( )2

1 1 cos sin 0.A B Cf f
rr

+ − + =
 (1.60)

If C ≠ 0, then
2 1cos sin 0,A B

C C C
r r f f⎛ ⎞+ − + =⎜ ⎟⎝ ⎠

which is again the equation of a circle in polar coordinates.

If C = 0, then (1.60) reduces to
cos sin 1 0A Br q r q− + =

If w = u + iv, we have
1 0.Au Bv− + =

Thus, the image of a circle x2 + y2 + Ax + By = 0 passing through the origin, is a straight line. If we 
regard a straight line as a special case of a circle (namely degenerate circle) passing through the point 

at infinity, then it follows that the transformation 1
w

z
=  transforms circles into circles.

We now turn to the bilinear transformation az b
w

cz d

+
=

+
, ad – bc ≠ 0. We have

( ) 1

2 ,

a bc ad a bc ad
w

c c cz d c cz

bc ada
z

c c

− −
= + = +

+
−

= +

0

r

z

y

x
θ

z-plane

0 1
r

w

v

uθ

w-plane

–
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where

1 2
1

1and .z cz d z
z

= + =

Thus, the bilinear transformation az b
w

cz d

+
=

+
, ad – bc ≠ 0 splits into three successive transformations

1

2
1

2

1

.

z cz d

z
z

bc cda
w z

c c

= +

=

−
= +

The transformations (1.61) and (1.63) are of the form w = az + b, whereas (1.62) is inversion. Hence, by 

the above discussion it follows that “The linear transformation , 0az b
w ad bc

cz d

+
= − ≠

+
 maps circles 

in the z-plane onto circles in the w-plane. The point d
z

c
= −  is transformed by az b

w
cz d

+
=

+
 into the point 

w = ∞, accordingly circles passing through the point 
d

z
c

= −  will be transformed into straight lines.”

EXAMPLE 1.112
Find the condition where the transformation az b

w
cz d

+
=

+
 transforms the unit circle in the w-plane into 

a straight line.

Solution.  The given transformation is az b
w

cz d

+
=

+
. Therefore,

( ) ( ) ( )

1 1 1

0.

a z baz b
w ww

cz d cz d

a a c c z z ab c d z ab c d z bb d d

⎛ ⎞++⎛ ⎞= ⇒ = ⇒ =⎜ ⎟ ⎜ ⎟⎝ ⎠+ +⎝ ⎠

⇒ − + − + − + − =

In order that this equation represents a straight line, the coefficient of zz  must vanish, that is,
0 or or ,aa cc aa cc a c− = = =

which is the required condition. If a and c are reals, then the condition becomes a = c.

EXAMPLE 1.113
Investigate the mapping w = z2.

Solution.  The given mapping is w = z2. The derivative 2dw
z

dz
=  vanishes at the origin. Hence the map-

ping is not conformal at the origin. Taking z = x + iy and w = u + iv, we have

( )2 2 2 2 .u iv x iy x y ixy+ = + = − +

Separating the real and imaginary parts, we get
2 2 and 2 .u x y v xy= − =

Therefore, the straight lines u = a and v = b in the w-plane correspond to the rectangular hyperbolas
2 2 and 2 .x y a xy b− = =

(1.62)

(1.61)

(1.63)
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These hyperbolas cut at right angles except in the case a = 0, b = 0, when they intersect at the angle 
4
p .

Now, let x = a be a straight line in the z-plane parallel to the y-axis. Then
2 2 and 2 .u a y v ay= − =

Elimination of y yields

( )2 2 24 ,v a a u= −

which is a parabola in w-plane having its vertex at u = a2 on the positive real axis in the w-plane. This 
parabola open towards the negative side of the u-axis. The line y = b corresponds to the curve

2 2 , 2 .u x b v bx= − =

Figure 1.21

Elimination of x yields

( )2 2 24 ,v b u b= +

which is again a parabola, but pointing in the opposite direction and having vertex at u = − b2, v = 0, 
focus on the origin and opening towards the positive side of u-axis.

Hence the straight lines x = constant and y = constant correspond to the system of co-focal parabolas.

EXAMPLE 1.114
If a and c are reals, show that the transformation w = z2 transforms the circle | z − a | = c in the z-plane 
to a limacon in the w-plane.

Solution.  We have z – a = ceiq so that

( )

( ) ( )
( )

( )

22 2 2 2 2 2 2

2 2

2

2

2 2

[2 2 cos ] 2 cos

2 cos .

i i

i

i i i i i

i i

i

w a c a ce a c a c e

ace a c

ce ce a c ce ce a ce

ce a c ce a c

ce a c

q q

q

q q q q q

q q

q

q q

q

−

− + = + − + = +

+ − +

= + + = + +

= + = +

= +

Substituting w – a2 + c2 = R eiq, we get

( )2 cosi iRe ce a cf q q= +

z-plane

0

y

x

W-plane

v

u
0
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or
( )2 cos , .R c a c f f q= + =

Therefore, polar equation of the curve in the w-plane is

( ) 22 cos 2 2 cos .R c a c ac cf f= + = +

Figure 1.22

If we take a = c, that is, if the circle in z-plane touches the axis of y at (0, 0) and its centre is at x = a and 
radius a, then the limacon degenerates into a cardiod R = 2a2(1 + cos φ).

EXAMPLE 1.115
Find the image in the w-plane of the circle | z – 3 | = 2 in the z-plane under the inverse mapping 

1
w

z
= .

Solution.  The image in the w-plane of the given circle | z – 3 | = 2 in the z-plane under the inverse 

mapping 1
w

z
=  is given by

1 3 2
w

− =

or
1 3 2

u iv
− =

+
or

2 2 3 2u iv

u v

−
− =

+
or

2

2 2 3 4u iv

u v

−
− =

+
or

2 2 2 2 2 2 2 23 3 4u iv u iv

u v u v u v u v

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− − − + =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠+ + + +⎣ ⎦ ⎣ ⎦

y

x
a

z-plane

0

v

u
0

w-plane
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or

( )
2 2

2 2 22 2
3 4u v

u v u v

⎛ ⎞− + =⎜ ⎟⎝ ⎠+ +

or

( )
2 2

2 2 22 2

6 5 0u v u

u vu v

+
− + =

++

or

( )2 21 6 5 0u u v− + + =

or
2 2

23 4 2 .
5 25 5

u v⎛ ⎞ ⎛ ⎞− + = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

If follows that image of | z – 3 | = 2 is a circle with centre 3 ,0
5

⎛ ⎞
⎜ ⎟⎝ ⎠

 and radius 2
5

.

On the other hand, 1
w

z
=  implies

2 2 2 2 2 2
1 .x iy x iy

u iv
x iy x y x y x y

−
+ = = = −

+ + + +

Equating real and imaginary parts, we get

2 2 2 2, .x y
u v

x y x y

−
= =

+ +
y

x
5310

A

B(3 – 2i )

z-plane

v

u
1C¢0

B¢
A¢

w-plane

3/5

Figure 1.23

The centre (3, 0) of the circle in z-plane is mapped into 1( , ) ,0
3

u v ⎛ ⎞= ⎜ ⎟⎝ ⎠
 in the w-plane which is inside 

the mapped circle. Therefore, under 1
w

z
= , the region under the circle | z – 3 | = 2 is mapped onto the 

region inside the circle in the w-plane.
We note that the point A(1 + i0) is mapped into (1, 0), B(3 – 2i) into 3 2,

13 13
B ⎛ ⎞

⎜ ⎟⎝ ⎠
� , and C (5 + i0) is 

mapped into the point 1 ,0
5

C ⎛ ⎞
⎜ ⎟⎝ ⎠

� . Thus as the point z traverse the circle in the z-plane in an anticlockwise
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direction, the corresponding point w in the w-plane will also traverse the mapped circle is an anticlock-
wise direction.

EXAMPLE 1.116
Discuss the transformation 1 .w z

z
= +

Solution.  At z = 0, w becomes infinite. Further 
2

11dw

dz z
= −  vanishes at z = ±1. Thus, z = ±1 are the 

critical points and the function 1
w z

z
= +  is not conformal at 0, 1, and −1. Substituting z = reiq and 

w = u + iv, we have

( ) ( )

1

1cos sin cos sin

1 1cos sin .

i
i

u iv re
re

r i i
r

r i r
r r

q
q

q q q q

q q

+ = +

= + + −

⎛ ⎞ ⎛ ⎞= + + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Therefore,
1 cos

1 sin .

u r
r

v r
r

q

q

⎛ ⎞= +⎜ ⎟⎝ ⎠

⎛ ⎞= −⎜ ⎟⎝ ⎠

If r = 1, that is, if the radius of the circle in z-plane is unity, then we get u = 2 cos q, v = 0. Therefore, as 
q varies from 0 to 2p in describing the unit circle in the z-plane, the domain described in the w-plane is 
the segment of the real axis between the points 2 and –2 twice, that is, the ellipse of minor axis 0 and 
major axis equal to 1.

y

x

r �
1

0

z-plane

�

w-plane

2–2

0
u

v

Figure 1.24

Moreover, (1.64) and (1.65) yield

cos , sin .1 1
u v

r r
r r

q q= =
+ −

(1.64)

(1.65)
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Squaring and adding, we get
2 2

2 2 1,
1 1

u v

r r
r r

+ =
⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

which is an ellipse in the w-plane and it corresponds to each of the two circles | z | = r and 1
z

r
= , since 

the equation of the ellipse does not change on changing r to 1
r

. Thus the major and minor axis of the 

ellipse in w-plane are 1
r

r
+  and 1

r
r

− . As r → 0 or r → ∞, both semi-axis tends to infinity. Thus, the 

inside and the outside of the unit circle in the z-plane both correspond to the whole w-plane, cut along 
the real axis from –1 to 1.

z-plane

y

x
0

⏐z⏐�
r 

⏐z⏐�
 1
r

v

u

w-plane

–1 0 1

Figure 1.25

The fixed points of the given transformation are given by 1
z z

z
= + . Therefore, z = ∞ in the fixed point.

EXAMPLE 1.117
Examine the exponential transformation w = ez.

Solution.  Substituting z = x + iy and w = u + iv, the exponential transformation w = ez yields

( )cos sin .x iy xu iv e e y i y++ = = +

Equating real and imaginary parts, we have
cos and sinx xu e y v e y= =

or

cos and sin .
x x

u v
y y

e e
= =

Squaring and adding, we get
     2 2 2xu v e+ =  (1.66)
Also

     
tan .v

y
u

=
 

(1.67)
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2 2 2 .au v e+ =
Thus, the line parallel to y-axis is transformed into circles with centre at the origin.

On the other hand, let y = b be a line parallel to the x-axis. Then (1.67) yields
tan .v u b=

Thus, the lines parallel to the x-axis are mapped by the transformation into rays emanating from the 
origin.

Let x = a be a line parallel to the imaginary axis. Then (1.66) yields

y

x

0

z-plane w-plane

u

v

Figure 1.26

If x = 0, then we have u2 + v2 = 1. Hence the imaginary axis is mapped into unit circle u2 + v2 = 1 in the 
w-plane.

y

x
0

z-plane

0
u

v

w-plane

u 2 + v 2
 �

1

Figure 1.27
Moreover,

( )

cos sin

cos sin 0.

x x

x x iy x iy z

dw u v
i e y ie y

dz x x

e y i y e e e e

∂ ∂
∂ ∂

+

= + = +

= + = = = ≠

Therefore, the mapping w = ez is conformal everywhere in the complex plane.



Functions of Complex Variables � 121

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M01\LAYOUT_M01\M01_BABUISBN_10_C01.indd

Modif cation Date: April 29, 2010 11:40 AM Modif cation Date: 29-04-10, 11:49

EXAMPLE 1.118
Discuss logarithmic transformation w = log z.

Solution.  Substituting z = reiq and w = u + iv, we have

( )log log .iu iv re r iq q+ = = +

Therefore,
log and .u r v q= =

Hence, the circles defined by r = constant in the z-planes are mapped onto straight lines parallel to the 
v-axis and the straight lines defined by q = constant are mapped onto straight lines parallel to the u-axis.

0

y

x

z-plane

⏐ z⏐�
 a⏐ z⏐�

 b

w-plane

v = log b v = log a

v = p

v = –p

u
0

v

Figure 1.28

Since the derivative 1dw

dz z
=  is infinite at the origin, the mapping is not conformal at the origin.

1.9  MISCELLANEOUS EXAMPLES
EXAMPLE 1.119
Separate log (6 + 8i) into real and imaginary parts.

Solution.  We have 6 8x iy i+ = +  so that 2 2 2 100.r x y= + =  Therefore

[ ] 2 2

2

1Re log (6 8 ) log ( )
2
1 log 10 log 10
2

i x y+ = +

= =

and

Im [ ] 1 1 4log (6 8 ) tan tan .
3

y
i

x
− −+ = =

EXAMPLE 1.120

If sin( )) cos sini iq a a a+ = + , show that 4 2cos sinq a= .
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Solution.  We have
sin( ) sin cosh cos sinhi iq a q a q a+ = + .

cos sinia a= + .
Equating real and imaginary parts ,we have
     sin cosh cosq a a=  and cos sinh sinq a a=  (1.68)
The relations in (1.68) yield

coscosh
sin

a
a

q
=  and sinsinh

cos
a

a
q

= .

Squaring and subtracting we get
2 2

2 2
2 2

cos sincosh sinh
sin cos

a a
a a

q q
− = −

or
2 2

2 2
cos sin1
sin cos

a a
q q

= −

or
2 2 2 2 2 2sin cos cos cos sin sinq q a q a q= − .

or
2 2 2 2 2 2(1 cos )cos (1 sin )cos sin (1 cos )q q a q a q− = − − −

or
4 2cos sinq a= .

EXAMPLE 1.121
Show that the function

⎧ ≠⎪= ⎨
⎪ ≠⎩

Im( ) , 0
( )  

0 , 0

z
zf z

z

z

is not continuous at z = 0.

Solution.  We have

2 2
, 0

( )
0, 0.

y
z x iy

f z x y

z

⎧ = + ≠⎪= +⎨
⎪ =⎩

Therefore

2 20 0
lim ( ) lim .
z z

y
f z

x y→ →
=

+

If 0z →  along y = mx, then

2 2 2 20 0 0

2

lim ( ) lim lim
1

0 .
1

z x x

mx mx
f z

x m x x m

m
m

m

→ → →
= =

+ +

= ≠
+

for arbitary value of
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But 
0

(0) 0. lim ( ) (0).
z

f f z f
→

= ≠Hence  Hence f is not continuous at the origin.

EXAMPLE 1.122
Show that an analytic function with constant real part is constant.

Solution.  Here 0u
u C

x

∂
∂

= ⇒ =  and 0u

y

∂
∂

= . Then, by CR equations, 0u v

x y

∂ ∂
∂ ∂

= =  and 0v u

x y

∂ ∂
∂ ∂

= − = . 

Thus 0u u v v

x y x y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = = = . Thus, both u and v are constant . Hence f u iv= +  is constant.

EXAMPLE 1.123
Show that V = e2x (y cos2y + x sin2y) is harmonic and find the corresponding analytic function f (z) = u + iv

Solution.  Here
2 ( cos 2 sin 2 )xv e y y x y= + .

Therefore

2 2

2

2
2

2

2
2 2 2

2

2 ( cos 2 sin 2 ) sin 2

(cos 2 2 sin 2 2 cos 2 )

4 (sin 2 cos 2 sin 2 )

4 sin 2 4 cos 2 4 sin 2

x x

x

x

x x x

v
e y y x y e y

x
v

e y y y x y
y

v
e y y y x y

x

v
e y ye y xe y

y

∂
∂
∂
∂

∂
∂
∂
∂

= + +

= − +

= + +

= − − −

We note that 
2 2

2 2 0v v

x y

∂ ∂
∂ ∂

+ = . Hence v is harmonic. Further,

2
1( , ) [cos 2 2 sin 2 2 cos 2 ]xv

v x y e y y y x y
y

∂
∂

= = − +

2
2 ( , ) [2 cos 2 2 sin 2 sin 2 ].xv

v x y e y y x y y
x

∂
∂

= = − +

Therefore
2

1 2( ) ( ,0) ( ,0) (1 2 )zf z v z i v z e z= + = +′

and so
2 2 2( ) 2 .z z zf z e dz ze dz ze C= + = +∫ ∫

EXAMPLE 1.124
Determine the analytic function whose real part is 2 ( cos 2 sin 2 ).xe x y y y−

Solution.  Let ( )f z u iv= +  be the required analytic function. We are given that
2 ( cos 2 sin 2 ).xu e x y y y= −
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Then, by Cauchy – Riemann equations,

     
2 (2 cos 2 2 sin 2 cos 2 ),xu v

e x y y y y
x y

∂ ∂
= = − +

∂ ∂  
(1.69)

     
2 (2 sin 2 sin 2 2 cos 2 ).xu v

e x y y y y
y x

∂ ∂
= − = − + +

∂ ∂  
(1.70)

Integrating (1.69) with respect to y, treating x as constant, we have
2 (2 cos 2 2 sin 2 cos 2 )x

x
v e x y y y y dy= − +∫ constant

         
2 2 sin 2 cos 2 cos 2 sin 2

2 2 ( )
2 2 2 2

x x y y y y
e y dy xf

− −⎧ ⎫⎡ ⎛ ⎞ ⎤= − − + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭∫

            f= + +2 ( sin 2 cos 2 ) ( ),xe x y y y x

where f  is a function of x. Now

2 22 ( sin 2 cos 2 ) (sin 2 ) ( )x xv
e x y y y e y x

x

∂
f

∂
= + + + �

        
2 (2 sin 2 2 cos 2 sin 2 ) ( )xe x y y y y xf= + + + �  (1.71)

From (1.70) and (1.71), we have ( ) 0xj =′  and so f  is constant. Hence

2 ( sin 2 cos 2 ) .xv e x y y y c= + +

Then
[ ]2

2 2

2( )

2

( ) cos 2 ( )sin 2

.

.

x

x iy

x iy

z

f u iv e x iy y i x iy y ic

ze e ic

ze ic

ze ic

+

= + = + + + +

= +

= +

= +

EXAMPLE 1.125
Determine analytic function, whose real part is cos x cosh y.

Solution.  We have u = cos x cosh y .Therefore

sin cosh and cos sinh .u u
x y x y

x x

∂ ∂
= − =

∂ ∂
Then, by Milne’s Method,

1 2( ) ( ,0) ( ,0)f z u z iu z= −′

             sin cosh 0 (0) sin .z i z= − − = −

Integrating with respect to z, we have

( ) sin cos .f z z dz Ci z Ci= − + = +∫
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EXAMPLE 1.126
Find the analytic function whose imaginary part is

3 3 .v x y xy xy x y= − + + +

Solution.  We have

2 33 1v
x y y y

x

∂
= − + +

∂

3 23 1.v
x xy x

y

∂
= − + +

∂
Thus

3 2
1( , ) 3 1v

v x y x xy x
y

∂
= = − + +

∂

2 3
2 ( , ) 3 1.v

v x y x y y y
x

∂
= = − + +

∂
Therefore

1 2( ) ( ,0) ( ,0)f z v z iv z= +′ 3 1 .z z i= + + +
Integrating, we get

3( ) ( 1 )f z z z i dz= + + +∫
4 2

(1 )
4 2
z z

i z C= + + + +

EXAMPLE 1.127

Prove that 
2 2

2 2
2 2 Re ( ) 2 ( )f z f z

x y

∂ ∂
∂ ∂

⎛ ⎞
+ = ′⎜ ⎟⎝ ⎠

, where ( )w f z=  is analytic.

Solution.  Let ( )f z u iv= + , then Re ( )f z u=  and

( ) ,x x
u v

f z i u iv
x x

∂ ∂
= + = +′

∂ ∂
2 2( ) .x xf z u v= +′

Further,

 
2( ) 2 2 ,x

u
u u u u

x x

∂ ∂
= =

∂ ∂

     

2
2 2

2 ( ) 2[ 2 ],x xxu u u
x

∂
= +

∂  
(1.72)

 
2( ) 2 2 ,y

u
u u u u

y y

∂ ∂
= =

∂ ∂

       

2
2 2

2 ( ) 2[ 2 ].y yyu u u
y

∂
= +

∂  
(1.73)
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Adding (1.72) and (1.73), we get
2 2 2 2

2 2 2
2 2 2 22 x y

u v
u u u

x y x y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ = + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

                2 22[ ]x yu u= +  since 2 0u∇ =  for analytic function

 
22 ( )f z= ′ .

EXAMPLE 1.128
Using C-R equations, show that f (z) = z3 is analytic in the entire z-plane.

Solution.  We have
3 3 3 2 2 3( ) ( ) 3 (3 ) ,f z z x iy x xy i x y y u iv say= = + = − + − = + .

Then
3 2 2 2

3 2

2 3

2 3 2 2

( 3 ) 3 3

( 3 ) 6

(3 ) 6

(3 ) 3 3 .

u
x xy x y

x x

u
x xy xy

y y

v
x y y xy

x x

v
x y y x y

y y

∂ ∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂
∂ ∂

= − = −

= − = −

= − =

= − = −

We note that

and .v vu u
x y y x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = −

Hance Cauchy-Riemann equations are satisfied. Further, all first order derivatives in the present case 
are continuous in the entire z-plane. Hence sufficient conditions for analyticity are satisfied. Hence the 
given function is analytic in the entire z-plane.

EXAMPLE 1.129

Evaluate 2/ ( 3)
c

dz z −∫  where C is the circle | z | = 1.

Solution.  We have 
2

1 ( 3)z

dz

z= −∫ . The integrand is analytic except at z = 3. But z = 3 lies outside 1z = . 

Hence, by Cauchy – Gaursat theorem, the given integral is equal to zero.

EXAMPLE 1.130

Show that ( 1) 0
C

z dz+ =∫ ,where C is the boundary of the square whose vertices are at the points 

0, 1, 1 and .z z z i z i= = = + =

Solution.  We want to evaluate ( 1)
C

z dz+∫� , where C is the contour shown below:
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C(0,1)

O(0,0)

B(1,1)

A(1,0)

Along OA, we have y = 0 so that z x iy x= + =  and dz = dx. Therefore
121

0
0

3( ) ( 1) .
2 2OA

x
f z dz x dx x

⎡ ⎤
= + = + =⎢ ⎥

⎣ ⎦
∫ ∫

Along AB, we have x = 1and so 1z iy= +  so that dz = i dy. Therefore
121

0
0

( ) (2 ) 2
2

12 2 .
2 2

AB

y
f z dz i iy dy i y i

i
i i

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
⎡ ⎤= + = −⎢ ⎥⎣ ⎦

∫ ∫

Along BC, we have y = 1 so that z x iy x i= + = +  and dz = dx. Thus
020

1
1

( ) ( 1) ( 1)
2

1 3( 1) .
2 2

BC

x
f z dz x i dx i x

i i

⎡ ⎤
= + + = + +⎢ ⎥

⎣ ⎦

= − − + = − −

∫ ∫

Along CO, we have x = 0 so that z x iy iy= + =  and so .dz i dy=  Thus
020

1
1

( ) ( 1)
2

1.
2

CO

y
f z dz i iy dy i y

i

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
= − −

∫ ∫

Hence
3 1 3( ) 2 1
2 2 2 2

3 1 ( 3).
2 2 2

C OA AB BC CO

i
f z dz i i

i
i

= + + + = + − − − − −

= − = −

∫ ∫ ∫ ∫ ∫

EXAMPLE 1.131

Evaluate log
C

z dz∫ , where C is the circle 1z = .

Solution.  Putting iz e q= , we have idz ie dq q= . Therefore

1

2 2
2

0 0

log log ( )i i

C z

i i

z dz e ie d

i e d e d

q q

p p
q q

q

q q q q

=

=

= = −

∫ ∫

∫ ∫
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2

2
0

2
0

2

[(1 ) ]

[(1 2 ) (1)] 2 .

i i

i

i

e e

i i

i e

i e i

pq q

q p

p

q

q

p

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦

= − −

= − − − =

EXAMPLE 1.132
Evaluate the following integrals using Cauchy integral formula.

4 3
( 1)( 2)C

z
dz

z z z

−
− −∫� ,where C is 3z = .

Solution.  Cauchy’s integral formula states that “If f(z) is analytic within and on any closed contour C 
and if a is a point within the contour C, then

1 ( )( )
2

f z
f a dz

i z ap
=

−∫ .

”

The given integral is
4 3

( 1)( 2)C

z
I dz

z z z

−
=

− −∫� , where c is | z | = 3.

By partial fractions, we have
4 3 2 1 1 .

( 1)( 2) 1 2
z

z z z z z z

−
= − −

− − − −
Therefore

4 3 1 1 12 .
( 1)( 2) 1 2C C C C

z
dz dz dz dz

z z z z z z

−
= − −

− − − −∫ ∫ ∫ ∫� � � �
The point 0 lies in | z | = 3. Therefore, by Cauchy’s integral formula, we have

1(0) .
2 C

dz
f

i zp
= ∫�

Since ( ) 1, (0) 1.f z f= =  Therefore

2 (0) 2 .
C

dz
i f i

z
p p= =∫�

The point z =1 lies within C and so
1 1(1) ,

2 1C
f dz

i zp
=

−∫�
that is,

1 2 (1) 2 .
1

C

dz i f i
z

p p= =
−∫

Similarly, the point z = 2 lies within C and so
1 1(2) .

2 2C
f dz

i zp
=

−∫�
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Therefore
1 2 (2) 2 .

2C
dz i f i

z
p p= =

−∫�
Hence

2(2 ) 2 2 0.I i i ip p p= − − =

EXAMPLE 1.133

Evaluate 
3

3
( sin3 )

2
C

z z dz

z
p

−

⎛ ⎞−⎜ ⎟⎝ ⎠

∫  with 2C z= =  using Cauchy’s integral formula.

Solution.  The singularity of the integrand is at 
2
p  which lies in 2z = . Therefore, by Cauchy’s 

integral formula
3

3

3 "

2

2

( sin 3 ) 2
2 ! 2

2

[ sin 3 ]
2

[6 9sin 3 ]

[3 9] 3 ( 3).

C

z

z

z z dz i
f

z

i
z z

i z z

i i

p

p

p p
p

p

p

p p p p

=

=

− ⎛ ⎞= ′′ ⎜ ⎟⎝ ⎠⎛ ⎞−⎜ ⎟⎝ ⎠

= −

= +

= − = −

∫

EXAMPLE 1.134

Evaluate
(1,1)

2 2

(0,0)

(3 4 )x xy ix dz+ +∫  along 2y x=

Solution.  We have 2z x iy x ix= + = +  so that (1 2 ) .dz ix dx= +  Hence
(1,1) 1

2 2 2 3 2

(0,0) 0

1
2 3 2 3 4 3

0
1

2 3 3 4 2

0
14 3

3 4 5

0

(3 4 ) (3 4 )(1 2 )

[(3 4 ) (6 8 2 )]

[3 2 (6 8 )]

3 8
2 2 5 3

1 3 8 11
2 2 5 3

3 103 .
2 30

x xy ix dz x x ix ix dx

x x ix ix ix x dx

x x i x x x dx

x x
x i x x

i

i

+ + = + + +

= + + + + −

= + + + +

⎡ ⎤⎛ ⎞
= + + + +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞= + + + +⎜ ⎟⎝ ⎠

⎛ ⎞= + ⎜ ⎟⎝ ⎠

∫ ∫

∫

∫
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EXAMPLE 1.135
Using Cauchy’s integral formula, evaluate 3( 1)z

C

dz

e z −∫ , where C is 2z = .

Solution.  We have

3 3
2 2

.
( 1) ( 1)

z

z
z z

dz e
dz

e z z

−

= =

=
− −∫ ∫

The singularity z = 1 lies within 2z =  and so by Cauchy’s integral formula, we have

2 3
2

2
(1),

2 !( 1)z

idz
f

e z

p

=

= ′′
−∫ where ( ) zf z e−=

1 .
i

i e
e

p
p −= =

EXAMPLE 1.136
Find f (2) and f (3) if 

22 2( )
C

z z
f a dz

z a

− −
=

−∫ , where 2.5.z =  Using Cauchy’s Integral Formula.

Solution.  We have 2( ) 2 2f z z z= − −  and 
22 2( )

C

z z
f a dz

z a

− −
=

−∫ .
Therefore

22 2(2)
2

C

z z
f dz

z

− −
=

−∫
We note that a = 2 lies within the circle 2.5.z =  Hence, by Cauchy’s Integral Theorem,

2

2

2 2 2 (2)

2 [2(2) 2 2] 8 .
C

z z
dz if

z a

i i

p

p p

− −
=

−

= − − =

∫

Since a = 3 lies outside the circle 2.5z = , by Cauchy’s integral Theorem, we have
22 2(3) 0.

3
C

z z
f dz

z

− −
= =

−∫

EXAMPLE 1.137
Find the Laurent’s Series expansion of 1

( 2)( 3)
z

z z

−
+ +

 valid in the region
2 < | z | < 3.

Solution.  We have
1 3 4 .

( 2)( 3) 2 3
z

z z z z

− −
= +

+ + + +
For 2z > , we have

2 3 4

2 3 4 5

3 3 3 2 4 8 161
22 1

3 6 12 24 48

z z z z z zz
z

z z z z z

− − − ⎡ ⎤= = − + − + −⎢ ⎥+ ⎛ ⎞ ⎣ ⎦+⎜ ⎟⎝ ⎠
−

= + − + − +

...

...
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For 3z < , we have
2 3 4

2 3 4

4 4 4 1
3 3 3 9 27 813 1

3
4 4 4 4 4
3 9 27 81 243

z z z z
zz

z z z z

⎡ ⎤
= = − + − + −⎢ ⎥+ ⎛ ⎞ ⎣ ⎦+⎜ ⎟⎝ ⎠

= − + − + −

...

...

Hence the Laurent’s series expansion is

= − + − + − + − + − + −2 3 4
5 4 3 2

48 24 12 6 3 4 4 4 4 4( ) ...... ......
3 9 27 81 243

f z z z z z
zz z z z

EXAMPLE 1.138

Expand 
2

3( )
( 1)

ze
f z

z
=

−
 about z = 1 as a Laurent-series. Also find the region of convergence

Solution.  Putting 1 ,z u− =  we have
2 2( 1) 2

2
2 3 3

2 2 3 4

3

2
3 2

2
3 2

( )
( 1)

4 8 161 2 ...
2 ! 3! 4 !

1 2 2 4 4 ...
3

1 2 2 4 4( 1) ... for 1.
1 3( 1) ( 1)

z u
ue e e

e
z u u

e u u u
u

u

e u
uu u

e z z
zz z

+
= =

−

⎡ ⎤
= + + + + +⎢ ⎥

⎣ ⎦
⎡ ⎤= + + + + +⎢ ⎥⎣ ⎦
⎡ ⎤

= + + + + − + ≠⎢ ⎥−− −⎣ ⎦
The region of convergence is 1 1.z − >

EXAMPLE 1.139
Find Taylor’s series for ( )

2
z

f z
z

=
+

 about z = 1. Also determine the region of convergence.

Solution.  The singularity of f(z) is 2.z = −  If the centre of the circle is taken as z = 1, then the distance 
of the singularity 2z = −  from the centre is 3 units. If a circle of radius 3 with centre at 1 is drawn, then 
f(z) is analytic within the circle 1 3.z − =  Hence f(z) can be expanded in a Taylor’s series. The region 
of convergence is the interior of the circle 1 3.z − =
We have

1

2( ) 1
2 2

21
( 1) 3

21
13 1

3

2 11 1
3 3

z
f z

z z

z

z

z −

= = −
+ +

= −
− +

= −
−⎛ ⎞+⎜ ⎟⎝ ⎠

−⎛ ⎞= − +⎜ ⎟⎝ ⎠
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2 3

2 3

1 1 121 1 ( ) ( ) ......
3 3 3 3

12 1 11 1 ( 1) ( 1) ...
3 3 9 27

z z z

z
z z

− − −⎡ ⎤= − − + − +⎢ ⎥⎣ ⎦
−⎡ ⎤= − − + − − − +⎢ ⎥⎣ ⎦ .

EXAMPLE 1.140
Obtain Laurent’s series of the function 

7 2( )
( 1) ( 2)

z
f z

z z z

−
=

+ +
 about 2.z = −

Solution.  Substitute 2 .z u+ =  Then

( ) 1

7 167 2 7( 2) 2
( 1)( 2) ( 2)( 1)( ) ( 1)( 2)

7 16 1
( 1)( 2)

7 16 1 1
2 1

16 7 1 16 7 1. .
2 1

16 1 167 7 1
2 1

2

1 16 7 1
2 2

uz u

z z z u u u u u u

u

u u u

u

u u u

u u

u u u u

u
uu u

u

u

−

−− − −
= =

+ + − − − −

⎡ ⎤−
= ⎢ ⎥− −⎣ ⎦

− ⎡ ⎤= −⎢ ⎥− −⎣ ⎦
− −

= −
− −

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥= − − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ( )
1

1

2 3 4
2 3 4

2 3 2 3

2 3

16 7 1

8 7 161 ... 7 (1 )
2 2 4 8 16

8 1 1 1 16... 9 9 9 9 ...
2 4 8 16

8 17 35 71 143 ...
2 4 8 16

8 17 35 71( 2) ( 2
7 2 4 8

u
u

u u u u
u u u u

u u

u
u u u u u

u u

u u u
u

z z
z

−
−⎛ ⎞− − −⎟ ⎜ ⎟⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= − + + + + + − − + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= + + + + + − + + + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= − − − − − −

= − − − + − +
+

2 3143) ( 2) ...
18

z− + +

EXAMPLE 1.141
Find the Laurent’s expansion of 2

1
4 3z z− +

 for 1 3z< < .

Solution.  We have

2
1 1 1 1 1

( 3)( 1) 2 3 14 3 z z z zz z

⎡ ⎤
= = −⎢ ⎥− − − −− + ⎣ ⎦

Therefore for 1 3,z< <  the Laurent’s expansion is
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2

1 1

2 3

2 3

2 3

2 3 4

11 1 1
2 3 14 3

11 1
12 3 1 1

3

1 1 11 1
6 3 2

1 1 1 1 11 ... 1 ...
6 3 9 27 2

1 1 1 1 1 11 ... ...
6 3 9 27 2

z zz z

z
z

z

z

z z

z z z

z z z z

z z z

z z z z

− −

⎡ ⎤−
= −⎢ ⎥− −+ ⎣ ⎦

⎡ ⎤
⎢ ⎥−⎢ ⎥= −

⎛ ⎞ ⎛ ⎞⎢ ⎥− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤= − + + + + − + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤

= − + + + + − + + + +⎢ ⎥
⎣ ⎦

.⎡ ⎤
⎢ ⎥⎣ ⎦

EXAMPLE 1.142

Evaluate 
3

3
1 ,

3 2C

z z
dz

z z

+ +
− +∫�  where C is the ellipse 2 24 9 1.x y+ =

Solution.  We want to evaluate 
3

3
1 ,

3 2C

z z
dz

z z

+ +
− +∫� where C is the ellipse 

2 2

2 2 1.
1 1
2 3

x y
+ =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 The poles of

2 3 2 0z z− + =  are given by 3 9 8
2,1.

2
z

± −
= =

Both singularities z = 2 and z = 1 lie outside the contour C. Hence, by Cauchy – Gorsat Theorem,
3

3
1 0.

3 2C

z z
dz

z z

+ +
=

− +∫�

EXAMPLE 1.143
Find the poles and the residues at the poles of 2( )

1
z

f z
z

=
+

.

Solution.  The poles of the function 2( )
1

z
f z

z
=

+
 are given by 2 1 0.z + =  Thus the poles are .z i= ±

The residues at these poles are

Res(i) lim( ) ( ) lim( )
( )( )z i z i

z
z i f z z i

z i z i→ →
= − = −

− +

1lim
2 2z i

z i

z i i→
= = =

+
and

Res(−i) lim ( ) ( ) lim ( )
( )( )z i z i

z
z i f z z i

z i z i→− →−
= + = +

− +
1lim .

2 2z i

iz

z i i→−

−
= = =

− −
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EXAMPLE 1.144
Find the residues of 3

.( )
( )

zz e
f z

z a
=

−
Solution.  We are given that

3( ) , 0.
( )

zze
f z a

z a
= ≠

−

The poles of f (z) are a, a, a. Thus a is pole of order 3. Therefore
(3 1)

3
(3 1)

2

2

1Res( ) lim ( ) ( )
(3 1)!

1 lim
2

1 lim
2

1 lim
2

1 (2 )2 .
2 2

z a

z

z a

z z

z a

z z z

z a

a
a a

d
a z a f z

dz

d
ze

dz

d
e ze

dz

e e ze

a e
e ae

−

−→

→

→

→

⎡ ⎤= −⎣ ⎦−

⎡ ⎤= ⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= + +⎣ ⎦

+⎡ ⎤= + =⎣ ⎦

EXAMPLE 1.145
Find the poles and residue of each pole of

(i) 
2

2
sin( )

6

z
f z

z
p

=
⎛ ⎞−⎜ ⎟⎝ ⎠

 and (ii) 
3

3( )
( 1)

z e
f z

z
=

−

Solution.  (i) The function f(z) has a pole of order 2 at 
6

z
p

= . The residue at 
6

z
p

=  is

Res p⎛ ⎞
⎜ ⎟⎝ ⎠6

2

6

( )lim 6
z

d
z f z

dzp

p

→

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= −⎢ ⎥⎨ ⎬⎜ ⎟⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

2

6 6

6

lim sin lim{2sin cos }

3lim{sin 2 } sin .
3 2

z z

z

d
z z z

dz

z

p p

p

p

→ →

→

⎧ ⎫= =⎨ ⎬
⎩ ⎭

= = =

(ii) The function f(z) has a pole of order. 3 at z = 1.Then

Res (1) 
→

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

2
3

21

1 lim ( 1) ( )
2 ! z

d
z f z

dz

→

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

2

21

1 lim ( )
2

z

z

d
ze

dz
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1

1 3lim[( 2) ] .
2 2

z

z
z e e

→
= + =

EXAMPLE 1.146

Evaluate 2
( 1)

C

z
dz

z z

−
−∫ , where C is | z | = 3.

Solution.  We have

3

2
.

( 1)
z

z
I dz

z z=

−
=

−∫

The integrand has simple poles at z = 0 and z = 1. Both poles lie in = 3z . Further,

Res
0

22(0) lim( 0) 2
( 1) 1z

z
z

z z→

−−
= − = =

− −

Res
1

2 1
(1) lim( 1) 1.

( 1) 1z

z
z

z z→

− −
= − = = −

−

Hence, by Cauchy’s Residue Theorem ,we have
2 [2 1] 2 .I i ip p= − =

EXAMPLE 1.147

Evaluate p

=
− −∫

2

3
2

cos
( 1)( 2)

z

z
dz

z z
.

Solution.  The integrand has simple poles at z = 1 and z = 2, out of which only z = 1 lies in the contour 
3
2

z = . Therefore

Res(1) 
2

1 1

cos
lim( 1) ( ) lim

2z z

z
z f z

z

p
→ →

= − =
−

1cos 1.
1 1
p −

= = =
− −

Hence, by Cauchy’s Residue Theorem, we have
2

3
2

cos
2 (Residues)

( 1)( 2)

2 (1) 2 .

z

z
dz i

z z

i i

p
p

p p

=

= Σ
− −

= =

∫

EXAMPLE 1.148

Evaluate 
+∫ 2 9

z

C

ze
dz

z
, where c is = 5z , by Cauchy’s Residue Theorem.

Solution.  The poles of the integrand are given by 2 9 0z + =  and so 3z i= ±  are two simple poles of 

2( )
9

zze
f z

z
=

+
. Both of these poles lie inside 5z = . Further,
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Res(3i) 
3 3

3
3

3

lim ( 3 )( ( ) lim ( 3 )
( 3 )( 3 )

3 1lim
3 6 2

z

z i z i

z i
i

z i

ze
z i f z z i

z i z i

ze ie
e

z i i

→ →

→

= − = −
− +

= = =
+

and

Res (−3i) 
3 3

lim ( 3 )( ( ) lim ( 3 )
( 3 )( 3 )

z

z i z i

ze
z i f z z i

z i z i→− →−
= + = +

− +
3

3

3

3 1lim .
3 6 2

iz
i

z i

ieze
e

z i i

−
−

→−

−
= = =

− −

Therefore, by Cauchy’s Residue Theorem,

2
5

2
9

z

z

ze
dz i

z
p

=

= Σ
+∫  (Residues at the poles)

3 312 ( ) 2 cos3.
2

i ii e e ip p−⎡ ⎤= + =⎢ ⎥⎣ ⎦

EXAMPLE 1.149

Evaluate 
2

0

cos 2 / (5 4cos )d
p

q q q−∫  using contour integration.

Solution.  Similar to Example 14.90. Putting ,iz e q=  we get

2 2 2

0 1

1
.

15 4 cos 2 ( 2)
2

i

z

e z
d dz

i
z z

p q
q

q =

−
=

− ⎛ ⎞− −⎜ ⎟⎝ ⎠

∫ ∫

The integrand has simple poles at 1 , 2
2

z =  and out of these, only 1
2

z =  lies in 1z = . Now

Res 
2

1
2

1 1 1lim .
12 2 6( 2)
2

z

z
z

z z→

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎛ ⎞− −⎜ ⎟⎝ ⎠
Hence

2 2

0

1 12 .
5 4 cos 2 6 6

ie
d i

i

p q p
q p

q
−⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠−∫

Equating real and imaginary parts, we get
2

0

cos 2
5 4 cos 6

d
p q p

q
q

=
−∫

EXAMPLE 1.150

Evaluate ( )( )2 2 2 2

0

/ 0; 0dx x a x b a b
∞

+ + > >∫  using contour integration.



Functions of Complex Variables � 137

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M01\LAYOUT_M01\M01_BABUISBN_10_C01.indd

Modif cation Date: April 29, 2010 11:40 AM Modif cation Date: 29-04-10, 11:49

Solution.  Proceed as in Example 1.101. Here

Res 2 2 2 2
1 1( ) lim ( )

( )( )( ) 2 ( )z ai
ai z ai

z ai z ai z b ai b a→
= − =

− + + −
,

Res 2 2 2 2
1 1( ) lim ( )

( )( )( ) 2 ( )z bi
bi z bi

z a z bi z bi bi a b→
= − =

+ + − −
.

Therefore

2 2 2 2 2 2 2 2

2 2

1 1 12
( )( ) 2 ( ) 2 ( )

1 1 .
( )

c

dz i
z a z b bi a b ai a b

b a ab a ba b

p

p p

⎡ ⎤
= −⎢ ⎥

+ + − −⎣ ⎦
⎡ ⎤= − =⎢ ⎥ +− ⎣ ⎦

∫

EXAMPLE 1.151

Expand 
2( 1)

ze

z −
 about z = 1.

Solution.  The given function is

2( ) .
( 1)

ze
f z

z
=

−

Substituting 1 ,z u− = we get
1

2 2

2 3

2

2

2

2

( ) .

1 ...
2! 3!

...
2! 3!

1 ( 1) ....
1 2! 3!( 1)

1 1 1 1 ( 1) .... .
1 2! 3!( 1)

u
ue e

f z e
u u

e u u
u

u

e e e eu

uu

e e e
z

zz

e z
zz

+
= =

⎡ ⎤
= + + + +⎢ ⎥

⎣ ⎦

= + + + +

= + + + − +
−−

⎡ ⎤
= + + + − +⎢ ⎥−−⎣ ⎦

EXAMPLE 1.152

Evaluate 
cos

z

C

e
dz

zp∫� , where C is the unit circle | z| = 1. How many poles, the function 
cos

ze

zp
 has?

Solution.  The simple poles of the integrand ( )
cos

ze
f z

zp
=  are given by cos 0.zp =  Thus the poles 

are

1 3 5, , , ...
2 2 2

z = ± ± ±

Out of these simple poles only 1
2

z = ±  lie inside the contour | z | = 1. Now
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Res 
1 1
2 2

1
1 1 02lim ( ) lim
2 2 cos 0

z

z z

z e
z f z

zp→ →

⎛ ⎞−⎜ ⎟⎝ ⎠⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
form

  
1
2

1( )
2lim ( )
sin

z z

z

z e e
L Hospital Rule

zp p→

− +
=

−

  

1
2

,e

p
=

−
and

Res 
1 1
2 2

1
1 1 2lim ( ) lim
2 2 cos

z

z z

z e
z f z

zp→− →−

⎛ ⎞+⎜ ⎟⎝ ⎠⎛ ⎞ ⎛ ⎞− = + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  

1
2

1
2

1
2lim .
sin

z z

z

z e e
e

zp p p

−

→−

⎛ ⎞+ +⎜ ⎟⎝ ⎠
= =

−

Hence, by Cauchy – Residue Theorem
1 1
2 2 1 .2 4 4 sin

cos 2 2

z

iC

e e e
dz i R i i h

z
p

p

−⎡ ⎤
−⎢ ⎥= = − = −⎢ ⎥

⎢ ⎥⎣ ⎦

∑∫�
.

EXAMPLE 1.153

Evaluate 
2

60 1
x

dx
x

∞

+∫ by residues.

Solution.  Proceeding as in Example 14.98, the simple poles of 6
1

1z +
 are at

/6 3 /6 5 /6 7 /6 9 /6 11 /6, , , , , .i i i i i iz e e e e e ep p p p p p=

The first three poles lie in the upper half plane. Let a  denote any of these three poles. Then

( )
2

6

2 3 3
6

5 6

Res ( )
1

since 1.
66 6

z

z
d

z
dz a

a

a a a
a

a a

=

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+
⎣ ⎦

= = = − = −

Therefore the sum of the residues at these poles is

/2 3 /2 5 /21
6

i i i
iR e e ep p p⎡ ⎤= − + +⎣ ⎦∑
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[ ]1 .
6 6

i
i i i= − − + = −

Hence
2 2

6 6
0

1 1 .2
2 21 1

( ) .
6 6

i
x x

dx dx i R
x x

i
i

p

p
p

∞ ∞

− ∞

= =
+ +

= − = −

∑∫ ∫

EXAMPLE 1.154
Using Residue Theorem, show that

2

2 2
0

2 , 0.
sin

d
a b

a b a b

p q p
q

= > >
+ −

∫

Solution.  Putting iz e q=  so that dz
d

iz
q =  and 1 1sin

2
z

i z
q ⎛ ⎞= −⎜ ⎟⎝ ⎠

, we get

2

20 1

2 .
2sin 1z

d dz
I

iaza b b z
b

p q
q =

= =
+ + −

∫ ∫

Suppose that the poles are a  and b . Than 2ia

b
a b+ = −  and 1a b = . Then ,a which is less than b  

lies inside 1z =  and

Res ( ) lim[( 1)( ( )]
z

z f z
a

a
→

= −

2

1 1

( ) 4a b a b ab
= =

− + −

2 2 2

1 .
22 4( 1)

b

i a bia
b

= =
−⎛ ⎞− − −⎜ ⎟⎝ ⎠

Hence, by Cauchy’s Residue Theorem,

2 2 2 2

2 2 .2
2

b
I i

b i a b a b

p
p

⎡ ⎤⎛ ⎞
⎢ ⎥= =⎜ ⎟
⎢ ⎥⎜ ⎟− −⎝ ⎠⎣ ⎦

EXAMPLE 1.155
Using contour integration, evaluate 

2
0 1

dx

x

∞

+∫ .

Solution.  Consider

2
1 ,

1C

I dz
z

=
+∫
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where C is the contour shown below:

− RO

y

x

Γ

The integrand has simple poles at z i= ±  of which z = i lies in the contour. Therefore

Res (i) 1 .lim( 1) ( )
2z i

z f z
i→

= − =
Hence, by Cauchy’s Residue Theorem

2
12 ( ) .
21C

dz
i

iz
p p= =

+∫
Thus

2 2 .
1 1

R

R

dx dz

x z
p

− Γ

+ =
+ +∫ ∫

Since 2lim ( ) lim 0
1z z

z
zf z

z→∞ →∞
= =

+
. Therefore

2 0
1

dz

zΓ

=
+∫  as .R → ∞

Hence

2 1
dx

x
p

∞

−∞

=
+∫

or

2
0

.
21

dx

x

p∞

=
+∫

EXAMPLE 1.156

Show that 
2

2
2 2

0

cos 2 ( 1).
1 2 cos 1

a
d a

a a a

p q p
q

q
= <

− + −∫
Solution.  We have

2

2 2 2 2 2
0 0

2

2 2 2 2 2 2 2 2
0 0

2

2 2 2
0

2 2

4 2
0

cos 2 cos 2 (1 2 cos )
1 2 cos 1 ) 4 cos

(1 )cos 2 cos 2 cos2
(1 ) 4 cos (1 ) 4 cos

(1 )cos 2 0
(1 ) 4 cos

(1 )cos1 , 2
2 1 2 cos

a a
I d d

a a a a

a
d a d

a a a a

a
d

a a

a d

a a

p p

p p

p

p

q q q
q q

q q

q q q
q q

q q

q
q

q

j j
q f

j

+ +
= =

− + + −

+
= +

+ − + −

+
= +

+ −

+
= =

+ −

∫ ∫

∫ ∫

∫

∫
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2

4 2

2 2

4 2 2 2

2 2

2
2 2

2

2 2

2
2

2

1 1(1 )
1 , , 1

12 1

(1 ) ( 1)
4 [(1 ) ]

(1 ) ( 1)
14 1

(1 ) ( 1) .
14 ( )

i

C

C

C

a z
dzz z

z e c z
i z

a a z
z

a z dz

i z a z a z a

a i z dz

a
z z a z

a

a i z dz

a z z a z
a

f

⎛ ⎞+ +⎜ ⎟⎝ ⎠
= = = =

⎛ ⎞+ − +⎜ ⎟⎝ ⎠

+ +
=

+ − −

+ +
=

⎡ ⎤⎛ ⎞− + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
+ +

=
⎛ ⎞− −⎜ ⎟⎝ ⎠

∫

∫

∫

∫

The integrand has simple poles at 20,z z a= =  and 2
1

z
a

=  of which the poles at 0z =  and 2z a=  lie 

inside the circle 1z =  since 2 1a < . Sum of the residues at these pole is equal to

2

2
2

2 0

(1 ) lim ( ) lim ( ) ( )
4 z z a

a i
zf z z a f z

a → →

+ ⎡ ⎤+ −⎢ ⎥⎣ ⎦

2 4 2

2 4 2
(1 ) .2

4 1 2( 1)
a i a a i

a a a

⎡ ⎤+
= =⎢ ⎥

− −⎢ ⎥⎣ ⎦
Hence

2I ip= Σ  (Residues at the poles)
2 2

2 2
.2

2( 1) 1
a i a

i
a a

p
p

⎛ ⎞
= =⎜ ⎟− −⎝ ⎠

EXAMPLE 1.157
Show, by method of contour integration, that

2 2 2 3
0

cos (1 ) .
( ) 4

mamx
ma e

a x a

p∞
−= +

+∫

Solution.  Consider 2 2 2 ,
( )

mzi

C

e
dz

z a+∫  where C is the contour shown below:

− RO

y

x

Γ
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We have then

( ) ( ) ( ) 2
R

C R

f z dz f z dz f z dz p
− Γ

= + = Σ∫ ∫ ∫  (Residues).

But, by Jordan Lemma, lim ( ) 0.
R

f z dz
→∞

Γ

=∫  Therefore as R → ∞, we have

( ) 2f x dx ip
∞

−∞

= Σ∫  (Residues).

The integrand f (z) has double pole at z ai= ±  of which only z ai=  lies in the upper half-plane. But

Res (ai) 
3

( 1)
4

mae am

a

− +
= − .

Therefore

3
( 1)( ) 2
4

mae am
f x dx i i

a
p

∞ −

−∞

⎡ ⎤+
= −⎢ ⎥

⎣ ⎦
∫

3 ( 1) .
2

maam e
a

p −= +

Equating real and imaginary parts, we get

2 2 2 3
cos (1 )

( ) 2
mamx

dx am e
x a a

p∞
−

−∞

= +
+∫

or

2 2 2 3
0

cos (1 ) .
( ) 4

mamx
dx am e

x a a

p∞
−= +

+∫

EXAMPLE 1.158
Show that the image of the hyperbole 2 2 1,x y− =  under the transformation 21 , is cos 2 .r

z
w q= =

Solution.  Let iz r e q=  so that cos , sinx r y rq q= = . Let Reifw = . Then the inversion 
1
z

w = gives

1Rei
ire

f
q=  and so 1

R
r

=  and f q= − .

The hyperbole 2 2 1x y− = , under this transformation becomes
2 2 2 2cos sin 1r rq q− =

or
2 2 2(cos sin ) 1r q q− =

or
2 cos 2 1r q =

or

2
1 cos( 2 ) 1

R
f− =
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or
2 cos 2 .R f=

Hence the hyperbole 2 2 1x y− =  transformation to the lemniscate 2 cos 2 .R f=

EXAMPLE 1.159
Show that the transformation 2 3

4
z

z
w

+
=

−
 transform the circle 2 2 4 0x y x+ − =  into a straight line.

Solution.  Let z x iy= +  and .u ivw = +  Then

2 2,
2

z z
x x y zz

+
= + =

 
and

 
.

2
u

w w+
=

Therefore the equation of the given circle in z-plane reduces to

     2( ) 0zz z z− + =  (1.74)
The given transformation yields

( 4) 2 3z zw − = +

or
( 2) 4 3z w w− = +

or
4 3 .

2
z

w
w

+
=

−

Therefore
4 3 .

2
z

w
w

+
=

−

Therefore 
2 3

4
z

z
w

+
=

−
 transforms the circle (1.74) into

4 3 4 3 4 3 4 32 0
2 2 2 2

w w w w
w w w w

+ + + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠− − − −
or

12( ) 16 9 2(8 5 5 12) 0w w ww ww w w+ + + − − − − =

or
22( ) 33 0w w+ + =

or
2( ) 3 0w w+ + =

or
4 3 0,u+ =

which is a straight line in w -plane

EXAMPLE 1.160
By the transformation 2zw = , show that the circle z a c− =  (a and c being real) in the z-plane cor-
responds to the binacon in the w-plane.
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Solution.  The equation of the given circle is
z a c− =

or
iz a c e q− =

or
.iz a c e q= +

Also then

2zw =  implies 2 2 2 ( )( )a z a z a z aw − = − = − +

 (2 ).i ic e a ceq q= +

Therefore

2 2 2( ) (2 )

[2 ]

[2 ( )]

[2 2 cos ]

2 [ cos ].

i i

i i i

i i i

i

i

a c c e a c e c

c e a c e c e

c e a c e e

c e a c

c e a c

q q

q q q

q q q

q

q

w

q

q

−

−

− − = + +

= + +

= + +

= +

= +

If we take the pole (origin) at 2 2a c− , than we can take 2 2( ) ia c R e fw − − =  and so

2 ( cos )i iR e c e a cf q q= + ,

which yields
2 ( cos )R c a c f= +  and f q=

or
2 ( cos )R c a c f= +  (binacon in w – plane)

Hence the circle z a c− =  is transformed into a binacon in the w-plane by the mapping 2zw = .

EXAMPLE 1.161
Find the bilinear transformation which maps the point ( 1,0,1)− into the point (0, ,3 )i i .

Solution.  Let the required transformation be

1 2 3 1 2 3

3 2 1 3 2 1

( )( ) ( )( )
( )( ) ( )( )
z z z z

z z z z

w w w w
w w w w

− − − −
=

− − − −

We have 1 2 3 1 21 , 0 , 1 , 0 ,z z z iw w= − = = = =  and 3 3iw = .
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Therefore
( 1)( 1) ( 3 )
( 1)(1) ( 3 )( )
z i i

z i i

w
w

+ − −
=

− −
or

1 2
1 3

z

z i

w
w

+
=

− −
or

3 3
3

i
z

i

w
w

−
=

+
or

3 ( 1) ,
3

i z

z
w

− +
=

−

which is the required bilinear transformation.

EXAMPLE 1.162
Find the image of infinite ship 10

2
y< <  under the transformation 1

z
w = .

Solution.  We have

1
z

w =  or 
2

2 2 2
1 .u iv

z
u v

w w
w ww w

−
= = = =

+

or

2 2 2 2 2 2
u iv u v

x iy i
u v u v u v

−
+ = = −

+ + +

Equating real and imaginary parts, we have

2 2
u

x
u v

=
+

 and 2 2
.v

y
u v

−
=

+

Now 0y =  implies 0v =  and 1
2

y =  yields

2 2 2u v v+ = −  or 
2 2 2 0u v v+ + =

or
2 2( 1) 1,u v+ + =

which is a circle with centre at (0, 1)−  and radius 1 in the w-plane. It follows therefore that the line y = 0 

(x-axis) is mapped into v = 0 (u-axis) and the line 1
2

y = is transformed into the circle 2 2( 1) 1u v+ + = . 

Thus the strip 10
2

y< <  in the z-plane is mapped into the region between the u-axis and the circle 
2 2( 1) 1u v+ + =  under the given inversion 1

z
w = .
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EXERCISES
1. Solve the equation e2z−1 = 1 + i

Hint: 41 2
i

i e
p

+ =  (in exponential form).

Therefore, 2 1 42
i

ze e
p

− =  and so 2 1 log 2 2 .
4

z i n
p

p⎛ ⎞− = + +⎜ ⎟⎝ ⎠

Hence 1 1 1log2 .
2 4 8

z i n p⎛ ⎞= + + +⎜ ⎟⎝ ⎠

2. Find the values of ( )
1
41

Ans. ± 1, ± i

3. Determine ( )
1
53z

 
2 2 4 42, 2 cos sin , 2 cos sin .
5 5 5 5

i i
p p p p⎛ ⎞ ⎛ ⎞± ±⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Ans.

4. Express cos8q in a series of cosines of multiples of q.

72 [cos8 8cos6 28cos 4 56cos 2 35]q q q q− + + + +Ans.

5. Express sin6q in a series of multiples of q

Ans. 5
1 [cos6 6cos 4 15cos 2 10]
2

q q q− − + −

6. Show that sin 6q = 6 cos5 q sin q – 20 cos3 q sin3 q + 6 cos q sin 5 q
7. Show that

     
1log 2 tanx i

i x
x i

p −−
= −

+
8. Show that

     

1 1 1tan log .
2 1

ix
x

i ix
− +⎛ ⎞= ⎜ ⎟⎝ ⎠−

Hint: Substituting ( )1 cos sin ,ix r iq q+ = + we have r cos q = 1 and r sin q = x so that tan q = x or 

q = tan−1 x = L.H.S. Under the same substitution, we have R.H.S = 1 cos
2

i

i

re

i re

q

q−

⎛ ⎞
=⎜ ⎟⎝ ⎠

 
21 1cos( ) (2 ) .

2 2
ie i

i i
q q q= =  Hence the result.

9. If x + iy = tan (A + iB), show that

     2 2 2 coth 2 1 0x y y B+ − + =

10. If sin(q + if) = R(cos a + i sin a), show that

 (i) { }2 1 cosh 2 cos 2
2

R f q= −

(ii) tan a = tanh f cot q
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Hint: R(cos a + i sin a) = sin q cos i f + cos q sin i f  = sin q cosh f + i cos q sinh f. Therefore, 
equating real and imaginary parts, we get R(cos a = sin q cosh f and Rsin a = cos q sin h f. Squar-
ing and adding, we get the result. Also dividing R sin a = sin q sinh a by R cos a = sin q cosh f, 
we get the second result.

11. Separate log sin (x + iy) into real and imaginary parts.

( )

( )1

1 1Re[log sin( )] log cosh 2 cos 2
2 2

Im[logsin( )] tan cot tanh .

x iy y x

x iy x y−

⎡ ⎤+ = −⎢ ⎥⎣ ⎦
+ =

Ans.

12. Show that u = y3 − 3x2y is a harmonic function. Find its harmonic conjugate and the correspond-
ing analytic function f (z) in terms of z.

Ans. v = − 3xy2 + x3 + C, f (z) = iz3 + Ci
13. Show that the function u = x3 − 3xy2 is harmonic and find the corresponding analytic function.

Ans. f (z) = z3 + C
14. If f (z) an analytic function of z, prove that

     

2 2
2 2

2 2 |Re ( ) | 2 | ( ) | .f z f z
x y

′⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂⎝ ⎠

Hint: As in Example 1.38, 
2 2 2

2 2 4
z zx y

∂ ∂ ∂
+ =

∂ ∂∂ ∂

     
2 2 21|Re ( ) | | | | [ ( ) ( )] |

2
f z u f z f z= = +

Therefore,

     

2 2 2
2 2

2 2

2

2
2

2

|Re ( ) | | ( ) ( ) |

[( ( ) ( ) ( ( ) ( ))]

[ ( ) ( )] .2[ ( ) ( )] ( )

2 ( ) ( ) 2 | ( ) | .

f z f z f z
z zx y

f z f z f z f z
z z

f z f z f z f z f z
z z z

f z f z f z

′

⎛ ⎞∂ ∂ ∂
+ = +⎜ ⎟ ∂ ∂∂ ∂⎝ ⎠

∂
= + +

∂ ∂

∂ ∂
= + = +

∂ ∂ ∂

= =� � �

15. Solve 
2 2

2 2
2 2 .x y

x y

f f∂ ∂
+ = −

∂ ∂

Hint: 
2 2 2

2 2 2 2
2 2

14 , ( ).
2

x y z z
z zx y

∂ ∂ ∂
+ = − = +

∂ ∂∂ ∂
 

Therefore,     
2 2

2 2 2 2
2 2

1implies ( ) 4 .
2

x y z z
z zx y

f f f∂ ∂ ∂ ∂⎛ ⎞+ = − + = ⎜ ⎟⎝ ⎠∂ ∂∂ ∂

Integrating w.r.t z, we get 
23

1( )
24 8

z zz
z

z

f
f

∂
= + +

∂

Integrating w.r.t. z  now yields 
33

1 1( ) ( )
24 24

z zz z
z zf f f= + + +
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Replacing z by x + iy and z  by x – iy, we get

    
4 4

1 2
1 [( ) ( ) ( )].

12
x y x iy x iyf f f= − + − + +

16. Find the analytic function f (iz) = u + iv, if 
1 sin , r 0.v r
r

q⎛ ⎞= − ≠⎜ ⎟⎝ ⎠

Hint: By polar form of Cauchy-Riemann equation, 1 ,u v u v
r

r r rq q
∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

 (*). Thus 

2
1 1 1cos 1 cos .u

r
r r r r

q q
∂ ⎡ ⎤ ⎛ ⎞= − = −⎜ ⎟⎢ ⎥ ⎝ ⎠∂ ⎣ ⎦

Integrating we get u = cosq 1
r

r
⎛ ⎞+⎜ ⎟⎝ ⎠

 + f(q).

Then 1sinu
r

r
q

q
∂ ⎛ ⎞= − +⎜ ⎟⎝ ⎠∂

 + f�(0). But by (*) 1 sin
2

u v
r r

r
q

q
∂ ∂ ⎛ ⎞= − = − +⎜ ⎟⎝ ⎠∂ ∂

. Hence f′(q) = 0, 

which implies that f(q) is constant. Hence u = cos q 
1

r
r

⎛ ⎞+⎜ ⎟⎝ ⎠  + C and

     

( )
1 1 sin .

f z u iv

cos r i r C
r r

q q

= +

⎛ ⎞ ⎛ ⎞= + + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

17. If u = x2 − y2, find a function f (z) = u + iv which is analytic.

Hint: 2 , 2u u
x y

x y

∂ ∂
= = −

∂ ∂
and so by Milne theorem, we have

     

1 2

2 2 2

( ) [ ( ,0) ( ,0)] 2

(2 ).

f z u z iu z dz z

z C x y i xy C

= − =

= + = − + +

∫ ∫

18. If f (z) = u + iv is an analytic function of z and u − v = ex(cos y − sin y), find f (z).
Ans. ez + C

19. Show that f (z) = z + 2 z is not analytic anywhere in complex plane.
Hint: Cauchy-Riemann equations are not satisfied

20. Show that 2 ,dz
i

z a
p=

−∫  where C is the circle |z − a| = r.

21. Evaluate 
3

2

0

i

z dz
+

∫ along x = 3y2.
Ans. 4 + 3i

Hint: z = x + iy = 3y2 + iy, dz = (6y + i)dy and so the integral is 
1

2

0

(3 )(6 ) .y iy y i dy+ +∫
22. Evaluate 

2

4
| 1| 2

.
( 1)

z

z

e
dz

z− = +∫
Ans. 2

8
3

i

e

p   

23. Evaluate 4
| 1| 3 ( 1) ( 2)

z

z

e
dz

z z− = + −∫
Ans. 22 13

81
i

e
e

p ⎛ ⎞−⎜ ⎟⎝ ⎠
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24. Evaluate 2
| | 1

.
1

z

z i

e
dz

z− = +∫

Hint: 2 1

ze

z +
is analytic at all points except ± i. The point z = i lies inside |z − i| = 1. So, let 

( ) .
ze

f z
z i

=
+  Then, by Cauchy integral formula, the given integral = p ei.

25. Evaluate I = 
3

2
| | 2

2 1 .
( )z

z z
dz

z i=

− +
−∫

Hint: By Cauchy integral formula, I = 2 i f ¢(i) = 2pi [3z2 – 2]z = i = 2 i(−3 −2) = −10 pi.

26. Expand log (1 + z) in a Taylor series about the point z = 0 and find the region of convergence of 
the series.

Ans.
 

2 3
1( ) ( 1)

2 3

n
nz z z

f z z
n

−= − + +…+ − +…  This series converges for |z| < 1.

27. Expand 2 2( )
( 1) ( 4)

z
f z

z z
=

− +
 as a Laurent series about 1 < | z | < 2.

Hint: Use partial fraction and take cases of 
1
z

 < 1 and 
2
z

 < 1.

Ans.
3 5

5 3
1 1 1
3 4 16 64

z z z

z z

⎛ ⎞
− − + − +…⎜ ⎟⎝ ⎠

28. If 0 < | z | < 4, show that 
1

2 1
0

1 .
4 4

n

n
n

z

z z

−∞

+
=

=
− ∑

29. Find the singularities with their nature of the function 
/ .

1

c

z a

z a

e

e

−

−
Ans. Simple poles at = 2p nia, n = 0, ±1, ±2, …

30. Find residues at each poles of 
2

2 2
2( ) .

( 1) ( 4)
z z

f z
z z

−
=

+ +

 Ans. 14 7Res(1) , Res(2 ) ,
25 25

i
i

+
= − =

7Res( 2 )
25

i
i

−
− =

31. Evaluate I 2 2 2
| | 4

.
( )

z

z

e
dz

z p=

=
+∫

Ans. −
i

p

32. Evaluate 
2

2
| 2| 2

3 2 .
( 1) ( 9)z

z
dz

z z− =

+
− +∫

Ans. pi

33. Evaluate 
| | 2

tan .
z

z dz
=
∫

Ans. −4pi
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34. Show that 
2

2 2
0

    2 , 0.
sin

d
a b

a b a b

p q p
q

= > >
+ −

∫

35. Evaluate 
2

0

.
17 8cos

dp q
q−∫

Ans.
15
p

36. Show that 
2

2
0

5 .
32(5 3sin )

dp q p
q

=
−∫

37. Show that 
2

2
2 2

0

  cos 2 ( 1).
1 2 cos 1

a
d a

a a a

p q p
q

q
= <

− + −∫

38. Show that 
2

0

2 .
2 cos 3

dp q p
q

=
+∫

39. Show that 4 .
21

dx

x

p∞

−∞

=
+∫

40. Show that 
3

/ 2
4 4
sin cos

2 2
max mx ma

e
x a

p∞
−

−∞

⎛ ⎞= ⎜ ⎟⎝ ⎠+∫ , m > 0, a > 0.

Hint: Use Jordan lemma, the poles are ae(2n+1)pi/4, poles aepi/4 and aei3p/4 lie in the upper half-plane.

41. Show that

     
2 2

0

.
5( 1)( 2 2)

xdx

x x x

p∞ −
=

+ + +∫

42. Show that

     

2

2 2 4
.

3( 1) )(
x dx

x x

p∞

−∞ + +
=∫

43. Show that

     

2

2
0

sin .
2

x
dx

x

p∞

=∫

44. Evaluate

     
4 2

0 1
dx

x x

∞

+ +∫

Ans. ( 3/6)p
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45. Show that

     
2 2

0

.
1 2 cos 1

d

r r r

q p
q

∞

=
− + −∫

46. Show that

     
2

0

sin .
(1 )

x
dx

x x

p
p

∞

=
−∫

47. Discuss the transformation .w z=
Hint: Letting z = x + iy, w = u + iv, we have u2 – v2 = x and 2uv = y. The lines x = a and y = b 
correspond to the rectangular hyperbolas u2 – v2 = a and 2uv = b, which are orthogonal to each 
other.

y x � a x � b

x0

z-plane

0

w-plane

v

u

y

x0

z-plane

0

v

u

w-plane

Figure 1.29

48. Discuss the mapping 1.
1

z
w

z

−
=

+
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Hint: 1 .
1

w
z

w

+
=

−
 Therefore, 1 1.

1 1
u iv u iv

x iy
u iv u iv

+ + − +
+ = =

− − − + ( )
2 2

2 2

1
1

u v

u v

− −
− +

. Hence 

( ) ( )
2 2

2 22 2

1 2,
1

u v u
x y

u v u v

− −
= =

− + − +
 and so on.

49. Find the fixed points of the mapping 3 4( ) .
1

z
z

z
w

−
=

−

Hint: Fixed points of the given mapping are given by 3 4 ,
1

z
z

z

−
=

−
 z2 − z = 3z − 4, or z2 − 4z + 4 = 0. 

Hence 4 16 16 2
2

z
± −

= = is the fixed point of the mapping.

50. Find the bilinear transformation that maps the points z = −1, 0, 1 in the z − plane on to the points 
w = 0, i, 3i in the w - plane.

Hint: The bilinear transformation is given by , 0.az b
ad bc

cz d
w

+
= − ≠

+
 Therefore, we have 

( 1) (0) (1)0 , , and 3 .
( 1) (0) (1)

a b a b a b
i i

c d c d c d

− + + +
= = =

− + + +
From the first equation we have a = b. Then second 

and the third equations hold b = − ai and .
3
ai

c =  Hence substituting these values in ,az b

cz d
w

+
=

+
we get 

3( 1) .
( 3)

z

i z
w

+
=

−
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Statistics is the science of assembling, analysing, characterizing, and interpreting the collection of data 
(information expressed numerically). The methods used for this purpose are called statistical methods. 
The general characteristics of data are:

1. Data shows a tendency to concentrate at certain values, usually somewhere in the centre of the 
distribution. Measures of this tendency are called measures of central tendency or averages.

2. The data varies about a measure of central tendency and the measures of deviation are called 
measures of variability or dispersion.

3. The data in a frequency distribution may fall into symmetrical or asymmetrical patterns. The 
measures of the degree of asymmetry are called the measures of skewness.

4. The measures of peakedness or flatness of the frequency curves are called measures of 
kurtosis.

If the figures in the original data are put into groups, then those groups are called classes. The 
difference between the upper and lower limits of a class is called the width of the class or simply the 
class interval. The number of observations in a class interval is called the frequency. The mid-point or 
the mid-value of the class is called the class mark. The table showing the classes and the corresponding 
frequencies is called a frequency table. The set of ungrouped data summarized by distributing it into 
a number of classes along with their frequencies is known as frequency distribution. The cumulative 
frequency (written as cum f  ) of the nth class in a frequency distribution is the sum of the frequencies 
beginning with the first and ending with the nth frequency. Thus

     1
Cum .

n

n i
i

f f
=

= ∑

For example, consider the following table:

Marks in physics 
(class)

Number of 
students (  f  )

Cum (  f  )

50–60   5   5
60–70 16 21
70–80 24 45
80–90 25 70
9–100 20 90
Total 90

In this frequency table, the marks obtained by 90 students in physics have been divided into classes 
with class interval 10. The frequency for the interval 50–60 is 5 whereas it is 16 for the class interval 
60–70. The cumulative frequency of the class interval 70–80 is 45.

2 Elements of Statistics
and Probability
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2.1 MEASURES OF CENTRAL TENDENCY
The commonly used measures of central tendency are mean, median, and mode. We define these con-
cepts one by one.

1. The Mean: The arithmetic mean x  of a set of n values 1 2, , ..., nx x x  of a variate is defined by 
the formula

     1

1 .
n

i
i

x x
n =

= ∑

The weight of a value of variate is a numerical multiplier assigned to indicate its relative importance. 
The weighted arithmetic mean of set of variates x1, x2, …, xn with weights w1, w2,…, wn, respectively, 
is defined by

     

1

1

.

n

i i
i

n

i
i

w x

x

w

=

=

=
∑

∑

Thus, in a frequency distribution, if x1, x2,…, xn are the mid-values of the class intervals having frequen-
cies f1, f2,…, fn, respectively, then

     

1

1

.

n

i i
i

n

i
i

f x

x

f

=

=

=
∑

∑

Let di = xi − A. Then

     1 1 1
.

n n n

i i i i i
i i i

f d f x A f
= = =

= −∑ ∑ ∑

Therefore,

     

1 1

1 1

n n

i i i i
i i

n n

i i
i i

f d f x

A x A

f f

= =

= =

= − = −
∑ ∑

∑ ∑

or

     

1

1

.

n

i i
i

n

i
i

f d

x A

f

=

=

= +
∑

∑

This formula, obtained by shifting the origin, is more convenient to find the mean.
2. The Median: Suppose that n values x1, x2, …, xn of a variate have been arranged in the following 

order of magnitudes,

     1 2 3 ... .nx x x x≤ ≤ ≤ ≤
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Then the median of this ordered set of values is the value 1
2

nx +  when n is odd, and the value 
1

2 2

1
2 n nx x

+

⎛ ⎞
+⎜ ⎟

⎝ ⎠
 

when n is even.
The median for the discrete frequency distribution is obtained as follows:

(i) Determine 1
2

.if∑
(ii) Note the cumulative frequency just greater than 1

2
.if∑

(iii) Find the value of x corresponding to the cumulative frequency obtained in step (ii). This 
value will be the median.

The median for the continuous frequency distribution is obtained as follows:

 (i) Note the class corresponding to the cumulative frequency just greater than 1
2

.if∑  This 
class is known as median class.

 (ii) Compute the value of median by the formula.

     

1Median ,
2 i

h
L f c

f
⎛ ⎞= + −⎜ ⎟⎝ ⎠∑

where
L is the lower limit of the median class
f is the frequency of the median class
h is the width of the median class
c is the cumulative frequency of the class preceeding the median class.

3. The Mode: The mode is defined as that value of a variate which occurs most frequently.
For example, in the frequency distribution

x: 1 2 3 4 5 6
f: 3 7 28 10 9 5

the value of x corresponding to the maximum frequency, namely, 28 is 3. Hence mode is 3.
For a grouped distribution, mode is given by

     

1

1 2
Mode ,L h

Δ
= +

Δ + Δ

where
L = lower limit of the class containing the mode
Δ1 = excess of modal frequency (maximum) over frequency of preceeding class
Δ2 = excess of modal frequency over frequency of succeeding class
h = width of modal class.

    The empirical relationship between mean, median, and mode of a frequency distribution is

mean − mode = 3 (mean − median).

However, for a symmetrical distribution, the mean, median, and mode coincide.
For example, consider the following distribution

Class–interval: 0–10 10–20 20–30 30–40 40–80 50–60
Frequency: 6 8 14 26 17 10
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The maximum frequency is 26 and h = 10. Further,

1 230, 26 14 12, 26 17 9.L = Δ = − = Δ = − =

Therefore
12 120Mode 30 (10) 30 35.714.

12 9 21
= + = + =

+

Apart from the above measures of central tendency, we consider now the following partition values of 
the frequency:

The partition values are those values which divide the series of frequencies into a number of equal 
parts.

The three values, which divide the series of the given frequencies into four equal parts are called 
quartiles. The lower (first) quartile, Q1, is the value which exceeds 25% of the observations and is 
exceeded by 75% of the observations. The second quartile, Q2, coincides with the mean whereas the 
third quartile, Q3, is the value which exceeds 75% observations and has 25% observations after it. In 

fact, if 
1

n

i
i

N f
=

= ∑ , L the lower limit of the median class, h the magnitude of the median class, and f the 

frequency of the median class, then

     

1

3

( )
4 . , and

3 ( )
4 . .

N
Cum f

Q L h
f

N
Cum f

Q L h
f

−
= +

−
= +

Similarly, the 9 values which divide the frequency series into 10 equal parts are called deciles whereas 
the 99 values which divide the frequency series into 100 equal parts are called percentites.

EXAMPLE 2.1
Determine the mean, median, and mode for the following data:

Mid value: 15 20 25 30 35 40 45 50 55
Frequency: 2 22 19 14 3 4 6 1 1
Cum f: 2 24 43 57 60 64 70 71 72

Solution.  For the given frequency distribution, we have

1

1

Mean

2(15) 22(20) 19(25) 14(30) 3(35)
4(40) 6(45) 1(50) 1(55)

2 22 19 14 3 4 6 1 1
2005 27.85.
72

n

i i
i

n

i
i

f x

x

f

=

=

=

+ + + +
+ + + +

=
+ + + + + + + +

= =

∑

∑
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To compute the median, we note that 1
2

36.if =∑  The median class (corresponding to cum  
frequency 43) is (20–30). Width of the median class is 10. Frequency of the median class is 19. The 
cumulative frequency of the class preceding to median class is 24. Therefore,

     

1Median
2

1020 (36 24)
19

23.32.

i
h

L f c
f

⎛ ⎞= + −⎜ ⎟⎝ ⎠

= + −

=

∑

To calculate the mode, we note that the maximum frequency is 22, that is, the modal frequency is 22. 
Then the modal class is (15–25). Therefore,

     

1

1 2
Mode ,

22 215 .10
(22 2) (22 19)
20015 23.

3
 69.

2

L h
Δ

= +
Δ + Δ

−
= +

− + −

= + =

EXAMPLE 2.2
Obtain the median for the following distribution:

x: 1   2   3   4   5   6   7 8 9
f: 8 10 11 16 20 25 15 9 6

Solution.  For the given discrete frequency distribution, we have 
1
2

120 60.
2if = =∑  The cumulative 

frequencies are

8, 18, 29, 45, 65, 90, 105, 114, 120
The cumulative frequency just greater then 60 is 65. The value of x corresponding to 65 is 5. Hence 
the median is 5.

EXAMPLE 2.3
Given that the median value is 46, find the missing frequencies for the following incomplete frequency 
distribution:

Class: 10–20 20–30 30–40 40–50 50–60 60–70 70–80 Total
f: 12 30 – 65 – 25 18 229

Solution.  Suppose that the frequency of the class 30–40 be f1 and that for the class 50–60 be f2. Also 
Σfi = 229. Therefore,

     1 2 (12 30 65 25 18) 229f f+ + + + + + =

and so f1+ f2 = 79. Since the median is 46, the median class is 40–50. Therefore, using the formula

     

1Mode ,
2 i

h
L f c

f
⎛ ⎞= + −⎜ ⎟⎝ ⎠∑
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we have

     

10 22946 40 ,
65 2

c
⎛ ⎞= + −⎜ ⎟⎝ ⎠

where c is the cumulative frequency of the class preceding the median class. Since the cumulative 
frequency are

12, 42, 42 + f1, 107 + f1, 132 + f1 + f2, 157 + f1 + f2, 175 + f1 + f2,
the value of c is 42 + f1. Hence

     
1

10 22946 4 (42 ) ,
65 2

f
⎛ ⎞= + − +⎜ ⎟⎝ ⎠

which yields f1 = 33.5 ≈ 34. Then f2 = 79 − 34 = 45. Hence the missing frequencies are 34 and 45.

2.2 MEASURES OF VARIABILITY (DISPERSION)
The measures of central tendency give us idea of the concentration of the observation about the central 
part of the distribution. They fail to give information whether the values are closely packed about the 
central value or widely scattered away from it. The two different distributions may have the same mean 
and same total frequency, yet they may differ in the sense that the individual values spread about the 
average differently. Thus, the measures of central tendency must be supplemented by some other meas-
ures to have the complete idea of distribution. One such measure is dispersion.

The degree to which numerical data tends to spread about an average value is called variability or 
dispersion of the data.

We now define some of the important measures of dispersion.
1. Range: The range is the difference of the greatest and the least values in the distribution. This is 

the simplest but a crude measure of dispersion.
2. The Mean Deviation: The mean deviation of a set of n values x1, x2,…, xn of a variate is defined 

as the arithmetic mean of their absolute deviations from their average A (usually mean, median, 
or mode).

Thus if we consider the average as arithmetic mean of x1, x2,…,xn then

     1

1Mean deviation(M.D.) .
n

i
i

x x
n =

= −∑

If xi| fi, i = 1, 2, …, n is the frequency distribution, the

     1 1

1M.D. , .
n n

i i i
i i

f x x N f
N = =

= − =∑ ∑
3. The Variance: Since mean deviation is based on all the observations, it is a better measure of 

dispersion than the range. But, in the definition, we have converted all minus signs to plus before 
averaging the deviations. Another method of eliminating minus sign is to square the deviations 
and then average these squares. This step gives rise to a most powerful measure of dispersion, 
called variance, defined as follows:

The variance, S2, of a sample of n values x1, x2,…, xn of a variate with arithmetic mean x  is defined as 
the 1

n
 th of the sum of squares of their deviations from the mean. Thus

     
2 2

1

1 ( ) .
n

i
i

S x x
n =

= −∑
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If , 1, 2,...,i ix f i n=  is the frequency distribution, then

     2 2

1 1

1 ( ) , .
n n

i i i
i i

S f x x N f
N = =

= − =∑ ∑

4. The Standard Deviation: It is defined as the positive square root of the variance. If is denoted 
by s. Thus

     

1
22

1

1 ( ) .
n

i
i

x x
n

s
=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑

In case of frequency distribution ,|i ix f i =  1, 2, …, n, we have

     

1
22

1 1

1 ( ) , .
n n

i i i
i i

f x x N f
N

s
= =

⎡ ⎤
= − =⎢ ⎥

⎣ ⎦
∑ ∑

5. Quartile Deviation: The quartile deviation Q is defined as

     
3 1

1 ( ),
2

Q Q Q= −

where Q1 and Q3 are the first and third quartiles of the distribution, respectively.

Theorem 2.1.  For the frequency distribution ,|i ix f i =  1, 2,…, n,

     

2 2 21 ( ) .i i
i

S f x x
f

= −∑∑

Proof:  We have

  

2 2

2 2

2 2

2 2

2 2 2

2 2

1 ( )

1 [ ( ) 2 ]

1 1 2( )

1 ( ) 2

1 ( ) 2( )

1 ( ) .

i i
i

i i i
i

i i i i i
i i i

i i
i i

i i

i i
i

i i
i

S f x x
f

f x x x x
f

x
f x f x f x

f f f

f x
f x x x

f f

f x x x
f

f x x
f

= −

= + −

= + −

= + −

= + −

= −

∑∑

∑∑

∑ ∑ ∑∑ ∑ ∑
∑∑∑ ∑

∑∑

∑∑
The ratio of the standard deviation to the mean is known as the coefficient of variation. Thus

     
Coefficient of variation .

x

s
=
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Theorem 2.2.  Variance and, hence, the standard deviation is independent of the change of origin.
Proof:  From above, the variance is given by

     

2 21 ( ) .i i
i

S f x x
f

= −∑∑
Let di = xi − A. Then

− = − − − = − −( ) ( ) ( )i i ix x x A x A d x A

and so

( )

2 2

2 2

2

2

( ) [ ( )]

( ) 2( )

, .

i i i i

i i i ii

i i i i
i i

i i

f x x f d x A

f d x A f x A f d

f d f d
f d x A

f f

− = − −

= + − − −

= − = +

∑
∑ ∑ ∑

∑ ∑

∑

∑ ∑ ∑
Therefore,

     

22
2 ,i i i i

i i

f d f d
S

f f

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑
∑ ∑

and

     
s

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑
∑ ∑

22

.i i i i

i i

f d f d

f f

Moments: The rth moment about the mean x  of a distribution, denoted by mr, is defined by

     1 1

1 ( ) , .
n n

r
r i i i

i i

f x x N f
N

m
= =

= − =∑ ∑
The moment about any point a is defined by

     1 1

1 ( ) , .
r

n n
r

i i i
i i

f x a N f
N

m
= =

= − =∑ ∑�

We note that

0 0

1
1

1
1

1 1

2 2
2

1

1 ,

1 1 1( )

1· 0,

1 ( )

1 1 , and

1 ( ) ,

n

i i i i i
i

i

n

i i
I

n n

i i i
i i

n

i i
i

f x x f x f x
N N N

x x f x x
N

f x a
N

f x f a x a
N N

f x x
N

m m

m

m

m s

=

=

= =

=

= =

= − = −

⎛ ⎞= − = − =⎜ ⎟⎝ ⎠

= −

= − = −

= − =

∑ ∑ ∑

∑

∑

∑ ∑

∑

�

�
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where s is the standard deviation.
If can be shown that

     

2

3
2 2 2

3 3 2 1 1

4 4 3 1 2 1 1
2 4

3 2

4 6 3

m m m

m m m m m

m m m m m m m

= −

= − +

= − + −

� �

� � � �

� � � � � �

Consider the function

     
( )( ) .it x a

a iM t p e −= ∑
This function is a function of the parameter t and is nothing but mean (expected value) of the probabil-
ity distribution of ( ) .it x ae −  Expanding the exponential, we get

     

2
2 )

2
2

2

1 2

( ) [1 ( ) ( ) ... ( ...]
2 !

( ) ( ) ... ( ) ...
2! !

1 ... ...,
2! !

r
r

a i i i i

r
r

i i i i i i i

r

r

t t
M t p t x a x a x a

r

t t
p t p x a p x a p x a

r

t t
t

r
m m m

= + − + − + + − +

= + − + − + + − +

= + + + + +

∑

∑ ∑ ∑ ∑

 

 (2.1)

where mr is the moment of order r about a. Thus Ma(t) generates moments and is, therefore, called the 
moment generating function of the discrete probability distribution of the variate X about the value 
x = a. Thus, the moment generating function of the discrete probability distribution of the variate X 
about x = a is defined as the expected value of the function et(x−a).

We observe that mr, the rth moment, is equal to the coefficient of !
rt

r  in the expansion of the 
moment generating function Ma(t).

Alternately, mr can be obtained by differentiating (2.1) r times with respect to t and then putting 
t = 0. Thus

     0

( ) .
r

r ar
t

d
M t

dt
m

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
Also

( )( ) ( ). i it x a txat at
a i i oM t p e e p e e M t− − −= = =∑∑

Hence moment generating function about the value a is e−at times the moment generating function 
about the origin.

2.3 MEASURES OF SKEWNESS
As pointed out earlier, the measure of skewness is the degree of asymmetry or the departure from the 
symmetry. Regarding skewness, we have
 (i) Pearson’s coefficient of skewness, which is equal to mean mode

s
−

 (ii) Coefficient of skewness based on third moment is given by

     1 ,ig b=
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where

     

2
3

1 2
2

.
m

b
m

=

Therefore, the simplest measure of skewness is 1ig b= .

2.4 MEASURES OF KURTOSIS
The measures of peakness or flatness of the frequency curve, called the measure of kurtosis, is defined 
by

     

4
2 2

2
.

m
b

m
=

Further, g2 = b2 − 3 yields the excess of kurtosis. The curves with g2 > 0, that is, b2 > 3 are called 
leptokurtic and the curves with g2 < 0, that is, b2 < 3 are called platykurtic. The curve (normal curve) 
for which g2 = 0, that is, b2 = 3 is called mesokurtic. Thus, the normal curve is symmetrical about its 
mean.

EXAMPLE 2.4
The following table shows the marks obtained by 100 candidates in an examination. Calculate the 
mean, median, and standard deviation:

Marks obtained: 1–10 11–20 21–30 31–40 41–50 51–60
No. of candidates: 3 16 26 31 16 8

Solution.  We form the table shown below:

Class Mid-value 
x

Frequency 
f

Cum 
frequency

fx fx2

1–10 5.5 3 3 16.5 90.75
11–20 15.5 16 19 248 3844
21–30 25.5 26 45 663 16906.5
31–40 35.5 31 76 1100.5 39067.75
41–50 45.5 16 82 728 33124
51–60 55.5 8 90 444 24642

100 3200 117675
Then

     
( ) 3200Mean 32.

100
i i

i

f x
x

f
= = =∑

∑
Since 1 50,

2 if =∑  the median class is corresponding to the cum frequency 76. Thus the median class 

is 31–40. Therefore,

     

1Median
2

1031 (50 45) 32.6.
31

i
h

L f c
f

⎛ ⎞= + −⎜ ⎟⎝ ⎠

= + − =

∑
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Further, variance is given by

     

2 2 2
1

2

1 ( )

117675 (32) 152.75
100

i
i

S f x x
f

= −

= − =

∑∑

and so the standard deviation is

     
2 12.36 12.4.Ss = = ≈

EXAMPLE 2.5
The score obtained by two batsmen A and B in 10 matches are follows:

A: 30 44 66 62 60 34 80 46 20 38
B: 34 46 70 38 55 48 60 34 45 30

Determine who is more efficient and consistent.

Solution.  The mean Ax  for the batsman A is
1 480 48.

10 10A ix x= = =∑
The variance for the batsman A is

2 2

2 2 2 2 2 2

2 2 2

1 ( )
10
1 [(48 20) (48 44) (48 66) (48 62) (48 60) (48 34)

10
(48 80) (48 20) (48 38) ]

1 [324 16 324 196 144 196 1024 784 100]
10
310.8.

A i AS x x= −

= − + − + − + − + − + −

+ − + − + −

= + + + + + + + +

=

∑

The coefficient of variation 310.8 0.37.
48

A

Ax

s
= = =  On the other hand, the mean By  for the batsman 

B is
1 460 46.

10 10B iy y= = =∑
The variance for the batsman B is

2 2

2 2 2 2 2 2

2 2 2 2

1 ( )
10
1 [(46 34) (46 46) (46 70) (46 38) (46 55) (46 48)

10
(46 60) (46 34) (46

 

45) (46 30) ]
1 (144 0 576 64 81 4 19

= 14

6 14

6.

4 1 256]
10

6. 

B i BS y y= −

= − + − + − + − + − + −

+ − + − + − + −

= + + + + + + + + +

∑
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The coefficient of variation 146.6 0.26.
46

B

By

s
= = =  Since the average of batsman A is greater than the 

average of B, we conclude that A is a better scorer and hence is more efficient. But the coefficient of 
variance of B is less than the coefficient of variance of A, therefore, it follows that B is more consistent 
than A.

EXAMPLE 2.6
The first three moments of a distribution about the value 2 of the variable are 1, 16, and − 40. Find the 
mean, variance, and third moment of the distribution about the value 2.

Solution.  We are given that

1 2 31, 16, 40.m m m= = = −� � �

Since ,iN f= ∑  we have

1
1 11 ( ) ( 2),

1 2 2,

i i i i

i i i

f x a f x
N N

f x f x
N N

m= = − = −

= − = −

∑ ∑

∑ ∑

�

and so
Mean( ) 3.x =

The variance is
2 2

2 2 1 16 1 15.S m m m= = − = − =� �

The third moment m3 is given by
3 3

3 3 2 1 13 2 40 3(16)(1) 2(1)
40 48 2 86.

m m m m m= − + = − − +
= − − + = −

� � � �

EXAMPLE 2.7
Determine Pearson’s coefficient of skewness for the data given below:

Class: 10–19 20–29 30–39 40–49
f: 5 9 14 20

Class: 50–59 60–69 70–79 80–89
f: 25 15 8 4

Solution.  We form the table given below:

Class Mid-value
(x)

Frequency (  f  ) Cum. 
frequency

fx fx2

10–19 14.5   5   5 72.5 1051.25
20–29 24.5   9 14 220.5 5402.25
30–39 34.5 14 28 483 16663.5
40–49 44.5 20 48 890 39605
50–59 54.5 25 73 1362.5 74256.25
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Class Mid-value
(x)

Frequency (  f  ) Cum. 
frequency

fx fx2

60–69 64.5 15 88 967.5 62403.75
70–79 74.5 8 96 596 44402
80–89 84.5 4 100 338 28561

100 4930 272345
Then

4930Mean ( ) 49.3.
100

x = =

The maximum frequency is 25, that is, the modal frequency is 25. Therefore, the modal class is 50–59. 
Hence

1

1 2

(25 20)9Mode 50
(25 20) (25 15)

4550 53.0.
15

L h
Δ −

= + = +
Δ + Δ − + −

= + =

Also

2 2 21 ( ) 2723.45 2430.49

292.96,

i i
i

f x x
f

s = − = −

=

∑∑

and so s = 17.12.
Pearson’s coefficient of skewness mean mode

s
−

=  = 49.3 53.0 0.22.
17.12

−
= −

2.5 CURVE FITTING
Least Square Line Approximation
Suppose that we have an empirical data in the form of n pairs of values ( , ), ( , ), , ( , ),x y x y x yn n1 1 2 2 K  
where the experimental errors are associated with the functional values y y yn1 2, , ,K  only. Then we 
seek a linear function

     y f x a bx( )  (2.2)

fitting the given points as well as possible. Equation (2.2) will not in general be satisfied by any of the 
n pairs. Substituting in equation (2.1) each of the n pairs of values in turn, we get

     

e y a bx
e y a bx

e y a bxn n n

1 1 1

2 2 2

L L L
L L L

,

 

(2.3)
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where e k nk , , ,1K  are measurement errors, called residuals or deviations. To know how far the curve 
y f x( ) lies from the given data, the following errors are considered:

 (i) Maximum error

     
e f y a bx

k n k k( ) max
1

 (ii) Average error

     
e f

n
y a bxk k

k

n

A ( ) 1
1

 (iii) Root mean square (RMS) error

     
e f

e e
n

n
rms ( ) .1

2 2
1

2K

The least square line y f x a bx( )  is the line that minimizes the root mean square error 

e frms ( ). But the quantity e frms ( )  is minimum if and only if ( )y a bx ek k
k

n

k
k

n
2

1

2

1
 is minimum. 

Thus, in case of least square line we are looking for a linear function a + bx as an approximation to a 

function y f x( ) when we are given the values of y at the points x xn1,..., . We aim at minimizing the 
sum of the squared errors

     

e a b y a bxi i
i

n

( ) ( ), .2

1  
(2.4)

Geometrically, if di is the vertical distance from the data point ( , )x yi i  to the point ( , )x a bxi i  on the 
line, then di = yi − a− bxi (see Figure below). We must minimize the sum of the squares of the vertical 

distances di, that is, the sum di
i

n
2

1

.

•

•

(x1, y1)

(x2, y2)

(xi, yi)

(xi, a + bxi) (xn, yn)

O
X

Y

To minimize e(a,b), we equate to zero the partial derivative of equation (2.4) with respect to a and with 
respect to b. Thus,

e a b
a

y a bxi i
i

n( , ) ( )2 0
1
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and

     

e a b
b

x y a bxi i i
i

n( , ) ( ) ,2 0
1

which are known as normal equations. We write these equations in the form

     
na b x yi i

i

n

i

n

11
 (2.5)

and

     
a x b x x yi i i i

i

n

i

n

i

n
2

111

. (2.6)

The normal equations (2.5) and (2.6) can be solved for a and b using Cramer’s rule or by some other 
method.

EXAMPLE 2.8
Show that, according to the principle of least squares, the best fitting linear function for the points 
(xi, yi), i = 1, 2, ..., n may the expressed in the form

     

x y

x y n

x y x

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

1

2 2

1 1

1 1 1

0..

Solution. Eliminating a and b from equations (2.4), (2.5), and y = a + bx, we get the required result.
We have supposed in the above derivation that the errors in x values can be neglected compared 

with the errors in the y values. Now we suppose that the x values as well as the y values are subject to 
errors of about the same order of magnitude. Now we minimize the sum of the squares of the perpen-
dicular distances to the line. Thus, if y a bx  is the equation of the line, then

     
e a b

b
y a bxi i

i

n

( , ) ( ) .1
1 2

2

1

For minimum, partial derivatives with respect to a and b should vanish. Thus,

     

e a b
a b

y a bxi i
i

n( , ) ( )2 02
11

and

     e a b
b

b y a bx x b y a bxi i i i i

( , ) ( ) ( ) ( )2 1 22 22

11

0
i

n

i

n

,  that is,

     
( )y a bxi i

i

n

0
1

 (2.7)
and

     
( ) ( ) ( ) .1

11

b y a bx x b y a bxi i i i i
i

n

i

n
2 2  (2.8)
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From equation (2.7), we get

     a y bx0 0 ,  (2.9)
where

     
x

n
xi

i

n

0

1
1  

and
 
y

n
yi

i

n

0

1
1

.

After simplification, equation (2.8) yields

     
b A C

B
b2 1 0,  (2.10)

where

     
A x nxi

i

n
2

0
2

1

,

        
B x y nx yi i

i

n

0 0
1

,

        
C y nyi

i

n
2

0
2

1

.

Finding the value of b from equation (2.10), we obtain the corresponding value of a from equation (2.9).

EXAMPLE 2.9
The points (2,2), (5,4), (6,6), (9,9), and (11,10) should be approximated by a straight line. Perform this 
assuming

  (i) the error in x values can be neglected
(ii) that the errors in x and y values are of the same order of magnitude.

Solution. (i) The sum table for the given problem is

n x x2 y xy y 2

1 2 4 2 4 4
1 5 25 4 20 16
1 6 36 6 36 36
1 9 81 9 81 81
1 11 121 10 110 100
5 33 267 31 251 237

Let the least square line be y a bx. Therefore, the normal equations are
     5 33 31a b  (2.11)

     33 267 251.a b  (2.12)
Multiplying equation (2.11) by 33 and equation (2.12) by 5, we obtain
     165 1089 1023a b

     165 1335 1255a b .
Subtracting, we get

     246 232b  and so b 116
123

0 9431. .
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Then equation (2.11) yields

     
a 31 33 0 9431

5
0 0244( . ) . .

Hence, the least square line is
     y x0 9431 0 0244. . .

(ii) We have

     
x

n
xi

i

n

0
1

33
5

1

     
y

n
yi

i

n

0
1

1 31
5

                                          
A x nxi

i

n
2

0
2

2

1

267 5 33
5

246
5

49 2.

                                          
B x y nx yi i

i

n

0 0
1

251 5 33 31
25

46 4( )( ) .

                                          
C y nyi

i

n
2

0
2

2

1

237 5 31
5

44 8. .

Therefore, equation in b

     
b A C

B
b2 1 0

becomes

     
b b2 4.4

46.4
1 0

or

     b b2 0 0948 1 0. .

Hence,

     
b 0.948 4.0089

2
0.9537 +ve ( ).

Then a y bx0 0  yields
     a 0 0944. .
Hence,
     y x0 9537 0 0944. .

is the required least square line.

EXAMPLE 2.10
In the following data, x and y are subject to error of the same order of magnitude:

x: 1 2 3 4 5 6 7 8
y: 3 3 4 5 5 6 6 7
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Find a straight line approximation using the least square method.

Solution. The sum table for the given problem is

n x x2 y xy y2

1  1   1  3   3   9
1  2   4  3   6   9
1  3   9  4  12  16
1  4  16  5  20  25
1  5  25  5  25  25
1  6  36  6  36  36
1  7  49  6  42  36
1  8  64  7  56  49
8 36 204 39 200 205

Let the equation be y a bx. Then

     a y bx0 0 ,  (2.13)
where

     
x

n
xi

i

n

0
1

1 36
8

,

     
y

n
yi

i

n

0
1

1 39
8

.

Further,

    
A x nxi

i

n
2

0
2

2

1

204 8 36
8

408 324
2

42,,

    
B x y nx yi i

i

n

0 0
1

2200 8 36 39
8

400 351
2

( )( ) 449
2

24 5. ,

    
C y nyi

i

n
2

0
2

2

1

205 8 39
8

1640 1521
8

1119
8

14.87.

Then the value of b is given by

     
b A C

B
b2 1 0

or

     
b b2 42 0 14 87

24 5
1 0. .

.
or

     b b2 1 107 1 0. ,

which yields

     
b 1.107 5.225

2
0.5895 ve( ).
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Then equation (2.13) gives a 2 225. . Hence, the least square line is
y x0.59 2.22.

The Power Fit y = a x m

Suppose we require axm  as an approximation to a function y, where m is a known constant. We must 
find the value of a such that the equation
     y axm  (2.14)
is satisfied as nearly as possible by each of the n pairs of observed values ( , ), ( , ), , ( , ).x y x y x yn n1 1 2 2 K  
Using least square technique, we should minimize the error function

     e a ax yi
m

i
i

n

( ) ( ) .2

1

 (2.15)

For this purpose, partial derivative of equation (2.15) with respect to a must vanish. So, we have

     
0 2 ( )( )

1

ax y xi
m

i
i

n

i
m

and so

     
0 a x x yi

m
i
m

i
i

n

i

n
2

11

,

which yields

     

a
x y

x

i
m

i
i

n

i
m

i

n
1

2

1

.

Putting the value of a in equation (2.14), we get the required equation.

Second method: Taking logarithms of both sides of equation (2.14) yields
log log logy a m x,

which is of the form Y = A + BX, where Y = log y, A = log a, B = m, and X = log x. Now the least square 
line can be found. Then a and m are found.
EXAMPLE 2.11
Find the gravitational constant g using the data below and the relation h gt1

2
2 , where h is distance in 

meters and t is the time in seconds.

t 0.200 0.400 0.600 0.800 1.000

h 0.1960 0.7850 1.7665 3.1405 4.9075
Solution. The sum table for the given problem is

t h t2m(m = 2) ht2

0.200 0.1960 0.0016 0.00784
0.400 0.7850 0.0256 0.12560
0.600 1.7665 0.1296 0.63594
0.800 3.1405 0.4096 2.00992
1.000 4.9075 1.0000 4.90750

1.5664 7.68680
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Then using the formula y axm for power fit, we have

     

1
2

7.68680
1.5664

4.9071

1

g
h t

t

k k
m

k

n

k
m

k

n
2

33

and so the gravitational constant g 9 8146 2. m/sec .

EXAMPLE 2.12
Find the power fits y ax2 and y bx3 for the data given below and determine which curve fits best:

x 2.0 2.3 2.6 2.9 3.2
y 5.1 7.5 10.6 14.4 19.0

Solution. The sum table for the given problem is

x x2 x3 x4 x6 y yx2 yx3

2 4 8 16 64 5.1 20.4 40.8
2.3 5.29 12.167 27.984 148.035 7.5 39.675 91.252
2.6 2.76 17.576 45.698 308.918 10.6 71.656 182.306
2.9 8.41 24.389 70.729 594.831 14.4 121.104 351.202
3.2 10.24 32.768 104.858 1073.746 19.0 194.560 622.592

265.269 2189.530 447.395 1292.152

Then for y ax2 , we have

     
a

y x
x
i i

i

2

4

447.395
265.269

1.6866.

Hence, the power fit is

       y x1 6866 2. .

On the other hand, for y bx3, we have

     
b

y x
x
i i

i

3

6

1292 152
2189 530

0 5902.
.

. .

Hence, the power fit is

     y x0 5902 3. .

To know which of these is best fit, we calculate the corresponding errors. For the first power fit, we have

e ax y ax y ax y ax yrms 1
2

1
2

2
2

2
2

3
2

3
2

4
2( ) ( ) ( ) (1

5 44
2

5
2

5
2) ( )ax y

1
2

1
5

1 646 1 43302 2( . ) ( . ) (( . ) ( . ) ( . )0 8014 0 2157 1 72922 2 2

1
2

1
5

(2.7704 2.053 0.642 0.046 2.990 1.3.
1

2
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Similarly for the second curve, we have
erms 0 29. .

Hence, the power fit curve y x0 5902 3.  is the best.

EXAMPLE 2.13
By using the methods of least squares, find a relation of the form 2y ax= that fits the data:

x    2    3 4 5
y 27.8 62.1 110 161

Solution. The sum table for the given problem is

x x2 x4 y yx2

2  4  16 27.8  111.2
3  9  81 62.1  558.9
4 16 256 110 1760
5 25 625 161 4025

978 6455.1
Then for y ax2, we have

     
a

y x
x
i i

i

2

4

6455 1
978

6 60. . .

Hence, the power fit is
y x6 6 2.

Least Square Parabola (Parabola of Best Fit)
Suppose that we want to approximate a given function y f x( ) by a quadratic a bx cx2. We must 
find the values of a, b, and c such that the equation

     
y a bx cx2

 (2.16)

is satisfied as nearly as possible by each of the n pairs of observed values ( , ), ( , ), , ( , ).x y x y x yn n1 1 2 2 K  
The equation will not in general be satisfied exactly by any of the n pairs. Substituting in equation 
(2.16) each of the n pairs of values in turn, we get the following residual equations:

     

e a bx cx y

e a bx cx y

en

1 1 1
2

1

2 2 2
2

2

K K K K
K K K K

aa bx cx yn n n
2

The principle of least square says that the best values of the unknown constants a, b, and c are those 
which make the sum of the squares of the residuals a minimum, that is,

     
e e e ei n

i

n
2

1
2

2
2 2

1

K
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must be minimum. Thus,

     
e a b c a bx cx yi i i

i

n

( , , ) ( )2 2

1

should be minimum. For this, the partial derivatives of e a b c( , , ) with respect to a, b, and c should be 
zero. We therefore have

 
e a b c

a
a bx cx y a bx cx y( , , ) 2( ) 2(1 1

2
1 2 2

2
22 ) 2( 0K a bx cx yn n n

2 )

 
e a b c

b
a bx cx y x a bx cx( , , ) 2( ) 2(1 1

2
1 1 2 2

2 y x a bx cx y xn n n n2 2) K 2 02( )

 
e a b c

c
a bx cx y x a bx cx( , , ) ( ) (2 21 1

2
1 1

2
2 2

22
2 2

2 2 22 0y x a bx cx y xn n n n) ( ) .K

Hence, the normal equations are

 ( ) ( ) (a bx cx y a bx cx y a bx cxn1 1
2

1 2 2
2

2 K nn ny2 0)

 ( ) ( ) (a bx cx y x a bx cx y x a bx1 1
2

1 1 2 2
2

2 2 K nn n n ncx y x2 0)

 ( ) ( ) (a bx cx y x a bx cx y x a1 1
2

1 1
2

2 2
2

2 2
2 K bbx cx y xn n n n

2 2 0) .

These equations can further be written as

 na b x x x c x x x y y yn n( ) ( )1 2 1
2

2
2 2

1 2K K K nn ,

     a x x x b x x x c x xn n( ) ( ) (1 2 1
2

2
2 2

1
3

2
3K K K xx x y x y x yn

3
1 1 2 2 3 3) ,

 a x x x b x x x c x xn n( ) ( ) (1
2

2
2 2

1
3

2
3 3

1
4

2
4K K K Kx x y x y x yn n n

4
1
2

1 2
2

2
2) .

The above normal equations are solved by ordinary methods of algebra for solving simultaneous equa-
tions of first degree in two or more unknowns.

Remark 2.1. The number of normal equations is always the same as the number of unknown con-
stants, whereas the number of residual equations is equal to the number of observations. The number of 
observations must always be greater than the number of undetermined constants if the method of least 
square is to be used in the solution.

EXAMPLE 2.14
Find the parabola of best fit with equation of the form a bx cx2 for the data in the following table:

x 0 1 2 3 4
y − 2.1 − 0.4 2.1 3.6 9.9

Solution. We establish the following sum table:

n x x2 x3 x4 y xy x2y

1  0  0   0   0 − 2.1 0 0
1  1  1   1   1 − 0.4 − 0.4 − 0.4
1  2  4   8  16 2.1  4.2 8.4
1  3  9  27  81 3.6 10.8 32.4
1  4 16  64 256 9.9 39.6 158.4
5 10 30 100 354 13.1 54.2 198.8
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The normal equations are

        5 10 30 13 1a b c .

      10 30 100 54 2a b c .

     30 100 354 198 8a b c . .

Solving these equations, we get

a = –1.80858, b = 0.45716 and c = 0.5871

Hence, the parabola of best fit is

y x x1 80858 0 45716 0 58571 2. . . .

EXAMPLE 2.15
Find the least square polynomial of degree two for the following data:

x 0.78 1.56 2.34 3.12 3.81
y 2.50 1.20 1.12 2.25 4.28

Solution. Let the required polynomial be a bx cx2. To make the calculations simple, we use the 
 substitution

     
X x 2 34

0 78
.

.

making use of the equal spacing of the arguments. The sum table then becomes

n X X  2 X 3 X 4 y Xy X  2y

1 − 2 4 − 8 16 2.50 − 5.00 10.00
1 − 1 1 − 1  1 1.20 − 1.20  1.20
1 0 0 0  0 1.12 0  0
1 1 1 1  1 2.25 2.25  2.25
1 1.88 3.53 6.64 12.49 4.28 8.05 15.13
5 − 0.12 9.53 − 1.36 30.49 11.35 4.10 28.58

The normal equations are

          5 0 12 9 53 11 35a b c. . .

            0 12 9 53 1 36 4 10. . . .a b c

     9.53 1.36 30.49 28.58.a b c− + =

Solving these equations by Cramer’s rule, we get

      a 1 1155021. ,

      b 0 5316061. ,

     c 0 612401. .
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Hence, the parabola of best fit is

     
y X X1 1155 0 5316 0 6124 2. . . ,

where X x 2 34
0 78

.
.

.

EXAMPLE 2.16
Find the least square fit y a bx cx2

 for the data

x − 3 − 1 1 3

y 15 5 1 5

Solution. The sum table for the given problem is

n x x2 x3 x4 y xy x2y

1 − 3 9 − 27 81 15 − 45 135
1 − 1 1 − 1 1 5 − 5 5
1 1 1 1 1 1 1 1
1 3 9 27 81 5 15 45
4 0 20 0 164 26 − 34 186

The normal equations are
        4 20 26a c
           20 34b

     20 164 186a c .

Solving these equations, we have

             
b c a34

20
1 70 0 875 2 125. , . , . .

Hence, the least square parabola is

     y x x2 125 1 700 0 875 2. . . .

EXAMPLE 2.17
Fit a parabola to the following data

x 1 2 3 4
y 0.30 0.64 1.32 5.40

Solution. The sum table for the given problem is

n x x2 x3 x4 y xy x2y

1  1  1   1   1 0.30  0.30    0.30
1  2  4   8  16 0.64  1.28     2.56
1  3  9  27  81 1.32  3.96   11.88
1  4 16  64 256 5.40 21.60   82.40
4 10 30 100 354 7.66 27.14 101.14
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The normal equations are

           4 10 30 7 66a b c . ,

       10 30 100 27 14a b c . ,

      30 100 354 101.14.a b c+ + =

Solving these equations by Gauss elimination method or Cramer’s rule, we get

     a b c1 09 0 458 0 248. , . , . .

Hence, the parabola of fit is

             y x x1 09 0 458 0 248 2. . . .

EXAMPLE 2.18

Fit a parabola y a bx x2 to the following data:

x 2  4  6  8 10
y 3.07 12.85 31.47 57.38 91.29

Solution. The sum table for the given problem is

n x x2 x3 x4 y xy x2y

1  2   4   8   16  3.07   6.14     12.28
1  4  16  64  256 12.85  51.4    205.6
1  6  36  216 1,296 31.47 188.82 1,132.92
1  8  64  512 4,096 57.38 459.04 3,672.32
1 10 100 1,000 1,000  91.29 912.9 9,129.00
5 30 220 1,800 15,664 196.06 1,618.3 14,152.12

The normal equations are

           5 30 220 196 06a b c .

              30 220 1800 1618 30a b c .

                   220 1800 15644 14152 12a b c . .

These equations yield

     40 480 44 94b c .

and

         480 5984 5525 48b c . .

This last pair of equations give b 0 859.  and c 0 992. . Putting these values in the first normal equa-
tion, we get a 0 720. .
Hence, the least square parabola is

     y x x0 72 0 859 0 992 2. . .
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EXAMPLE 2.19
If x ( )km/hr  and y (kg/tonne) are related by a relation of the type y a bx2, find by the method of least 
squares a and b with the help of the following table:

x 10 20 30 40 50
y 8 10 15 21 30

Solution. The normal equations for the curve fitting of the type y a bx2 are

     na b x x x y y yn n( )1
2

2
2 2

1 2L L

     a x x x b x x x x y xn n( ) ( )1
2

2
2 2

1
4

2
4 4

1
2

1 2
2L L yy x yn n2

2L .

So we establish the following table:

n x x2 x4 y x2 y

1 10 100 10,000 8 800
1 20 400 160,000 10 4,000
1 30 900 810,000 15 13,500
1 40 1,600 2,560,000 21 33,600
1 50 2,500 6,250,000 30 75,000
5 150 5,500 9,790,000 84 126,900

The normal equations are
       5 5500 84a b .
and
     5500 9790000 126900a b ,
that is,
        5 5500 84a b
and
        55 97900 1269a b+ =
Hence, a b6 76 0 00924. , .  and the parabola of best fit is

y = 6.76 + 0.00924x2

2.6 COVARIANCE
Suppose that the pair of random variable X and Y take n pairs of observations as follows:

     1 1 2 2( ,  ), ( ,  ),..., ( , ).n nx y x y x y

The arithmetic means of the observed values of X and Y are, respectively

     = =
= =∑ ∑

1 1

1 1and .
n n

i i
i i

x x y y
n n  (2.17)

The deviations of the observed values of X and Y from their respective means are

     1 2, , ..., nx x x x x x− − −

and

     1 2, , ...., ny y y y y y− − −
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respectively. The covariance of X and Y, denoted by Cov (X,Y) is defined by

     1

1Cov( , ) ( ) ( ).
n

i i
i

X Y x x y y
n =

= − −∑

However, if x  and y  are not whole numbers, then the task of calculating Cov(X,Y) by this formula is 
time-consuming and cumbersome. A simplified expression for Cov (X,Y) can be derived as follows:
Using (2.17) we get

1 1

1 1 1 1

1 1

( )( ) ( )

1

( ) ( ) .

n n

i i i i i i
i i

n n n n

i i i i
i i i i

n n

i i i i
i i

x x y y x y xy x y x y

x y x y y x x y

x y x ny y nx nx y x y nx y

= =

= = = =

= =

− − = − − +

= − − +

= − − + = −

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

Hence

1

1

1Cov( , )

1 .

n

i i
i

n

i i
i

X Y x y nx y
n

x y x y
n

=

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

= −

∑

∑

It may be proved that covariance is not affected by the change of origin but is affected by the change 
of scale.

EXAMPLE 2.20
Find the covariance between x and y for the following data:

x: 3 4 5 8 7 9 6 2 1
y: 4 3 4 7 8 7 6 3 2

Solution.  We have 9, 45, 44,i in x y= = =∑ ∑  1 45 5
9ix x

n
= = =∑ , 

1 44 ,
9iy y

n
= =∑  and 

263.i ix y =∑
Therefore,

1

1 263 5(44) 43Cov( , ) 4.78.
9 9 9

n

i i
i

X Y x y x y
n =

= − = − = =∑

EXAMPLE 2.21
Calculate the covariance between height and weight of the following five persons:

Height in cm: 150 148 148 152 154
Weight in kg: 65 64 63 65 67
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Solution.  Since covariance is not affected by change of origin, we take ui = xi −148 and vi = yi − 65 and 
get the following table:

xi yi ui = xi – 148 vi = yi – 65 i iu v∑
150 65 2 0 0
148 64 0 –1 0
148 63 0 –2 0
152 65 4 0 0
154 67 6 2 12

12 –1 12

Therefore,
1Cov( , )

12 12 1 72 2.88 cm kg.
5 5 5 25

i iX Y u v u v
n

= −

−⎛ ⎞= − = =⎜ ⎟⎝ ⎠

∑

2.7 CORRELATION AND COEFFICIENT OF CORRELATION
The relation in which changes in one variable are associated or followed by changes in the other vari-
able is called correlation. The data connecting such two variables is called bivariate population. For 
example, there is a correlation between the yield of a crop and the amount of rainfall.

A scale-free (numerical) measure for a relation between a pair of variable is called the coefficient 
of correlation or correlation coefficient.

The coefficient of correlation between two quantitative variables X and Y is defined by

Cov( , )( , ) ,
x y

X Y
X Yr

s s
=

where

2

1

2

1

1 ( )  is the standard deviation for series

1 ( ) is the standard deviation for series.

n

x i
i

n

y i
i

x x X
n

y y Y
n

s

s

=

=

= − −

= − −

∑

∑

Since the dimensions of the numerator and denominator in the definition of r(X,Y) are same, it follows 
that r(X,Y) in non-dimensional quantity. r(X,Y) measures the degree of linear association between the 
two variates. If two variates are not related, then r(X,Y) = 0. However, if r(X,Y) = 0 we cannot say that 
the two variables are not related.
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We note that

      

1

2 2

1 1

( )( )
Cov( , )( , ) .

( ) ( )

n

i i
i

n n
x y

i i
i i

x x y y
X Y

X Y

x x y y

r
s s

=

= =

− −
= =

− −

∑

∑ ∑

But

1

2
2 2

1 1
2

2 2

1 1

1( )( ) Cov ( , )

1 ,

1( ) , and

1( ) .

n

i i i i
i

i i i i

n n

i i i
i i

n n

i i i
i i

x x y y n X Y n x y x y
n

x y x y
n

x x x x
n

y y y y
n

=

= =

= =

⎡ ⎤− − = = −⎢ ⎥⎣ ⎦

= −

⎛ ⎞
− = − ⎜ ⎟⎝ ⎠

⎛ ⎞
− = − ⎜ ⎟⎝ ⎠

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

Therefore,

( ) ( )

( ) ( )

2 22 2

2 22 2

1

( , )
1 1

,

i i i i

i i i i

i i i i

i i i i

x y x y
nX Y

x x y y
n n

n x y x y

n x x n y y

r
−

=
− −

−
=

− −

∑ ∑ ∑

∑ ∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑ ∑
which is called Karl-Pearson’s coefficient of correlation or product moment correlation coefficient.

Remark 2.2.

(i) Since Cov( , )( , )
x y

X Y
X Yr

s s
=  and denominator contains positive square roots, it follows that the 

sign of r(X,Y) is the same as that of Cov (X,Y)
 (ii) −1 ≤ r(X,Y) ≤1.
 (iii) If r(X,Y) =1, then the variables X and Y are not only statistically related but also functionally 

related. There exists a linear relationship of the form

, 0Y a bX b= + ≥

or
, 0,X c dY d= + ≥

which are straight lines with positive slopes. In this case, the variables have perfect positive correlation.
 (iv) If r(X,Y) = −1, then there exists a linear relationship of the form

, 0Y a bX b= − ≥
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or
, 0X c dY d= − ≥

 which are straight lines with negative slopes. In this case, the variables have perfect negative cor-
relations.

 (v) If r(X,Y) is close to 1, there is a high degree of positive correlation and if it is close to −1, then 
there is a high degree of negative correlation.

 (vi) If r(X,Y) is close to 0 in magnitude, we cannot draw any conclusion about the existence of rela-
tion between the variables. To reach at some conclusion, in such a case, we have to draw scatter 
diagram.

EXAMPLE 2.22
Calculate the covariance and the coefficient of correlation between X and Y if

= = = = = =∑ ∑ ∑ ∑ ∑2 210, 60, 60, 400, 580 and 305.n x y x y xy

Solution.  For the given data

( ) ( )2 22 2

1Cov( , )

1 60 60(305) 5.5,
10 10 10

( , )

3050 3600
4000 3600 5800 3600

550 11 0.586.
20 2200 4 22

i i i i

i i i i

X Y xy x y
n

n x y x y
X Y

n x x n y y
r

= −

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−
=

− −

−
=

− −
−

= = − =

∑

∑ ∑ ∑
∑ ∑ ∑ ∑

EXAMPLE 2.23
Find the Karl Pearson coefficient of correlation between the industrial production and export using the 
following data:

Production (in crore tons): 55 56 58 59 60 60 62
Export (in crore tons): 35 38 38 39 44 43 45

Solution.  Here n=7. Put ui = xi−60, vi=yi−38. Then we have the following table:

x y u v u2 v2 uv

55 35 − 5 − 3 25 9 15
56 38 − 4 0 16 0 0
58 38 − 2 0 4 0 0
59 39 − 1 1 1 1 − 1
60 44 0 6 0 36 0
60 43 0 5 0 25 0
62 45 2 7 4 49 14

− 10 16 50 120 28
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Therefore,

( ) ( )2 22 2
( , )

196 160
350 100 840 256

356 356 0.93.
382.08250 584

i i i i

i i i i

n u v u v
X Y

n u u n v v
r

−
=

− −

+
=

− −

= = =

∑ ∑ ∑
∑ ∑ ∑ ∑

Since r(X,Y) is close to 1, there is high degree of positive correlation.

2.8 REGRESSION
The value of the coefficient of correlation indicates whether statistical relationship exists between the 
variables X and Y. However, it does not give any expression for this statistical relationship. Regression 
analysis gives us a method for finding such expression.

Suppose that for a given value of x, we wish to determine the value of y. Thus we want to have an 
equation of the form
     y = f(x). (2.18)
The function f is called a regression function while equation (2.18) is called the regression equation of 
Y on X.

On the other hand, if for a given value of y we wish to find value of x, then we want to establish 
an equation of the form
     x = g(y). (2.19)
The function g is called regression function and equation (2.19) is called regression equation of X on Y.

We consider equation (2.18). Let (xi, yi), i = 1, 2,…, n be observed values in a given data. Then the 
estimate at xi is f(xi), while the actual value is yi. Thus, the error in the observed values are

yi − f (x1), y2 − f (x2),…, yn − f (xn).
The regression equation is good if these errors are small. Here we consider the case of linear regression 
only. Thus we wish to express f (x) and g (y) in the form of linear polynomials of the form

( )  and ( ) .f x a bx g y c dy= + = +

We shall obtain these expressions using least square approximation.
Suppose we want to find the regression of Y on X. Let the approximation be

     y = a + bx. (2.20)
Let (xi, yi), i = 1,2,…,n be observed values. Then the errors of estimation are

1 1 2 2 ( ), (  ),...,  ( ).n ny a bx y a bx y a bx− + − + − +

Our aim is to find a and b such that the sum of squares of the errors is minimum. Thus we want to 
minimize 2

1
[ ( ) .]

n

i i
i

y a bx
=

− +∑  With these values of a and b, y = a + bx is called the best approximation 

in the least square sense. For minimizing 2

1
[ ( )] ,

n

i i
i

y a bx
=

− +∑  its first derivatives with respect to a and 

b should be equal to zero. Thus we have

     =
− + =∑

1
[ ( )] 0

n

i i
i

y a bx  (2.21)
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and

     =
− + =∑

1
[ ( )] 0.

n

i i i
i

y a bx x  (2.22)

Simplifying (2.21) and (2.22), we get

1

2

1
.

n

i i
i

n

i i i i
i

na b x y

a x b x x y

=

=

+ =

+ =

∑ ∑

∑ ∑ ∑

Since 
1

1 ,
n

i
i

x x
n =

= ∑  these equations reduces to

     + =na nbx ny  (2.23)

     = =
+ =∑ ∑2

1 1

n n

i i i
i i

nax b x x y
 (2.24)

Since

     1

1Cov( , ) ,
n

i i
i

X Y x y x y
n =

= −∑

we get

     Cov( , ) .i ix y n X Y n x y= +∑
Also

     

2 2 2 2

1 1

1 1( ) ( ) ,
n n

x i i
i i

x x x n x
n n

s
= =

⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦
∑ ∑

which yields

2 2 2 2 2

1
( ) [ ( ) ].

n

i x x
i

x n n x n xs s
=

= + = +∑

Substituting these values in (2.24), we get

2 2[ ( ) ] [Cov( , ) ],xn a x n b x n X Y x ys+ + = +

that is,

     s+ + = +2 2[ ( ) ] Cov( , ) .xa x b x X Y x y  (2.25)

Multiplying (2.23) by x  and subtracting from (2.25), we get

2 Cov( , )xb X Ys =

and so

    
2

Cov( , ) .
x

X Y
b

s
=
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Then (2.23) yields

2
Cov( , ) .

x

x X Y
a y

s
= −

Hence, the line of regression of Y on X is

 
2 2

Cov( , ) Cov( , )

x x

x X Y X Y
y a bx y x

s s
= + = − +

or

            s
− = − = −2

Cov( , ) ( ) ( ),yx
x

X Y
y y x x b x x  (2.26)

where

            

s
=

=

− −
= =

−

∑

∑
1

2
2

1

( )( )
Cov( , )

( )

n

i i
i

yx n
x

i
i

x x y y
X Y

b

x x
 (2.27)

                      

1 1 1
2

2

1 1

n n n

i i i i
i i i

n n

i i
i i

n x y x y

n x x

= = =

= =

−
=

⎛ ⎞
− ⎜ ⎟⎝ ⎠

∑ ∑ ∑

∑ ∑

is called regression coefficient of Y on X. Since 2 0xs > , the sign of byx is the same as that of Cov(X,Y) 
or of r(X,Y).

Similarly, the regression line of X on Y is

     − = −( ),xyx x b y y  (2.28)
where

     

s
= = =

= =

−
= =

⎛ ⎞
− ⎜ ⎟⎝ ⎠

∑ ∑ ∑

∑ ∑

1 1 1
2 2

2

1 1

Cov( , )

n n n

i i i i
i i i

xy
n ny

i i
i i

n x y x y
X Y

b

n y y
 

 (2.29)

is the regression coefficient of X on Y.
We observe that

22

2 2

2

[Cov( , )] Cov( , ).

[ ( , )] .

xy yx
x yx y

X Y X Y
b b

X Y

s ss s

r

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
=

Hence, the correlation coefficient is the geometric mean of the regression coefficients.
Since −1≤ r(X,Y) ≤1, it follows that

bxy byx = 1.
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Remarks 2.3.
 (i) The point of intersection of the two lines of regression obtained above is ( , )x y .
 (ii) The regression coefficients are independent of change of origin but not of scale.

2.9 ANGLE BETWEEN THE REGRESSION LINES
The regression line of Y on X is

( ).yxy y b x x− = −

The slope of this line is

2
Cov( , ) Cov( , ) ( , ). .y

yx y
x y x xx

X Y X Y X Y
b

s r
s

s s s ss
= = =

The regression line of X on Y is
( ),xyx x b y y− = −

whose slop is
21 .

Cov( , ) ( , )
y y

xy xb X Y X Y

s s
r s

= =

Hence the angle q between the lines of regression is given by

     

s r s
r s s

q s r s
r s s

r s s

r s s

− −
= ± =

+ +

−
= ±

+

2

2 2

1

tan 11 1 .

(1 )
.

( )

y y
yx

xy x x

y y
yx

xy x x

x y

x y

b
b

b
b

 
(2.30)

The angle q is usually taken as the acute angle, that is, tan q is taken as positive.

Deductions.  If follows from (2.30) that

 (i) if r(X,Y) = ±1, then tan q = 0and so q = 0 or π. Hence the two lines of regression coincides.
 (ii) if r(X,Y) = 0, then tan q = ∞ which implies q = 90°. Hence the lines are perpendicular in this 

case. The lines of regression in this case are x x=  and ,y y=  that is, they are parallel to the 
axes.

Least Square Error
(i) Least square error of prediction of Y on X is

2[ ( )]i iy a bx− +∑
which on simplification equals to

{ }2 21 [ ( , )] .yn X Ys r−

(ii) Least square error of prediction of X on Y is similarly

{ }2 21 [ ( , )] .xn X Ys r−
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Clearly, if r(X,Y) = ±1, then the sum of least square of deviation (least square error) from either line of 
regression is 0. Hence each deviation is 0 and all the points lie on both lines of regression and so the 
lines coincide.

EXAMPLE 2.24
Find the regression of Y on X for the following data:

2 215 , 49,

44 , 5.

x y x y

xy n

= = = =

= =
∑ ∑ ∑ ∑

∑

Solution.  The regression of Y on X is given by

( )22

2
5(44) 15(15) 5 1 .

20 45(49) (15)

yx

n xy x y
b

n x x

−
=

−

− −
= = = −

−

∑ ∑ ∑
∑ ∑

Hence the regression line is
( )yxy y b x x− = −

or

  

15 1 15
5 4 5

y x⎛ ⎞− = − −⎜ ⎟⎝ ⎠

or
13 ( 3).
4

y x− = − −

EXAMPLE 2.25
Find the equation of the lines of regression based on the following data:

x: 4 2 3 4 2
y: 2 3 2 4 4

Solution.  For the given data, we have the following table:

x y xy x2 y2

4 2 8 16 4
2 3 6 4 9
3 2 6 9 4
4 4 16 16 16
2 4 8 4 16

15 15 44 49 49
Since n = 5, we have

15 153 and 3.
5 5 5 5

x x
x y= = = = = =∑ ∑



188 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02.indd

Modif cation Date: April 29, 2010 12:50 PM Modif cation Date: 29-04-10, 13:09

As in Example 2.24, the regression of Y on X is
13 ( 3)or 4 15.
4

y x x y− = − − + =

For the line of regression of X on Y, we have

( )2 22

5(44) 15(15) 1 .
45(49) (15)xy

n xy x y
b

n y y

− −
= = = −

−−

∑ ∑ ∑
∑ ∑

Hence the regression of X on Y is given by
13 ( 3) or 4 15.
4

x y x y− = − − + =

Hence the lines of regression are
              4 15and 4 15.x y x y+ = + =

EXAMPLE 2.26
Out of the following two regression lines, find the regression line of Y on X:

4 3and 3 15.x y y x+ = + =

Solution.  The line of regression of Y on X is

( )yxy y b x x= + −

and the line of regression of X on Y is

      ( ).xyx x b y y= + −

Suppose that the line of regression of Y on X is x + 4y = 3, that is, 1 3 .
4 4

y x= − +  The other line is 
1 5.
3

x y= − +  Hence 1
4yxb = −  and 1 .

3xyb = −  Therefore,

2 1( )   1.
12yx xyb br = = <

Hence the required line of regression of Y on X is x + 4y = 3.

Remark 2.4.  If we begin taking y + 3x = 15 as the line of regression of Y on X, then
y = −3x + 5.

The other line is
x = −4y + 3.

Thus

     3, 4yx xyb b= − = −

and so

      
2 ( ) 12,yx xyb br = =

which is absurd, since r2 ≤ 1. Hence the line of regression is x + 4y = 3.

EXAMPLE 2.27
Two random variables have the regression lines with equation 3x + 2y = 26 and 6x + y = 31. Find the 
mean values and the correlation coefficient between x and y. Also find the angle between these lines.



Elements of Statistics and Probability � 189

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02.indd

Modif cation Date: April 29, 2010 12:50 PM Modif cation Date: 29-04-10, 13:09

Solution.  Since the point of intersection of the regression lines is ( , )x y , the mean x  and y  lie on 
the two regression lines. Thus we have

3 2 26 and 6 31.x y x y+ = + =

Solving these equations, we get 4, 7.x y= =
As in the above example, we can verify that 3x + 2y = 26 is the line of regression of Y on X and 

6x + y = 31 is the line of regression of X on Y. These lines can be written as
3 1 3113and .
2 6 6

y x x y= − + = − +

Therefore the regression coefficients are 3
2yxb = −  and 

1
6xyb = − . Since r2 = byx.bxy , it follows that 

r(x,y) is the geometric mean of these two regression coefficients. Hence

1( , ) . 0.5,
4yx xyx y b br = = = −

the minus sign is taken because both of the regression coefficients byx and bxy are negative.
The angle between the regression lines is given by

1
8tan .

15
1

yx
xy

yx

xy

b
b

b

b

q
−

= ± = +
+

Taking positive value, we get 1 8tan
15

q − ⎛ ⎞= ⎜ ⎟⎝ ⎠
.

2.10 PROBABILITY
Probability theory was developed in the seventeenth century to analyse games and so directly involved 
counting. It is a mathematical modelling of the phenomenon of chance or randomness. The measure 
of chance or likelihood for a statement to be true is called the probability of the statement. Thus, prob-
ability is an expression of an outcome of which we are not certain. For example, if we toss a coin, we 
cannot predict in advance whether a head or tail will show up. Similarly, if a dice (die) is thrown, then 
any one of the six faces can turn up. We cannot predict in advance which number (face) is going to turn 
up. Similarly, if we consider a pack of 52 playing cards, in which there are two colours, black and red, 
and four suits namely spades, hearts, diamonds, and clubs. Each suit has 13 cards. If we shuffle the 
pack of cards and draw a card from it, we are not sure to get a desired card.

An experiment is a process that yields an outcome. A random experiment or experiment of chance 
is an experiment in which (i) all the outcomes of the experiment are known in advance and (ii) the exact 
outcome of any specific performance of the experiment is not known in advance. For example, tossing 
of a fair coin is a random experiment. The possible outcomes of the experiment are head and tail. But 
we do not know in advance what the outcome will be on any performance of experiment.

The set of all the possible outcomes of a random experiment is called the sample space of that ran-
dom experiment. It is denoted by S. An element of a sample space is called a sample point. An event is 
a subset of a sample space. An event may not contain any element. Such event is represented by f and 
is called impossible event. An event may include the whole sample space S. Such event is called sure 
(certain) event. An event containing exactly one element is called a simple event.

For example, if we toss a fair coin, the sample space is

S1 = {T, H},
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where T stands for tail and H stands for head. Thus S1 consists of 21 = 2 sample points.
If the same coin is tossed twice, then

S2 = {TT, TH, HT, HH}

consists of 22 = 4 sample points.
Thus, in case of n toss, the sample space Sn shall have 2n sample points.
The sample space of a random experiment can also be determined with the help of a tree diagram. 

For example, if a fair coin is tossed thrice, then the tree diagram for the sample space is as given below:

(HHH)

(HHT)

(HTH)

(HTT)

(THH)

(THT)

(TTH)

(TTT)

T 

T

T

T

T

H 

T
T

H

H

H

H

H

H 

Thus,
S3 = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

Similarly, if an unbiased cubical dice is thrown, then
S1 = {1, 2, 3, 4, 5, 6}.

If it is thrown again, then S2 shall consists of 62 = 36 sample points. These points can be determined in 
the following way:

  ( 

  ( 

  ( 

  ( 

  ( 

 ( 1,1) 

2, 1) 

3, 1) 

4, 1) 

5, 1) 

6, 1) 

(

(1,2) 

2,2) 

  (3,2) 

  (4,2) 

  (5,2) 

  (6,2) 

 ( 1,3) 

  ( 2, 3) 

  ( 3, 3) 

  ( 4, 3) 

  ( 5, 3) 

  ( 6, 3) 

  (1, 4) 

  (2,4) 

  (3,4) 

  (4,4) 

  (5,4) 

  (6,4) 

 (1,5)   

 ( 2,5)    

 ( 3,5)    

 ( 4,5)    

 ( 5,5)    

 ( 6,5)    

     (1 , 6 ) 

    (2 , 6 ) 

    (3 , 6 ) 

    (4 , 6 ) 

    (5 , 6 ) 

    (6 , 6 ) 

If two coins are tossed simultaneously, then the first coin may show up either H or T and the second 
coin may also show up either H or T. Therefore, the outcomes of the experiment are

S = {HH, HT, TH, TT}.
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In general, when two random experiment having m outcomes e1, e2,…, em and n outcomes p1, p2,…, 
pn, respectively, are performed simultaneously, the sample space consists of mn sample points and so

1 1 1 2 1

1

{( , ), ( , ), , ( , ), ,
( , ), , ( , )}.

n

m m n

S e p e p e p

e p e p

= … …
…

The complement of an event A with respect to the sample space S is the set of all elements of S which 
are not in A. It is denoted by A or by A′.

The intersection of two events A and B, denoted by A ∩ B, consists of all points that are common 
to A and B.

Thus A ∩ B denotes simultaneous occurrence of A and B.
Two events A and B are called mutually exclusive or disjoint if A ∩ B = f.
The union of the two events A and B, denoted by A ∪ B, is the event containing all the elements 

that belong to A or to B or to both.

EXAMPLE 2.28
Let A be the event that a “sum of 6” appears on the dice when it is rolled twice and B denote the event 
that a “sum of 8” appears on the dice when rolled twice. Then

A = {(1,5), (2,4), (3,3), (4,2), (5,1)},
B = {(2,6), (3,5), (4,4), (5,3), (6,2)}.

We observe that A ∩ B = f. Therefore, A and B cannot occur simultaneously and are mutually exclusive 
(disjoint).

The following combinations of events are usually needed in probability theory:

Combination Meaning
A ∪ B Either A or B or both
A ∩ B Both A and B

A  or Ac or A′ Not A

A ∩ B = j Mutually exclusive events A and B
A′ ∩ B′ or (A ∪ B)′ Neither A nor B
A ∩ B′ Only A
A′ ∩ B Only B
(A ∩ B′) � (A′ ∩ B) Exactly one of A and B
A ∩ B ∪ C At least one of A, B and C
A ∩ B ∩ C All the three A, B and C

A collection of events E1, E2,…, En of a given sample space S is said to be mutually exclusive and 
exhaustive system of events if

 (i) , ; , 1,2, ,i jE E i j i j nf∩ = ≠ = …
 (ii) 1 2 .nE E E S∪ ∪…∪ =

A collection of events is said to be equally likely if all the outcomes of the sample space have the same 
chance of occurring.

If an event E1 can occur in m ways and an event E2 can occur in n ways, then E1 or E2 can occur in 
m + n ways. This rule is called Addition Rule.
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If an operation (task) is performed in 2 steps such that the first step can be performed in n1 ways 
and the second step can be performed in n2 ways (regardless of how the first step was performed), then 
the entire operation can be performed in n1 n2 ways. This rule is called Multiplication Rule. The rule 
can be extended to k steps.
EXAMPLE 2.29
A coin is tossed thrice. If the event E denotes the “number of heads is odd” and event F denotes the 
“number of tails is odd”, determine the cases favourable to E ∩ F.
Solution.  The coin is tossed thrice, therefore, the sample space is

S = {HHH, HHT, HTH, HTT, THT, THH, TTH, TTT}
The events E and F are

      E = {HHH, HTT, THT, TTH} and
F = {HHT, HTH, THH, TTT}

We note that E � F = f.
EXAMPLE 2.30
From a group of 2 men and 3 women, two persons are to be selected. Describe the sample space of the 
experiment. If E is the event in which a man and one woman are selected, determine the favourable 
cases to E.
Solution.  Let M1, M2 and W1, W2, and W3 be the men and women in the group. Then number of ways 
selecting two persons is equal to

5 5! 10.
2 3! 2!

⎛ ⎞
= =⎜ ⎟⎝ ⎠

The sample space is
1 2 1 2 2 3 1 3

1 1 1 2 1 3

2 1 2 2 2 3

S {M M ,W W ,W W ,W W ,
M W ,M W ,M W ,
M W ,M W ,M W }.

=

If E is the event where one man and one woman is selected, then

1 1 1 2 1 3 2 1 2 2 2 3E {M W ,M W ,M W ,M W ,M W ,M W }=

Thus, there are six favorable cases to the event E.
If S is a finite sample space having n mutually exclusive, equally likely and exhaustive outcomes 

out of which m are favourable to the occurrence of an event E, then the probability of occurrence of E, 
denoted by P(E), is

The number of favourableoutcomes in E | |
P(E)

The total number of outcomes inS | |

.

E

S

m

n

= =

=

It follows from the definition that
  (i) The probability of the sure event is 1, that is, P(S) = 1
   (ii) The probability of the impossible event is 0, that is, P(f) = 0.
 (iii) Since 0 ≤ m ≤ n, we have

0 1or 0 P(E) 1m

n
≤ ≤ ≤ ≤

This relation is called the axiom of calculus of probability.



Elements of Statistics and Probability � 193

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02.indd

Modif cation Date: April 29, 2010 12:50 PM Modif cation Date: 29-04-10, 13:09

 (iv) The cases favourable to non-occurrence of event E is n − m. Therefore,

P(not E) 1 1 P(E),n m m

n n

−
= = − = −

that is,

P(E) 1 P(E) or P(E) P(E) 1.= − + =

EXAMPLE 2.31
Three coins are tossed simultaneously. What is the probability that at least two tails are obtained?

Solution.  The sample space consists of 23 = 8 outcomes and

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.

Let E be the event obtaining at least 2 tails. Then

E = {HTT, THT, TTH, TTT}.

Thus, there are four favourable cases to the event E. Hence 4 1P(E) .
8 2

= =

EXAMPLE 2.32
In a single throw of two distinct dice, what is the probability of obtaining

(i) a total of 7?
(ii) a total of 13?

(iii) a total as even number?

Solution.  The sample space shall consist of 62 = 36 points. We list the total number of outcomes as 
given below:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

(2,1) 

(3,1) 

(4,1) 

(5,1) 

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

(5,2) (5,3) (5,4) (5,5) (5,6) 

(4,2) (4,3) (4,4) (4,5) (4,6) 

(3,2) (3,3) (3,4) (3,5) (3,6) 

(2,2) (2,3) (2,4) (2,5) (2,6) 

Let E1 be the event in which a total of seven is obtained. Then

E1 = {(6,1), (5,2), (4,3), (3,4), (2,5), (1,6)}
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and so number of favourable outcomes to the event E1 is 6. Hence

1
6 1P(E ) .
36 6

= =

  (ii)  Since the sum of outcomes on the two dices cannot exceed 6 + 6 = 12, there is no favourable 
outcome to an event E2 having sum 13. Hence

2
0P(E ) 0
36

= =

(iii) Let E3 be the event in which we get even number as the sum. Then
E3 = {(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1), (5,3),(5,5), (6,2),  
   (6,4), (6,6)}
Thus, number of favourable outcomes to the event E3 is 18. Hence

3
18 1P(E )
36 2

= =

EXAMPLE 2.33
What is the probability that

(i) a non-leap year will have 53 Sunday?
(ii) a leap year will have 53 Sunday?

Solution.  (i) A non-leap year contains 365 days. So it has 365
7

= 52 complete weeks and one extra day. 

The extra day can be any one of seven days—Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, 
Saturday. Out of these seven possibilities, the first one is the only favourable to the event “53 Sundays”. 
Therefore,

1P(53 Sunday) .
7

=

(ii) A leap year contains 366 days. So, it has 52 complete weeks and 2 extra days. These days can be 
any one of the following seven combinations

Sunday and Monday, Monday and Tuesday
Tuesday and Wednesday, Wednesday and Thursday
Thursday and Friday, Friday and Saturday
Saturday and Sunday .

Out of these seven possibilities only two possibilities (enclosed in boxes) are favourable to the event 
“53 Sunday”. Hence

2P(53 Sunday in a leap year) .
7

=

EXAMPLE 2.34
Ten persons among whom are A and B, sit down at random at a round table. Find the probability that 
there are three persons between A and B.
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Solution.  Let A occupy any seat at the round table. Then there are nine seats available to B. If there are 
three persons between A and B, then B has only two ways to sit as shown in the diagram below:

B B 

A 

Thus, the probability of the required event is 2 .
9

EXAMPLE 2.35
Four microprocessors are randomly selected from a lot of 20 microprocessor among which five are 
defective. Find the probability of obtaining no defective microprocessor.

Solution.  The sample space will consist of 
20
4

⎛ ⎞
⎜ ⎟⎝ ⎠

 sample points since there are 20 C4 ways to select 

4 microprocessors out of 20 microprocessors. Further, since five microprocessors are defective, the 

number of favourable outcomes to the event “no defective microprocessor is obtained” is 
15
4

⎛ ⎞
⎜ ⎟⎝ ⎠

. Hence

15
4 15.14.13.12 32760P (no defective microprocessor) 0.2817337

20.19.18.17 11628020
4

⎛ ⎞
⎜ ⎟⎝ ⎠

= = = =
⎛ ⎞
⎜ ⎟⎝ ⎠

EXAMPLE 2.36
A bag contains 5 distinct white and 10 distinct black balls. Random samples of three balls are taken out 
without replacement. Find the probability that the sample contains

(i) exactly one white ball
(ii) no white ball.

Solution.  The total number of ways of choosing 3 balls out of 15 balls is 15 C3. Thus, the sample space 
consists of 15 C3 points. Now

(i) The number of ways of choosing one white ball out of five white balls is 5 C1. Similarly the 
number of ways of choosing 2 black balls out of 10 is 10 C2. Therefore, by multiplication rule, 
the total number of outcomes for the event “sample consists exactly one white ball” is 5C1. 
10 C2. Hence

1 2

3

5 .10
P (exactly one white ball) 

15
5.10.9.3.2 45 .
2.15.14.13 91

C C

C
=

= =

(ii) The event “no white ball” means that all balls selected should be black. So we have to choose 
3 balls out of 10 black balls. Hence the number of favourable outcomes to the event is 10C3. 
Therefore,

3

3

10 24P (no white ball) .
15 91

C

C
= =
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EXAMPLE 2.37
Given a group of four persons, find the probability that

(i) No two of them have their birthday on the same day
(ii) All of them have birthday on the same day.

Solution.  Each of the four persons can have his birthday on any of 365 days. Thus, the sample space 
consists of 3654 points. Now

(i) Since no two persons have their birthday on the same day, the number of favourable outcomes 
to this event is

365 . 364 . 363 . 362

Hence

4

3
3 3

365.364.363.362P (distinct birthday)
365

364 P364.336.362   
365 365

=

= =

(ii) If all the four persons have their birthday on the same day, then we have to choose just 1 day out 
of 365. Thus the number of favourable outcomes to the event is 365. Hence

4 3
365 1P (birthday on the same day)

365 365
= =

EXAMPLE 2.38
A bag contains n distinct white and n distinct red balls. Pair of balls are drawn without replacement 
until the bag is empty. Show that the probability that each pair consists of one white and one red ball 
is 

n2 .
2 nnC

Solution.  The bag contains 2n distinct balls. Since the pairs are drawn without replacement, the total 
number of outcomes in the sample space is

2 2 2 4 2 (2 )! (2 2)! 4! (2 )!. . . .
2 2 2 2 2!(2 2)! 2!(2 4)! 2! 2! 2n

n n n n n

n n

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ −
… = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ − −

�

Now, suppose that E is the event in which a pair of balls drawn consists of one white ball and one red 
ball. Then the first pair can be chosen in n.n ways. Since there is no replacement, the second pair can be 
selected in (n–1). (n–1) ways, and so on. Therefore, the number of favourable outcomes to the event is

− − … = − − … =2 2 2 2 2 2 2( 1) ( 2) 2 .1 [ ( 1)( 2) 2.1] ( !) .n n n n n n n

Hence
2( !) 2 2( ) .2 .(2 )! 2(2 )!

! !

n n
nn

P E
n nn

n n n

⎛
= =

⎞
⎜ ⎟⎝ ⎠

=

Theorem 2.3.  If E and F are two mutually exclusive events of a random experiment, then
( or ) ( ) ( ) ( ).P E F P E F P E P F= ∪ = +

Thus, the probability that at least one of the mutually exclusive event E or F occurs is the sum of their 
individual probabilities.



Elements of Statistics and Probability � 197

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02.indd

Modif cation Date: April 29, 2010 12:50 PM Modif cation Date: 29-04-10, 13:09

Proof:  Suppose that a random experiment results in n mutually exclusive, equally likely, and  exhaustive 
outcomes of which m1 are favourable to the occurrence of the event E and m2 to the occurrence of the 
event F. Then,

1 2( ) and ( ) .
m m

P E P F
n n

= =

Since E and F are mutually exclusive, by addition rule, the number of favourable outcomes to the 
occurrence of E or F is m1 + m2. Hence

1 2 1 2( ) ( )

( ) ( ).

m m m m
P E or F P E F

n n n
P E P F

+
= ∪ = = +

= +

Corollary (1).  If E1, E2,…,En are n mutually exclusive events, then

1 2 1 2 nP(E E E ) P(E ) P(E ) P(E ).n∪ ∪… = + +…+

Proof:  We shall prove the result by mathematical induction on n. By the above theorem,

1 2 1 2P(E E ) P(E ) P(E )∪ = +

Let the result be true for n = k, that is,

     1 2 1 2 kP(E E E ) P(E ) P(E ) P(E )k»∪ ∪… = + +…+  (2.31)

We put E = E1 ∪……∪ Ek. Then

1 2 k 1 k 1 1

2 k 1

P(E E E ) P(E E ) P(E )
P(E ) ... P(Ek) P(E ) using (2.31).

+ +

+

∪ ∪…∪ = ∪ =
+ + + +

Hence, the result holds by mathematical induction.

Corollary (2).  If E1, E2,…, En are n mutually exclusive and exhaustive events, then

1 2 nP(E ) P(E ) P(E ) 1.+ +…+ =

Proof:  Since E1,E2,…,En are mutually exclusive and exhaustive,

1 2E E E S (sample space).n∪ ∪…∪ =

Since P(S) = 1, we have

1 2

1 2

1 P(S) P(E E E )
P(E ) P(E ) P(E ).

n

n

= = ∪ ∪…∪
= + +…+

Corollary (3).  If E and F are two events, then

P(E F) P(E) P(E F).∩ = − ∩

Proof:  The events E ∩ F  and E ∩ F are mutually exclusive. Also

(E F) (E F) E.∩ ∪ ∩ =

Hence, by the above theorem
P(E) P(E F) P(E F)or P(E F) P(E) P(E F).= ∪ + ∩ ∩ = − ∩
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Corollary (4).  If E and F are two events such that E F⊆ , then P(E) ≤ P(F).

Proof:  Since E F⊆ , we have ( ).F E F E= ∪ −  Also E � (F − E) = j. Hence, by Theorem 2.3, we have

     = + −P(F) P(E) P(F E),  (2.32)
Since P(F\E) ≥ 0, it follows from (2.32) that P(F) ≥ P(E).

Theorem 2.4.  (Addition Rule or Law of Addition of Probability). If E and F are any arbitrary events 
associated with a random experiment, then

P(E or F) P(E F) P(E) P(F) P(A B).= ∪ = + − ∩

Proof:  The events E ∩ F  and F are two mutually exclusive events and
( ) .E F F E F∩ ∪ = ∪

Hence

     ∩ + = ∪P(E F) P(F) P(E F)  (2.33)
But E ∩ F and E ∩ F  are mutually exclusive, that is,

(E F) (E F) E∩ ∪ ∩ =

and so

     P(E F) P(E F) P(E) or P(E F) P(E) P(E F)∩ + ∩ = ∩ = − ∩  (2.34)

From (2.33) and (2.34), it follows that
P(E F) P(E) P(F) P(E F).∪ = + − ∩

Remark 2.5.  If E and F are mutually exclusive, then E � F = and P( )f f  = 0, and so the above result 
reduces to

P(E F) P(E) P(F),∪ = +

an result proved already.

EXAMPLE 2.39
Two fair dices are rolled. Find the probability of getting doubles (two dices showing the same numbers) 
or the sum of 7.

Solution.  The sample space S is given by

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

The total number of outcomes in S is 36. Let E1 be the event “get doubles” and E2 is the event “sum of 
7”. Then

E1 = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)} and E2 = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}.
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We notice that E1 and E2 are mutually exclusive. Therefore,

1 2 1 2 1 2P(E or E ) P(E E ) P(E ) P(E ).= ∪ = +

But

1
1

The number of favourable outcome in E
P(E )

The number of outcomes in S
6 1 .
36 6

=

= =

Similarly,

2
6 1P(E ) .
36 6

= =

Hence

1 2
1 1 1P(E or E ) .
6 6 3

= + =

EXAMPLE 2.40
Two fair dices are thrown simultaneously. Find the probability of getting doubles or a multiple of 3 as 
the sum.

Solution.  The sample space S consists of the points:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
-------------------------------------------------------------------
-------------------------------------------------------------------
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Thus S consists of 36 outcomes. Let E1 be the event of getting doubles. Then

E1 = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)}

and so the number of favourable outcomes to the event E1 is 6. So

1
6 1P(E ) .
36 6

= =

Let E2 be the event of getting a multiple of 3 as the sum. Then
E2 = {(1,2), (1,5), (2,1), (2,4), (3,3), (3,6), (4,2), (4,5), (5,1), (5,4), (6,3), (6,6)}

and so the number of favourable outcomes to the event E2 is 12. Thus

           2
12 1P(E ) .
36 3

= =

Further,

          1 2E E {33,66}.∩ =

Thus

1 2
2 1P(E E ) .

36 18
∩ = =
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Hence
1 2 1 2 1 2P(E E ) P(E ) P(E ) P(E E )

1 1 1 4 .
6 3 18 9

∪ = + − ∩

= + − =

EXAMPLE 2.41
A bag contains five white, seven black, and eight red balls. A ball is drawn at random. What is the prob-
ability that it is a red ball or a white ball?

Solution.  The number of outcomes in the sample space is

20 C1 = 20.
Let E1 be the event where red ball is obtained and E2 be the event where white ball is obtained. Then

1
1

1
2

8 8 2P(E ) and
20 20 5
5 5 1P(E ) .
20 20 4

C

C

= = =

= = =

Also the events are mutually exclusive. Therefore,

1 2 1 2P(E or E ) P(E ) P(E )
2 1 13
5 4 20

= +

= + =

EXAMPLE 2.42
Let A and B be two mutually exclusive events of an experiment. If P(not A) = 0.65, P(A ∪ B) = 0.65 
and P(B) = p, find p.

Solution.  We have

                P(not A) P(A) 0.65.= =

But
P(A) P(A) 1 and so

P(A) 1 P(A) 1 0.65 0.35.
+ =

= − = − =

Further, since A and B are mutually exclusive,
P(A B) P(A) P(B) P(A) p∪ = + = +

and so
p P(A B) P(A) 0.65 0.35 0.30.= ∪ − = − =

2.11 CONDITIONAL PROBABILITY
Let E and F be events and let P(F) > 0. Then the conditional probability of E, given F, is defined as

( )P(E\F) .
( )

P E F

P F

∩
=

EXAMPLE 2.43
Let two fair dice be rolled. If the sum of 7 is obtained, find the probability that at least one of the dice 
shows 2.
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Solution.  Let E be the event “sum of 7 is obtained”. Thus

E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}.
Let F be the event “at least one dice shows 2”. Then

F = {(1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (2,1), (2,3), (2,4), (2,5), (2,6)}.
Since E ∩ F = {25, 52}, by the definition of conditional probability, we have

2
( ) 136P(F\E) .6( ) 3

36

P E F

P E

∩
= = =

EXAMPLE 2.44
Weather records show that the probability of high barometric pressure is 0.82 and the probability of 
rain and high barometric pressure is 0.20. Find the probability of rain, given high barometric pressure?

Solution.  Let E denote the event “rain” and F denote the event “high barometric pressure.” Then
( ) .20P(E\F) 0.2446.

( ) .82
P E F

P F

∩
= = =

Theorem 2.5.  (Multiplication Law of Probability). Let P(A\B) denote the conditional probability of A 
when B has occurred. Then

P(A B) P(B)P(A\B) P(A)P(B\A).∩ = =

Proof:  We know that

     

( )P(A\ B)
( )

P A B

P B

∩
=  (2.35)

and

     

( )P(B\A) .
( )

P A B

P A

∩
=  (2.36)

From (2.35) and (2.36), we have
P(A B) P(B) P(A\B) P(A) P(B\ A).∩ = =

EXAMPLE 2.45
A fair coin is tossed four times. Find the probability that they are all heads if the first two tosses results 
in head.
Solution.  The sample space consists of 24 = 16 outcomes. Let A be the event “all heads.” Then A = 
{HHHH}. Let B be the event “first two heads”. Then

B = {HHHH, HHHT, HHTH, HHTT}.
We notice that

A B {HHHH}.∩ =
Therefore,

4 1 1P(B) and P(A B)
16 4 16

= = ∩ =

and so
1

( ) 116P(A\B) .1( ) 4
4

P A B

P B

∩
= = =
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2.12 INDEPENDENT EVENTS
Two events A and B are said to be independent if the occurrence or non-occurrence of one event does 
not affect the probability of the occurrence or non-occurrence of the other event. Mathematically, A and 
B are independent if and only if any one of the following conditions is satisfied.

P(A\B) P(A),P(A\B) P(A),
P(A\B) P(A),P(A\B) P(A),
P(B\A) P(B), P(B\A) P(B),
P(B\A) P(B), P(B\A) P(B).

= =
= =
= =
= =

Thus, if A and B are independent events, then

( )P(A) P(A\B)
( )

P A B

P B

∩
= =

or

P(A B) P(A) ). P(B∩ =

This relation is called multiplication rule for independent events.
Hence, we may also define independence of events as follows:
Events A and B are called independent if P (A ∩ B) = P(A) P(B).

EXAMPLE 2.46
A married couple (husband and wife) appear for an interview for two vacancies against the same post. 
The probability of husband’s selection is 1

6
 and the probability of wife’s selection is 2

5
. What is the 

probability that
(i) both of them will be selected

(ii) only one of them will be selected
(iii) none of them will be selected
(iv) at least one of them will be selected?

Solution.  Let E be the event “husband is selected” and F denote the event “wife is selected”. We are 
given that

1 2P(E) and P(F) .
6 5

= =

Since there are two vacancies, selection of one does not affect the other. Hence E and F are independent 
events. Then

(i) P(both of them are selected) = P(E ∩ F)

P(E) P(F) since E and F are independent
1 2 1. .
6 5 15

=

= =

(ii) Since E F∩  and E F∩  are exclusive, we have
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 P (only one of them is selected)
P(E F) (E F)
P(E F) (E ) (exclusiveevents)

P(E)P(F) P(E)P(F), since E and F are independent
P(E)(1 P(F))+(1-P(E))P(F)
1 2 1 2 1 1 131 1 .
6 5 6 5 10 3 30

F

= ∩ ∪ ∩
= ∩ + ∩

= +
= −

⎛ ⎞ ⎛ ⎞= − + − = + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(iii) We have

 P(none of them is selected) = P(not E and F)
P(E F) P(E)P(F) since Eand Fare independent
(1 P(E))(1 P(F))

1 2 5 3 11 1 . .
6 5 6 5 2

= ∩ =
= − −

⎛ ⎞ ⎛ ⎞= − − = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(iv) We have

 P(at least one of them gets selected)
P(E or F) P(E F)
P(E) P(F) P(E F)
1 2 1 , using(i)
6 5 15
1 .
2

= = ∪
= + − ∩

= + −

=

Second Method: ( ) 1 1P(E F) 1 P E F 1 P(E F) 1 .
2 2

∪ = − ∪ = − ∩ = − =

EXAMPLE 2.47
If P(B) ≠ 1, show that

1 ( )P(A\B) .
( )

P A B

P B

− ∪
=

Solution.  We have

( ) ( ) 1 ( )P(A\B) .
( ) ( ) ( )

P A B P A B P A B

P B P B P B

∩ ∪ − ∪
= = =

EXAMPLE 2.48
A problem in mathematics is given to three students whose chances of solving the problem are 1 1 1, , .

2 3 4
 

What is the probability that the problem is solved?

Solution.  Let
A be the event “first student solves the problem”
B be the event “second student solves the problem”
C be the event “third student solves the problem”
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It is given that
1 1 1P(A) , P(B) , P(C)
2 3 4

= = =

and so
1 1 1 2P(A) 1 , P(B) 1 ,
2 2 3 3
1 3P(C) 1 .
4 4

= − = = − =

= − =

Hence
P(the problem is solved)

P(A or B or C)

P(A B C) 1 P[( )]
1 P(A B C)
1 P(A)P(B)P(C)

since A, B, and C are independent
1 2 3 31 . . .
2 3 4 4

A B C

=

= ∪ ∪ = − ∪ ∪
= − ∩ ∩
= −

= − =

Theorem 2.6.  (Baye’s Theorem). Let A1, A2,……, Am be pairwise mutually exclusive and  exhaustive 
random events, where P(Ai) ≥ 0, i = 1, 2,…., m. Then for any arbitrary event B of the random 
experiment,

i

1

( ) ( \ )
P(A \ B)= .

( ) ( \ )

i i
m

i i
i

P A P B A

P A P B A
=
∑

Proof:  Let S be the sample space of the random experiment. Since the events A1, A2,……, Am are 
pairwise exclusive and exhaustive, we have

1 2S A A .. A .m= ∪ ∪…… ∪

Therefore, we have

1 2

1 2

B S B (A A A ) B
(A B) (A B) (A B)

m

m

= ∩ = ∪ ∪……∪ ∩
= ∩ ∪ ∩ ∪……∪ ∩

Since A1 ∩ B, A2 ∩ B,……,Am ∩ B are mutually exclusive, it follows by addition law that

1 2

1 1 2 2

P(B) P(A B) P(A B) .. P(A B)
P(B \ A )P(A ) P(B \ A )P(A ) P(B \ A )P(A ).

m

m m

= ∩ + ∩ +… + ∩
= + +…+

This relation is called the “theorem on total probability.” Using this relation, we have

i

1

( ) ( \ ) ( ) ( ) ( \ )
P(A \ B) .

( ) ( )
( ) ( \ )

i i i i i
m

i i
i

P A B P B A P A P A P B A

P B P B
P A P B A

=

∩
= = =

∑
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EXAMPLE 2.49
A university purchased computers from three firms. The percentage of computer purchased and per-
centage of defective computers is shown in the table below:
Firm

HCL WIPRO IBM
Percent purchase 45 25 30
Percent defective 2 3 1

Let A be the event “computer purchased from HCL”
B be the event “computer purchased from WIPRO”
C be the event “computer purchased from IBM”
D be the event “computer was defective”.

Find P(A), P(B), P(C), P(D\A), P(D\B), P(D\C) and P(D).

Solution.  We note that
45 25P(A) 0.45, P(B) 0.25,

45 25 30 100
30 2P(C) 0.30, P(D \ A) 0.02,

100 100
3 1P(D \ B) 0.03, P(D \ C) 0.01.

100 100
P(D) P(D \ A)P(A) + P(D \ B)P(B)+ P(D \ C)P(C)

(0.02)(0.45) (0.03)(0.25) (0.01)(0.30)
0.0090 0.0075 0.003

= = = =
+ +

= = = =

= = = =

=
= + +
= + + 0 0.0195.=

EXAMPLE 2.50
In a test, an examinee either guesses, or copies or knows the answer to multiple choice questions with 
four choices. The probability that he makes a guess is 1

3
 and the probability that he copies the answer 

is 1
6

. The probability that his answer is correct, given that he copied it is 1
8

. Find the probability that 

he knew the answer to the question given that he correctly answered.

Solution.  Let us consider the following events:
A: the examinee guesses the answer
B: the examinee copies the answer
C: the examinee knows the answer
D: the examinee answers correctly.
It is given that

1 1 1P(A) , P(B) and P(D \ B) .
3 6 8

= = =

Also, the hypothesis that examinee either guesses or copies or knows the answer implies that
1 1 1P(C) 1 P(A) P(B) 1 .
3 6 2

= − − = − − =
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Further,

P(D \ C) 1 since he knows the answer correctly.
1P(D \ A) (since if he guesses, he can tick any
4

one of the four choices).

=

=

Then, by Baye’s law,

P(D \ C) P(C)
P(C \ D)

P(D \ A) P(A) P(D \ B) P(B) P)(D \ C) P(C)
11. 242 .1 1 1 1 1 29· · 1·

4 3 8 6 2

=
+ +

= =
+ +

EXAMPLE 2.51
The following observations were made at a clinic where HIV virus test was performed.

(i) 15% of the patients at the clinic have HIV virus
(ii) among those who have HIV virus, 95% test positive on the ELISA test

(iii) among those that do not have HIV virus, 2% test positive on the ELISA test.
Find the probability that a patient has the HIV virus if the ELISA test is positive.

Solution.  We consider the following events:
A: “has the HIV virus”
B: “does not have the HIV virus”
C: “test positive”.
We are given that

15P(A) 0.15.
100

= =

Therefore,
P(B) P(A) 1 P(A) 1 0.15 0.85

95 2P(C \ A) 0.95 and P(C \ B) 0.02.
100 100

= = − = − =

= = = =

We want to find P (A\C). By Baye’s theorem, we have
( \ ) ( )

P(A \ C)
( \ ) ( ) ( \ ) ( )

(0.95)(0.15)
0.89.

(0.95)(0.15) (.02)(.085)

P C A P A

P C A P A P C B P B
=

+

= =
×

EXAMPLE 2.52
An item is manufactured by three factories F1, F2, and F3. The number of units of the item produced by 
F1, F2, and F3 are 2x, x, and x, respectively. It is known that 2% of the items produced by F1 and F2 are 
defective and 4% of the items produced by F3 are defective. All units produced by these factories are put 
together in one stockpile and one unit is chosen at random. It is found that this item is defective. What 
is the probability that this defective unit came from (i) factory F1, (ii) factory F2, or (iii) factory F3?
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Solution.  Consider the events:
A: “the unit is defective”
B: “the defective unit came from F1”
C: “the defective unit came from F2”
D: “the defective unit came from F3”
We have then, as per given hypothesis,

2 1 1 1P(B) , P(C) , P(D)
4 2 4 4 4 4
2 2P(A \ B) 0.02, P(A \ C) 0.02,

100 100
4P(A \ D) 0.04

100

x x x

x x x
= = = = = =

= = = =

= =

Then the theorem on total probability implies that
P(A) P(A \ B)P(B) P(A \ C)P(C) P(A \ D)P(D)

1 1 1(0.02) (0.02) (0.04) 0.025.
2 4 4

= + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

We then have, by Baye’s theorem,
1(0.02)

P(A \ B)P(B) 2P(B \ A) 0.4,
P(A) 0.025

1(0.02)
P(A \ C)P(C) 4P(C \ A) 0.2,

P(A) 0.025
1(0.04)

( \ ) ( ) 4P(D \ A) 0.4.
( ) 0.025

P A D P D

P A

⎛ ⎞
⎜ ⎟⎝ ⎠

= = =

⎛ ⎞
⎜ ⎟⎝ ⎠

= = =

⎛ ⎞
⎜ ⎟⎝ ⎠

= = =

2.13 PROBABILITY DISTRIBUTION
Let S be a sample space of an random experiment. A random variable X is a function of the possible events 
of S which assigns a numerical value of each outcome in S. A random variable is also called a Variate.

Let a random variable X assume the values x1, x2, …, xn corresponding to various outcomes of a 
random experiment. If the probability of xi is P (xi) = pi, 1 ≤ i ≤ n such that p1 + p2 +…+ pn = 1, then the 
function P(X) is called the probability function of the random variable X and the set {P (xi)} is called 
the probability distribution of X. Since random variable X takes a finite set of values, it is called discrete 
variate and { }( )iP x  is called the discrete probability distribution.

The probability distribution of X is denoted by the table:

1 2 3

1 2 3

.
( ) .

n

n

X x x x x

P X p p p p

…
…

If x is an integer, then the function F defined by

1
( ) ( ) ( )

x

i
i

F X P X x p x
=

= ≤ = ∑
is called the distribution function or cumulative distribution function of the discrete variate X.
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If a variate X takes every value in an interval, the number of events is infinitely large and so the 
probability for an event to occur is practically zero. In such a case, the probability of x falling in a small 
interval is determined. The function f defined by

1 1 ( )
2 2

P x dx x x dx f x dx
⎛ ⎞− ≤ ≤ + =⎜ ⎟⎝ ⎠

is called the probability density function and the continuous curve ( )y f x=  is called the probability 
curve.

If the range of x is finite, we may consider it as infinite by supposing the density function f to be 
zero outside the given range. Thus if f(x) = f(x) be the density function for x in [a,b] , then we take

0,
( ) ( ), [ , ]

0, .

x a

f x x x a b

x b

f
<⎧

⎪= ∈⎨
⎪ >⎩

Further, the density function f is always positive and ( ) 1f x dx
∞

−∞
=∫ , that is, the total area under the 

probability curve and the x-axis is unity, This fulfills the requirement that the total probability of the 
occurrence of an event is 1.

If X is continuous variate, then the function F defined by

( ) ( ) ( )F x P X x f x dx
∞

−∞

= ≤ = ∫

is called the cumulative distribution function of the continuous variate X.
The cumulative distribution function F has the following important properties:

 (i) F �(x) = f(x) ≥ 0 and so F is non-decreasing function.
 (ii) F(–∞) = 0 and F(∞) = 1.

 (iii) ( ) ( )

( ) ( )

( ) ( ).

b

a

b a

P a x b f x dx

f x dx f x dx

F b F a
−∞ −∞

≤ ≤ =

= −

= −

∫

∫ ∫

2.14 MEAN AND VARIANCE OF A RANDOM VARIABLE
Let X be a random variable which takes the values x1, x2, …, xm with corresponding probabilities 
p1, p2,…, pm. Then the mean (also called expectation) and variance of the random variables are defined by

1

1 1

1

Mean: since 1

m

i i m m
i

i i im
i i

i
i

p x

p x p

p

m =

= =

=

= = =
∑

∑ ∑
∑
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2 2
i i

1

2 2

1

2 2

1 1 1

2 2 2

1

1 1

2 2

1

Variance: (x )

( 2 )

2

2 +

since and 1

,

m

i

m

i i i
i

m m m

i i i i i
i i i

m

i i
i

m m

i i i
i i

m

i i
i

p

x x p

p x p x p

p x

p x p

p x

s m

m m

m m

m m

m

m

=

=

= = =

=

= =

=

= −

= − +

= − +

= −

= =

= −

∑

∑

∑ ∑ ∑

∑

∑ ∑

∑

where s  is the standard deviation of the distribution.
In case of continuous probability distribution, the mean (expected value) and variations are defined by

2 2

( ) ,

( ) ( ) .

xf x dx

x f x dx

m

s m

∞

−∞
∞

−∞

=

= −

∫

∫

EXAMPLE 2.53
A random variable x has the following probability function:

x: –2 –1 0 1 2 3
p(x): 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate the mean and variance.

Solution.  Since Σpi = 1, we have

0.1 0.2 2 0.3 1,k k k+ + + + + =

which yields k = 0.1. Further,
6

1 1

 2(0.1)

M

  ( 1)(0

ean:

2(0.1) 2(0.3) 3(0.1) 0..1) 0 2 8(0. )

n

i i i i
i i

p x p xm
= =

= − + −

=

+ ++

=

+ =

∑ ∑

and

2 2 2 2

1 1

 = 0.4 0.1 0 0.2 1

Variance: ( )

0.9 0.69 2.16..2

n n

i i i i
i i

x p p xs m m
= =

= − = −

+ + + − =+ +

∑ ∑
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EXAMPLE 2.54
A die is tossed thrice. A success is “getting 1 or 6” on a toss. Find the mean and variance of the number 
of successes.

Solution.  We have n = 3. Let X denote the number of success. Then

2 1Probability of success ,
6 3

1 2Probability of failure 1
3 3

= =

= − =

and

3
1

3
2

( 0) (no success) P(all failures)
2 2 2 8. .
3 3 3 27

( 1) (1 success and 2 failures)
1 2 2 4. ,
3 3 3 9

( 2) (2 success and 1 failure)
1 1 2 2 ,
3 3 3 9

1 1 1 1( 3) (3 success) . . .
3 3 3 27

P X P

P X P

C

P X P

C

P X P

= = =

= =

= =

⎛ ⎞= × =⎜ ⎟⎝ ⎠
= =

⎛ ⎞= × × =⎜ ⎟⎝ ⎠

= = = =

Therefore, the probability distribution is

8 4 2 1( ) :

: 0 1

27 9

2

27

3

9
P

X

X

Now

( ) 22 2

4 4 1Mean( ) 1,
9 9 9

4 8 9 2Variance 1 .
9 9 27 3

i i

i i

p x

p x

m

s m

= = + + =

= − = + + − =

∑

∑

EXAMPLE 2.55
Find the standard deviation for the following discrete distribution:

1 1 3 1 1( ) :

: 8 12 1

8 6 8 4 12

6 20 24

P X

X

Solution.  For the given discrete distribution, n = 5 and the mean

5

1
1 2 6 5 2 16.i i

i

p xm
=

= = + + + + =∑
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Thus the variance is
5

2 2 2

1

8 24 96 100 48 256 20.

i i
i

p xs m
=

= −

= + + + + − =

∑

Hence, the standard deviation is
20 2 5.s = =

EXAMPLE 2.56
The diameter x of an electric cable is assumed to be a continuous variate with possible probability 
density function f (x) = 6x (1–x), 0 ≤ x ≤ 1. Verify whether f is a probability density function. Also find 
the mean and variance.

Solution.  The given function is non-negative and 
1 1 1

2

0 0 0

( ) 6 6 1f x dx xdx x dx= − =∫ ∫ ∫ . Hence f is a prob-
ability density function. Further

1 1 1
2 3

0 0 0
1 13 4

0 0
1

2 2

0
1 2

0
1

4 3 2

0

Mean( ) ( ) 6 6

3 16 6 2 ,
3 4 2 2

Variance( ) ( ) ( )

1 [6 (1 )]
2

15 36 12
2 2

6 15 3 13 .
5 6 4 20

xf x dx x dx x dx

x x

x f x dx

x x x dx

x x x x dx

m

s m

= = −

⎡ ⎤ ⎡ ⎤
= − = − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

= −

⎛ ⎞= − −⎜ ⎟⎝ ⎠

⎛ ⎞= − + − +⎜ ⎟⎝ ⎠

= − + − + =

∫ ∫ ∫

∫

∫

∫

EXAMPLE 2.57
The probability density p(x) of a continuous random variable is given by

0( ) , .xp x y e x−= − ∞ < < ∞

Prove that 0
1
2

y = . Find the mean and variance of distribution.

Solution.  Since e–|x| is an even function of a, we have

0 0
0

0 0 0
0 0

( ) 2

2 2 2 .
1

x x

x
x

p x dx y e dx y e dx

e
y e dx y y

∞ ∞ ∞
− −

−∞ −∞
∞∞ −

−

= =

⎡ ⎤
= = =⎢ ⎥−⎣ ⎦

∫ ∫ ∫

∫
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But, p(x) being probability density function, we have

( ) 1.p x dx
∞

−∞

=∫
Therefore 2y0 = 1, which yields 0

1
2

y = . Further, since xe–|x| is an odd function, we have

[ ]1Mean( ) ( ) 0.
2

xxp x dx xe dxm
∞ ∞

−

−∞ −∞

= = =∫ ∫
Since 2 xx e−  is an even function, we have

2 2 2

2 2

0 0

1Variance( ) ( ) ( )
2

2 (3) 2! 2.
2

x

x x

x p x dx x e dx

x e dx x e dx

s m
∞ ∞

−

−∞ −∞
∞ ∞

− −

= − =

= = = Γ = =

∫ ∫

∫ ∫

EXAMPLE 2.58
Show that the function f defined by

3 2 , 2 4
( ) 18

0 otherwise

x
x

f x
+⎧ ≤ ≤⎪= ⎨

⎪⎩
is a density function. Find mean, variance, standard deviation, and mean deviation from the mean of 
the distribution.

Solution.  The function f is non-negative and
44 2

2 2

1 1 1( ) (3 2 ) 3 (28 10) 1.
18 18 2 18

x
f x dx x dx x

∞

−∞

= + = + = − =∫ ∫
Hence f is a density function. Also

44 2 3
2

2 2
4 2

2 2

2

1 1 3 83Mean( ) ( ) (3 2 ) 2 ,
18 18 2 3 27

1 83 239Variance( ) ( ) ( ) (3 2 ) .
18 27 729

x x
xf x dx x x dx

x f x dx x x dx

m

s m

∞

−∞
∞

−∞

⎡ ⎤
= = + = + =⎢ ⎥

⎣ ⎦

⎛ ⎞= − = − + =⎜ ⎟⎝ ⎠

∫ ∫

∫ ∫
Therefore,

2

4

2
83

427

832
27

239Standard deviation 0.57.
729

83 3 2Mean deviation ( )
27 18

83 3 2 83 3 2 0.49.
27 18 27 18

x
x f x dx x dx

x x
x dx x dx

s

m
∞

−∞

= = =

+⎛ ⎞= − = − ⎜ ⎟⎝ ⎠

+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫
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EXAMPLE 2.59
Two cards are drawn successively with replacement from a well-shuffled pack of 52 playing cards. Find 
the probability distribution of the number of aces.

Solution.  Let X be the random variable that is the number of aces obtained in the draw of two cards. 
There are three possibilities: (i) there is no ace, (ii) there is one ace, and (iii) there are two aces. Thus, 
the random variable takes the values 0, 1, 2. Then

48 48 144P(no ace is drawn) P( 0) .
52 52 169

P(one ace is drawn) P( 1)
P(one ace is drawn in the first draw and
no ace is drawn in the second draw)

P(no ace is drawn in the first draw and one
ace is drawn

X

X

= = = =

= =
=

+
 in the second draw)

4 48 48 4 24. . .
52 52 52 52 169

4 4 1P(two aces are drawn) P( 2) · .
52 52 169

X

= + =

= = = =

Hence the probability distribution is

144
: 0 1 2

16
24

9 16
1(

9
) :

169
P X

X

EXAMPLE 2.60
Find the probability distribution of the number of green balls drawn when three balls are drawn one by 
one without replacement from a bag containing three greens and five white balls.
Solution.  Let X be the random variable which is the number of green balls drawn when three balls are 
drawn without replacement. The random variable takes the values 0, 1, 2, 3.

We represent green ball by G and white ball by W. Then we have
P(no green ball is drawn) P(X 0) P(WWW)

5 4 3 5. .
8 7 6 28

P(one green ball is drawn) P(X 1)
P(GWW)+P(WGW)+P(WWG)
3 5 4 5 3 4 5 4 3 15. . . . . . .
8 7 6 8 7 6 8 7 6 28

P(two green balls are drawn) P(X 2)
P(GGW) P(GWG) P(WGG)
3 2.
8

= = =

= =

= =
=

= + + =

= =
= + +

=
5 3 5 2 5 3 2 15. . . . . .

7 6 8 7 6 8 7 6 56
P(three green balls are drawn) P(GGG)

3 2 1 1. . .
8 7 6 56

+ + =

=

= =
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Therefore, the probability distribution is
X: 0 1 2 3

p(X): 5
28

15
28

15
86

1
56

2.15 BINOMIAL DISTRIBUTION
Let S be a sample space for a random experiment. Let A be an event associated with a subset of S and 
let P(A) = p, then we know that P( A ) = 1–p. If we denote P( A ) = q, then p + q = 1.

If we call the occurrence of the event A as “success” and non-occurrence of the event A as a “fail-
ure”, then

P(failure) 1 P(success) and so
P(failure) P(success) 1.

= −
+ =

Suppose that X is a random variable on the sample space as the “number of success.” Then the 
probability distribution associated with the above random experiment is

X: 0 1
p(X): q p

If the experiment is conducted two times, then the possible outcomes are success success, success 
failure, failure success, and failure failure. Since the trials are independent, we have

2

2

P(success success) P(both success)
P(success)P(success)

. ,
P(success failure) P(success)P(failure) ,
P(failure success) P(failure)P(success) ,

P(failure failure) P(failure)P(failure) .

p p p

pq

qp

q

=
=

= =
= =
= =

= =

Thus, in term of random variable, we have
2

2

P( 0) P(failure, failure) ,
P( 1) 2 ,

P( 2) (success, success) .

X q

X pq qp pq

X p p

= = =
= = + =

= = =

Also we note that

  
2 2 2 2

( 0) ( 1) ( 2)

2 ( ) (1) 1.

P X P X P X

p q pq p q

= + = + =

= + + = + = =
Thus, the probability distribution associated with the two experiments is

X: 0 1 2
P(X): q2 2pq p2

The term of P(X ) are the terms in the binomial expansion of (q + p)2.
Similarly, the probability distribution associated with the three experiments is

X: 0 1 2 3
P(X): q3 3q2p 3qp2 p3
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Thus probabilities are the terms in the binomial expansions of (q + p)3. If the experiment is repeated 
n times, then the probability distribution is

1 2

1 2 2

: 0 1 2

( ):
r

n n n n r r n
c c c

X r n

P X q n q p n q p n q p p− − −

………

……

Clearly the probabilities are terms in the binomial expansion of (q + p)n.
This probability distribution is called the binomial distribution and X is called a binomial random 

variable.
Further, mean of the binomial distribution is given by

1 2

0
1 2 2

1 2 2

1 2 1

1

Mean: P( ) P(1) 2P(2) P( )

2

2 ( 1) p
2!

[ ( 1) ]

[( ) ] , since 1.

n

n

r

n n n
c c c

n n n

n n n

n

r r n n

n q p n q p n p

n n
npq p q n

np q n pq p

np q p np q p

m
=

− −

− −

− − −

−

= = + +……+

= + +……+

−
= + +……+

= + − +……+

= + = + =

∑

The variance of the binomial distribution is

     
2 2 2

0
.Variance: P( )

n

r

r rs m
=

= −∑  (2.37)

Now

2

0 0 0 0

0 2

2 2

2
2

P( ) [ ( 1)]P( ) P( ) ( 1)P( )

( 1)P( ) ( 1)P( ) since .

( 1) ( 1) ( )

( 1) since ( ) 1

r

n n n n

r r r r

n n

r r

n
r n r n

C
r

r r r r r r r r r r r

r r r np r r r np

np r r n p q np n n p q p

np n n p q p

m m

= = = =

= =

− −

=

= + − = + −

= + − = + − =

= + − = + − +

= + − + =

∑ ∑ ∑ ∑

∑ ∑

∑

Hence

            

2 2 2

2 2 2

2 2 2 2 2

( 1)

( 1) sinc

 (

e

1 ) .

np n n p

np n n p n p np

np n

np p

p np

n

n p

pq

s m

m

= + − −

= + − − =

= + − −
−= =

Thus the variance of the binomial distribution is
2 npqs =

and the standard deviation of the binomial distribution is
.npqs =
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To derive a recurrence formula for the binomial distribution, we note that
!( )

!( )!
n n r r n r r

r
n

P r C q p q p
r n r

− −= =
−

and so

( )
( 1) 1 1 1

1
!( 1) .

1 !( 1)!
n n r r n r r

r
n

P r C q p q p
r n r

− + + − − +
++ = =

+ − −
Then

( 1) . .
( ) 1

P r n r p

P r r q

+ −
=

+
Hence

( 1) . ( ),
1

n r p
P r P r

r q

−
+ =

+
which is the required recurrence formula. Thus, if P (0) is known, we can determine P (1), P (2), P (3),….

2.16 PEARSON’S CONSTANTS FOR BINOMIAL DISTRIBUTION
We know that moment generating function about the origin is

( 0)
0 ( ) .i it x tx

i iM t p e p e−= =∑ ∑
Thus, for binomial distribution,

     

− −

=
= =

= +

∑0
0

( ) ( )

( ) .

n
n n i ti n t i n ii

i i
i

t n

M t C q p e C pe q

q pe

 (2.38)

Differentiating with respect to t and then putting t = 0, we get

1 1
0

0
( ) [ ( ) . ] ( ) .

, since 1.

t n t n t n
t

t

d
q pe n q pe pe n q p p

dt

np p q

− −
=

=

⎡ ⎤+ = + = +⎢ ⎥⎣ ⎦
= + =

Thus the mean (m) = np. Further

     

2 3 4

0 1 2 3 4 0( ) ( ) or1 ( )
2! 3! 4!

at at
a

t t t
M t e M t t e M tm m m m− −= + + + + +… =  (2.39)

If we take a = m = np, then (2.39) reduces to

2 3 4

1 2 3 4 0

(1 )

2 3 4
2 2 3 3

2 3 4

1 ( )
2! 3! 4!

( ) ,  using (2.38)

( ) ( )

1 ( ) ( )
2! 3! 4!

1 ( ) [1 3( 2) ]
2! 4! 4!

npt

npt n

pt p t n pt qt n

n

t t t
t e M t

e q pet

qe pe qe pe

t t t
pq pq q p pq q p

t t t
npq npq q p npq n pq

m m m m −

−

− − −

+ + + + +… =

= +

= + = +

⎡ ⎤
= + + − + + +…⎢ ⎥

⎣ ⎦

= + + − + + − +…
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Comparing the coefficients of the power of t on both sides, we get

2 3

4

Variance ( ) , ( ),
[1 3( 2) ].

npq npq q p

npq n pq

m m
m

= = −
= + −

Therefore, Pearson’s constants for binomial distributions are
2 2 2
3

1 3
2

4
2 2

2

1 1

2 2

( ) (1 2 ) ,

1 63 ,

1 2 ,

1 63 .

q p p

npq npq

pq

npq

q p p

npq npq

pq

npq

m
b

m
m

b
m

g b

g b

− −
= = =

−
= = +

− −
= = =

−
= − =

Hence

( )

2

1

2

Mean ( ) ,

Variance( ) ,

Standard deviation ( ) ,
1 2Skewness ,

1 6Kurtosis ( ) 3 .

np

npq

npq

p

npq

pq

npq

m

s

s

b

b

=

=

=
−

=

−
= +

We observe that

(i) skewness of the binomial distribution is 0 for 1
2

p = ,

(ii) skewness is positive for 1
2

p < ,

(iii) skewness is negative for 
1
2

p > .

EXAMPLE 2.61
The incidence of occupational disease in an industry is such that the workers have a 20% chance of 
suffering from it. What is the probability that out of six workers chosen at random, four or more will 
suffer from the disease?

Solution.  We are given that 
20 1

100 5
p = = . Therefore, 41 .

5
q p= − =  Let P(X > 3) denote the probabil-

ity that out of six workers chosen four or more will suffer from the disease. Then

6 6 4 4 6 6 5 5 6 0 6
4 5 6

6 2 4 5 6
4

15 16 6 4 16
25 625 5 3125 25 625

240 24 1 265 53 .
25 625 25 625 3125

(  > 3) ( 4) ( 5) ( 6)

C q p C q p C q p

C q p q p

P X P X P X P X

p

− −= + +
× ×

= + + = + +
× × ×

+ +
= = =

= + = =

×

= +

×
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EXAMPLE 2.62
The probability that a bomb dropped from a plane will strike the target is 

1
5

. If six bombs are dropped, 
find the probability that (i) exactly two will strike the target and (ii) at least two will strike the target.

Solution.  The probability to strike the target is 1
5

p = . Therefore, 1 41
5

q
p

= − = . Then

 (i) 6 6 2 2 6 4 2
2 2

15 256 1( 2) 0.24576.
625 25

P X C q p C q p− × ×
= = = = =

×
 (ii) 

6 5

( 2) ( 2) ( 3) ( 4) ( 5) ( 6)

1 [ ( 0) ( 1)] 1 [ 6 ]
4096 61441 0.34478.

15625 15625

P X P X P X P X P X P X

P X P X q q p

≥ = = + = + = + = + =

= − = + = = − +

⎡ ⎤= − − =⎢ ⎥⎣ ⎦

EXAMPLE 2.63
The probability that a pen manufactured by a company will be defective is 1

10
. If 12 such pens are 

manufactured, find the probability that
(i) exactly two pens will be defective

(ii) at least two pens will be defective
(iii) none will be defective.

Solution.  We have 1
10

p =  and so, 1 91
10 10

q = − = . Then since n 12= , we have

 (i) 
12 10 2 2 10

2( 2) 66(0.1) (0.9
0.2301

)
.

P X C q p

=
= = =

 (ii) 
12 12 11

1
12 11

( 2) 1 [ ( 0) ( 1)]

1 [ ]

1 [(0.9) 12(0.9) (0.1)]
0.3412.

P X P X P X

q C q p

≥ = − = + =

= − +

=
=

− +

 (iii) 
12 12( 0) (0.9) 0.2833.P X q= = = =

EXAMPLE 2.64
Out of 800 families with 5 children each, how many families would be expected to have

(i) Three boys and two girls
(ii) Two boys and three girls

(iii) One girl
(iv) At the most two girls, under the assumption that probabilities for boys and girls are equal.

Solution.  We have n = 5. Further

1probability to have a boy
2

1probability to have a girl .
2

p

q

= =

= =
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Then
(i) The expected number of families to have three boys and two girls is

2 3
5 5 3 3

3
1 1800 800 10 250.
2 2

C q p− ⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤ = =⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
(ii) The expected number of families to have two boys and three girls is 

  

3 2
5 5 2 2

2
1 1800[ ] 800 10 250.
2 2

C q p− ⎡ ⎤⎛ ⎞ ⎛ ⎞= =⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (iii) The expected number of families to have no girls that is to have five boys is

5
5 0 5

2
1 800800[ ] 800 25.
2 32

C q p ⎛ ⎞= = =⎜ ⎟⎝ ⎠

 (iv) The expected number of families to have at the most two girls, that is, at least three boys is

5 5 3 3 5 5 4 4 5 0 5
3 4 5

2 3 4 5

800[ ]

1 1 1 1 1800 10 5
2 2 2 2 2

10 5 1800 400.
32 32

800[ ( 3) ( 4) ( 5

2

)

3

] P X P X P X

C q p C q p C q p− −= + +

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝

=

⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤= + + =⎢ ⎥⎣ ⎦

+ = + =

EXAMPLE 2.65
The following data shows the number of seeds germinating out of 10 on damp filter for 80 sets of seeds. 
Fit a binomial distribution to this data:

x: 0 1 2 3 4 5 6 7 8 9 10
f: 6 20 28 12 8 6 0 0 0 0 0

Solution.  We note that n = 10 and

6 20 28 12 8 6 80.if = + + + + + =∑
Therefore, the mean of the binomial distribution m is given by

20 56 36 32 30 174
80 80

2.175.

i i

i

f x

f
m

+ + + +
= = =

=

∑
∑

But m = np. Therefore,
2.175 0.2175and 1 0.7825.

10
p q p

n

m
= = = = − =

Therefore, the probability distribution is

10 10 9 10 8 2 10 7 3 10 9 10
1 2 3 9

: 0 1 2 3 9 10

( ) :

x

p x q C q p C q p C q p C qp p

……

……
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Hence the frequencies are given by f = 80p(x). Putting the values of p and q, we get

x: 0 1 2 3 4 5 6 7 8 9 10
f: 6.9 19.1 24.0 17.8 8.6 2.9 0.7 0.1 0 0 0

EXAMPLE 2.66
If the chance that one of the 10 telephone lines is busy at an instant is 0.2, then (i) what is the chance 
that five of the lines are busy? and (ii) what is the probability, that all lines are busy?

Solution.  Here n = 10, p = 0.2, and so q = 1 − 0.2 = 0.8. Then

 (i) Probability of five lines to be busy is
10 10 5 5

5
10 5 5 5 5

5

( 5)

252(0.8) (0.2
252(0.32768)(0.00032) 0.026 .

)
4

P X C q p

C q p

−

= =

= =

= =

 (ii) Probability that all the lines are busy is
10 10 10

10
10

( 10) (0.2)

1024 10 .

P X C p
−

= = =

= ×

EXAMPLE 2.67
In sampling a large number of parts manufactured by a machine, the mean number of defective parts 
in a sample of 20 is 2. Out of 1000 such samples, how many would be expected to contain at least 3 
defective parts.

Solution.  We are given that n = 20 and m = np = 2 and so
2 2 1 1 9, 1 .

20 10 10 10
p q

n
= = = = − =

Then

        

20 20 20 19 20 18 2
0 1 2

20 19 18 2

1 [ ]

1 [(0.9) 20(0.9) (0.1)] 19

P(X 2) 1 [P(X 0) P(X

0(0.9) (0.9) 0.323

1) P(X 2)

.

]

C q C q p C q p

> = − = + = + =

= − + +

= − + + =

Hence the number of sample having atleast three defective parts out of the 1000 samples is 1000 × 
0.323 = 323.

EXAMPLE 2.68
Fit a binomial distribution to the following data and compare the theoretical frequencies with the actual 
ones

x: 0 1 2 3 4 5
f: 2 14 20 34 22 8

Solution.  We have n = 5, Σfi = 100. Therefore,

14 40 102 88 40 2.84.
100

i i

i

f x

f
m

+ + + +
= = =∑

∑
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But for binomial distribution, m = np. Therefore,

2.84 0.568and 1 0.432.
5

p q p
n

m
= = = = − =

Therefore, the probability distribution is

5 5 4 5 3 2 5 2 3 5 4 5
1 2 3 4

:   

(

0 1 3 4

):

2 5

P x q C q p C q p C q p C qp p

x

Therefore the expected (theoretical) frequencies are
5 4 3 3 2

3 2 3 4 5

100(0.432) , 500(0.432) (0.568),10 (0.432) (0.568) ,

10 (0.432) (0.568) , 500(0.432)(0.568) ,100(0.568) .

After computation, we get the theoretical frequencies as

1.504, 9.891, 26.010, 34.199, 22.483, 5.918.

EXAMPLE 2.69
Find the probability of number 4 turning up at least once in two tosses of a fair dice.

Solution.  Let X denote the number of times the number 4 turn up. We note that

1 1 5P(4 turns up) p  and so q 1 1 .
6 6 6

p= = = − = − =

Thus the probability distribution is

2 2

:   0       1    

( ):

 2

2

  

P X q pq p

X

Hence

2

2

P(4 turns up at least once)

( 1) P( 2) 2

1 5 1 112. . .
6 6 6 36

P X X pq p= = + = = +

⎛ ⎞= + =⎜ ⎟⎝ ⎠

EXAMPLE 2.70
A coin is tossed five times. What is the probability of getting at least three heads?

Solution.  Let X denote the “number of heads obtained”. We know that

1P(head obtained) .
2

p = =

Therefore,

1 11 =1 .
2 2

q p= − − =

The random variable X takes the values 0, 1, 2, 3, 4, 5, and n = 5. Hence
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3 4 5

3 2 4 5

3 2 4 5

P(at least three heads) P( 3)

P( 3) P( 4) P( 5) 5 5 5

1 1 1 1 1 10 5 1 110 5 .
2 2 2 2 2 32 32 32 2

C C C

X

X X X p q p q p

= ≥

= = + = + = = + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + = + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

EXAMPLE 2.71
The mean and variance of a binomial variable X are 2 and 1, respectively. Find the probability that X 
takes a value greater than 1.

Solution.  Suppose n is the number of independent trials. Since X is a binomial variate, we have

     

Mean 2 (given)
Variance 1 (given)

np

np q

= =
= =  

(2.40)

 

(2.41)

Dividing (2.41) by (2.40), we get q = 1
2

, which yields p= 1 − q = 
1
2

. Also then (2.40) gives n = 4. Hence

4 4 4 3
0 1

4 3
4 3

P( 1) 1 [P( 0) P( 1)]

1 [ ]

1 1 11 [ 4 ] 1 4
2 2 2

5 111 .
16 16

X X X

C q C q p

q p q

> = − = + =

= − +

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

= − =

2.17 POISSON DISTRIBUTION
The Poisson distribution is a limiting case of binomial distribution when n is very large and p is very small in 
such a way that mean np remains constant. To derive Poisson distribution, we assume that when n is large and 
p is very small, then np = l (constant). In the binomial distribution, the probability of r successes is given by

( )
( 1)( 2) ( 1) (1 )

!
( 1)( 2) ( 1) 1 .

!

1
( 1)( 2) ( 1).

!
1

1
1 2 11 1 1

!

n n r r
r

n r r

n r r

n

r

r r

n

r

P r C q p

n n n n r
p p

r

n n n n r

r n n

n n n n r n
r n

n

n
r

r n n n

l

l l

l
l

l

l

l

−

−

−

−

=
− − … − +

= −

− − … − + ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎜ ⎟⎝ ⎠− − … − +
=

⎛ ⎞−⎜ ⎟⎝ ⎠

⎡ ⎤
⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠

⎢−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎣ ⎦= − − … −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
.

1
r

n

l

l

−

⎥

⎛ ⎞−⎜ ⎟⎝ ⎠
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Therefore, the Poisson distribution is given by

( ) ( )lim 0,1,2,3,... ,
!

r

n
P r e r

r
ll −

→∞
= =

where l = np is called parameter of the Poisson distribution. Thus, the probabilities of 0,1,2,…, r,… of 
successes in a Poisson distribution are

2
, , , , ,

2! !

r

e e e e
r

l l l ll l
l− − − −… …

The sum of the probabilities P(r), r = 0, 1, 2,… is
2

2
2! !

1 . 1.
2! !

r

r

e e e e
r

e e e
r

l l l l

l l l

l l
l

l l
l

− − − −

− −

+ + +…+ +…

⎛ ⎞
= + + +…+ +… = =⎜ ⎟⎝ ⎠

Further, for the Poisson distribution,
1( 1) !.

( ) ( 1)! 1

r

r

P r e r

P r r re

l

l
l l

l

+ −

−
+

= =
+ +

and so

( 1) ( ),
1

P r P r
r

l
+ =

+
which is the recurrence formula for the Poisson distribution. Some examples of Poisson distribution are

(i) The number of defective screws per box of 100 screws
(ii) The number of fragments from a shell hitting a target

(iii) Number of typographical error per page in typed material
(iv) Mortality rate per thousand.

2.18 CONSTANTS OF THE POISSON DISTRIBUTION
The constants of the Poisson distribution can be derived from the corresponding constants of the bino-
mial distribution by letting n → ∞ and p → 0. Since q =1 − p, p → 0 if q → 1. Therefore, mean (m), 
variation (s2), standard deviation s, skewness 1( )b , and kurtosis (b2) are given by

     

( )

( )

2
3 4

2 2
3

1 3 3
2

4
2

2

2
2

2 0 1

, , 3 ,

1Skewness ,

1Kurtosis ( ) 3

lim ,since constant ,

lim li ,

.

m
n

p q
n

np np

npq q

s l m l m l l

m l
b

l

m

m l
m

b
lm

l l

s m l l
→∞

→ →
→∞

= = =

= = = =

= = = +

= = =

= = +

EXAMPLE 2.72
A certain screw making machine produces an average of 2 defective screws out of 100 and pack them 
in boxes of 500. Find the probability that a box contains 15 defective screws.
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Solution.  The probability of occurrence is 2 0.02
100

=  and, therefore, it follows a Poisson distribution. 
Now n = 500, and p = 0.02. Therefore,

mean 10.npl = = =

Now the probability that a box contains 15 defective screws is
15 15

1010 0.035.
15! 15!

e ell − −= =

EXAMPLE 2.73
A book of 520 pages has 390 typographical errors. Assuming Poisson law for the number of errors per 
page, find the probability that a random sample of five pages will contain no error.

Solution.  The average number of typographical error per page is given by
390 0.75.
520

l = =

Therefore, probability of zero error per page is
0.75( 0) .P X e el− −= = =

Hence, required probability that a random sample of five pages contains no error is
5 0.75 5 3.75[ ( 0)] ( ) .P X e e− −= = =

EXAMPLE 2.74
Fit a Poisson distribution to the following:

x: 0 1 2 3 4
f: 46 38 22 9 1

Solution.  The mean of the Poisson distribution is

0 38 44 27 4 113
116 116

0.974.

i i

i

f x

f
l

+ + + +
= = =

=

∑
∑

Therefore, frequencies are
2 3 4

116 ,116 ,116 ,116 ,116 .
2 3! 4!

e e e e el l l l ll l l
l− − − − −

Since 0.974 0.3776e el− −= = , the required Poisson distribution is

x: 0 1 2 3 4
y: 44 43 21 7 1

EXAMPLE 2.75
An insurance company insures 6,000 people against death by tuberculosis (TB). Based on the previous 
data, the rates were computed on the assumption that 5 persons in 10,000 die due to TB each year. What 
is the probability that more then two of the insured policy will get refund in a given year?

Solution.  Here n = 6000 is large and the probability p of death due to TB 
5 0.0005

10000
=  is (small). 

Therefore, the data follows Poisson distribution. The parameter of the distribution is
6000 0.0005 3.0.npl = = × =
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The required probability that more than two of the insured policies will get refunded is

2 2

( 2) 1 [ ( 0) ( 1) ( 2)

1 1 1
2 2

91 0.04979 1 3 , sin 0

]

1 0.4232 0.5768.

.4979
2

e e e

P X P X P

e

ce e

X P X

l l l l

l

l l
l l− − − −

−

⎡ ⎤ ⎡ ⎤
= − + + = − + +

> = − = + = + =

= −

⎢ ⎥ ⎢ ⎥
⎣

=

⎦ ⎣ ⎦
⎡ ⎤= − + + =⎢ ⎥⎣ ⎦

EXAMPLE 2.76
Fit a Poisson distribution to the following data

x: 0 1 2 3 4
f: 122 60 15 2 1

Solution.  If the above distribution is approximated by a Poisson distribution, then the parameter of the 
Poisson distribution is given by

0 60 30 6 4Mean 0.5.
200

i i

i

f x

f
l

+ + + +
= = = =∑

∑
Therefore, the theoretical frequencies are

2 3 4
, , , , ,

2! 3! 4!
Ne N e N e N e N el l l l ll l l

l− − − − −

where N = 200. Also 0.5 0.6065e el− −= = .
Therefore, the required Poisson distribution is

x: 0 1 2 3 4
f: 121 61 15 2 0

EXAMPLE 2.77
A car hire firm has two cars which it hires out day by day. The number of demands for a car on each 
day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) on which 
there is no demand and (ii) on which demand is refused:

Solution.  We are given that λ = 1.5. When there is no demand, the probability is
1.5 0.2231.e el− −= =

When demand is refused, then the probability of number of demands exceeds 2. Therefore, the prob-
ability for this event is

( )

2 2

2

1 1 1
2

1 [ ( 0) ( 1) ( 2)]

1 0.80

! 2!

1.5
1 0. 874 0.2231 1 1. 1915 2 .

2
6

e e e

P X P X P X

el l l ll l
l l− − − −⎡ ⎤ ⎡ ⎤

= − + + = − + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
= − + +⎢ ⎥

⎢ ⎥⎣

− = + = + =

−
⎦

= =
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EXAMPLE 2.78
The mortality rate for a certain disease is 6 per 1000. What is the probability for just four deaths from 
that disease in a group of 400?

Solution.  The parameter of the Poisson distribution is given by

400 .np pl = =

But
6 0.0006.

1000
p = =

Therefore,
400 0.006 2.4l = × =

and so

( )

( )

44
2.4

4

2.4
( 4)

4! 4!
2.4

(0.09072) 0.1254.
4!

P X e ell − −= = =

= =

EXAMPLE 2.79
Find the probability that at most 5 defective diodes will be found in a pack of 600 diodes if previous 
data shows that 3% of such diodes are defective.

Solution.  Here n = 600, p = 0.03. Therefore, parameter of Poisson distribution is

600(0.03) 6.npl = = =

Therefore,
2 3 4 5

2 3 4 5

2 3 4 5
6

( 5)
2! 3! 4! 5!

1
2! 3! 4! 5!

6 6 6 61 6
2 6 24 120

0.00248[179.8] 0.4459.

P X e e e e e e

e

e

l l l l l l

l

l l l l
l

l l l l
l

− − − − − −

−

−

≤ = + + + + +

⎡ ⎤
= + + + + +⎢ ⎥

⎣ ⎦
⎡ ⎤

= + + + + +⎢ ⎥
⎣ ⎦

= =

2.19 NORMAL DISTRIBUTION
The normal distribution is a continuous distribution, which can be regarded as the limiting form of the 
Binomial distribution when n, the number of trials, is very large but neither p nor q is very small. The 
limit approach more rapidly if p and q are nearly equal, that is, if p and q are close to 1

2
. In fact, using 

Stirling’s formula, the following theorem can be proved:
A binomial probability density function

( ) ,n n x x
xP x C q p−=
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in which n becomes infinitely large, approaches as a limit to the so-called normal probability density 
function

2( )
21( ) .

2

x np

npqf x e
npqp

−−
=

Since for a Binomial distribution, the mean and standard deviations are given by

and ,np npqm s= =

the normal frequency function becomes
21

21( ) ,
2

x

f x e
m

s

s p

−⎛ ⎞− ⎜ ⎟⎝ ⎠=

where the variable x can assume all values from −∞ to ∞.
The graph of the normal frequency function is called the normal curve. The normal curve is bell-

shaped and is symmetrical about the mean m. This curve is unimodal and its mode coincide with its 
mean m. The two tails of the curve extend to +∞ and −∞, respectively, towards the positive and negative 
directions of x-axis, approaching the x-axis without ever meeting it. Thus the curve is asymptotic to the 
x-axis. Since the curve is symmetrical about x = m, its mean, median, and mode are the same. Its points 
of inflexion are found to be x = m ± s, that is, the points are equidistant from the mean on either side. 
As we shall prove, the total area under the normal curve above the x-axis is unity. Thus the graph of the 
normal frequency curve is as shown in the Figure 2.1.

f  (x)

0
xμ

Figure 2.1

The parameters m and s determines the position and relative proportions of the normal curve. If two 
populations defined by normal frequency functions have different means m1 and m2 but identical stand-
ard deviations s1 = s2, then their graphs appear as shown in the Figure 2.2.



228 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02.indd

Modif cation Date: April 29, 2010 12:50 PM Modif cation Date: 29-04-10, 13:09

f  (x)

0
x

μ1 μ2

Figure 2.2

On the other hand, if the two populations have identical means m1 = m2 and different standard devia-
tions s1 and s2, then their graphs would appear as shown in the Figure 2.3.

f  (x)

0
x

μ1= μ2

Figure 2.3

2.20 CHARACTERISTICS OF THE NORMAL DISTRIBUTION
The normal distribution has the following properties:

1.  Normal distribution is a continuous distribution: The probability density function of the 
normal distribution is

21
21( ) .

2

x

f x e
m

s

s p

−⎛ ⎞− ⎜ ⎟⎝ ⎠=
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Therefore, area under the normal curve is equal to
21

21( ) .
2

x

f x dx e dx
m

s

s p

−⎛ ⎞∞ ∞ − ⎜ ⎟⎝ ⎠

−∞ −∞

=∫ ∫
Putting ,we have 2

2
x

t dx dt
m

s
s

−
= = , and so

2 21 1( ) 2
2

1 1.

t tf x dx e dt e dts
s p p

p
p

∞ ∞ ∞
− −

−∞ −∞ −∞

= =

= =

∫ ∫ ∫

Thus f (x) ≥ 0 and ( ) 1f x dx
∞

−∞
=∫ . Hence f is a continuous distribution.

2.   Mean, mode, and median of the normal distribution coincide. Hence the distribution is 
symmetrical

 (i) Mean: The general form of the normal curve is
21

2( ) .
2

x
N

y f x e
m

s

s p

−⎛ ⎞− ⎜ ⎟⎝ ⎠= =

Therefore,
21

21 1Mean .
2

x

yxdx x e dx
N

m
s

s p

−⎛ ⎞∞ ∞ − ⎜ ⎟⎝ ⎠

−∞ −∞

= =∫ ∫

Put 
2

x
t

m
s

−
=  so that 2x tm s= +  and 2dx dts= . Hence

2

2

2 2

1Mean ( 2) . 2
2

1 ( 2)

2

,

t

t

t t

t e dt

t e dt

e dt te dt

m s s
s p

m s
p

m s
p p
m

p m
p

∞
−

−∞
∞

−

−∞
∞ ∞

− −

−∞ −∞

= +

= +

= +

= =

∫

∫

∫ ∫

because 
2te dt p

∞ −
−∞

=∫  and 
2

0tte dt
∞ −
−∞

=∫  due to oddness of 
2tte− .

(ii)  Mode: Mode is the value of x for which f is maximum. In other words, mode is the solution 
of f′(x) = 0 and f ″(x) < 0.

For normal distribution, we have
21

21( ) .
2

x

f x e
m

s

s p

−⎛ ⎞− ⎜ ⎟⎝ ⎠=

Taking log, we get
2

2
1 1log ( ) log ( ) .
2 2

f x x m
s p s

⎛ ⎞= − −⎜ ⎟⎝ ⎠
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Differentiating with respect to x, we get

2
( ) 1 ( )
( )

f x
x

f x
m

s

′
= − −

and so 2
1( ) ( ) ( )f x x f xm

s
′ −

= − . Then

2

2 2

1( ) [ ( ) ( ) ( )]

( ) ( )1 .

f x f x x f x

f x x

m
s

m
s s

′′ ′= − + −

−⎡ ⎤= − +⎢ ⎥⎣ ⎦
New f ′ (x) = 0 implies x = m. Also at x = m, we have

2
1 1( ) . 0.

2
f m

s ps
′′ = − <

Hence x = m is mode of the normal distribution.
(iii) Median: We know that

( ) 1.f x dx
∞

−∞

=∫
Therefore, if M is the median of the normal distribution, we must have

1( ) .
2

M

f x dx
−∞

=∫
Therefore,

21
21 1

22

xM

e dx
m

s

s p

−⎛ ⎞− ⎜ ⎟⎝ ⎠

−∞

=∫
or

221 1
2 21 1 1 .

22 2

x xM

e dx e dx
m mm

s s

ms p s p

− −⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−∞

+ =∫ ∫
But

221 0
2 21 1

2 2

1 1. .
22 2

x t

e dx e dx
mm

s

s p p

p
p

−⎛ ⎞− −⎜ ⎟⎝ ⎠

−∞ −∞

=

= =

∫ ∫

Therefore,
21

21 1 1 ,
2 22

xM

e dx
m

s

ms p

−⎛ ⎞− ⎜ ⎟⎝ ⎠+ =∫
which implies

21
21 0.

2

xM

e dx
m

s

ms p

−⎛ ⎞− ⎜ ⎟⎝ ⎠ =∫
Consequently, M = m.
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Thus, mean, mode, and median coincide for the normal distribution. Hence the normal curve is 
symmetrical.

 3.  The variance of the normal distribution is s2 and so the standard deviation is s: In fact, 
we have

2

2 2

1
2 22

1
2 22

2 2

2 2
2 2

0
2

2

0
312 2 1
22

0 0

1Variance ( ) .
2

1 ( )
2

1 2 . 2 , ,
2 2

2 4

4 ,
2

2 2

x

x

t

t t

z

z z

x e dx

x e dx

x
t e dt t

t e dt t e dt

dz
z e t z

z

z e dz z e dz

m
s

m
s

m
s p

m
s p

m
s s

s p s

s s
p p

s
p

s s
p p

−⎛ ⎞∞ − ⎜ ⎟⎝ ⎠

−∞
−⎛ ⎞∞ − ⎜ ⎟⎝ ⎠

−∞
∞

−

−∞
∞ ∞

− −

−∞
∞

−

⎛ ⎞∞ ∞ −⎜ ⎟⎝ ⎠− −

= −

= −

−
= =

= =

= =

= =

=

∫

∫

∫

∫ ∫

∫

∫ ∫
2

2
2

2 3
2

2 1. .
2

s
p

s
p s

p

⎛ ⎞Γ ⎜ ⎟⎝ ⎠

= =

Therefore,

Standard deviation variance .s= =

  4.  Points of inflexion of normal curve: At the point of inflexion of the normal curve, we 
should have f ″(x) = 0 and f ″′(x) ≠ 0. As we have seen, for normal distribution

( )2

2 2
( )( ) 1 .

xf x
f x

m
s s

′′
⎡ ⎤−

= − −⎢ ⎥
⎢ ⎥⎣ ⎦

Therefore, f ″(x) = 0 yields

( ) ( )
2

2 2
21 0 or .

x
x

m
m s

s
−

− = − =

Hence x = m ± s. Further, at x = m ± s, we have f ″′ (x) ≠ 0. Thus the normal curve has two points of 
inflexion given by x = m − s and x = m + s. Clearly, the points of inflexions are equidistant (at a 
distance s) from the mean.



232 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02.indd

Modif cation Date: April 29, 2010 12:50 PM Modif cation Date: 29-04-10, 13:09

  5. Mean deviation about the mean: The mean deviation from the mean is given by

m
s

m

m
s p

s m
sp

s
p

∞

−∞

−⎛ ⎞∞ − ⎜ ⎟⎝ ⎠

−∞

∞ −

−∞

∞ −

−∞

= −

= −

−
= =

=

∫

∫

∫

∫

2

2

2

1
2

2

2

Mean deviation (about mean) ( )

1
2

,
2

2 ,
2

x

t

t

x f x dx

x e dx

x
t e dt t

t e dt

since the integral is an even function of z. Since | t | = t for t Œ [0, ∞], we have

s
p

s
p

s s
p p

s

∞ −

∞
−

∞−

=

= =

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

=

∫

∫

2

2

0

2

0

0

2Mean deviation

2 ,
2

2 2
1

4 , approximately.
5

t

z

z

t e dt

t
e dt z

e

Thus for the normal distribution, the mean deviation is approximately 4
5

 times the standard deviation.

2.21 NORMAL PROBABILITY INTEGRAL
If X is a normal random variable with mean m and variance s2, then the probability that random value 
of X will lie between X = m and X = x1 is given by

1 1
21

2
1

1( ) ( ) .
2

xx x

P X x f x dx e dx
m

s

m m

m
s p

−⎛ ⎞− ⎜ ⎟⎝ ⎠< < = =∫ ∫

Put X
Z

m
s
−

= . Then X − m = s Z. Therefore, when X = m, Z = 0 and when X=x1, 1
1

x
Z z

m
s
−

= = , say. 

Therefore,
m

f
p

−

< < = < <

= =∫ ∫
2

1 1

1 1

2

0 0

( ) (0 )

1 ( ) ,
2

z zz

P X x P Z z

e dz z dz



Elements of Statistics and Probability � 233

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02.indd

Modif cation Date: April 29, 2010 12:50 PM Modif cation Date: 29-04-10, 13:09

where 
2

21( )
2

z

z ef
p

−
=  is the probability function of the standard normal variate X

Z
m

s
−

= . The 

definite integral 1

0
( )

z
z dzf∫  is called the normal probability integral which gives the area under the 

standard normal curve (Figure 2.4) between the ordinates at z = 0 and z = z1.

Point of inflexion Point of inflexion

Mean
Mode
Median

Z = z1

Z
Z = –z1

φ(Z)

Figure 2.4
The standard normal curve

2

21( )
2

z

z ef
p

−
=

is symmetrical with respect to f(x) − axis since f(z) remain unchanged if z is replaced by − z. Thus 
arithmetic mean and the median of a normal frequency distribution coincide at the centre of it. The 
exponent of e in f(z) is negative, 

2

2
z

− . Hence f(z) is maximum when z = 0. All other values of z make 

f(z) smaller since 

2

2
2

2

1z

z
e

e

−
= . Thus the maximum value of f(z) is

1(0) 0.3989.
2

f
p

= =

As z increases numerically, 

2

2
z

e
−

 decreases and approaches zero when z becomes infinite. Thus the 
standard normal curve is asymptotic to the z-axis in both the positive and negative directions. Differ-
entiating f(z)with respect to z, we get

2

2

( ) ( ), and

( ) ( ) ( ) ( ) ( )

( 1) ( ).

z z z

z z z z z z z

z z

f f

f f f f f

f

′

′′ ′

=

= − − = − +

= −

Therefore, f″(z) = 0 implies z = ±1. Thus the points of inflexion (at which the curve changes from con-
cave downward to concave upward) are situated at a unit distance from the f (z)–axis.
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2.22 AREAS UNDER THE STANDARD NORMAL CURVE
The equation of the standard normal curve is

2

21( ) .
2

z

z ef
p

−
=

The area under this curve is given by
2 2

2 2

0
1 2
2

0

1 2( )
2

1 ,
2

1 1 1 . 1.
2

z z

t

z dz e dz e dz

z
t e dt t

f
pp

p

p
p p

∞ ∞ ∞− −

−∞ −∞
∞ − −

= =

= =

⎛ ⎞= Γ = =⎜ ⎟⎝ ⎠

∫ ∫ ∫

∫

If follows, therefore, that the area under f(z) from z = z1 to z = z2, that is, 2

1

( )
z

z
z dzf∫  is always less than 1, 

where z1 and z2 are finite.
Further, because of the symmetry of the curve with respect to f(z)-axis, the area from any z = z1 

to + ∞ is equal to the area from − ∞ to −z1. Thus
1

1

( ) ( ) .
z

z

z dz z dzf f
−∞

−∞

=∫ ∫
Since the area under the curve from z = 1 to z = ∞ is 0.1587, we have

1 1

1 1 1

= 1 - 2(0.1587) = 0.6826

( ) ( ) ( ) ( ) ( ) 2 ( )

.

z dz z dz z dz z dz z dz z dzf f f f f f
∞ − ∞ ∞ ∞

− −∞ −∞ −∞

= − − = −∫ ∫ ∫ ∫ ∫ ∫

In term of statistics, this means that 68% of the normal variates deviate from their mean by less than 
one standard deviation. Similarly,

2 3

2 3

( ) 0.9544, ( ) 0.9974 ·z dz z dzf f
− −

= =∫ ∫
Thus, over 95% of the area is included between the limits −2 and 2 and over 99% of the area is included 
between −3 and 3 as shown in the Figure 2.5.

2.23 FITTING OF NORMAL DISTRIBUTION TO A GIVEN DATA
The equation of the normal curve fitted to a given data is

21
21( ) , .

2

x

y f x e x
m

s

s p

−⎛ ⎞− ⎜ ⎟⎝ ⎠= = − ∞ < < ∞

Therefore, first calculate the mean m and the standard deviation s. Then find the standard normal 
variate X

Z
m

s
−

=  corresponding to the lower limits of each of the class interval, that is, determine 

1
1

x
z

m
s

′ −
= , where 1x′  is the lower limit of the ith class. The third step is to calculate the area under the 

normal curve to the left of the ordinate Z = z1, say ( )izΦ , from the tables. Then areas for the successive 
class intervals are obtained by subtraction, , ( 1) ( ), 1,2,3i iviz z z iΦ + − Φ = …  Then

1Expected frequency [ ( ) ( )].i iN z z+= Φ − Φ
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EXAMPLE 2.80
The scores in a competitive examination is normally distributed with mean 400 and standard deviation 
80. Out of 10,000 candidates appeared in the examination, it is desired to pass 350 candidates. What 
should be the lowest score permitted for passing the examination?

Solution.  The fraction of the passing candidate is 350 0.035
10000

= . Thus the fraction of the failing can-

didates is 0.965. The passing fraction is shown in the right—tail area of the Figure 2.6 of normal curve.
Thus the area of the standard normal curve is

( ) 0.035
z

z dzf
∞

=∫
as shown in the Figure 2.7.

Figure 2.5

φ(Z)

Z
3210–1–2–3

68.26%

95.44%

99.74%

0

0.965

xμ = 400

0.035

Figure 2.6 Figure 2.7
0 zO

0.035

φ(Z)

Consulting the table for area under the normal curve, we have z = 1.81. Therefore, the relation 
x

Z
m

s
−

=  yields
4001.81 or 400 80(1.81) 545.

80
x

x
−

= = + =

Thus the candidates having scores of 545 or above will be declared pass.
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EXAMPLE 2.81
In an examination taken by 500 candidates the average and standard deviation of marks obtained (nor-
mally distributed) are 40% and 10%. Find approximately

(i) How many will pass if 50 is fixed as a minimum?
(ii) What should be minimum score if 350 candidates are to be declared as pass?

(iii) How many candidates have scored marks above 60%?

Solution.  We are given that

500, 40, and 10.N m s= = =

Then

 
(i)

 
50 40 1

10
Z

−
= =

.
Therefore, consulting table for standard normal curve, we have

( 50) ( 1) 0.1587.P X P Z≥ = ≥ =

Hence the number of candidates passed, if 50 is fixed as minimum, is

0.1587 500 0.1587 79.35 79N × = × = ≈

 (ii) Fraction of passing students 
350 0.7
500

= =

Fraction of failing students = =1 - 0.7 0.3.

Thus
1

1

( ) ( ) 0.3
z

z

z dz z dzf f
∞

−∞ −

= =∫ ∫
which yields − z1 = 0.52. Hence

400.52
10

x −
− =

and so

40 5.2 34.8 35%.x = − = ≈

 (iii) We have

60 40 2.
10

Z
−

= =

Therefore, from the standard normal curve table

( 60) ( 2) 0.0288.P X P Z≥ = ≥ =

Hence number of candidates scoring more than 60% 500 0.0288 11= × ≈ .
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EXAMPLE 2.82
For a normally distributed variate X with mean 1 and standard deviation 3, find out the probability that

(i) 3.43 ≤ x ≤ 6.19
 (ii)  −1.43 ≤ x ≤ 6.19.
Solution.  We have m = 1 and s = 3.

(i) When x = 3.43,
3.43 1 0.81

3
x

Z
m

s
− −

= = =

and when x = 6.19
6.19 1 1.73.

3
Z

−
= =

Therefore,
(3.43 6.19) (0.81 1.73)

( 0.81) ( 1.73)
0.2090 0.0418 0.1672.

P x P Z

P Z P Z

≤ ≤ = ≤ ≤
= ≥ − ≥
= − =

(ii) When x = −1.43,
1.43 1 2.43 0.81

3 3
Z

− −
= = − = −

and when x = 6.19,
6.19 1 1.73.

3
Z

−
= =

Therefore,
( 1.43 6.19) ( 0.81 1.73)

( 0.81 0) (0 1.73)
(0 0.81) (0 1.73) (by symmetry)

0.2910 0.4582 0.7492.

P x P Z

P Z P Z

P Z P Z

− ≤ ≤ = − ≤ ≤
= − ≤ ≤ + ≤ ≤
= ≤ ≤ + ≤ ≤
= + =

EXAMPLE 2.83
The mean height of 500 students is 151 cm and the standard deviation is 15 cm. Assuming that the 
heights are normally distributed, find the number of students whose heights lie between 120 and 
155  cm.

Solution.  We have N = 500, m = 151, s = 15. If x = 120, then
120 120 151 31 2.07.

15 15
Z

m
s
− − −

= = = − = −

If x = 155, then

 
155 151 4 0.27.

15 15
Z

−
= = =

Therefore,
(120 150) ( 2.07 0.27)

( 2.07 0) (0 0.27)
(0 2.07) (0 0.27) (By symmetry)

0.4808 0.1064 0.5872 293.60 294.

P x P Z

P Z P Z

P Z P Z

≤ ≤ = − ≤ ≤
= − ≤ ≤ + ≤ ≤
= ≤ ≤ + ≤ ≤
= + = = ≈
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EXAMPLE 2.84
Fit a normal curve to the following data:

Class: 1−3 3−5 5−7 7−9 9−11
Frequency: 1 4 6 4 1

Also obtain the expected normal frequency.

Solution.  The class marks (mid-values) are 2, 4, 6, 8, 10. Therefore, for the given data, we have

Mean( )

2 1 4 4 6 6 8 4 10 1
1 4 6 4 1

96 6,
16

fx

f
m =

× + × + × + × + ×
=

+ + + +

= =

∑
∑

Standard deviation 
2

2( ) 40 36 2.
fx

f
s m= − = − =∑

∑
Hence the equation of the normal curve fitted to the given data is

( )
2

21 1 62 81 1( )
2 2

.
2

x
x

f x e e
m

s

s p p

−⎛ ⎞− − −⎜ ⎟⎝ ⎠= =

To calculate the expected frequency, we note that the area under f (x) in (z1, z2) is

m
sp p

− − − −
ΔΦ = − = =∫ ∫

2 2
2 1

2 2

0 0

1 1 6( ) , .
22 2

z zz z
x x

z e dz e dz z

Thus, the theoretic normal frequencies NΔΦ(z) are given by the following table:

Class interval Mid-value (z1,z2) ΔΦ(z) = Φ(z + 1) – Φ(z) Expected frequency
1–3 2 (–2.5, –1.5) 0.4938 – 0.4332 = 0.606 16(0.606) = 0.97 ≈ 1
3–5 4 (–1.5, –0.5) 0.4332 – 0.1915 = 0.2417 16(0.2417) = 3.9 ≈ 4
5–7 6 (–0.5, 0.5) 0.1915 + 0.1915 = 0.383 16(0.383) = 6.1 ≈ 6
7–9 8 (0.5, 1.5) 0.4332 – 0.1915 = 0.2417 16(0.2417) = 3.9 ≈ 4
9–11 10 (1.5, 2.5) 0.4938 – 0.4332 = 0.606 16(0.606) = 0.97 ≈ 1

Thus, the expected frequencies agree with the observed frequencies. Hence the normal curve 
obtained above is a proper fit to the given data.

EXAMPLE 2.85
In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the means and the 
standard deviation of the distribution.
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Solution.  When x = 45, we have

1
45 .x

z
m m

s s
− −

= =

When x = 64, we have

2
64 .z

m
s
−

=

Further
1

2

( ) 0.31 and ( ) 0.08,
z

z

z dz z dzf f
∞

−∞

= =∫ ∫

that is,

1 2

( ) 0.31 and ( ) 0.08.
z z

z dz z dzf f
∞ ∞

−

= =∫ ∫

Hence − z1 = 0.5 or z1 = –0.5 and z2 =1.4. Thus

45 0.5 and 64 1.45.m s m− = − − =

Solving these questions, we get s = 10 and m = 50.

EXAMPLE 2.86
The marks obtained by the number of students for a certain subject are assumed to be approximately 
distributed with mean value 65 and with a standard deviation of 5. If three students are taken at random 
from this set of students, what is the probability that exactly two of them will have marks over 70?

Solution.  We are given that m = 65 and s = 5. If x = 70, we have

70 65 1.
5

x
Z

m
s
− −

= = =

Thus

( ) ( )> = >
=

70 1
0.1587 (using the table).

P X P Z

Since this probability is the same for each student, the required probability that out of three students 
selected at random, exactly two will get marks over 70 is

 3 2
2 , where 0.1587 and 1 0.8413,C p q p q p= = − =

which is equal to 23(0.1587) (0.8413) 0.06357= .

2.24 SAMPLING
A population or universe is an aggregate of objects, animate, or inanimate, under study. More precisely, 
a population consists of numerical values connected with these objects. A population containing a 
finite number of objects is called a finite population, while a population with infinite number of objects 
is called an infinite population.

For any statistical investigation, complete enumeration of the infinite population is not practicable. 
For example, to calculate average per capita income of the people of a country, we have to enumerate 
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all the earning individuals in the country, which is a very difficult task. So we take the help of sampling 
in such a case.

A sample is a finite subset of statistical individual of a population. The number of individual in a sam-
ple is called the sample size. A sample is said to be large if the number of objects in the sample is at least 
30, otherwise it is called small. The process of selecting a sample from a population is called sampling.

A sampling in which the objects are chosen in such a manner that one object has as good chance 
of being selected as another is called a random sampling. This sample obtained in a random sampling 
is called a random sample.

The error involved in approximation by sampling technique is known as sampling error and is 
inherent and unavoidable in any and every sampling scheme. But sampling results in considerable 
gains, especially in time and cost.

The statistical constants of the population, namely, mean, variance etc., are denoted by, m, s2, etc., 
respectively, and are called parameters whereas the statistical measures computed from the sample 
observations alone, namely, mean, variance, etc., are denoted by x , s2, etc., and are called statistics.

Suppose that we draw possible samples of size n from a population at random. For each sample, 
we compute the mean. The means of the samples are not identical. The frequency distribution obtained 
by grouping the different means according to their frequencies is called sampling distribution of the 
mean. Similarly, the frequency distribution obtained by grouping different variances according to their 
frequency is called sampling distribution of the variance.

The sampling of large samples is assumed to be normal. The standard deviation of the sam-
pling distribution of a statistics is called standard error of that statistics. The standard error of the 
sampling distribution of means is called standard error of means. Similarly, standard error of the 
sampling distribution of variances is called standard error of the variances. The standard error is 
used to assess the difference between the expected and observed values. The reciprocal of the stand-
ard error is called precision.

Certain assumptions about the population are made to reach decisions about populations based on 
sample information. Such assumptions, true or false, are called statistical hypothesis.

A hypothesis which is a definite statement about the population parameter is called null hypothesis 
and is denoted by H0. In fact, the null hypothesis is that which is tested for possible rejection under the 
assumption that it is true. For example, let us take the hypothesis that a coin is unbiased (true). Thus 
H0 is that 1

2p = , where p is probability for head. We toss this coin 10 times and observe the number 
of times a head appears. If head appears too often or too seldom, we shall reject the hypothesis H0 and, 
thus, decide that the coin is biased, otherwise we shall decide that the penny is a fair one.

A hypothesis which is complementary to the null hypothesis is called the alternative hypothesis, 
which is denoted by H1. For example, if 0

1:
2

H p = , then the alternative hypothesis H1 can be

(i) 1
1:
2

H p ≠ ,

(ii) 1
1:
2

H p > ,

(iii) 1
1:
2

H p < .

The alternative hypothesis in (i) is called a two-tailed alternative, in (ii) it is called right tailed alterna-
tive, and in (iii) it is known as left-tailed alternative.

If a hypothesis is rejected while it should have been accepted, we say that a type I error is com-
mitted. If a hypothesis is accepted while it should have been rejected, we say that the type II error has 
been committed.
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2.25 LEVEL OF SIGNIFICANCE AND CRITICAL REGION
The probability level, below which we reject the hypothesis, is called the level of significance. A region 
in the sample space where hypothesis is rejected is called the critical region or region of rejection. The 
levels of significance, usually employed in testing of hypothesis, are 5% and 1%.

We know that for large n,
x np

Z
npq

−
=

is distributed as a standard normal variate. Thus, the shaded area is the standard normal curve shown in 
Figure 2.8 corresponds to 5% level of significance.

00 O

Critical regionCritical region

2.5%2.5% μ

Figure 2.8

The probability of the value of the variate falling in the critical region is the level of significance.
We use a single-tail test or double-tail test to estimate for the significance of a result. In a dou-

ble-tail test, the areas of both the tails of the curve representing the sampling distribution are taken 
into account whereas in the single-tail test, only the area on the right of an ordinate is taken into 
account. For example, we should use double-tail test to test whether a coin is biased or not because 
a biased coin gives either more number of heads than tails (right tail) or more number of tails than 
heads (left-tail).

The procedure which enables us to decide whether to accept or reject a hypothesis is called the test 
of significance. The procedure usually consists in assuming or accepting the hypothesis as correct and 
then calculating the probability of getting the observed or more extreme sample. If this probability is 
less than a certain pre-assigned value, the hypothesis is rejected, since samples with small probabilities 
should be rare and we assume that a rare event has not happened.

2.26 TEST OF SIGNIFICANCE FOR LARGE SAMPLES
We know that for large number of trials, the binomial and Poisson distributions are very closely approx-
imated by normal distribution. Therefore, for large samples we apply the normal test, which is based 
on the area property of normal probability curve. In standard normal curve, the standard normal variate 
Z is given by

.X
Z

m
s
−

=
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Then
( 3 3) ( 3 0) (0 3)

(0 3) (0 3) (by symmetry)
2 (0 3) 2(0.4987) 0.9974

P Z P Z P Z

P Z P Z

P Z

− ≤ ≤ = − ≤ ≤ + ≤ ≤
= ≤ ≤ + ≤ ≤
= ≤ ≤ = =

and so
( )3 1 0.9974 0.0026.P Z > = − =

If follows therefore that, in all probability, we should expect a standard normal variate to lie 
between –3 and 3. Further,

( 1.96 1.96) ( 1.96 0) (0 1.96)
2 (0 1.96)
2(0.4750) 0.9500

P Z P Z P Z

P Z

− ≤ ≤ = − ≤ ≤ + ≤ ≤
= ≤ ≤
= =

and so

( )1.96 1 0.95 0.05.P Z > = − =

If follows that the significant value of Z at 5% level of significance for a two-tailed test is 1.96.
Also, we note that

( 2.58 2.58) ( 2.58 0) (0 2.58)
2 (0 2.58)
2(0.4951) 0.9902

P Z P Z P Z

P Z

− ≤ ≤ = − ≤ ≤ + ≤ ≤
= ≤ ≤
= =

and so

( )2.58 0.01.P Z > =

Hence the significant value of Z at 1% level of significance for a two-tailed test is 2.58.
Now we find value of Z for single-tail test. From normal probability tables, we note that

( 1.645) 0.5 (0 1.645)
0.5 045 0.05

( 2.33) 0.5 (0 2.33)
0.5 0.49 0.01.

P Z P Z

P Z P Z

> = − ≤ ≤
= − =

> = − ≤ ≤
= − =

Hence, significant value of Z at 5% level of significance of a single-tail test is 1.695, whereas the 
significant value of Z at 1% level of significance is 2.33.

As a consequence of the above discussion, the steps to be used in the normal test are:
(i) Compute the test statistic Z under the null hypothesis

(ii) If |Z| > 3, H0 is always rejected
(iii) If |Z| ≤ 3, we test its level of significance at 5% or 1% level.
(iv) For a two-tailed test, if |Z| > 1.96, H0 is rejected at 5% level of significance. If |Z|> 2.58, H0 is 

rejected at 1% level of significance and if |Z| ≤ 2.58, H0 may be accepted at 1% level of sig-
nificance

(v) For a single-tailed test, if |Z| > 1.645, then H0 is rejected at 5% level and if |Z| > 2.33, then H0 is 
rejected at 1% level of significance.

The following theorem of statistics helps us to determine sample mean x  and sample variance S2 in 
terms of population mean m and population variance s2.
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Theorem 2.7.  (The Central Limit Theorem). The mean x  of a sample of size N drawn from any 
population (continuous or discrete) with mean m and finite variance s2 will have a distribution that 

approaches the normal distribution as N → ∞, with mean m and variance 
2

N

s .

The quantity 
N

s
 is called the standard error of the mean.

2.27 CONFIDENCE INTERVAL FOR THE MEAN
For the standard normal distribution, let Za be a point on the z-axis for which the area under the density 
function f(z) to its right is equal to a (see Figure 2.9a). Thus

a a> =( ) ,P Z z

or equivalently,
a

a a f
−∞

< = − = ∫( ) 1 ( ) .
z

P Z z z dz

1–α

Zα
Z

O

(Z )φ

Figure 2.9a

Since standard normal curve is symmetrical about f(z)-axis, we have

2 2

( ) 1 (see Figure 2.9b).P z Z za a a= −<− <

(Z )

1–α 

O–Zα/2 Zα/2
z

φ

Figure 2.9b
But, assuming normality of the sample average, the Central Limit theorem yields

.x
Z

n

m
s
−

=
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Therefore,

2 2

1x
P z z

n

a a
m

as

⎛ ⎞
⎜ ⎟−

− < = −⎜ ⎟
⎜ ⎟
⎝ ⎠

<

and so cross multiplication and change of sign yields

a a
s s

m a< <
⎛ ⎞

− + = −⎜ ⎟
⎝ ⎠2 2

1 .P x z x z
n n

The interval defined by

2 2

,x z x z
n n

a a
s s⎛ ⎞

− +⎜ ⎟
⎝ ⎠

 is called a 100(1 – α)% confi dence interval for the mean with variance (s) 

known. Thus if a is specif ed, the upper and lower limit of this interval can be calculated from the 
sample average.
We know that if a = 0.05, then z0.05 = 1.645 and then the 95% confidence interval for single-tailed test is

1.645 , 1.645 .x x
n n

s s⎛ ⎞− +⎜ ⎟⎝ ⎠

EXAMPLE 2.87
The temperature, in degree celsius, at 12 points chosen at random in New Delhi is measured. The 
observations at these points are:

25° 23° 22.5° 26.5° 27° 27.5°
23.5° 22.5° 26° 24° 24.5° 25.5°

The past experience shows that the standard deviation of temperature in Delhi is 1°C. Find a 95% con-
fidence interval for the mean temperature in the city.

Solution.  We note that
297.5 24.792.

12
m = =

Since z0.05 = 1.645, the 95% confidence interval is

124.79 1.645 (24.79 0.4748)
12

(24.32, 25.26).

⎛ ⎞⎛ ⎞+ = +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
=

EXAMPLE 2.88
For all children taking an examination, the mean mark was 60% with a standard deviation of 8%. A 
particular class of 30 children achieved an average of 63%. Is this unusual?

Solution.  Let H0 be null hypothesis that the achievement is usual. We have

30, 60, 8.N m s= = =
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Since the sample is large, the distribution tends to normal distribution. The standard normal variate is 
given by

63 60 2.0539.8
30

x
Z

N

m
s
− −

= = =

Since |Z| < 2.55, H0 is accepted at 5% level of significance and rejected at 1% level of significance 
since |Z| > 1.96.

EXAMPLE 2.89
A coin was tossed 400 times and the head turned up 216 times. Test the hypothesis that the coin is 
unbiased.

Solution.  The null hypothesis is

0
1:  The coin is unbiased, that is, (head) .
2

H p =

The number of trial (n) = 400. Therefore,

1Expected number of success 400 200.
2

Observed number of success 216.

np= = × =

=

Further 1
2

p =  implies 11
2

q p= − = . Therefore,

1 1400 10.
2 2

npqs = = × × =

Hence, standard normal variate is

216 200 1.6.
10

x np
Z s

− −
= = =

Since | Z | = 1.6 < 1.96, H0, is accepted at 5% level of significance. We conclude that the coin is unbi-
ased.

EXAMPLE 2.90
In IIT joint entrance test, the score showed m = 64 and s = 8. How large a sample of candidates appear-
ing in the test must be taken in order that there be a 10% chance that its mean score is less than 62%?

Solution.  We are given that m = 64, s = 8, and 62x =

= =<
10( 62) 0.1.
100

P x

Therefore,

1

1

0.1 ( ) ( ) .
z

z

z dz z dzf f
∞

−−∞

= =∫ ∫

The table of areas under the normal curve yield

1 11.28 and so 1.28.z z− = = −
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Hence
( )62 64( )1.28 ,

8
x x N

N

N

m m
s s

−− −
− = = =

which yields N = 26.21. Hence, we must take a sample of size 26.

EXAMPLE 2.91
If the mean breaking strength of copper wire is 575 kg with a standard deviation of 8.3 kg, how large a 
sample must be used so that there be one chance in 100 that the mean breaking strength of the sample 
is less than 572 kg?

Solution.  We are given that
575 , 8.3 , and 572kg kg xm s= = =

and

< = =
1( 572) 0.01.

100
P x

Therefore,
1

1

0.01 ( ) ( ) .
z

z

z dz z dzf f
∞

−∞ −

= =∫ ∫
The table of areas under normal curve yields

1 12.33, that is 2.33,z z− = = −
Therefore,

572 5752.33 ,
8.3

x
N

N

m
s
− −

− = =

which gives N = 41.602. Hence, we must take a sample of size 42.

EXAMPLE 2.92
A normal population has a mean of 6.8 and standard deviation of 1.5. A sample of 400 members gave 
a mean of 6.75. Is the difference between the means significant?

Solution.  Let the null and alternative hypothesis be 

0: there is no significant difference :between and ,H x m

1 there is significant difference between: and .H x m

It is given that m = 6.8, s = 1.5, N = 400, and 6.75x = . Therefore, the standard normal variate is given by
6.75 6.8 400

1.5
0.666 0.67.

x
Z N

m
s
− −

= =

= − ≈ −
Since | Z | = 0.67 < 1.96, H0 is accepted at 5% level of significance and so there is no significant 
difference between x  and m.

EXAMPLE 2.93
A research worker wishes to estimate mean of a population by using sufficiently large sample. The 
probability is 95% that sample mean will not differ from the true mean by more than 25% of the stand-
ard deviation. How large a sample should be taken?
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Solution.  We are given that

( )0.2 .95  5 0P x m s− =<
Also

( )1.96 0.95,P Z ≤ =

that is,

1.96 0.95x
P n

m
s
−⎛ ⎞≤ =⎜ ⎟⎝ ⎠

or

1.96 0.95.P x
n

s
m

⎛ ⎞⎛ ⎞− ≤ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
Therefore,

s
s⎛ ⎞

⎜ ⎟⎝ ⎠
< 1.96 0.25

n
or

2
21.96 (7.84) 61.47.

0.25
n ⎛ ⎞> = =⎜ ⎟⎝ ⎠

Therefore, the sample should be of the size 62.

EXAMPLE 2.94
As an application of Central Limit theorem, show that if E is such that ( ) 0.95P x Em− < > , then 

the minimum sample size n is given by 
2 2

2
(1.96)

n
E

s
= , where m and s2 are the mean and variance, 

respectively, of the population and x  is the mean of the random variable.

Solution.  By Central Limit theorem x
Z n

m
s
−

=  is a standard normal variate and, therefore, 
P(|Z| ≤1.96) = 0.95 implies

1.96 0.95x
P n

m
s
−⎧ ⎫≤ =⎨ ⎬

⎩ ⎭
or

1.96 0.95.P x
n

s
m⎧ ⎫− ≤ =⎨ ⎬

⎩ ⎭
Also, it is given that

{ } 0.95.P x Em− < >
Thus

2 2 2

2 2
1.96 (1.96) 3.84or .E n

n E E

s s
s> > =

Hence, minimum sample size is given by 
2

2
3.84

n
E

s
= .

2.28 TEST OF SIGNIFICANCE FOR SINGLE PROPORTION
Let X be the number of successes in n independent trials with probability p of success for each trial. 
Then

( ) , variation ( ) , 1 .E X np X npq q p= = = −
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Let XP n= be called the observed proportion of success. Then

Variance (P) Variation

. .

X
n

p q pq
n

n n n

⎛ ⎞= ⎜ ⎟⎝ ⎠

= =

Standard error (P) pq
n=

and

( ) ,
. ( )

P E P P p
Z

S E P pq
n

− −
= =

where Z is test statistics used to test the significant difference of sample and population proportion. 

Further, the limit for p at the level of significance is given by PQ
P z na± . In particular,

±

±

95% confidence limits for  are given by  1.96

99% confidence limits for  are given by  2.58 .

PQ
p P n

PQ
p P n

EXAMPLE 2.95
Solve Example 2.89 using significance for single proportion.

Solution.  Let the null and alternative hypothesis be

= =

≠

0

1

1: The coin is unbiased, that is, 0.5.
2

: The coin is biased, that is, 0.5.

H p

H p

We are given that n = 400 and number of successes (X) = 216. Therefore,

= = =

= = = − = − =

216Proportion of success in the sample ( ) 0.54.
400

Further, population proportion 0.5 and so 1 1 0.5 0.5. 

Hence

X
P n

p q p

   

− −
= =

×
= =

0.54 0.50Test statistics( ) 400
0.25

0.04 20 1.6.
0.5

P p
Z

pq
n

Since | Z | = 1.6 < 1.96, H0 is accepted at 5% level of significance. Hence the coin is unbiased.
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EXAMPLE 2.96
In an opinion poll conducted with a sample of 2,000 people chosen at random, 40% people told that 
they support a certain political party. Find a 95% confidence interval for the actual proportion of the 
population who support this party.

Solution.  The required 95% confidence interval is

(0.4)(0.6)0.4 1.96 0.4 1.96(0.01095)
2000

0.4 0.0214 (0.3786, 0.4214).

± = ±

= ± =

This shows that a variation of about 4% either way is expected when conducting opinion poll with 
sample size of this order.

EXAMPLE 2.97
A random sample of 400 mangoes was taken from a large consignment out of which 80 were 
found to be rotten. Obtain 99% confidence limits for the percentage of rotten mangoes in the 
consignment.

Solution.  We have n = 400 and proportion of rotten mangoes in the sample 80( ) 0.2
400

P = = . Since 

significant value of Z at 99% confidence coefficient (level of significance 1%) is 2.58, the 99% con-
fidence limits are

0.2 0.82.58 0.2 2.58
400

0.160.2 2.58
400

0.2 2.58(0.02)

 (0.148, 0.252).

PQ
P n

×
± = ±

= ±

= ±

=

Hence, 99% confidence limits for percentage of rotten mangoes in the consignments are (14.8, 25.2).

EXAMPLE 2.98
A die was thrown 9,000 times and a throw of 3 or 4 was observed 3,240 times. Show that the die cannot 
be regarded as an unbiased one.

Solution.  Let the null and alternative hypothesis be

0

1

: die is unbiased,
: die is biased.

H

H

Further,

    

probability of success (getting 3 or 4)
1 1 1 0.333
6 6 3

1 2probability of failure 1 .
3 3

p

q

=

= + = =

= = − =

    P = proportion of success in the sample 3240
9000

=  = 0.360.
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Therefore, the test statistics Z is given by

0.360 0.333 9000 5.37.
2
9

P p
Z

pq
n

− −
= = =

Since | Z | = 5.37 > 3, the null hypothesis is rejected. So, we conclude that the die is almost certainly 
biased.

EXAMPLE 2.99
Out of 650 truck drivers, 40 were found to have consumed alcohol more than the legal limit. Find 95% 
confidence interval for the true proportion of drivers who were over the limit during the time of the tests.

Solution.  The observed proportion of the sample is
40 4 .

650 65
P = =

Therefore,
4 611 1 .
65 65

Q P= − = − =

The 95% confidence interval of the proportion is

4 61.4 65 651.96 1.96
65 650
4 1.96(0.009426)
65
0.00615 0.01847
 (0.0431, 0.0800).

PQ
P n± = ±

= ±

= ±
=

This mean, 4% to 8% of the drivers were over the limit during the tests.

2.29 TEST OF SIGNIFICANCE FOR DIFFERENCE OF PROPORTION
Let X1 and X2 be the number of persons possessing the given attribute A in random samples of sizes n1 
and n2 from two populations, respectively. The sample proportions are given by.

1 2
1 2

21
, .

X X
P P nn= =

Then

( )1
1 1 1 1 1

1 1 1

1 1 2 2
1 2

1 2

1 1( ) ( )

( ) , ( ) .

X
E P E E X n p pn n n

p q p q
V P V P

n n

⎛ ⎞
= = = =⎜ ⎟⎝ ⎠

= =

Since for large samples P1 and P2 (the probability of success) are independent and normally distributed, 
P1 – P2 is also normally distributed. Therefore, the standard normal variate corresponding to the differ-
ence P1 – P2 is given by

1 2 1 2

1 2

( ) ( )
.

( )
P P E P P

Z
V P P

− − −
=

−
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Let H0: P1 = P2, that is, the population are similar be the null hypothesis. Then

1 2 1 2 1 2(  ) ( ) ( )  0.E P P E P E P p p− = − = − =

Also V(P1 – P2) = V(P1) + V(P2)

             
1 1 2 2

1 2 1 2

1 1 ,
p q p q

pqn n n n
⎛ ⎞

= + = +⎜ ⎟⎝ ⎠

because under H0, p1 = p2 = p, say. Therefore,

1 2

1 2

,
1 1

P P
Z

pq n n

−
=

⎛ ⎞
+⎜ ⎟⎝ ⎠

where an unbiased pooled estimate of proportion is taken as

1 1 2 2 1 2

1 2 1 2
.

n P n P X X
p

n n n n
+ +

= =+ +

If |Z| > 1.96, H0 is rejected at 5% level of significance. If |Z| <  2.58, H0 is accepted at 1% level of 
significance.

EXAMPLE 2.100
In a sample of 600 men from a certain city, 450 are found to be smokers. In another sample of 900 men 
from another city, 450 are smokers. Does the data indicate the habit of smoking among men?

Solution.  We have

1

2

450 3Proportion ,
600 4
450 1Proportion .
900 2

P

P

= =

= =

Then the test statistics is given by

1 2

1 2

1 1

P P
Z

pq
n n

−
=

⎛ ⎞
+⎜ ⎟⎝ ⎠

where
1 2

1 2

450 450 900 3 ,
900 600 1500 5

21 .
5

X X
p

n n

q p

+ +
= = = =+ +

= − =

Therefore,
3 1

14 2 9.68.
4(0.0258)6 1 1

25 600 900

Z
−

= = =
⎛ ⎞+⎜ ⎟⎝ ⎠

and hence the cites are significantly different.
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EXAMPLE 2.101
A drug manufacturer claims that the proportion of patients exhibiting side effects to their new anti-
arthritis drug is at least 8% lower than for the standard brand X. In a controlled experiment, 31 out of 
100 patients receiving the new drug exhibited side effects, as did 74 out of 150 patients receiving brand 
X. Test the manufacturer’s claim using 95% confidence for the true proportion.

Solution.  We have n1 = 100, n2 = 150, and

1

2

31Proportion ( ) for new drug ,
100

74Proportion ( ) for the standard drug .
150

P

P X

=

=

The test statistics is
1 2

1 2

,
1 1

P P
Z

pq n n

−
=

⎛ ⎞
+⎜ ⎟⎝ ⎠

where
1 2

1 2

31 74 21 ,
100 150 50

21 291 1 .
50 50

X X
p

n n

q p

+ +
= = =+ +

= − = − =

Therefore,
31 74

11100 150 4.984.
203609 5 60

1500002500 300

Z
− −

= = = −
⎛ ⎞
⎜ ⎟⎝ ⎠

Thus | Z | = 4.984 >1.96. Thus the difference between the two brands are significant at 5% level of 
significance.

Also, the 95% confidence interval is

1 1 2 2
1 2

1 2

3 3

1.96

11 31 69 74 261.96
60 (100) (150)
0.1833 0.1020 ( 0.2853, 0.0813).

PQ P Q
P P

n n
− ± +

− × ×
= ± +

= − ± = − −

Since 0 does not lie within the interval, the difference is significant. Further, the claim of the manufac-
turer is accepted as it lies within the confidence interval.

EXAMPLE 2.102
In two large populations, there are 30% and 25%, respectively, of fair-haired people. Is this difference 
likely to be hidden in samples of 1,200 and 900, respectively, from the two populations?

Solution.  Let

1 proportion of fair haired people in first population
30 0.30

100

P = −

= =
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2 proportion of fair haired people in second population
25 0.25.

100

P = −

= =

Accordingly,
1 21 0.3 0.7, 1 0.25 0.75.Q Q= − = = − =

Let the null and alternative hypothesis be

0 1 2

1 1 2

: Sample proportion are equal, that is, .
: .

H P P

H P P

=
≠

Then the test statistics is given by

1 2

1 2

,
1 1

P P
Z

pq n n

−
=

⎛ ⎞
+⎜ ⎟⎝ ⎠

where pooled estimate of proportion is

1 2

1 2

1200(0.3) 900(0.25)
1200 900

360 225 0.2786.
2100

X X
p

n n

+ +
= =

+ +
+

= =

Therefore,
1  0.7214.q p= − =

Hence

( )

0.3 0.25 0.05 2.53.
0.0197681 10.2786 (0.7214)

1200 900

Z
−

= = =
⎛ ⎞+⎜ ⎟⎝ ⎠

Since | Z | = 2.53 > 1.96, the proportions are significantly different and so H0 is rejected. The differences 
are unlikely to be hidden.

EXAMPLE 2.103
Random samples of 400 men and 600 women were asked whether they would like to have a flyover near 
their residence. Two hundred men and 325 women were in favour of the proposal. Test the hypothesis 
that proportions of men and women in favour of the proposal are same against that they are not, at 5% 
level.

Solution.  The null hypothesis is
H0: P1=P2, that is, no significant difference between the opinion of men and women as far as the pro-
posal of flyover is concerned.
We have

1 1

2 2

1 2

400, 200,
600, 325,
200 3250.5 and 0.541.
400 600

n X

n X

P P

= =
= =

= = = =
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Therefore, the test statistics is

1 2

1 2

,
1 1

P P
Z

pq n n

−
=

⎛ ⎞
+⎜ ⎟⎝ ⎠

where

1 2

1 2

200 325 525 0.525
400 600 1000

X X
p n n

+ +
= = = =+ +

and
1 0.475.q p= − =

Hence
0.0410.5 0.541 1.272.

0.32231 1(0.525)(0.475)
400 600

Z
−−

= = = −
⎛ ⎞+⎜ ⎟⎝ ⎠

Since | z | = 1.272 <1.96, H0 may be accepted at 5% level of significance, that is, men and women do 
not differ significantly in their opinions.

EXAMPLE 2.104
In a referendum submitted to the student body at a university, 850 men and 560 women voted. Out 
of these 500 men and 320 women voted “yes”. Does this indicate a significant difference of opinion 
between men and women on the matter at 1% level of significance?

Solution.  We have n1 = 850, n2 = 560, X1 = 500, X2 = 320.
Let the null hypothesis be
H0: there is no significant difference in voting pattern, that is, P1 = P2,
where

1

2

500 10Proportion ( ) 0.588,
850 17
32 4Proportion ( ) 0.571.

560 7

P

P

= = =

= = =

Then the test statistics is
1 2

1 2

,
1 1

P P
Z

pq n n

−
=

⎛ ⎞
+⎜ ⎟⎝ ⎠

where
1 2

1 2

820 0.582 and
1410

1 0.418.

X X
p

n n

q p

+
= = =

+
= − =

Therefore,

0.588 0.571 0.017 0.578.
0.294(0.582)(0.418)(0.1765 0.1786)

Z
−

= = =
+

Since | Z | = 0.578 < 2.58, the hypothesis H0 is accepted at 1% level of significance.
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EXAMPLE 2.105
Suppose that 10 year ago 500 people were working in a factory, and 180 of them were exposed to 
a material which is now suspected as being carcinogenic. Of these 180, 30 have developed cancer, 
whereas 32 of the other workers, who were not exposed, have also developed cancer. Obtain 95% 
confidence interval for the difference between the proportions with cancer among those exposed 
and not exposed, and assess whether the material should be considered carcinogenic on this 
evidence.

Solution.  According to the given data
Total No. of workers 500,=

n1 = No. of people exposed to materials = 180,
n2 = No. of people not exposed to materials = 320,
X1 = No. of people out of n1, who suffered with cancer = 30,
X2 = No. of people out of n2, who suffered with cancer = 32,

1

2

30Proportion ( ) 0.167,
180
32Proportion ( ) 0.100.

320

P

P

= =

= =

Therefore, a 95% confidence interval for the difference between the true proportions is

− ± +

= ±

= ± =

1 1 2 2
1 2

1 2
1.96

0.067 1.96(0.0325)

0.07 0.0637 (0.033, 0.131).

P Q P Q
P P n n

On the other hand, the test statistics is given by

1 2

1 2

,
1 1

P P
Z

pq n n

−
=

⎛ ⎞
+⎜ ⎟⎝ ⎠

where

1 2

1 2

62 0.124 and
500

1 0.876.

X X
p

n n

q p

+
= = =+

= − =

Therefore,
0.167 0.100 0.067

0.0009421 1(0.124)(0.876)
180 320

0.067 2.16.
0.031

Z
−

= =
⎛ ⎞+⎜ ⎟⎝ ⎠

= =

Since | Z | > 1.96, the difference is significant at 5% level and so the material should be considered 
carcinogenic on this evidence.
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2.30 TEST OF SIGNIFICANCE FOR DIFFERENCE OF MEANS
Let 1x  be the mean of a sample of size n1 from a population with mean m1 and variance 2

1s  and let 2x  
be the mean of sample of size n2 from another population with mean m2 and variance 2

2s . Then 1x  and 
2x  are two independent normal variates. Therefore, 1 2x x−  is also a normal variate. The value of the 

standard normal variate Z corresponding to 1 2x x−  is given by

− − −
=

−
1 2 1 2

1 2

( ) ( )
.

Standard error of ( )
x x E x x

Z
x x

If H0: m1 = m2, that is, there is no significant difference between the sample means is the null hypothesis, 
then

1 2 1 2 1 2
2 2
1 2

1 2 2 2
1 2

( ) ( ) ( ) 0

( ) ( ) ( ) ,

E x x E x E x

V x x V x V x n n

m m

s s

− = − = − =

− = + = +

since the covariance term vanishes due to independence of x  and 2x . Therefore, under the null hypoth-
esis H0, the test statistics Z is given by

1 2
2 2
1 2

1 2

.
x x

Z

n n
s s

−
=

+

If 2 2
1 2s s= , that is, if the samples have been drawn from the same population, then the test statistics 

reduces to
1 2

1 2

.
1 1

x x
Z

n ns

−
=

+

If s is not known, then its estimate ŝ  based on sample variance is used and

( )s
− + −

=
+ −

2 2
2 1 1 2 2

1 2

( 1) ( 1)ˆ .
( 2)

n S n S

n n

If s1, s2, are known and s s≠2 2
1 2  then they are estimated from sample values and we have

1 2
2 2
1 2

1 2

.
x x

Z
s s
n n

−
=

+

EXAMPLE 2.106
A sample of 100 electric bulbs produced by a manufacture A showed a mean life time of 1,190 hours 
and a standard deviation of 90 hours. A sample of 75 bulbs produced by manufacturer B showed a mean 
life time of 1,230 hours with a standard deviation of 120 hours. Is there a difference between the mean 
life time of the two brands at significance levels of 5% and 1%?

Solution.  We have

1 1 1

2 2 2

100, 1190, 90
75, 1230, 120.

n x

n x

s
s

= = =
= = =
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Therefore, the test statistics is

1 2
2 2 2 2
1 2

1 2

1190 1230

90 120
100 75

40 40 2.42.
16.52381 192

x x
Z

n n
s s

− −
= =

++

= − = − = −
+

Since | Z | = 2.42 > 1.96, there is a difference between the mean life time of the two brands at a signifi-
cant level of 5%.

On the other hand | Z | = 2.42 < 2.58, therefore, there is no difference between the mean life time 
of the two brands at a significant level of 1%.

EXAMPLE 2.107
The means of simple samples of sizes 1,000 and 2,000 are 67.5 and 68.0, respectively. Can the samples 
be regarded as drawn from the same population of standard deviation 2.5?

Solution.  We are given that

1 1 2 21000, 67.5, 2000, 68.0, 2.5.n x n x s= = = = =

Therefore, the test statistics is

1 2

1 2

67.5 68.0 0.5 5.16
2.5(0.03873)1 1 1 12.5

1000 2000

x x
Z

n ns

− −
= = = − = −

+ +

Since | Z | = 5.16 > 1.96, the difference between the mean is very significant. Therefore, the samples 
cannot be regarded drawn from the same population.

EXAMPLE 2.108
The mean height of 50 male students who showed above average participation in college athletics 
was 68.2 inches with a standard deviation of 2.5 inches, whereas 50 male students who showed no 
interest in such participation had a mean height of 67.5 inches with a standard deviation of 2.8 inches. 
Test the hypothesis that male students who participle in college athletics are taller than other male 
students.

Solution.  It is given that

1 1 1

2 2 2

50, 68.2, 2.5,
50, 67.5, 2.8.

n x s

n x s

= = =
= = =

Let the null and alternative hypothesis be

1 2

1 2

Null hypothesis: ,
Alternative hypothesis: (right tailed).

m m
m m

=
>

The test statistics is
− −

= = = = =

++

1 2
2 2 2 2
1 2

1 2

68.2 67.5 0.7 0.7 1.32.
0.530.282(2.5) (2.8)

50 50

x x
Z

s s
n n



258 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02_II.indd

Modif cation Date: April 29, 2010 1:08 PM Modif cation Date: 29-04-10, 13:14

Since Z = 1.32 < 1.645 (critical value of Z at 5% level of significance). Therefore, it is not significant 
at 5% level of significance. Hence, the null hypothesis is accepted. Hence the students who participate 
in college athletics are not taller than other students.

2.31  TEST OF SIGNIFICANCE FOR THE DIFFERENCE 
OF STANDARD DEVIATIONS

Let s1 and s2 be the standard deviations of two independent samples of size n1 and n2, respectively. Let 
the null hypothesis be that the sample standard deviation does not differ significantly. Then the statis-
tics of the hypothesis is

1 2

1 2
.

. ( )
s s

Z
S E s s

−
=

−
For large samples,

2 2
1 2

1 2
1 2

. ( )
2 2

S E s s
n n

s s
− = +

and so
1 2
2 2
1 2

1 2

.

2 2

s s
Z

n n

s s

−
=

+

If 2
1s  and 2

2s  are unknown, then 2
1s  and 2

1s  are used in place of them. Hence, in that case, we have

1 2
2 2
1 2

1 2

.

2 2

s s
Z

s s

n n

−
=

+

EXAMPLE 2.109
The yield of wheat in a random sample of 1,000 farms in a certain area has a standard deviation of 
192 kg. Another random sample of 1,000 farms gives a standard deviation of 224 kg. Are the standard 
deviations significantly different?

Solution.  We are given that

1 1 2 21000, 192, 1000, 224.n s n s= = = =

Therefore, the test statistics for the null hypothesis that standard deviations are same is

1 2
2 2 2 2
1 2

1 2

192 224 32 32 3.43.
9.3336.864 50.176(192) (224)

1000 1000

s s
Z

s s
n n

− − − −
= = = = = −

+
++

Since | Z | = 3.43 > 1.96. Hence the null hypothesis is rejected and so the standard deviations are sig-
nificantly different.

2.32 SAMPLING WITH SMALL SAMPLES
In large sample theory, the sampling distribution approaches a normal distribution. But in case of small 
size, the distributions of the various statistics like x

Z n
m

s
−

=  are far from normality and as such 
normal test cannot be applied to such samples.
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The problem of testing the significance of the deviation of a sample mean from a given population 
mean when sample size is small and only the sample variance is known was first solved by W.S. Gosset, 
who wrote under the pen-name “student.” Later on R.A. Fisher modified the method given by Gosset. 
The test discovered by them is known as Students Fisher t-test.

Let x1, x2,…, xn be a random small sample of size n drawn from a normal population with mean m 
and variance s. The statistics t is defined as

,x
t n

S

m−
=

where 
1

1 n

i
i

x x
n =

= ∑  is the sample mean and 2 2

1

1 ( )
1

n

i i
i

S x x
n =

= −
− ∑  is an unbiased estimate of the 

population variance s2. If we calculate t for each sample, we obtain a distribution for t, known as Stu-
dent Fisher t-distribution, defined by

1
2 2( ) (1 ) ,

v

y f t C t
+−

= = +

where the parameter v = n–1 is called the number of degrees of freedom and C is a constant, depending 
upon v, such that the area under the curve is unity.

The curve y = f (t) is symmetrical about y-axis like the normal curve. But it is more peaked than 
the normal curve with the same standard deviation. Further, this curve (Figure 2.10) approaches the 
horizontal t-axis less rapidly than the normal curve. If attains its maximum value at t = 0 and so its 
mode coincides with the mean.

t-curve

Normal curve

0

Figure 2.10

If v → ∞, we have
2

2 ,
t

y Ce
−

=

which is a normal curve. Hence t is normally distributed for large samples.
The probability p that the value of t will exceed t0 is given by

0

.
t

P ydx
∞

= ∫
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Fisher tabulated the values of t corresponding to various levels of significance for different values of v. 
For example for v = 10 and p = 0.022 we note that t = 2.76. Thus

( 2.76) ( 2.76) 0.02P t P t> = < − =

or

( )2.76 0.02.P t > =

If the calculated value of t is greater than t0.05 (the tabulated value), then the difference between x  and 
m is said to be significant at 5% level of significance. Similarly if t > t0.01, then the difference between 
x  and m is said to be significant at 1% level of significance.

Since the probability P that t > t0.05 is 0.95, the 95% confidence limits for m are given by

0.05
x

n t
S

m−
≤

or

0.05.S
x t

n
m− ≤

Thus 95% confidence interval for m is

0.05 0.05, .S S
x t x t

n n

⎛ ⎞− +⎜ ⎟⎝ ⎠

EXAMPLE 2.110
A random sample of 10 boys had the following IQ:

70, 120, 110, 101, 88, 83, 95, 98, 107, 100.
Do these data support the assumption of population mean IQ of 100 at 5% level of significance?

Solution.  The statistics t is defined by

x
t

S

n

m−
=

So, we first find x  and S. we have

1

1 972 97.2.
10

n

i
i

x x
n =

= = =∑

To calculate S, we use the following table:
x: 70 120 110 101 88

x − x : −27.2 22.8 12.80 3.80 −9.2

(x − x )2: 739.84 519.84 163.84 14.44 84.64

x: 83 95 98 107 100

x − x : −14.2 −2.2 0.8 9.80 2.80

(x − x )2: 201.64 4.84 0.64 96.04 7.84
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We have
10

2 2

1

1 1( ) (1833.96) 203.773.
1 9i

i

S x x
n =

= − = =
− ∑

Therefore, S = 14.275. Then

97.2 100 2.8010 (3.1623) 0.620.
14.275 14.275

t
−

= = − = −

But

0.05 2.26 for 10 1 9.t v= = − =

Since | t | = 0.62 < 2.26, the value of t is not significant at 5% level of significance. Therefore, the data 
supports the population mean 100.
Further, 95% confidence interval is

0.05
14.27597.2 2.26 97.2 10.20 (87,107.4).

10
S

x t
n

⎛ ⎞± = ± = ± =⎜ ⎟⎝ ⎠

Since 100 lies within this interval, the data support the population mean.

EXAMPLE 2.111
A certain stimulus administered to each of 12 patients resulted in the following change in blood 
pressure:

5, 2, 8, –1, 3, 0, –2, 1, 5, 0, 4, 6.

Can it be concluded that the stimulus will increase the blood pressure?

Solution.  The mean of sample is

12

1

1 31 2.583.
12 12i

i

x x
=

= = =∑
Therefore,

12
2 2

1

2 2 2 2

2 2 2 2

2 2 2 2

1 ( )
1

1 [(5 2.583) (2 2.583) (8 2.583) ( 1 12.583)
11

(3 2.583) (0 2.583) ( 2 2.583) (1 2.583)

(5 2.583) (0 2.583) (4 2.583) (6 2.583) ]
1 [5.842 0.340 29.344 12.838 0.174 6.6
11

i
i

S x x
n =

= −
−

= − + − + − + − −

+ − + − + − − + −

+ − + − + − + −

= + + + + +

∑

72 21.004 2.506

5.842 6.672 2.008 11.676]
104.918 9.538.

11

+ +

+ + + +

= =
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Therefore, S = 3.088 and so the 95% confidence interval for the mean is

0.05 0.05,

3.088(2.2) 3.088(2.2)2.583 , 2.583
12 12

(2.583 1.910, 2.583 1.910) (0.673, 4.493).

S S
x t x t

n n

⎛ ⎞− +⎜ ⎟⎝ ⎠

⎛ ⎞= − +⎜ ⎟⎝ ⎠
= − + =

Since the average change in blood pressure of the population (m) is positive, the stimulus will increase 
the blood pressure.

EXAMPLE 2.112
The measured lifetime of a sample of 15 electronic components gave an average of 750 hours with a 
sample standard deviation of 85 hours. Find a 95% confidence interval for the mean life time of the 
population and test the hypothesis that the mean is 810 hours.

Solution.  We have
15, 750, 85.n x S= = =

The table value t0.05 for v = 14 is 2.14. Therefore, 95% confidence interval is
2.14(85)750 (750 46.97, 750 46.97)

15
(703.03, 796.97).

± = − +

=

Since 810 is not included in this interval, the hypothesis that the mean is 810 hours is rejected at 5% 
significance level. The same conclusion is reached by evaluating the test statistics:

m− −
= = = − = −

750 810 6015 (3.873) 2.73.
85 85

x
Z n

S

Since| Z | = 2.73 > t0.05 (for v = 14), the difference is significant at 5% level of significance.

2.33 SIGNIFICANCE TEST OF DIFFERENCE BETWEEN SAMPLE MEANS
Let 

1 21 2 1 2, , , and , , ,n nx x x y y y… …  and be two independent samples with means x  and y  and stand-
ard deviation S1 and S2, respectively, from a normal population with the same variance. The test hypoth-
esis is that the means are the same. The test statistics is

1 2

,
1 1

x y
t

S n n

−
=

+

where

= =

= =

= =

= − + −
+ −

⎡ ⎤
= − + −⎢ ⎥

+ − ⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

1 2

1 2

1 21 1

2 2 2
1 1 2 2

1 2

2 2
1

1 2 1 1

1 1, .

1 [( 1) ( 1) ]
2

1 ( ) ( ) .
2

n n

i i
i i

n n

i
i i

x x y y
n n

S n S n S
n n

x x y y
n n

The variate t defined above follow the t-distribution with n1+ n2 – 2 degree of freedom.
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If t > t0.05, the difference between the sample means is significant at 5% level of significance. If 
t <t0.05, the data is consistent with the hypothesis that the means are the same.

Similarly if t > t0.01, the difference between the sample means is significant at 1% level of signifi-
cance. If t <t0.01, the data is consistent with the hypothesis that the means are the same.

If n1 = n2, that is, if the samples are of the same size and the data are paired, then the test statistics 
is given by

,d
t n

S
=

where

2 2 1

1

1 ( ) , , ,1

n

in
i

i i i i
i

d

S d d d x y d nn
=

=
= − = − =−

∑
∑

No. of degree of freedom 1n= −

EXAMPLE 2.113
A group of 10 boys fed on a diet A and another group of 8 boys fed on a different diet B, recorded the 
following increase in weights (in kg):

Diet A: 5 6 8 1 12 4 3 9 6 10
Diet B: 2 3 6 8 10 1 2 8

Does it show the superiority of diet A over that of B?

Solution.  We have
1

2

1 2

1 1

2
2 1

2 2 2

1 2 1 1

10 8
2 2

1 1

2 2 2 2 2 2 2

2 2

1 1 (64) 6.4,
10

1 1 (40) 5.0,
8

1 ( ) ( )
2

1 ( ) ( )
16

1 [(1.4) (0.4) (1.6) (5.4) (5.6) (2.4) (3.4)
16

(2.6) (0.4)

n

i
i

n

i

n n

i i
i i

i i
i i

x xn

y yn

S x x y y
n n

x x y y

=

=

= =

= =

= = =

= = =

⎡ ⎤
= − + −⎢ ⎥

+ − ⎢ ⎥⎣ ⎦
⎡ ⎤

= − + −⎢ ⎥
⎣ ⎦

= + + + + + +

+ +

∑

∑

∑ ∑

∑ ∑

2 2 2 2 2 2 2 2 2(3.6) 3 2 1 3 5 4 3 3 ]
1 [1.96 0.16 2.56 2.32 3.14 5.76 11.56 6.76 0.16 12.96

16
129.349 4 1 9 25 16 9 9] ,

16

+ + + + + + + + +

= + + + + + + + + +

+ + + + + + + + =

which yields S = 2.843. Then the test statistics is

1 2

6.4 5.0 1.4 1.038.
2.843(0.474)1 1 1 12.843

10 8

x y
t

S n n

− −
= = = =

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠



264 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02_II.indd

Modif cation Date: April 29, 2010 1:08 PM Modif cation Date: 29-04-10, 13:14

From the table, t0.05 for v = n1 + n2 – 2 = 16 is 2.12. Since calculated t is less than t0.05, we conclude that 
the difference between sample mean is not significant. Hence, there is no superiority of diet A over the 
diet B.

EXAMPLE 2.114
Eleven school boys were given a test in drawing. They were given a month’s further tuition and a second 
test of equal difficulty was held at the end of the month. Do the marks give evidence that the students 
have been benefited by extra coaching?

Marks in 1st test: 23 20 19 21 18 20 18 17 23 16 19
Marks in 2nd test: 24 19 22 18 20 22 20 20 23 20 17

Solution.  We have n1 = n2 = 11. Representing marks in second test by xi and that of first test by yi we 
have the differences di = xi – yi as

1, –1, 3, –3, 2, 2, 2, 3, 0, 4, –2.
Therefore,

and so 

11
2 2

1

2 2 2 2 2 2 2 2 2 2 2

( ) 11 1,
11 11

1 ( )
1

1 [0 ( 2) 2 ( 4) 1 1 1 2 ( 1) 3 ( 3) ] 5
10

5 2.24.

i i i

i
i

d x y
d

n

S d d
n

S

=

−
= = = =

= −
−

= + − + + − + + + + + − + + − =

= =

∑ ∑

∑

The test statistics for equal sample means is
1 11 1.481.

2.24
d

t
S
n

= = =

The tabular value of t0.05 for v = 10 is 2.228. Thus the calculated value of t is less than t0.05.
Therefore, the hypothesis that the mean are same, is accepted. Hence, the data provides no 

evidence that the students have benefited by extra coaching.

EXAMPLE 2.115
A group of boys and girls were given an intelligent test. The mean score, standard deviations, and 
number in each group are as follows:

Boys Girls
Mean 124 121
S:D 12 10
N 18 14

Is the mean score of boys significantly different from that of girls?

Solution.  We have

1 2

1 2

18, 14,
12,  
124, 121.

10,
x y

n n

S S

= =

==
= =
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Therefore,

2 2 2
1 1 2 2

1 2

1 1[( 1) ( 2) ] [17(144) 13(100)] 187.40
2 20

S n S n S
n n

= − + − = + =
+ −

and so S = 13.69. Therefore, the test statistics for the hypothesis that the mean are same is

124 121 3 0.626.
13.69(0.350) 4.7921 1

18 14

x y
t

S

− −
= = = =

⎛ ⎞+⎜ ⎟⎝ ⎠

From the table, t0.05 for v = n1 + n2 – 2 = 20 is 2.09. Since calculated value of t is less than the tubular 
value of t0.05 for v = 20, the difference in mean is not significant.

EXAMPLE 2.116
A manufacturer claims that the lifetime of a particular electronic component is unaffected by tem-
perature variation within the range 0–60° C. Two samples of these components were tested and their 
measured lifetimes are (in hours) recorded as follows:

0°C 7050 6970 7370 7910 6790 6850 7280 7830
60°C 7030 7270 6510 6700 7350 6770 6220 7230

Solution.  The sample sizes are equal, that is, n1 = n2= 8. Representing the lifetimes at 0°C by xi and the 
lifetimes at 60°C by yi, we get the differences di = xi – yi as

20, –300, 860, 1210, –560, 80, 1060, 600.
Therefore,

8
2 2

1

2970 371.25,
8

1 ( )
1

1 [123376.56 450576.56 238 703501.56 867226.56 84826.587 6

474376.56 52326.56] 42786

6.5

5
7

9 6

6

.

i

i
i

d
d

n

S d d
n =

+ + +

+

= = =

= −
−

= + +

+ =

∑

∑

and so S = 654.12. The test statistics for equal sample mean is

371.25 8 1.61.
654.12

d
t n

S
= = =

The tabular value of t0.05 for v = 7 is 2.36. Since the calculated values of t is less than t0.05, the difference 
in the mean is not significant at 5% level of significance. Hence, the manufacture claims is accepted 
at 5% level of significance.

If we calculate the 95% confidence interval, we get

2.36(654.12)2.36
8 8

(371.25 545.87, 371.25 545.82)
( 174.62, 917.12).

S
d d

⎛ ⎞± = ±⎜ ⎟⎝ ⎠
= − +
= −
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Since zero lies within the 95% confidence interval, the difference in mean is not significant and so the 
manufacturer’s claim is accepted.

EXAMPLE 2.117
Two kinds of photographic films were tested for sharpness of definition in the same camera under 
varying conditions. Each pair of readings given below was produced under the same conditions except 
for difference of film. Is there any unusual difference between the sharpness of the definition of the 
two films?

Film X: 27 30 30 32 24 26 40 35
 Film Y: 25 28 30 30 27 28 37 28

Solution.  The sample sizes are n1 = n2 = 8. The null and alternative hypotheses are

0

1

: Mean of the population of difference is zero
: Mean of the population of difference is not zero.

H

H

m
m

We shall test under 5% level of significance. We have

( ) 2 2 0 2 3 2 3 7 1.38
8

i i id x y
d

n n

− + + + − − + +
= = = =∑ ∑

and

( )
2

22 24 4 0 4 9 4 9 49 (1.38) 8.47.
8

id
S d

n

+ + + + + + +
= − = − =∑

Thus S = 2.910. Therefore, test statistics is given by

1.38 8 1.34.
2.91

d
t n

S

m−
= = =

From the table, for v = 7, we have t0.005 = 2.36. Thus, the calculated value of t is less than the tabulated 
t0.005. Therefore, the difference is not significant at 5% level of confidence. Hence H0 is accepted and 
consequently there is no unusual difference between the sharpness of definitions of the two films.

2.34 CHI-SQUARE DISTRIBUTION
Let iof  and ief  be the observed and expected frequencies of a class interval, then c2 is defined by the 
relation

( )2

2

1
.i i

i

n
o e

ei

f f

f
c

=

−
= ∑

where summation extends to all class intervals.
Note that c2 describes the magnitude of discrepancy between the observed and expected fre-

quencies.
For large sample sizes, the sampling distribution of c2 can be closely approximated by a continuous 

curve known as c2-distribution. Thus c2-distribution is defined by means of the function
2 1

22 2( ) ,
v

y C e
c

c
−−

=

where v is the degree of freedom and C is a constant. In the case of binomial distribution, the degree 
of freedom is n – 1. In case of Poisson distribution, the degree of freedom is n – 2 whereas in case of 
normal distribution, the degree of freedom is n – 3 In fact, if we have s × t contingency table, then the 
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degree of freedom is (s – 1)(t – 1). If v = 1, the c2-curve reduces to 
2

2y C e
c−

= , which is right half of a 
normal curve as shown in Figure 2.11.

O (χ2-curve for n = 1)

Figure 2.11

If v > 1, the c2-curve is tangential to the x-axis at the origin, as shown in Figure 2.12.

O
(χ2-curve for ν >1)

Figure 2.12

As v increases, the curve becomes more symmetrical. If v > 30, the c2-curve approximates to the 
normal curve and in such case the sample is of large size and we should refer to normal distribution 
table.

The probability P that the value of c2 from a random sample will exceed 2
0c  is given by

2
0

.P ydx
c

∞

= ∫
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The values of c2 for degree of freedom from v = 1 to v = 30 have been tabulated for various con-
venient probability values. The table yields the values for the probability P that c2 exceeds a given 
value, 2

0c .
We observe that the c2-test depends only on the set of observed and expected frequencies and on 

the degree of freedom. The c2-curve does not involve any parameter of the population and so the c2-dis-
tribution? does not depend on the form of the population. That is why, c2-test is called non-parametric 
test or distribution-free test.

2.35 c2-TEST AS A TEST OF GOODNESS-OF-FIT
The c2-test is used to test whether the deviation of the observed frequencies from the expected (theo-
retical) frequencies are significant or not. Thus, this test tells us how a set of observations fits a given 
distribution. Hence c2-test provides a test of goodness-of-fit for Binomial distribution, Poisson distri-
bution, Normal distribution, etc. If the calculated values of c2 is greater than the tabular value, the fit 
is considered to be poor.

To apply c2-test, we first calculate c2. Then consulting c2-table, we find the probability P corre-
sponding to this calculated value of c2 for the given degree of freedom. If

(i) P < 0.005, the observed value of c2 is significant at 5% level of significance
(ii) P < 0.01, the observed value of c2 is significant at 1% level of significance

(iii) P > 0.05, it is good fit and the value of c2 is not significant.
This mean that we accept the hypothesis if calculated c2 is less than the tabulated value, otherwise 
reject it.
Conditions for the validity of c2-test: In 2.34, we pointed out that c2-test is used for large sample 
size. For the validity of c2-test as a test of goodness-of-fit regarding significance of the deviation of 
the observed frequencies from the expected (theoretical) frequencies, the following conditions must be 
satisfied:

(i) The sample observations should be independent.
(ii) The total frequency (the sum of the observed frequencies or the sum of expected frequency) 

should be larger than 50.
(iii) No theoretical frequency should be less than 5 because c2-distribution cannot maintain continu-

ity character if frequency is less than 5.
(iv) Constraints on the frequencies, if any, should be linear.

EXAMPLE 2.118
Fit a binomial distribution to the data

x : 0 1 2 3 4 5
y : 38 144 342 287 164 25

and test for goodness-of-fit at the level of significance 0.05.

Solution.  We have n = 5, Σ fi = 1000. Therefore,

0 144 684 861 656 125 2.470.
1000

i i

i

f x

f
m

+ + + + +
= = =∑

∑
But, for a binomial distribution,

m = np and so 2.470 0.4945p n
m

= = = , q = 1 – p = 0.506.
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Therefore, the binomial distribution to be fitted is

= + + + + +
= +

+ = + +

+ + +

+ + +

5 5 5 5 4 5 3 2
0 1 2

5 2 3 5 4 5 5
3 4 5

1000(0.506 0.494) 1000[ (0.506) (0.506) (0.494) (0.506) (0.494)

(0.506) (0.494) (0.
1000 [0.0332 0.1619 0.3161 0.3086 0.1507 0.02942]
33.

506)(0.494) (0.

2 161.9 316.

494

1 308.6

) ]

C C C

C C C

+150.7 29.42.
Thus the theoretical frequencies are

x: 0 1 2 3 4 5
y: 33.2 161.9 316.1 308.6 150.7 29.42

Therefore,
2 2 2

2

2 2 2

(38 33.2) (144 161.9) (342 316.1)
33.2 161.9 316.1

(287 308.6) (164 15

 0.6940

0.7) (25 29.42)
308.6 150.7 29.42

1.979 1.17381 2.1222 0.6640 8.141.511 .9 5

c

= +

− − −
= + +

− − −
+ + +

+ + =+ +
The number of degree of freedom is 6 – 1 = 5. For v =5, 2

0.05 11.07c = . Thus the calculated value of c2 
is less than 2

0.05c  and so the binomial distribution gives a good fit at 5% level of significance.
EXAMPLE 2.119
The following table gives the frequency of occupancy of digits 0, 1, 2,…,9 in the last place in four 
logarithms of numbers 10–99. Examine if there is any peculiarity.

Digits: 0 1 2 3 4 5 6 7 8 9
Frequency: 6 16 15 10 12 12 3 2 9 5

Solution.  Let the null hypothesis be
H0: frequency of occupance of digits is equal, that is, there is no significant difference between the 
observed and the expected frequency.

Therefore under the null hypothesis, the expected frequency is 90 9
10ef = = . Then

2
2 ( ) 9 49 36 1 9 9 36 49 0 16 23.777.

9
i i

i

o e

e

f f

f
c

− + + + + + + + + +
= = =∑

Number of degree of freedom is 10 –1 = 9. The tabulated value of 
2
0.05c  for v = 9 is 16.92. Since the 

calculated value of c2 is greater than the tabulated value of 2
0.05c , the hypothesis is rejected and so there 

is a significant difference between the observed and expected frequency.

EXAMPLE 2.120
In a locality, 100 persons were randomly selected and asked about their academic qualifications. The 
results are as given below:

Education
Sex Middle standard High school Graduation Total
Male: 10 15 25 50
Female: 25 10 15 50
Total 35 25 40 100

Can you say that education depends on sex?
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Solution.  Let the null hypothesis be
H0: Education does not depend on sex.
On this hypothesis the expected frequencies are (taking averages).

Sex Middle standard High school Graduation Total
Male: 17.5 12.5 20 50
Female: 17.5 12.5 20 50
Total 35 25 40 100

Therefore,

2 2 2 2 2 2
2 (10 17.5) (15 12.5) (25 20) (25 17.5) (10 12.5) (15 20)

17.5 12.5 20
9.9

17.5 12.5 20
3.

c
− −

=

− − − −
= + + + + +

−

Further, the number of degree of freedom (v) = (s – 1)(t – 1) = (3 – 1)(2 –1) = 2.
From c2-table, 2

0.05c  for v = 2 is 5.99. Thus the calculated value of c2 is greater than the tabulated 
value of c2. Hence H0 is rejected and so the education depends on sex.

EXAMPLE 2.121
Fit a Poisson distribution to the following data and test for its goodness-of-fit at 5% level of signifi-
cance.

x: 0 1 2 3 4
f : 419 352 154 56 19

Solution.  If the given distribution is approximated by a Poisson distribution, then the parameter of the 
Poisson distribution is given by

0 352 308 168 76 0.904.
1000

i i

i

f x

f
l

+ + + +
= = =∑

∑
Therefore, the theoretical frequencies are

2 3 4
1000 ,1000 ,1000 , 1000 ,1000 .

2 3! 4!
e e e e el l l l ll l l

l− − − − −

Also e–λ = e–0.904 = 0.4049. Therefore, the theoretical frequencies are

x: 0 1 2 3 4 Total
f: 404:9 366 165:4 49:8 11:3 997:4

406 12:8

To make the total of frequencies 1000, we take the first frequency as 406 and the last frequency as 
12.8. Then

2 2 2 2 2
2 (419 406) (352 366) (154 165.4) (56 49.8) (19 12.8)

406 366 165.4 49.8 12.8
0.416 0.536 0.786 0.772 3.003 5.513.

c

= + + +

− − − −
+

+ =

−
= + + +
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The number of degree of freedom in case of Poisson distribution is n – 2 = 5 – 2 = 3. Therefore, the 
tabular value of c2 for v = 3 is 7.82. Thus the calculated value of c2 is less than the tabulated value of 

2
0.05c . Therefore, the Poisson distribution provides a good fit to the data.

EXAMPLE 2.122
Obtain the equation of the normal curve that may be fitted to the data given below and test the good-
ness-of-fit.

x: 4 6 8 10 12 14 16 18 20 22 24
y: 1 7 15 22 35 43 38 20 13 5 1

Solution.  For the given data, we have

x x2 f fx fx2

4 16 1 4 16
6 36 7 42 252
8 64 15 120 960

10 100 22 220 2200
12 144 35 420 5040
14 196 43 602 8428
16 256 38 608 9728
18 324 20 360 6480
20 400 13 260 5200
22 484 5 110 2420

24 576 1
200

24
2770

576
41300

Therefore,
2770Mean ( ) 13.85.
200

fx

f
m = = =∑

∑

Standard deviation 
2

2( )
fx

f
s m= − =∑

∑
241300 (13.85) 14.678 3.8311.

200
− = =

Hence, the equation of the normal curve fitted to the given data is
2

21 1 ( 13.85)2 29.361 1( ) .
2 13.85 2

x
x

f x e e
m

s

s p p

−⎛ ⎞− − −⎜ ⎟⎝ ⎠= =

To calculate the theoretical normal frequencies, we note that the area under f (x) in (z1, z2) is
2 2

2 1

2 2

0 0

1 1( ) ,
2 2

z zz z

z e dz e dz
p p

− −
ΔΦ = −∫ ∫

where 13.85
3.83

x x
z

m
s
− −

= = . Thus, the expected normal frequencies are given by



272 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02_II.indd

Modif cation Date: April 29, 2010 1:08 PM Modif cation Date: 29-04-10, 13:14

Class 
interval

Mid-value (z1, z2) ΔΦ(z) Expected frequency
NΔΦ(z)

3–5 4 (– 2.83, –2.31) 0.4977 – 0.4896 = 0.0081 200(0.0081) = 1.62
5–7 6 (– 2.83, –1.79) 0.4896 – 0.4633 = 0.0263 200(0.0263) = 5.26
7–9 8 (–1.79, –1.27) 0.4633 – 0.3980 = 0.0653 200(0.0653) = 13.06

9–11 10 (–1.27, –0.74) 0.3980 – 0.2704 = 0.1276 200(0.1276) = 25.52
11–13 12 (– 0.74, –0.22) 0.2704 – 0.0871 = 0.1833 200(0.1833) = 36.66
13–15 14 (– 0.22, 0:30) 0.1179 ) 0.0871 = 0.2050 200(0.2050) = 41.00
15–17 16 (0.30, 0.82) 0.2939 – 0.1179 = 0.1760 200(0.1760) = 35.20
17–19 18 (0.82, 1.34) 0.4099 – 0.2939 = 0.1160 200(0.1160) = 23.20
19–21 20 (1.34, 1.86) 0.4686 – 0.4099 = 0.0587 200(0.0587) = 11.74
21–23 22 (1.86, 2.38) 0.4913 – 0.4686 = 0.0227 200(0.0227) = 4.54
23–25 24 (2.38, 2.91) 0.4982 – 0.4913 = 0.0069 200(0.0069) = 1.38

Therefore,

2 2 2 2
2

2 2 2

2 2 2 2

(1 1.62) (7 5.26) (15 13.06) (22 25.52)
1.62 5.26 13.06 25.52

(35 36.66) (43 41) (38 35.20)
36.66 41 35.20

(20 23.20) (13 11.74) (5 4.54) (1 1.38)
23.20 11.74 4.54 1.38

 0.0912 0.5756 0.2882 0.4855

c
− − − −

= + + +

− − −
+ + +

− − − −
+

+ +

+ + +

= +

0.2227 0.4414 0.135

0.0752 0.097

2 0.0466 0.1046 2.5 .

6 

6+ + + + + =

+ +

The number of degree of freedom is n – 3 = 11 – 3 = 8 and 
2
0.005c  at v = 8 is 15.51. Therefore, the nor-

mal distribution provides a good fit.

2.36 SNEDECOR’S F-DISTRIBUTION
Let 

11 2, , nx x x…  and 1 2 2, , ny y y…  be the values of two independent random samples drawn from two 
normal populations with equal variance s2. Let x  and y  be the sample means and let

1

2

2 2
1

1 1

2 2
2

2 1

1 ( ) ,
1

1 ( ) .
1

n

i
i

n

i
i

S x x
n

S y y
n

=

=

= −
−

= −
−

∑

∑

Then we define the statistics F by the relation
2
1
2
2

.
S

F
S

=
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The Snedecor’s F-distribution is defined by the function
1 2

1 2 212

2
1 ,

v v
v

v
y C F F

v

+−− ⎛ ⎞
= +⎜ ⎟⎝ ⎠

where the constant C depends on v1 and v2 and is so chosen that area under the curve is unity. The 
F-distribution is independent of the population variance s2 and depends only on v1 and v2, the numbers 
of degree of freedom of the samples. The F-curve is bell-shaped for v1 > 2, as shown in Figure 2.13.

O

y

F

Figure 2.13

Significant test is performed by means of Snedecor’s F-tables which provides 5% and 1% of points 
of significance for F. Five percent points of F means that area under the F-curve, to the right of the ordi-
nate at a value of F is 0.05. Further the F-tables give only single tail test. However, if we are testing the 
hypothesis that the population variances are same, then we should use both tail areas under the F-curve 
and in that case F-table will provide 10% and 2% levels of significance.

2.37 FISHER’S Z-DISTRIBUTION
Putting F = e2z in the F-distribution, we get

1 2
1 2( ),v z zy Ce v e v= +

which is called the Fisher’s z-distribution, where C is a constant depending upon v1 and v2 such that 
area under the curve is unity. The curve for this distribution is more symmetrical than F-distribution.

Significance test are performed from the z-table in a similar way as in the case of F-distribution.

EXAMPLE 2.123
In testing for percent of ash content, 17 tests from one shipment of coal shows S 2 = 7.08 percent and 
21 tests from a second shipment shows S 2 = 20.70. Can these samples be regarded as drawn from the 
same shipment?

Solution.  We have n1 = 21, n2 = 17, 2
1 20.70S =  and 2

2 7.08S = . Therefore, the test statistics is

1 2
20.70( , ) (20,16) 2.92.
7.08

F v v F= = =
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From the F-table, we have F0.05 (20, 16) = 2.18. Since F(v1, v2) is greater than F0.05, the population vari-
ances are significantly different.

EXAMPLE 2.124
Two independent samples of sizes 7 and 6 have the following values:

Sample A: 28 30 32 33 33 29 34
Sample B: 29 30 30 24 27 29

Examine whether the samples have been drawn from normal populations having the same variance.

Solution.  The means for the sample A and B are, respectively

219 16931.285 and 28.166.
7 6

x y= = = =

Then
2 2
1

1

2 2 2 2

2 2 2

1 ( )
1

1 [(28 31.285) (30 31.285) (32 31.285) (33 31.285)
6

(33 31.285) (29 31.285) (34 31.285) ]
1 [10.791 1.651 0.511 2.941 2.941 5.221 7.371]
6
5.238

iS x x
n

= −
−

= − + − + − + −

+ − + − + −

= + + + + + +

=

∑

and
2 2
2

2

2 2 2 2

2 2

1 ( )
1

1 [(29 28.166) (30 28.166) (30 28.166) (24 28.166)
5

(27 28.166) (29 28.166) ]
1 [0.695 3.364 3.364 17.355 1.359 0.695]
5
5.366.

iS y y
n

= −
−

= − + − + − + −

+ − + −

= + + + + +

=

∑

Therefore, the test statistics is given by
2
1
2
2

5.238 0.976.
5.366

S
F

S
= = =

Further, since numbers of degree of freedom are 6 and 5, we have

0.05F  (6,5) 4.95.=

Thus, the calculated value of F is less than the tabular value. Hence the samples have been drawn from 
normal population having the same variance.

EXAMPLE 2.125
Two samples of sizes 9 and 8 give the sum of squares of deviations from their respective means equal 
to 160 and 91, respectively. Examine, whether the samples have been drawn from normal population 
having the same variance.
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Solution.  We have
9 8

2 2

1 1
( ) 160 and ( ) 91.i i

i i

x x y y
= =

− = − =∑ ∑
Therefore, their variances are

2 2
1 2

1 1(160) 20, and (91) 13.
8 7

S S= = = =

Their test statistics for F-test is
2
1
2
2

20 1.54.
13

S
F

S
= = =

From the F-table, we have
0.05F  (8,7) 3.73.=

Since the calculated value of F is less than F0.05 (8,7), the population variances are not significantly 
different. So the samples can be regarded as drawn from the populations having the same variance.

EXAMPLE 2.126
The nicotine content (in mg) of two samples of tobacco were found to be as follows:

Sample A: 24 27 26 21 25
Sample B: 27 30 28 31 22 36

Can it be said that the two samples came from the same population?

Solution.  Suppose that x  be the sample mean for the sample B and y  be the sample mean of the 
sample A. Then

2 2
1 1

1

2 2 2 2 2 2

2 2
2 1

2

2 2 2 2 2

174 12329 and 24.6
6 5
1 ( )

1
1 [(27 29) (30 29) (28 29) (31 29) (22 29) (36 29) ]
5
1 [4 1 1 4 49 49] 21.6,
5

1 ( )
1

1 [(24 24.6) (27 24.6) (26 24.6) (21 24.6) (25 24.6) ]
4
1

x y

S x x
n

S y y
n

= = = =

= −
−

= − + − + − + − + − + −

= + + + + + =

= −
−

= − + − + − + − + −

=

∑

∑

[0.36 5.76 1.96 12.96 0.16] 5.3.
4

+ + + + =

Therefore, the statistics for F-test is
2
1
2
2

21.6 4.08.
5.3

S
F

S
= = =

But tabular value of F0.05 (5,4) is 6.26. The calculated value of F is less than the tabular value. So there is 
no significant difference. Hence the two samples may be considered to come from the same population.
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2.38 ANALYSIS OF VARIANCE (ANOVA)
Fisher developed a powerful statistical method to test the significance of the difference between more 
than two sample means and to infer whether samples are drawn from the populations having the same 
mean. This method is known as Analysis of Variance.

Consider a set of N values of the variate x arranged in r rows and k columns. Let
(i) ijx  represent the value of the entry in the ith row and jth column.

(ii) ..x  represent the general mean of , 1ijx i r≤ ≤ , 1 j k≤ ≤ .
(iii) . jx  represent the mean of the jth column.
(iv) .ix  represent the mean of the ith row.

Then

    

2
..( )ij

i j

V x x= −∑ ∑

     

2 2
.. ..2ij ij

i j i j

x x x N x= − +∑∑ ∑∑

     

2 2
2

2
2

ij ij ij
i j i j i j

N
x x x

N N

⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑

     

2
2 1
ij ij

i j i j

x x
N

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑

 

is called “Overall” sum of squares or total variation. The quantity 
2

1
ij

i j

x
N

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑  is called the 

correction term.

Further,

.
1

1 r

j ij
i

x x
r =

= ∑ .

Therefore

   
( )2 2 2

. .. . .. . ..
1 1

2
k k

j j j
j j

x x x x x x
= =

⎡ ⎤− = + −⎣ ⎦∑ ∑

      

2 2
. .. . ..

1 1 1
2

k k k

j j
j j j

x x x x
= = =

= + −∑ ∑ ∑

      

2
2
..2

1 1 1

1 k r k

ij
j i j

x x
r = = =

⎛ ⎞
= +⎜ ⎟⎝ ⎠

∑ ∑ ∑

       
..

1 1

12
k r

ij
j i

x x
r= =

⎡ ⎤
− ⎢ ⎥

⎣ ⎦
∑ ∑

      

22

2 2
1 1

1 k r

ij ij
j i i j

k
x x

r N= =

⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑

       1 1

2 1k r

ij ij
j i i j

x x
r N= =

⎡ ⎤ ⎡ ⎤
− ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑
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22

2 2
1 1

1
( )

k r

ij ij
j i i j

k
x x

r rk= =

⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑

       

2
2

( ) ij
i j

x
r rk

⎡ ⎤
− ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑

      

22

2
1 1

1 1 .
k r

ij ij
j i i j

x x
rNr = =

⎡ ⎤⎛ ⎞
= − ⎢ ⎥⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑
Then

         
2

. ..
1

( )
k

c j
j

V r x x
=

= −∑

            

22

1 1

1 1k r

ij ij
j i i j

x x
r N= =

⎡ ⎤⎛ ⎞
= − ⎢ ⎥⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑

is called “between column sum of squares” or between column variation. Thus “between column sum 

of squares is 1
r

th the sum of the squares of the column sums minus the correction term”.
Further,

2
2

1 1

1 k r

ij ij
i j j i

R x x
r = =

⎛ ⎞
= − ⎜ ⎟⎝ ⎠

∑ ∑ ∑ ∑
is called the “within column sum of squares” or residual. We notice that

cV V R= + .

Thus, we say that the total variation has two components : a between sample variation and a residual 
variation.

The degree of freedom for cV  is k – 1, whereas the degree of freedom for R is N – k. Thus the sum 
of degrees of freedom for cV  and R is N – 1, which is the degree of freedom for the total variation. 
Therefore estimated variance is defined as

1
cV

kF
R

N k

−=

−
with 1 1n k= −  and 2n N k= − . For significance at 5% level, we compare it with 0.05 1 2( , )F n n  from 
the F – distribution table.

EXAMPLE 2.127
Yields of 4 varieties of wheat in 3 blocks are given below:

       Variety 
Block I II III IV

1 10 7 8 5
2 9 7 5 4
3 8 6 4 4

Is the difference between varieties significant?



278 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02_II.indd

Modif cation Date: April 29, 2010 1:08 PM Modif cation Date: 29-04-10, 13:14

Solution.  We have

     Variety 
Block I II III IV

1 10 7 8 5
2 9 7 5 4
3 8 6 4 4

x∑ 27 20 17 13

2x∑ 245 134 105 57

( )2
x∑ 729 400 289 169

Then

        = =

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑
22

1 1

1 1k r

C ij ij
j i i j

V x x
r n

       
21 1[729 400 289 169] (77)

3 12
= + + + −

       529 494.08 34.92= − =
and

(245 134 105 57) 529 12R = + + + − = .

Therefore estimated variance is

34.92
11.41 3 7.612 1.5

8

cV

kF
R

N k

−= = = =

−

.

But

0.05 1 2 0.05( , ) (3,8) 4.07.F x x F= =

Therefore difference between the varieties is highly significant.

EXAMPLE 2.128
Three groups of 4 rats each were injected with commercial Intocostrin and the number of minutes that 
elapsed before a reaction took place were recorded with the following results. Is the difference between 
groups significant?

A B C

1 11 12 2
2 8 10 5
3 7 17 2
4 6 7 7
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Solution.  We have

A B C

1 11 12 2
2 8 10 5
3 7 17 2
4 6 7 7

x∑ 32 36 16

2x∑ 270 582 82

( )2
x∑ 1024 1296 256

Therefore

   
21 1[1024 1296 256] (84)

4 12cV = + + −

644 588 56= − =

and
(270 582 82) 644 290R = + + − = .

Therefore

56
2521 2 0.89.290 290

9

cV

kF
R

N k

−= = = =

−

But

0.05 1 2 0.05( , ) (2,9) 4.26.F n n F= =

Hence there is no significant difference between the groups and the sample is taken from the same 
population.

EXAMPLE 2.129
The result of testing the lifetime of three electric bulbs, measured in hundreds of hours, of each of the 
four brands A, B, C, D is shown below. Can we infer that there is no significant difference between the 
lifetime of different brands of bulbs?

Brand
A B C D

20 25 24 23
19 23 20 20
21 21 22 20



280 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02_II.indd

Modif cation Date: April 29, 2010 1:08 PM Modif cation Date: 29-04-10, 13:14

Solution.  We make the following table:

A B C D

20 25 24 23
19 23 20 20
21 21 22 20

x∑  60 69 66 63

2x∑  1202 1595 1460 1329

2( )x∑  3600 4761 4356 3969

Therefore “between columns Variance” is given by

       

22

1 1

1 1k r

c ij ij
j i i j

V x x
r N= =

⎡ ⎤⎛ ⎞
= − ⎢ ⎥⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑

      = + + + − + + + 21 1[3600 4761 4356 3969] [60 69 66 63]
3 12

      

216686 (258) 5562 5547 15,
3 12

= − = − =

and the “residual” is given by

        

2
2

1 1

1 k r

ij ij
i j j i

R x x
r = =

⎛ ⎞
= − ⎜ ⎟⎝ ⎠

∑ ∑ ∑ ∑

       (1202 1595 1460 1329) 5562= + + + −

       5586 5562 24= − = .
Therefore (one way) variation table is

Source of variation Sum of square Degree of freedom Mean square

Between column 15cV = 1 3k − = 15
3

Residual 24R = 8N k− = 24
8

Hence the test statistics is 

15
531 1.67.24 3

8

cV

kF
R

N k

−= = = =

−

But from the table, the tabular value 0.05 1 2( , )F n n  is

0.05 1 2 0.05( , ) (3,8) 4.0662.F n n F= =

Hence the difference is insignificant and the inference is that the lifetimes of different brands of bulbs 
are equal
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EXAMPLE 2.130
The data given below shows the yields in quintal per acre of a certain variety of onion grown in a given 
type of soil treated with fertilizers A, B, or C. Is the difference in yields for all treatments significant?

A B C

48 47 49
49 49 51
50 48 50
49 48 50

Solution.  Since the sum of squares is not affected by change of origin, we subtract a suitable number 
say 46, from all entries of the yields and get the following table for analysis of variance.

A B C

2 1 3
3 3 5
4 2 4
3 2 4

x∑ 12 8 16

2x∑ 38 18 66

2( )x∑ 144 64 256

Therefore “between columns variance” cV  is given by

     
21 1[144 64 256] (36)

4 12cV = + + −

     116 108 8= − =
and the “residual” R is given by

(38 18 66) 116 122 116 6.R = + + − = − =

Therefore the table for analysis of variation is as shown below:

Source of variation Sum of square Degree of freedom Mean square

Between column 8cV = 3 1 2− = 8
2

Residual 6R = 12 3 9− = 6
9

Hence
8

1 2 6.6
9

cV

kF
R

N k

−= = =

−



282 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02_II.indd

Modif cation Date: April 29, 2010 1:08 PM Modif cation Date: 29-04-10, 13:14

But, from the F-distribution table, we have
0.05 1 2 0.05( , ) (2,9) 4.2565F n n F= = .

Since 0.05F F> , the difference in yields is significant.

2.39 FORECASTING AND TIME SERIES ANALYSIS
The process of estimating future conditions on a systematic basis is called forecasting and the figure or 
statement obtained as a result of this process is called forecast. Thus forecasting is concerned mainly 
with handling of uncertainty about the future. Some important methods of forecasting are:

(i) Field Survey and Opinion Poll
(ii) Historical Analog Method

(iii) Extrapolation
(iv) Regression Analysis
(v) Exponential Smoothing

(vi) Time series Analysis
Out of these methods, the time series analysis is the most popular method of business forecasting. 
While forecasting, we usually deal with statistical data collected at successive intervals of time. Such 
data are called time series. A time series pairs one set of variates with intervals of time. Thus a time 
series is a set of values 1 2, ,...y y  of a variable y at time 1 2, ,...t t  As such y is a function of t. Analyzing 
the past behaviour, the time series analysis helps us in forecasting the future behaviour. For example, 
the time series:

Time (minutes): 0 1 2 3 4 5 6
Temperature: 70 77 92 118 136 143 155

shows that the temperature is rising with the passage of time.
The variations observed in a time series over a period of time are of the following four types, called 

the components (or elements) of the time series:

(i) Secular Trend or simply Trend. The general tendency of the functional values in a time series to 
grow or decline over a long period of time is called secular trend or simply trend. For example, 
time series for population show secular trend since the population goes on increasing with pas-
sage of time. Similarly, time series for death-rate in India show a secular trend since the death- 
rate is decreasing with the passage of time.

(ii) Seasonal Variations: The variations in a time series occurred due to climate/weather change; 
customs, habits and traditions change are called seasonal variations.

(iii) Cyclical Variations: The variations in a time series due to cyclic variations like prosperity and 
recession in business are called cyclical variations. In recession, the buyers wait for lower prices 
and that amounts to decrease functional values in the time series.

(iv) Irregular Variations. The variations in a time series caused by isolated special occurrences like 
earthquakes, floods, wars and strikes are called irregular variations.

Methods to Determine Trends
In what follows, we discuss generally used methods to determine trends.
1.  The Semi-Average Method. In this method, the given data is separated in two parts (preferably 

equal) and then average the data in each part. By doing so, we get two (average) points on the graph 
of the time series. A trend line is drawn between these two points on the graph of the time series. 
Extending the trend line downwards or upwards, we get intermediate values and so can predict future 
values.
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The method of semi-average is of course simple but can be applied only for linear trends.

EXAMPLE 2.131
Fit a trend line to the following data by the method of semi-average and predict the sales for the year 
2006.

Year Sales in lakh tonnes
2001 90
2002 110
2003 100
2004 120
2005 90

Solution.  We are given a time interval of 5 years, therefore we omit the middle year 2003. Then aver-

age of the first two years (2001 and 2002) is 90 110 100
2
+

=  and average of the last two years (2004 

and 2005) is 120 90 105
2
+

= . Thus we get two values 100 and 105. We plot 100 corresponding to mid-

dle of 2001 and 2002 and similarly plot 105 corresponding to the middle of 2004 and 2005. Joining 
these two points, we shall get the trend line as shown below:

100

90

110

120

2001 2002 2003 2004 2005 2006

f (t)

t

Actual data

Trend line

Figure 2.14

The expected sale for the year 2006 is about 107.

EXAMPLE 2.132
Fit a trend line to the following data by the method of semi-average. Predict the earning during the year 
2004.

Year : 1996 1997 1998 1999 2000 2001 2002 2003
Earning in lakhs: 38 40 65 72 69 60 87 95
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Solution.  Dividing the given data into two parts, the average of the first four years is 
38 40 65 72 53.5

4
+ + +

= , while the average for the last four years is 69 60 87 95 77.75.
4

+ + +
=  We 

plot 53.5 against the middle of the years 1997 and 1998 and the point 77.75 against the middle of the 
year 2001-2002. Joining the two points obtained, we get the trend line as shown below:

100

90

60

80

19981996 1997 1999 2000 2001 2002 2003 2004

70

50

40

Figure 2.15

The predicted earning for the year 2004 is 98.
2.  Least Square Line Method. While finding least square line approximation to a given data, we found 

that the normal equations for the line y a bx= +  are:

     
1 1

n n

i i
i i

n a b x y
= =

+ =∑ ∑  (2.42)

and

     2
1

1 1 1

n n n

i i i
i i i

a x b x x y
= = =

+ =∑ ∑ ∑  (2.43)

Solving these equations, we get values of a and b. Putting these values of a and b in the equation 
,y a bx= +  the required line is obtained.

The calculations are simplified when the midpoint in time is taken as the origin. Thus we take 

1
0.

n

i
i

x
=

=∑  By doing so, the normal equations reduce to

1

n

i
i

na y
=

= ∑
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and

2

1 1
.

n n

i i i
i i

b x x y
= =

=∑ ∑
These last two equations yield

1
1

n

i

y

a
n

==
∑

 and 1

2
1

1

n

i i
i

n

i

x y

b

x

=

=

=
∑

∑
.

It may be mentioned here that in case of odd number of years, there is no difficulty in selecting the 

origin. But in case of even number of years , 
1

n

i
i

x
=
∑  will be equal to zero if the origin is placed midway 

between the two middle years. However, in such a case, it in better to solve the original normal equa-
tions (2.42) and (2.43) .

EXAMPLE 2.133
Fit a straight line trend by the method of least squares to the data of Example 2.120. Now predict the 
earning during the year 2004.

Solution.  The given data (with deviations from the year 1999) is

Year Earning in lakhs (Y) Deviation(X) XY 2X

1996 38 3− 114− 9

1997 40 2− 80− 4

1998 65 1− 65− 1

1999 72 0 0 0
2000 69 1 69 1
2001 60 2 120 4
2002 87 3 261 9
2003 95 4 380 16

8n = 526S =Y 4S =X  571S =XY 2 44S =X

Here the number of years is even, so we have to solve the normal equations
8 4 526a b+ =

4 44 571a b+ = .
Solving these equations, we get 62.09, 7.33a b= = . Hence the line of best fit is 62.09 7.33 .y x= +
For the year 2004, 5x =  and therefore the earning predicted for that year is

62.09 5(7.33) 98.74y = + =  Lakhs.

EXAMPLE 2.134
Fit a straight line trend to determine sale for the year 2004 to the following time series.

Year: 1998 1999 2000 2001 2002

Sales: 100 110 130 125 160
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Solution.  The tabular values are:

Year Sale (Y) Deviation from 
the year 200(X)

XY 2X

1998 100 2− 200− 4

1999 110 1− 110− 1

2000 130 0 0 0
2001 125 1 125 1
2002 160 2 320 4

5n = 625S =Y 0S =X 135S =XY 2 10S =X

Here 0XΣ = . Therefore, for the line y a bx= + , we have

1 625 125,
5

n

i i
i

x y

a
n

== = =
∑

and

1

2

1

135 13.5.
10

n

i i
i

n

i
i

x y

b

x

=

=

= = =
∑

∑
Therefore, the line of best fit is

125 13.5 .y a b x x= + = +

For the year 2004, we have 4x = . Therefore the prediction of sale for that year is
125 4(13.5) 179y = + = .

3.  Method of Moving Average. This is a method for measuring non-linear trend. If 1 2, ,...y y  is a set 
of numbers, then the sequence of arithmetic means

1 2 2 3 1 3 4 2... ... ...
, , , ...n n ny y y y y y y y y

n n n
+ ++ + + + + + + +

is called the Moving Average of order n. The sums in the numerator of the above sequence are called 
moving totals of order n.

For example, let 3, 5, 1, 2, 5, 6 be a set of numbers. Then

3 5 1 2 5 1 2 5 1 2 5 6, ,
4 4 4

+ + + + + + + + +

or
11 13 14, ,
4 4 4

is a moving average of order 4, while 11, 13, 14 are moving totals of order 4.
We notice that we started in this example by six numbers, but with moving average of order 4, we 

arrived at 3 numbers.
A two-period moving average of the moving average is called centered moving average.



Elements of Statistics and Probability � 287

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02_II.indd

Modif cation Date: April 29, 2010 1:08 PM Modif cation Date: 29-04-10, 13:14

EXAMPLE 2.135
The table below shows the number of crimes in a city for the year 1999–2008. Construct a five year 
moving average and five year centered moving average.

Year: 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

No. of crimes 22 19 20 24 23 27 29 26 25 30

Solution.  The five year moving average table is

Year No. of crimes Five year moving 
total

Five year moving 
average

Five year centered 
moving average

1999 22 − −
2000 19 − −
2001 20 108 21.60

22.10
23.60
25.20
25.90
26.70

2002 24 113 22.60
2003 23 123 24.60
2004 27 129 25.80
2005 29 130 26.00
2006 26 137 27.40
2007 25 − −
2008 30 − −

4. Least Square Parabola: We know that the normal equations for the parabola 2y a bx cx= + + of 
best fit are

     

2

1 1 1
,

n n n

i i i
i i i

na b x c x y
= = =

+ + =∑ ∑ ∑

     

2 3

1 1 1 1
,

n n n n

i i i i i
i i i i

a x b x c x x y
= = = =

+ + =∑ ∑ ∑ ∑

     

2 3 4 2

1 1 1 1
.

n n n n

i i i i i
i i i i

a x b x c x x y
= = = =

+ + =∑ ∑ ∑ ∑

Solving these normal equation for a, b and c and putting in 2 ,y a bx cx= + +  we get the required 
parabola of best fit.

EXAMPLE 2.136
Fit a second degree parabola 2y a bx cx= + +  is the following population data of a city and estimate 
the population in 2007.

Year: 1999 2000 2001 2002 2003 2004 2005 2006
Population: 
in lakhs 6 8 10 13 16 18 20 23
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Solution.  The table for fitting of second degree parabola for the given data is

Year Population 
Y

Deviation 
from the 

year 2002 
(X)

XY 2X 2X y 3X 4X

1999 6 3− 18− 9 54 27− 81

2000 8 2− 16− 4 32 8− 16

2001 10 1− 10− 1 10 1− 1

2002 13 0 0 0 0 0 0
2003 16 1 16 1 16 1 1
2004 18 2 36 4 72 8 16
2005 20 3 60 9 180 27 81
2006 23 4 92 16 368 64 256

8n = 114S =Y 4S =X 160S =XY 2 44S =X 2 732S =X Y 3 64S =X 4 452S =X

Therefore the normal equations are

        8 4 44 114a b c+ + =

      4 44 64 160a b c+ + =

     44 64 452 732.a b c+ + =

Solving these equations for a, b and c, we get

     12.96 , 2.44a b= = and 0.012.c =

Therefore the required parabola of best fit is

          
212.96 2.44 0.012 .y x x= + +

The estimate of population in the year 2007 is

     12.96 5(2.44) 25(0.012) 25.46y = + + =  Lakh.

2.40 STATISTICAL QUALITY CONTROL
The statistical analysis of the inspection data based on the concept of sampling and normal curve 
principles to maintain and improving quality standards of products is called statistical quality control. 
This is a statistical method to determine the extant to which quality goals are achieved without neces-
sarily checking every item produced and to indicate whether the variations occurring are exceeding 
expectations.

To locate and eliminate special causes of variations, statistical devices called, control charts are 
used. A control chart consists of a center line and two control limits, known as upper control limit 
(UCL) and lower control limit (LCL). A process is said to be out of statistical control if point on the 
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control chart of that process falls outside the control limits. Thus the outline of a control chart is as 
shown below:

Special causes

Common causes

Out of control

Out of controlSpecial causes

Central line

UCL

LCL

Figure 2.16

Types of Control Charts
There are two types of control charts:
1.  Variable Control Charts. This type of charts are used to control causes of variations in variables 

(quality characteristic of a product) like time. weight, volume, length, pressure change, concentra-
tion, area etc.

Two important variable control charts along with their statistics plotted and control limits are given 

in the following table ( x denotes mean of sample means and R
R

n

Σ
= ):

Type of chart Statistics plotted Control limits

X and s  chart Average and standard 
deviations of subgroups of 
variable data

Centre line: m

 

UCL: 3
n

s
m ⎛ ⎞+ ⎜ ⎟⎝ ⎠

LCL: 3
n

s
m ⎛ ⎞− ⎜ ⎟⎝ ⎠

X  and R chart Averages and Ranges of m 
subgroups of variable data

Center line: X

UCL: 2X A R+

LCL: 2X A R−
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2.  Attribute Control Charts. These type of charts are used to control the number of defects associated 
with a particular type of items. The generally used attribute control charts are given in the following 
table:

Type of chart Statistics plotted Control limits

p-chart Ratio of defective items to total 
number inspected

Central line:
 

=
.no of defective

p
total number inspected

UCL: 
(1 )3 p p

p
n

−
+

LCL: 
(1 )3 p p

p
n

−
−

np- chart Actual number of defective items Central line: np

UCL: 3 (1 )np np p+ −

LCL: 3 (1 )np np p− −
c-chart Number of defects per item for a 

constant sample size
Control line: c = mean of defects in 25 
units of item

3UCL c c= +

3LCL c c= −

EXAMPLE 2.137
Samples of 50 pens are drawn randomly from daily production of large out put of pens and number of 
defective pens are noted in the form of the table given below: Draw conclusion using p-chart.

Sample No. No. inspected No. of defectives Sample No. No. inspected No. of defectives
1 50 2 11 50 3
2 50 3 12 50 1
3 50 1 13 50 2
4 50 4 14 50 5
5 50 3 15 50 3
6 50 2 16 50 1
7 50 2 17 50 2
8 50 3 18 50 3
9 50 1 19 50 2
10 50 3 20 50 4

Solution.  We have for the p-chart

50 0.05
1000

total defective
p

total number inspected
= = =
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(1 ) 0.05(1 0.05)3 0.05 3 .
50

p p
UCL p

n

− −
= + = +

0.05 0.0925 0.1425= + =

0.05 0.0925 0.0425.LCL = − = −  (which we take as 0)
The fraction defectives are

0.04 , 0.06 , 0.02 , 0.08 , 0.06 , 0.04 , 0.04 , 0.06 , 0.02 , 0.06

0.06 , 0.02 , 0.04 , 0.10 , 0.06 , 0.02 , 0.04 , 0.06 , 0.04 , 0.08

Central line

UCL

05.0=p

0.1425

Samples
LCL

Figure 2.17

We note that all points (showing fractional defective) lie in the control limits. Therefore the process of 
production is in a state of control.

EXAMPLE 2.138
15 Computer sets being produced by a manufacturing company were examined for quality control test. 
The number of defects for each computer are recorded as given below. Prepare a C-chart and draw 
conclusion from it.

No. of defects: 1 3 2 2 4 5 3 2
1 3 3 2 1 2 4

Solution.  Since number of defects in a particular item are given, we shall use C-chart. We have

Central line c  = mean of defects in 15 computer 36 2.4.
15

= =

3 2.4 3 2.4UCL c c= + = + 2.400 3(1.549) 7.048= + =

3LCL c c= − 2.400 3(1.549) 2.247= − = − (to be taken as 0).

Therefore the c-chart is as shown below:
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UCL = 7.048

Central line c = 2.4

Samples
LCL

6

5

4

3

2

1

1 5 10 15

No. of defects

Figure 2.18

Since all points lie within the control limits, the process is in a state of control.
EXAMPLE 2.139
The data given below shows the mean and range for ten samples of size 5 each. Construct the X and 
Range charts:

Sample No: 1 2 3 4 5 6 7 8 9 10

X : 11.2 11.8 10.8 11.6 11.0 9.6 10.4 9.6 10.6 10

R: 7 4 8 5 7 4 8 4 7 9

Solution.  We have samples of size 5. Also
106.6 10.66

10
X = = (central line)

 
63 6.3

10 10
R

R
Σ

= = =

 2UCL X A R= + (corresponding to n = 5)

 10.66 0.577(6.3)= +  since from the table 2 0.577A =

 14.2951.=

 2 10.66 (0.579)(6.3)LCL X A R= − = −

 10.66 3.635 7.025.= − =
Since all means lie within the control limits, the process in a state of control.
2.41 MISCELLANEOUS EXAMPLES
EXAMPLE 2.140
An insurance company insured 2,000 scooter drivers, 4,000 car drivers and 6,000 truck drivers.
The probability of accident is 0.01, 0.03 and 0.15 respectively. One of the insured persons meets an 
accident. What is the probability that he is a scooter driver?
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Solution.  Consider the events
A: Accident takes place
B: Person met with accident is a scooter driver
C: Person met with accident is a car driver
D: Person met with accident is a truck driver.

Then
2000 1 4000 1( ) , ( ) ,

12000 6 12000 3
P B P C= = = =

 
6000 1( ) .

12000 2
P D = =

Further, it is given that
( \ ) 0.01, ( \ ) 0.03, ( \ ) 0.15.P A B P A C P A D= = =

Then, by theorem on total probability, we have
( ) ( \ ) ( ) ( \ ) ( ) ( \ ) ( )P A P A B P B P A C P C P A D P D= + +

 

1 1 10.01 0.03 0.15
6 3 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 
[ ]1 0.01 0.06 0.45

6
= + +

0.52 .
6

=

Now, Baye’s Theorem implies

 

( \ ) ( )( \ )
( )

P A B P B
P B A

P B
=

 

10.01
16 .52 520.

6

⎛ ⎞
⎜ ⎟⎝ ⎠

= =

EXAMPLE 2.141
If A, B, C are mutually exclusive and exhaustive events associated with a random experiment and 
P(B) = 0.6P(A) and P(C) = 0.2P(A). Then find P(A).
Solution.  Since A, B and C are mutually exclusive and exchaustive events, we have

( ) ( ) ( ) 1.P A P B P C+ + =

Since P(B) = 0.6 P(A) and P(C) = 0.2 P(A), we get
(1 0.6 0.2) ( ) 1P A+ + =

or
1 5( ) .

1.8 9
P A = =

EXAMPLE 2.142
A factory is manufacturing electric bulbs, there is a chance of 1/500 for any bulb to be defective. The 
bulbs are packed in packets of 50. Calculate the approximate number of packets containing no defec-
tive, one, two and three defective bulbs in a consignment of 10,000 packets.

Solution.  We are given that 
1

150
p =  and n = 50. Therefore parameter l of the Poisson distribution is

0.1.npl = =
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Then
0.1(0.1)( ) .

! !

r re e
p r

r r

ll− −
= =

Thus

 (i) p(no defective) = p (x = 0) 
0.1 0

0.1(0.1) 0.90483.
0!

e
e

−
−= = = Therefore number of packets con-

taining no defective bulb is 10000 0.90483 9048.× ≈

 (ii) P(one defective) 
0.1(0.1)( 1) (0.9048) (0.1)

1
0.090483.

e
P x

−
= = = =

≈
Therefore the number of packets containing one defective bulb is 10000 0.090483 904× ≈

 (iii) P (two defective) 
0.1 2 (0.90483) (0.01)(0.1)( 2)

2 2
0.00452.

e
p x

−
= = = =

≈
Therefore the number of packets containing two defective bulbs is 10000 0.00452 45× ≈

 (iv) P(three defective) 
0.1 3(0.1) (0.90483)(0.001)( 3) 0.00015

3! 6
e

P x
−

= = = = ≈ .

Therefore the number of packets containing three defective bulbs is 10000 0.00015 2.× ≈
EXAMPLE 2.143
Two random samples have the following values:

Sample 1 15 22 28 26 18 17 29 21 24
Sample 2 8 12 9 16 15 10

Test the difference of the estimates of the population variances at 5% level of significance (Given 
that F0.05 for v1 = 8 and v2 = 5 is 4.82).
Solution.  The means for samples 1 and 2 are respectively

22.22x =  and 11.66.y =
Then for 1 29, 6,n n= =  we have

2 2
1

1

1 ( )
1

171.10364 21.387955,
8

iS x x
n

= −∑
−

= =

 

2 2
2

2

1 ( )
1

53.3336 10.66672.
5

iS y y
n

= −∑
−

= =

Therefore the test statistics is given by
2
1
2
2

21.387955 2.005.
10.66672

S
F

S
= = =
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Further, the numbers of degree of freedom are 8 and 5.
Therefore, we have

F0.05 (8,5) = 4.82 (given).
Thus the calculated value of F is less than the tabulated value. Hence the samples have been drawn 

from normal population having the same variance, that is, there is no significant difference between 
the population variances.

EXERCISES

1. Find the mean, median, and mode of the following data relating to weight of 120 articles.

Weight in gm : 0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60
No. of articles: 14 17 22 26 23 18

Ans. Mean: 32.58, Median: 32.6 Mode: 35.1
2. Determine the mean and standard deviation for the following data

Size of item: 6 7 8 9 10 11 12
Frequency: 3 6 9 13 18 5 4

Ans. Mean: 9, S.D:1.61
3. Find (i) mean x  and y  (ii) regression coefficients byx, and bxy (iii) coefficient of correlation 

between x and y for the two regression lines 2x + 3y – 10 = 0 and 4x + y – 5 = 0

Ans. 1 2 1 1, 3, , ,
2 3 4 6yx xyx y b b r= = = − = − = −

4. Out of the following two regression lines, find the regression line of Y on X:
3 12 9, 3 9 46.x y x x+ = + =

Ans. 3x + 12y = 9
5. Calculate the coefficient of correlation between X and Y from the following data:

x: 43 44 46 40 44 42 45 50
y: 29 31 19 18 19 27 27 22

Ans. − 0.057
6. In a single throw of two distinct dice, what is the probability of getting a total of 11?

Ans. 1
18

7. Find the probability that a randomly chosen three-digit integer is divisible by 5.

Ans. 1
5

8. Show that the number of distinguishable words that can be formed from the letters of MISSIS-
SIPPI is 34650.

9. A certain defective dice is tossed. The probabilities of getting the faces 1 to 6 are respectively

1 2 3 4

5 6

2 3 4 3p , p , p , p ,
18 18 18 18
4 2p , p .

18 18

= = = =

= =

What is the probability that a prime number is on the top?
Ans. 11

18



296 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M02\LAYOUT_M02\M02_BABUISBN_10_C02_II.indd

Modif cation Date: April 29, 2010 1:08 PM Modif cation Date: 29-04-10, 13:14

10. Let A and B be two events such that P(A) = 0.4, P(B) = p and P(A ∪ B) = 6. Find p so that A and 
B are independent.

Ans. 1
3

11. A bag contains 3 red and 5 black balls and a second bag contains 6 red 11. and 4 black balls. A 
ball is drawn from each bag. Find the probability that one ball is red and the other is black.

Ans. 21
40

12. The probability of a man hitting a target is 1
3

. If he fires six times, what is the probability that 

he hits the target
 (i) at least twice 
 (ii) at most twice

Ans. 473 496,
729 729

13. A candidate takes on 20 questions, each with four multiple choices. One of the choice in every 
question is incorrect. The candidate makes guess of the remaining choices. Find the expected 
number of correct answers and the standard deviation.

Ans. 20 40,
3 9

14. A random variable X has the following probability function:

x: 0 1 2 3 4 5 6 7
y: 0 k 2k 2k 3k k2 2k2 7k2+k

Find k, evaluate P(X <6), P(X ≥ 6), P(3 <X ≤ 6) and find the minimum value of x so that 
1( ) .
2

P X x≤ >

Ans. 81 19 3310, ( 6) , ( 6) , (3 6) , 4.
100 100 100

k P X P X P X x= < = ≥ = < ≤ = =

15. A die is tossed twice. Getting a number greater than 4 is considered a success. Find the variance 
of the probability distribution of the number of successes.

Ans. 4
9

16. The frequency distribution of a measurable characteristic varying between 0 and 2 is as follows:

3

3

, 0 1
( )

1 2.(2 ) ,

x x
f x

xx

⎧ ≤ ≤⎪= ⎨ ≤ ≤−⎪⎩

Calculate the standard deviation and the mean deviation about the mean.
 Hint:

2

0

1 1
4 3

0 0

1 ( )
2

1 (2 ) 1,
2

xf x dx

x dx x x dx

m
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

= + − =⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫ ∫
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2
2 2

0

1 ( 1) ( )
2

1 1and so
15 15

x f x dxs

s

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦

= =

∫

2

0

Mean deviation for the mean

1 1| | ( ) .
2 5

x f x dxm
⎡ ⎤

= − =⎢ ⎥
⎢ ⎥⎣ ⎦
∫

17. The diameter X of an electric cable is assumed to be a continuous random variable with probabil-
ity density function f (x) = 6x (1 – x), 0 ≤ x ≤ 1. Determine a number k such that P(X <k) = P (x > k).

 Hint:
1

0
1

0
2 3 2 3

3 2

( ) ( ) ( ) ( )

6 (1 ) 6 (1 )

3 2 1 3 2

1 3 14 6 1 0 and .
2 2

1 lies between 0 and 1
2

k

k

k

k

P X k P X k f x dx f x

x x dx x x dx

k k k k

k k k k

k

< = > ⇒ =

⇒ − = −

⇒ − = − +

±
⇒ − + = ⇒ = =

=

∫ ∫

∫ ∫

Ans. 1
2

18. In a precision bombing attack there is a 50% chance that any bomb will strike the target. Two 
direct hits are required to destroy the target completely. How many bombs must be dropped to 
give a 99% chance or better to completely destroy the target?

 Hint:

1 1 1, 1
2 2 2

1 1 1( )
2 2 2

r n r n

p q

n n
P X r

r r

−

= = − =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

We should have P(X ≥ 2) ≥ 0.99 or [1– p(X ≤ 1)] ≥ 0.99

or [1 (0) (1)] 0.99

1or 1 0.99
0 1 2

1or 0.01 or 2 100 100 .
2

n

n
n

p p

n n

n
n

− − ≥

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + ≥⎢ ⎥⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦
+

≥ ≥ +

Note that n = 11 satisfies this equation.
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19. If, on an average 1 vessel in every 10 is wrecked, find the probability that out of 5 vessel’s 
expected to arrive, at least 4 will arrive safely.

 Hint: 1 9,
10 10

p q= = . P (at the most one will be wrecked).

Therefore,
−≤ = + = +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎡ ⎤= + = =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

1
0 1

5 4

4 4

5

( 1) (0) (1) .

9 9 15
10 10 10

9 9 5 9 (7) 45927 .
10 10 10 5000010

n nP X P P nc q nc q p

20. Fit a binomial distribution to the following frequency distribution:

x: 0 1 2 3 4 5 6
f: 13 25 52 58 32 16 4

Ans. 200(0.554 + 0.446)6

21. Six dice are thrown 729 times. How many times do you expect at least three dice to show a five 
or six?

 Hint: Calculate P(X ≥ 3).
Ans. 233

Poisson’s Distribution
22. In a certain factory turning razor blades, there is a small chance of 0.002 for any blade to be 

defective. The blades are supplied in packets, of 10. Use Poisson’s distribution to calculate the 
approximate number of packets containing no defective, one defective, and two defective blades, 
respectively, in a consignment of 10,000 blades.

Ans. 9802,196,2

23. Show that in a Poisson distribution with unit mean, mean deviation about mean is 2
e

 times the 
standard deviation.

 Hint: ( )
!

xe
P X x

x

ll−
= = , Here λ = 1. Therefore,

1
( )

!
e

P X x
x

−
= =

Mean deviation about mean 1 is ( 1E X − =  1 ( )x P X x− =∑

 

1

1

1

1 21
2! 3!

1 1 1 1 11 1
2! 2! 3! 3! 4!

2 2(1 1) 1 standard deviation.

e

e

e
e e

−

−

−

⎛ ⎞
= + + +…⎜ ⎟⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= + − + − + − +…⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

= + = × = ×
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24. Fit a Poisson distribution to the following data:
x : 0 1 2 3 4
y : 419 352 154 56 19

Ans.
0 1 2 3 4

404.9 366 165.4 49.8 11.3
25. If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out 

of 2,000 individuals more than 2 will get a bad reaction.

 Hint: λ = np = 2000(0.001), Probability 
2

1 0.32
1 2!
e e

e
l l

l l l− −
−⎛ ⎞

= − + + =⎜ ⎟⎝ ⎠
.

26. If a random variable has a Poisson distribution such that P(1) = P(2), find (i) mean of the distri-
bution (ii) P(4)

 Hint:
2

4 4 2
2

(1) (2) 2
2

2 2(4) .
4! 4! 3

e
P P e

e e
P e

l
l

l

l
l l

l

−
−

− −
−

= ⇒ = ⇒ =

= = =

27. Fit a Poisson distribution to the following data:

x: 0 2 2 3 4
y: 192 100 24 3 1

 Hint: 0.503i i

i

f x

f
l = =∑

∑
, then the frequencies are 

0.503(0.503)320
!

re

r

⎡ ⎤
⎢ ⎥
⎣ ⎦

.

28. The incidence of occupational disease in an industry is such that the workmen have a 10% chance 
of suffering from it. What is probability that in a group of 7, five, or more will suffer from the 
disease?

Ans. 0.0008

Normal Distribution
29. The mean yield of a crop for one-acre plot is 662 kg with a standard deviation 32 kg. Assuming 

normal distribution how many one-acre plots in a batch of 1,000 plots would you expect to have 
yield over 700 kg?

 Hint:

662, 32, 1.19
32

( 1.19) 0.1170.
No. of plots 1000 0.117 117.

x
z

P z

m
m s

−
= = = =

> =
= × =

30. The mean and standard deviation of the marks obtained by 1,000 students in an examination are 
respectively, 34.4 and 16.5. Assuming the normality of the distribution, find the approximate 
number of students expected to obtain marks between 30 and 60.
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 Hint:

1

2

30 34.4 0.266,
16.5

60 34.4 1.552
16.5

( 0.266 1.552)
( 0.27 0) (0

0.106

1

4 0.4406 0

.56)
(0 0.27) (0 1.

.54
56)

70.

z

z

P z

P z P z

P z P z

−
= = −

−
= =

− ≤ ≤
= − ≤ ≤ + ≤ ≤
=

+ =
≤ ≤

=
≤ + ≤

Therefore, number of students = 1000 × 0.5470 = 547.
31. Fit a normal curve to the following data:

x: 0 1 2 3 4 5
frequency : 13 23 24 15 11 4

 Hint:

( )2 2

2

1 2
2 3.4

23 68 45 44 20 2
100

5.70 4 1.304

100 100Normal curve is
2 2 2

x x

fx

f

fx

f

y e e
m

s

m

s m

s p p

−⎛ ⎞ −− −⎜ ⎟⎝ ⎠

+ + + +
= = =

= − = − =

= =

∑
∑
∑
∑

32. If is known from past-experience that the number of telephone calls made daily in a certain 
community between 3 pm and 4 pm have a mean of 352 and a standard deviation of 31. What 
percentage of the time will there be for more than 400 telephone calls made in this community 
between 3 pm and 4pm?

Ans. 6% approx.
33. If X is a normal variate with mean 30 and standard deviation 5, find the probability that 

| X – 5 | > 5.
 Hint:

Therefore, 

( )

= 2(0.341

5 5 (

3) 

25 3

= 0

5)
( 1 1)

2 (0 1)

5 5 1 0.68
.6826

26 0.31( .) 74

P X P X

P z

P z

P x

− ≤ = ≤ ≤
= − ≤ ≤
= ≤ ≤

− > = − =

34. In a normal distribution, 10.03% of the items are under 25 kg weight and 89.97% of the items are 
under 70 kg weight. Find the mean and standard deviation of the distribution.

Ans. m = 47.5kg, s = 17.578kg

Significance for Means
35. A sample of 900 members has a mean 3.4 cm and standard deviation 2.61 cm. Is this a sample 

from a large population of mean 3.25 and standard deviation 2.61 cm?
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Ans. 1.73x
z n

m
s
−

= = . Also 95% conf dence interval: (3.2295, 3.5705). 

The mean 3.25 lies in the interval.

36. A sample of 30 pieces of a semi-conduction metrical gave an average of resistivity of 73.2 units 
with a sample standard deviation of 5.4 units. Obtain a 95% confidence interval for the resistivity 
of the material and test the hypothesis that this is 75 units.

 Hint: 
51.96x
n

± .

Ans. (71.2, 75.2), accepted.
37. The mean of a certain normal population is equal to the standard error of the mean of the samples 

of 100 from that distribution. Find the probability that the mean of the sample of 25 from the 
distribution will be negative.

 Hint:

10,
10100

5 1
2

xx
z

n n
x

s
s s m

m s s

s

−−
= = = =

= −

Since x  is –ve, 1
2

z < − . Therefore,

2
1
2

21 1
2 2

z

P z e dz
p

−
−

−∞

⎛ ⎞< − = −⎜ ⎟⎝ ⎠ ∫

 

2

2

1
2

1 0.3085
2

z

e dz
p

∞ −
= =∫

38. A sample of height of 6,400 soldiers has a mean of 67.85 inches and a standard deviation of 
2.56 inches whereas a simple sample of heights of 1,600 sailors has a mean of 68.55 inches and 
a standard deviation of 2.52 inches. Do the data indicate that the sailors are on the average taller 
than soldiers?

Ans. Yes
39. A sample of 400 individuals is found to have a mean height of 67.47 inches. Can it be reason-

ably regarded as a sample from a large population with mean height of 67.39 inches and standard 
deviation 1.30 inches?

 Hint: m = 69.39, s = 1.30, 67.47x = , n = 400, z = 1.23, Yes.
40. If 60 new entrants in a given university are found to have a mean height of 68.60 inches and 

50 seniors a mean height of 69.51 inches, can we conclude that the mean height of the senior is 
greater than that of new entrants. Assume the standard deviation of height to be 2.48 inches.

Ans. No
41. Two kinds of a new plastic material are to be compared for strength. From tensile strength, meas-

urement of 10 similar pieces of each type, the sample average and standard deviations were found 
as follows:

1 78.3,x =  S1 = 5.6, 2 84.2x = , S2 = 6.3 compare the mean strength, assuming normal data.
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 Hint: s is not known, so calculate
2 2

2 2 21 1 2 2

1 2

10 [(5.6) (6.3) ] 35.525
20

5.96(pooled estimate of standard deviation)

n S n S

n n
s

s

+
= = + =

+
∴ =

Then

 

1 2
1
2

1 2

78.3 84.2 2.215.96
1 1 5

x x
z

n n
s

− −
= = = −

⎛ ⎞
+⎜ ⎟⎝ ⎠

| z | = 2.21 > 1.96 implies that the difference is significant. Also 95% confidence interval is 

1 2
1 2

1 1 5.961.96 78.3 84.2 1.96
5

x x
n n

s
⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥− ± + = − ± ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦

 = –5.90 ± 4.95 = (−10.85, −0.95).

Since 0 does not lie within the interval, the difference is significant.
42. An examination was given to 50 students of a college A and to 60 students of college B. For A, the 

mean grade was 75 with standard deviation of 9 and for B, the mean grade was 79 with standard 
deviation of 7. Is there any significant difference between the performance of the students of col-
lege A and those of college B?

Ans. No
43. The mean yield and standard deviation of a set of 40 plots are 1258 kg and 34 kg whereas mean 

yield and standard deviation of another set of 60 plots are 1243 kg and 28 kg. Is the difference in 
the mean yields of two sets of plots significant?

Ans. z = 2.3, Yes at 5% level of conf dence
Significance for Single Proportion
44. A random sample of 500 apples was taken from a large consignment and 60 were found to be bad. 

Obtain 98% confidence limits far the percentage of bad apples in the consignment.
Ans. (0.086, 0.154), that is, 8.6% to 15.4%

45. A bag contains defective articles, the exact number of which is not known. A sample of 100 from 
the bag gives 10 defective articles. Find the limits for the proportion of defective articles in the 
bag.

Ans. 0.1(0.9)0.1 1.96 (0.0412, 0.1589)
100

± =
46. A sample of 1,000 days is taken from meteorological records of a certain district and 120 of them 

are found to be foggy. What are the probable limits to percentage of foggy days in the district?
Ans. 8.91% to 15.07%

Significance for Difference of Proportion
47. Before an increase in excise duty on tea, 800 persons out of a sample of 1,000 persons were found 

to be tea drinkers. After an increase in duty, 800 people were the drinkers in a sample of 1,200 
people. Using standard error of proportion, state whether there is a significant decrease in the 
consumption of tea after the increase in excise duty.

Ans. z = 6.84, signif cant decrease
48. One type of aircraft is found to develop engine trouble in 5 flights out of a total of 100 and another 

type in 7 flights out of 200 flights. Is there a significant difference in the two types of aircrafts so 
far as defects are concerned?

Ans. Difference is not signif cant
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49. In a random sample of 400 students of the university teaching departments, it was found that 300 
students failed in the examination. On another random sample of 500 students of the affiliated 
colleges, the number of failures in the same examination was found to be 300. Find out whether 
the proportion of failures in the university teaching departments is significantly greater than 
the proportion of failures in the university teaching departments and affiliated colleges taken 
together.

Ans. z = 4.08
50. In a random sample of 100 men taken from village A, 60 were found to be consuming alcohol. In 

another sample of 200 men taken from village B, 100 were found to be consuming alcohol. Do the 
two villages differ significantly of the proportion of men who consume alcohol?

Ans. z = 1.64
51. 500 articles from a factory are examined and found to be 2% defective. 800 similar articles from 

another factory are found to be only 1.5% defective. Can we conclude that the products of the first 
factory are inferior to those of the second?

Ans. z = 0.68, No

Significance for Difference of Standard Deviations
52. Random samples drawn from two countries A and B gave the following data regarding the heights 

(in inches) of the adult males
Country A Country B

Mean height 67:42 67:25
Standard deviation 2:58 2:50
Number in sample 1000 1200

Is the difference between the standard deviations significant?

Ans. 1 2
2 2
1 2

1 2

1.03

2 2

S S
z

S S

n n

−
= =

+

53. In Exercise 44, examine whether the difference in the variability in yields is significant.
Ans. z = 1.31, Difference not signif cant at 5% level of signif cance.

t-Distribution
54. A random sample of eight envelops is taken from letter box of a post office. The weights in grams 

are found to be 12.1, 11.9, 12.4, 12.3, 11.9, 12.1, 12.4, and 12.1. Find 99% confidence limits for 
the mean weight of the envelopes received at the post office.

 Hint:

0.0512.15, 0.2, .

0.212.15 2.35

(11.984, 12.
8

316).

S
x S x t

n

=

= = ±

= ±

55. The nine items of a sample have the following values: 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the 
mean of these differ significantly from the assumed mean of 47.5?

Ans. Not signif cant at 5% level of signif cances
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56. Two horses A and B were tested according to the time (in seconds) to run a particular track with 
the following results:

Horse A: 28 30 32 33 33 29 34
Horse B: 29 30 30 24 27 29

Test whether the two horses have the same running capacity (use t-test)
Ans. t = 2.5, Yes

57. A sample of 10 measurements of the diameter of a sphere gave a mean of 12 cm and a standard 
deviation of 0.15 cm. Find 95% confidence limit for the actual diameter.

Ans. (11.887, 12.113)
58. For a random sample of 10 pigs fed on diet A, the increase in weight in a certain period were 16, 

6, 16, 17, 13, 12, 8, 14, 15, 9 kg. For another random sample of 12 pigs fed on diet B, the increases 
in the same period were 7, 13, 22, 15, 12, 14, 18, 8, 21, 23, 10, 17 kg. Are these two samples 
significantly different regarding the effect of diet?

Ans. t = 1.51, Sample mean do not differ signif cantly
59. A car company has to decide between two brands A and B of tyre for its car. A trial is conducted 

using 12 of each brand, run until they tear out. The sample average and standard deviations of run-
ning distance (in km) are, respectively, 36,300 and 5,000 for A, and 39100 and 6100 for B. Obtain 
a 95% confidence interval for the difference in means assuming the distribution to be normal and 
test the hypothesis that brand B tyres outrun brand A tyres.

Hint: 2 2 2
1 1 2 2

1 2

1 [( 1) ( 1) ].
2

S n S n S
n n

= − + −
+ −

Here n1 = n2 = 12.
Degree of freedom = n1 + n2 – 2 = 24 – 2 = 22, t0.05 at v = 22 is 1.71.

95% confidence interval is 36300 − 39100 ± 
1 2

1 11.71 S
n n

⎡ ⎤
+⎢ ⎥

⎣ ⎦
.

Also 

1 2

36300 39100 .
1 1

t

S
n n

−
=

+
 Find t and compare with t0.05.

c2–Distribution
60. The following figures show the distribution of digits in numbers chosen at random from a tel-

ephone directory:
Digits: 0 1 2 3 4 5 6 7 8 9 Total

Frequency: 1026 1107 997 966 1075 933 1107 972 964 853 10000

Test whether the digits may be taken to occur equally and frequently in the directory.
Ans. 2 2

0.0558.542, (9) 16.92c c= =

61. A set of five similar coins is tossed 320 times and the result is

No. of heads: 0 1 2 3 4 5
Frequency: 6 27 72 112 71 32

Test the hypothesis that the data follow a binomial distribution.

Ans. 2 2
0.0578.68, (5) 11.07,c c= =  hypothesis rejected
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62. Fit a normal distribution to the data given below and test the goodness-of-fit.

x : 50 55 60 65 70 75 80 85 90 95 100
f : 2 3 5 9 10 12 7 2 3 1 0

Ans. good f t.
63. The following table gives the number of aircraft accidents occurred during the days of the week. 

Find whether the accidents are uniformly distributed over the week.

Days : Monday Tuesday Wednesday Thursday Friday Satuday
No. of accidents: 14 18 12 11 15 14

Ans. c2 = 2.14
64. During proof reading 392 pages of a book of 1,200 pages were read. The distribution of printing 

mistakes were found to be as follows:

No. of mistakes in page (x) 0 1 2 3 4 5 6
No. of page (  f  ) 275 72 30 7 5 2 1

Fit a Poisson distribution to the above data and test the goodness-of-fit.
 Hints: The expected (theoretical) frequencies are 242.1, 116.7, 28.1, 4.5, 0.5, 0.1, 0. Further,

2 2
0.0540.937, (2) 5.99c c= = . Not a good f t.

65. A survey of 800 families with four children were taken. Each revealed the following distribution:

No. of boys: 0 1 2 3 4
No. of girls: 4 3 2 1 0
No. of families: 32 178 290 236 64

Test the hypothesis that male and female births are equally possible.

 Hint: Probability for boy’s birth 1 1( ) ,
2 2

p so q= = . Fit binomial distribution to male birth, 

which is 50, 200, 300, 200, 50. Then proceed to find χ2, which is 19.63 and 2
0.05 (4) 9.488c = . 

Hypothesis rejected.

F-Distribution
66. Two samples of sizes 8 and 10, respectively, give the sum of the squares of deviations from their 

respective means equals to 84.4 and 102.6, respectively. Examine whether the samples have been 
drawn from normal population having the same variance.

Ans. F = 1.057, F0.05(7, 9) = 3.29 Hypothesis accepted at 5% level of signif cance.
67. Two random samples from two normal populations are given below Do the estimates of popula-

tion variance differ significantly?

Sample I: 16 26 27 23 24 22
Sample II : 33 42 35 32 28 31

Ans. F = 1.49, Do not differ signif cantly
68. The following are the values in thousands of an inch obtained by two engineers in 10 successive meas-

urements with the same micrometer. Is one engineer significantly more consistent than the other?
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Engineer A: 503 505 497 505 495 502 499 493 510 501
Engineer B: 502 497 492 498 499 495 497 496 498

Ans. F = 2.4 F0.05(9,8) = 5.47 Equally consistent.

ANOVA
69. Four machines A,B,C and D are used to produce a certain kind of cotton fabrics. Samples of size 

4 with each unit as 100 square meters are selected from the outputs of the machines at random and 
the number of flaws in each 100 square meters are counted with following result.

A B C D

 8  6 14 20
 9  8 12 22
11 10 18 25
12  4  9 23.

Is there significance difference in the performance of the four machines?
 Hint: 1540.69 , 3cV n= =  and 285.75 , 12R n= =

Ans. Signif cant difference is there
70. Ten varieties of wheat are grown in 3 plots each and the following yields in quintal per acre 

obtained.
          Variety  
plot

1 2 3 4 5 6 7 8 9 10

7 7 14 11  9 6  9  8 12  9
8 9 13 10  9 7 13 13 11 11
7 6 16 11 12 5 12 11 11 11

Test the significance of differences between variety yields
Ans. F = 8.22

71. The following data contains the results regarding the measures of I Q of male students of tall, 
short and medium stature. Is there significant difference in the I Q score relative to the height 
difference.

Tall 110 105 118 112 90
Short  95 103 115 107 96
Medium 108 112  93 104 97

Ans. Difference is in signif cant.
72. Fit a straight line trend for the following data and estimate the sale for the year 2001.

Year: 1999 2000 2001 2002 2003 2004 2005
Sale in

33 35 60 67 68 82 90
Rs. Lakhs

Ans. 62.141 9.746x+  prediction for 2011 is Rs 149.80 Lakhs
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73. Fit a least square line to following time series and predict the sale for the year 2005.

Year: 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Sale:
in Rs. 42 50 61 75 92 111 120 127 140 138

Ans. 95.61 6y x= +  Prediction for 2005 is 174.
74. Find a trend line for the time series in Exercise 72 using semi average method.
75. Construct a four-year moving average and four-year centered moving average for the following 

time series.

Year: 1985 1986 1987 1988 1989 1990 1991 1992 1993
Production:
in tons. 20 18 19 21 17 20 22 18 20

76. The following are the number of defects observed in the final inspection of 30 bales of woolen 
cloth:

0 3 1 4 2 2 1 3 5 0
2 0 0 1 2 4 3 0 0 0
1 2 4 5 0 9 4 10 3 6

Compute the values for an appropriate control chart. Is the process in a state of control?
 Hint: The question is of c-chart,
         2.57 , 7.38c UCL= =
         2.24LCL = − (taken as 0)

Ans. Since some points lie onside the control limits, the process is not under control.
77. The values of sample means and range for the sample of size 5 each are given below. Construct 

X  and R chart and comment.

Sample No.: 1 2 3 4 5 6 7 8 9 10

X :  43 49 37 4 5 37 51 46 43 47

R:  5  6  5 7 7  4  8  6 4 6
Ans. Central line: 44.2

 UCL = 47.564
LCL = 40.836

Not in a state of control.
78. The average number of defectives in 22 sampled lots of 2000 rubber belts each, was found to be 

16%. Determine control limits for the p-chart.
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3 Non-Linear Equations

The aim of this chapter is to discuss the most useful methods for finding the roots of any equation 
having numerical coefficients. Polynomial equations of degree 4 can be solved by standard algebraic 
methods. But no general method exists for finding the roots of the equations of the type a x bxlog c  
or ae b xx tan 4, etc. in terms of their coefficients. These equations are called transcendental equa-
tions. Therefore, we take help of numerical methods to solve such type of equations.

Let f  be a continuous function. Any number  for which f ( ) 0 is called a root of the equa-
tion f ( )x 0 . Also,  is called a zero of function f x( ).
A zero  is called of multiplicity p, if we can write

f x x g xp( )  ( ) ( ),

where g(x) is bounded at  and g( ) 0 . If p = 1, then  is said to be simple zero and if p > 1, then 
 is called a multiple zero.

3.1 CLASSIFICATION OF METHODS
The methods for finding roots numerically may be classified into the following two types:

1. Direct Methods. These methods require no knowledge of an initial approximation and are used 
for solving polynomial equations. The best known method is Graeffe’s root squaring method.

2. Iterative Methods. There are many such methods. We shall discuss some of them in this chap-
ter. In these methods, successive approximations to the solution are used. We begin with the first 
approximation and successively improve it till we get result to our satisfaction. For example, 
Newton–Raphson method is an iterative method.

Let { }xi  be a sequence of approximate values of the root of an equation obtained by an iteration 
method and let x denote the exact root of the equation. Then the iteration method is said to be convergent 
if and only if

lim x x
n n 0.

An iteration method is said to be of order p, if p is the smallest number for which there exists a 
finite constant k such that

x x k x xn n

p

1 .

3.2 APPROXIMATE VALUES OF THE ROOTS
Let
 f x( ) 0  (3.1)

be the equation whose roots are to be determined. If we take a set of rectangular co-ordinate axes and 
plot the graph of
 y f x( ),  (3.2)
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then the values of x where the graph crosses the x-axis are the roots of the given equation (3.1), because 
at these points y is zero and therefore equation (3.1) is satisfied.

However, the following fundamental theorem is more useful than a graph.

Theorem 3.1. If f is continuous on [a,b) and if f (a) and f (b) are of opposite signs, then there is at least 
one real root of f (x) = 0 between a and b.

In many cases, the approximate values of the real roots of f (x) = 0 are found by writing the equa-
tion in the form

 f x f x1 2( ) ( )  (3.3)
and then plotting the graphs, on the same axes, of two equations y1 = f1(x) and y2 = f2(x). The abscissas 
of the point of intersection of these two curves are the real roots of the given equation because at these 
points y1 = y2 and therefore f1(x) = f2(x). Hence, equation (3.3) is satisfied and consequently f (x) = 0 is 
satisfied.

For example, consider the equation xlog10x = 1.2. We write the equation in the form

f x x x( ) log . .10 1 2 0

It is obvious from the table given below that f (2) and f (3) are of opposite signs:

 
: 1 2 3 4x

f x( ) : . . . .1 2 0 6 0 23 1 21
Therefore, a root lies between x = 2 and x = 3 and this is the only root.

The approximate value of the root can also be found by writing the equation in the form

log .
10

1 2x
x

and then plotting the graphs of y x1 10log  and y2 = 1.2/x. The abscissa of the point of intersection of 
these graphs is the desired root.

3.3 BISECTION METHOD (BOLZANO METHOD)
Suppose that we want to find a zero of a continuous function f. We start with an initial interval [a0,b0], 
where f (a0) and f (b0) have opposite signs. Since f is continuous, the graph of f will cross the x-axis at a 
root x = x lying in [a0,b0]. Thus, the graph shall be as shown in Figure 3.1.

O b0c0

(x, 0) 

(a0, f(a0))

a0
x

y

•

• • • •

• (b0, f(b0))

Figure 3.1
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The bisection method systematically moves the endpoints of the interval closer and closer together 
until we obtain an interval of arbitrary small width that contains the root. We choose the midpoint 
c a b0 0 0 2 ( ) /  and then consider the following possibilities:

(i) If f a( )0  and f c( )0  have opposite signs, then a root lies in [ , ]a c0 0 .
(ii) If f c( )0  and f b( )0  have opposite signs, then a root lies in [ , ]c b0 0 .

(iii) If f c( )0 0, then x c0  is a root.

If (iii) happens, then nothing to proceed as c0 is the root in that case. If anyone of (i) and (ii) hap-
pens, let [ , ]a b1 1  be the interval (representing [ , ]a c0 0  or [ , ]c b0 0  ) containing the root, where f a( )1  and 
f b( )1  have  opposite signs. Let c a b1 1 1 2 ( )/  and [ , ]a b2 2  represent [ , ]a c1 1  or [ , ]c b1 1  such that f a( )2  
and f b( )2  have opposite signs. Then the root lies between a2 and b2. Continue with the process to con-
struct an interval [ , ]a bn n1 1 , which contains the root and its width is half that of [ , ].a bn n  In this case 
[ , ]  [ , ]a b a cn n n n1 1  or [ , ]c bn n  for all n.

Theorem 3.2. Let f  be a continuous function on [a,b] and let [ , ]a b  be a root of f (x) = 0. If f (a) and 
f (b) have opposite signs and { }cn  represents the sequence of the midpoints generated by the bisection 
process, then

c b a nn n2
0 1 21 , , , ,K

and hence { }cn  converges to the root x , that is, lim
n nc .

Proof. Since both the root  and the midpoint cn  lie in [ , ]a bn n , the distance from cn  to  cannot be 
greater than half the width of [ , ]a bn n  as shown in Figure 3.2.

2

| |bn–an

an cn
bn

| |x–cn

x

Figure 3.2
Thus,

c
b a

n
n n

2
for all n.

But, we note that

b a
b a

b a
b a b a

b a
b

1 1
0 0

2 2
1 1 0 0

2

3 3
2

2

2 2

,

,

aa b a

b a
a b a

n n
n n

n

2 0 0
3

1 1 0 0

2 2

2 2

L

b
.
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Hence,

| |
| |

c
b a

nn n
0 0

12
for all

and so lim | |
n nc 0  or lim

n nc .

EXAMPLE 3.1
Find a real root of the equation x x3 2 1 0  using bisection method.

Solution. Let

f x x x( ) . 3 2 1
Then f (0) = −1, f (1) = 1. Thus, a real root of f (x) = 0 lies between 0 and 1. Therefore, we take x0 0 5. . 
Then f ( . ) ( . ) ( . ) . . . .0 5 0 5 0 5 1 0 125 0 25 1 0 6253 2

This shows that the root lies between 0.5 and 1, and we get

x1

1 0 5
2

0 75. . .

Then f x( ) ( . ) ( . ) . .1
3 20 75 0 75 1 0 421875 0 5625 1 00 015625. .

Hence, the root lies between 0.75 and 1. Thus, we take

x2

1 0 75
2

0 875. .

and then
f x( ) ( )2 0.66992 0.5625 1 0.23242 +ve .

It follows that the root lies between 0.75 and 0.875. We take

x3

0 75 0 875
2

0 8125. . .

and then
f x( ) . . . ( ).3 0 53638 0 66015 1 0 19653 +ve

Therefore, the root lies between 0.75 and 0.8125. So, let

x4

0 75 0 8125
2

0 781. . . ,

which yields

f x( ) ( . ) ( . ) . ( ).4
3 20 781 0 781 1 0 086 ve

Thus, the root lies between 0.75 and 0.781. We take

x5

0 750 0 781
2

0 765. . .

and note that
f ( . ) . ( ).0 765 0 0335 ve

Hence, the root lies between 0.75 and 0.765. So, let

x6

0 750 0 765
2

0 7575. . .



312 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M03\LAYOUT\M03_BABUISBN_10_C03.indd

Modif cation Date: April 29, 2010 11:14 AM Modif cation Date: 29-04-10, 11:14

and then
f ( . ) . . . ( ).0 7575 0 4346 0 5738 1 0 0084 ve

Therefore, the root lies between 0.75 and 0.7575.
Proceeding in this way, the next approximations shall be

x x x
x x

7 8 9

10 1

0 7538 0 7556 0 7547
0 7551
. , . , . ,
. , 11 120 7549 0 75486. , . ,x

and so on.

EXAMPLE 3.2
Find a root of the equation x x3 3 5 0  by bisection method.

Solution. Let f x x x( ) 3 3 5. Then we observe that f (2) = −3 and f (3) = 13. Thus, a root of the 
given equation lies between 2 and 3. Let x0 2 5. . Then

f ( . ) ( . ) ( . ) . ( ).2 5 2 5 3 2 5 5 3 1253 ve
Thus, the root lies between 2.0 and 2.5. Then

x1

2 2 5
2

2 25. . .

We note that f ( . ) . ( )2 25 0 359375 ve . Therefore, the root lies between 2.25 and 2.5. Then we take

x2

2 25 2 5
2

2 375. . .

and observe that f (2.375) = 1.2715 (+ve). Hence, the root lies between 2.25 and 2.375. Therefore, 
we take

x3

2 25 2 375
2

2 3125. . . .

Now f ( . ) . (2 3125 0 4289 ve). Hence, a root lies between 2.25 and 2.3125. We take

x4

2 25 2 3125
2

2 28125. . . .

Now

f ( . ) . ( ).2 28125 0 0281 ve

We observe that the root lies very near to 2.28125. Let us try 2.280. Then

f ( . ) . .2 280 0 0124

Thus, the root is 2.280 approximately.

3.4 REGULA–FALSI METHOD
The Regula–Falsi method, also known as method of false position, chord method or secant method, 
is the  oldest method for finding the real roots of a numerical equation. We know that the root of 
the equation f (x) = 0 corresponds to abscissa of the point of intersection of the curve y = f (x) with 
the x-axis. In  Regula–Falsi method, we replace the curve by a chord in the interval, which contains 
a root of the equation f (x) = 0. We take the point of intersection of the chord with the x-axis as an 
approximation to the root.
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Suppose that a root x  lies in the interval ( , )x xn n1  and that the corresponding ordinates f xn( )1  
and f xn( )  have opposite signs. The equation of the straight line through the points P x f xn n( , ( )) and 
is 1 1( , ( ))n nQ x f x− −

 

f x f x
f x f x

x x
x x

n

n n

n

n n

( ) ( )
( ) ( )

.
1 1  

(3.4)

Let this straight line cut the x-axis at xn 1 . Since f (x) = 0 where the line (3.4) cuts the x-axis, we have, 
f xn( )1 0  and so

 x x
x x

f x f x
f xn n

n n

n n
n1

1

1( ) ( )
 ( ). (3.5)

O

Q(xn–1, f (xn–1))

x

P(xn, f (xn))

y

P1(xn+1, f (xn+1))

xn+2
xn+1 xn

xn–1

Figure 3.3

Now f xn( )1  and f xn( )1  have opposite signs. Therefore, it is possible to apply the approximation again 
to determine a line through the points Q and P1. Proceeding in this way we find that as the points approach 

, the curve becomes more nearly a straight line. Equation (3.5) can also be written in the form

 
x

x f x x f x
f x f x

nn
n n n n

n n
1

1 1

1

1 2
( ) ( )
( ) ( )

, , ,, .K
 

(3.6)

Equation (3.5) or (3.6) is the required formula for Regula–Falsi method.

3.5 CONVERGENCE OF REGULA–FALSI METHOD
Let  be the actual root of the equation f x( ) 0. Thus, f ( ) 0 . Let xn n , where n  is the 
error involved at the nth step while determining the root. Using

x
x f x x f x

f x f x
nn

n n n n

n n
1

1 1

1

1 2
( ) ( )
( ) ( )

, , ,, ,K

we get

n
n n nf f

f1
1 1( ) ( ) ( ) ( )

(
n

nn nf1) ( )
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and so

n
n n n n

n

f f
f1

1 1( ) ( ) ( ) ( )
( 11

1 1

) ( )
( ) ( )
(

f
f f
f

n

n n n n

n 1) ( )
.

f n

Expanding the right-hand side by Taylor’s series, we get

n

n n nf f f

1

1 1
21

2
( ) ( ) ( ) L n n n

n

f f f

f

1
21

2
( ) ( ) ( )

( )

K

1 1
2 21

2
1
2

f f f f fn n n( ) ( ) ( ) ( )L ( ) L

that is,

 n n n nk O1 1
2( ),  (3.7)

where

k f
f

1
2

( )
( )

.

We now try to determine some number m such that

 n n
mA1  (3.8)

and

n n
m

n
m

n
mA A1 1

1 1

or .

From equations (3.7) and (3.8), we get

n n n
m

n
m

nk kA1 1

1 1

and so

A kA kAn
m m

n
m

n
m

n
m

1 1 1 1 1

.
Equating powers of n  on both sides, we get

m m
m

m m1 1 02or ,

which yields m 1 5
2

1 618. ( )ve value . Hence,

n nA1
1 618. .

Thus, Regula–Falsi method is of order 1.618.

EXAMPLE 3.3
Find a real root of the equation x x3 5 7 0 using Regula–Falsi method.

Solution. Let f x x x( ) 3 5 7 0. We note that f (2) = −9 and f (3) = 5. Therefore, one root of the 
given equation lies between 2 and 3. By Regula–Falsi method, we have

x
x f x x f x

f x f x
nn

n n n n

n n
1

1 1

1

1 2
( ) ( )
( ) ( )

, , ,, , .3K
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We start with x0 2  and x1 3.  Then

x
x f x x f x

f x f x2
1 0 0 1

0 1

3 9 2 5
9

( ) ( )
( ) ( )

( ) ( )
55

37
14

2 6. .

But f ( . ) .2 6 2 424  and f ( ) .3 5  Therefore,

x
x f x x f x

f x f x3
2 1 1 2

1 2

2 6 5 3 2( ) ( )
( ) ( )

( . )  ( .4424
5 2 424

2 73)
.

. .

Now f ( . ) .2 73 0 30583. Since we are getting close to the root, we calculate f ( . )2 75  which is found 
to be 0.046875. Thus, the next approximation is

x f f
f f4

2 75 2 73 2 73 2 75
2 73 2 75

. ( . ) ( . ) ( . )
( . ) ( . )

2 75 0 303583 2 73 0 0468675
0 303583

. ( . ) . ( . )
. 00 0468675

2 7473
.

. .

Now f ( . ) .2 747 0 0062 . Therefore,

x f f
f f5

2 75 2 747 2 747 2 75
2 747 2 75

. ( . ) . ( . )
( . ) ( . ))

. ( . ) . ( . )
. .

2 75 0 0062 2 747 0 046875
0 0062 0 0446875

2 74724. .

Thus, the root is 2.747 correct up to three places of decimal.

EXAMPLE 3.4
Solve x xlog .10 1 2  by Regula–Falsi method.

Solution. We have f x x x( ) log .10 1 2 0. Then f ( ) .2 0 60  and f ( )3  = 0.23. Therefore, the root 
lies between 2 and 3. Then

x
x f x x f x

f x f x2
1 0 0 1

0 1

3 0 6 2 0 2( ) ( )
( ) ( )

( . ) ( . 33
0 6 0 23

2 723)
. .

. .

Now f ( . ) . log( . ) . .2 72 2 72 2 72 1 2 0 01797. Since we are getting closer to the root, we calculate 
f ( . )2 75  and have

f ( . ) . log ( . ) . .  ( . ) .2 75 2 75 2 75 1 2 2 75 0 4393 1 22 0 00816. .

Therefore,

x3

2 75 0 01797 2 72 0 00816
0 01797 0

.  ( . ) .  ( . )
. ..

. .
.

.
00816

0 04942 0 02219
0 02613

2 7405.

Now f ( . ) . log( . ) . . ( . ) .2 74 2 74 2 74 1 2 2 74 0 43775 1 2 0 00056. .
Thus, the root lies between 2.74 and 2.75 and it is more close to 2.74. Therefore,

x4

2 75 0 00056 2 74 0 00816
0 00056 0

.  ( . ) .  ( . )
. ..

. .
00816

2 7408

Thus the root is 2.740 correct up to three decimal places.
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EXAMPLE 3.5
Find by Regula–Falsi method the real root of the equation log cosx x 0  correct to four decimal 
places.

Solution. Let
f x x x( ) log cos .

Then
f ( ) . . ( )1 0 0 54 0 54 ve

f ( . ) . . . ( )1 5 0 176 0 071 0 105 ve .

Therefore, one root lies between 1 and 1.5 and it is nearer to 1.5.
We start with x x0 11 1 5, . . Then, by Regula–Falsi method,

x
x f x x f x

f x f xn
n n n n

n n
1

1 1

1

( ) ( )
( ) ( )

and so

x
x f x x f x

f x f x2
1 0 0 1

0 1

1 5 0 54 1( ) ( )
( ) ( )

. ( . ) (00 105
0 54 0 105

1 41860 1 42. )
. .

. . .

But,  f x f( ) ( . ) . . .2 1 42 0 1523 0 1502 0 0021 . Therefore,

x
x f x x f x

f x f x3
2 1 1 2

1 2

1 42 0 105 1( ) ( )
( ) ( )

. ( . ) .. ( . )
. .

. . .5 0 0021
0 105 0 0021

1 41836 1 4184

Now  f ( . ) . . .1 418 0 151676 0 152202 0 000526.
Hence, the next iteration is

x
x f x x f x

f x f x4
3 2 2 3

2 3

1 418 0 0021( ) ( )
( ) ( )

. ( . ) ( . )( . )
. .

. .1 42 0 000526
0 0021 0 000526

1 41840

EXAMPLE 3.6
Find the root of the equation cos x xex 0  by secant method correct to four decimal places.

Solution. The given equation is

f x x x ex( ) cos 0.

We note that f (0) = 1, f (1) = cos 1 −e = 0 −e = −e (−ve). Hence, a root of the given equation lies between 
0 and 1. By secant method, we have

x x
x x

f x f x
f xn n

n n

n n
n1

1

1( ) ( )
( ).

So taking initial approximation as 
x x f x f x e0 1 0 10 1 1 2 1780, , ( ) ( ) . ,and  we have

x x
x x

f x f x
f x2 1

0 1

0 1
1 1 1

1 2 178
2

( ) ( )
( )

.
( .1178 0 3147) . .

Further, f x f( ) ( . ) . .2 0 3147 0 5198  Therefore,
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x x
x x

f x f x
f x3 2

1 2

1 2
2 0 3147 1 0 3147

( ) ( )
( ) . .

2 178 0 5198
0 5198 0 4467

. .
( . ) . .

Further, f x f( ) ( . ) . .3 0 4467 0 2036  Therefore

x x
x x

f x f x
f x4 3

2 3

2 3
3 0 4467 0 3147 0

( ) ( )
( ) . . ..

. .
( . ) . ,4467

0 5198 0 2036
0 2036 0 5318

f x f( ) ( . ) . .4 0 5318 0 0432

Therefore,

x x
x x

f x f x
f x5 4

3 4

3 4
4 0 5318 0 4467 0

( ) ( )
( ) . . ..

. . .
( . ) . ,5318

0 20 36 0 0432
0 0432 0 5168

and
f x f( ) ( . ) . .5 0 5168 0 0029

Now

x x
x x

f x f x
f x6 5

4 5

4 5
5 0 5168 0 5318 0

( ) ( )
( ) . . ..

. .
( . ) . ,5168

0 0432 0 0029
0 0029 0 5177

and
f x f( ) ( . ) . .6 0 5177 0 0002

The sixth iteration is

x x
x x

f x f x
f x7 6

5 6

5 6
6 0 5177 0 5168 0

( ) ( )
( ) . . ..

. .
( . ) . .5177

0 0029 0 0002
0 0002 0 51776

We observe that x x6 7  up to four decimal places. Hence, x = 0.5177 is a root of the given equa-
tion  correct to four decimal places.

3.6 NEWTON–RAPHSON METHOD
If the derivative of a function f can be easily found and is a simple expression, then the real roots of the 
 equation f x( ) 0  can be computed rapidly by Newton–Raphson method.

Let x0  denote the approximate value of the desired root and let h be the correction which must 
be applied to x0  to give the exact value of the root x. Thus, x x h0  and so the equation f x( ) 0  
reduces to f x h( )0 0. Expanding by Taylor’s Theorem, we have

f x h f x hf x h f x h( ) ( ) ( )
!

( ), .0 0 0

2

02
0 1

Hence,

f x xf x h f x h( ) ( ) ( ) .0 0

2

02
0

If h is relatively small, we may neglect the term containing h2  and have

f x hf x( ) ( ) .0 0 0
Hence,

h
f x
f x

( )
( )

0

0
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and so the improved value of the root becomes

x x h x
f x
f x1 0 0

0

0

( )
( )

.

If we use x 1  as the approximate value, then the next approximation to the root is

x x
f x
f x2 1

1

1

( )
( )

.

In general, the (n + 1)th approximation is

 
x x

f x
f x

nn n
n

n
1

( )
( )

,  = 0,1,2,3, .K
 

(3.9)

Formula (3.9) in called Newton–Raphson method.

The expression h
f x
f x

( )
( )

0

0

 is the fundamental formula in Newton–Raphson method. This for-

mula tells us that the larger the derivative, the smaller is the correction to be applied to get the correct 
value of the root. This means, when the graph of f is nearly vertical where it crosses the x-axis, the 
correct value of the root can be found very rapidly and with very little labor. On the other hand, if the 
value of f x( ) is small in the neighborhood of the root, the value of h given by the fundamental formula 
would be large and therefore the computation of the root shall be a slow process. Thus, Newton–Raph-
son method should not be used when the graph of f is nearly horizontal where it crosses the x-axis. 
Further, the method fails if f x( ) 0 in the neighborhood of the root.

EXAMPLE 3.7
Find the smallest positive root of x x3 5 3 0.

Solution. We observe that there is a root between –2 and –3, a root between 1 and 2, and a (smallest) 
root between 0 and 1. We have

f x x x( ) 3 5 3, f x x( ) 3 52 .
Then taking x0 1,  we have

x x
f x
f x

f
f1 0

0

0

1 1
1

1 1
2

0 5
( )
( )

( )
( )

( ) . ,

x x
f x
f x2 1

1

1

0 5 5
34

0 64
( )
( )

. . ,

x3 0 64 0 062144
3 7712

0 6565. .
.

. ,

x4 0 6565 0 000446412125
3 70702325

0 656620. .
.

. ,

x5 0 656620 0 00000115976975
3 70655053

0 65. .
.

. 66620431.

We observe that the convergence is very rapid even though x0 was not very near to the root.

EXAMPLE 3.8
Find the positive root of the equation
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x x x x4 3 23 2 2 7 0
by Newton–Raphson method.

Solution. We have f f f f( ) , ( ) , ( ) , ( ) .0 7 1 5 2 3 3 17  Thus, the positive root lies between 
2 and 3. The Newton–Raphson formula becomes

x x
x x x x

x x xn n
n n n n

n n n
1

4 3 2

3 2

3 2 2 7
4 9 4 2

.

Taking x0 2 1. , the improved approximations are
x
x
x
x

1

2

3

2 39854269
2 33168543
2 32674082

. ,
. ,
. ,

44

5

2 32671518
2 32671518

. ,

. .x

Since x x4 5 , the Newton–Raphson formula gives no new values of x and the approximate root is cor-
rect to eight decimal places.

EXAMPLE 3.9
Use Newton–Raphson method to solve the transcendental equation e xx 5 .

Solution. Let f x e xx( ) .5 0  Then f x ex( ) .5  The Newton–Raphson formula becomes

x x
e x
e

nn n

x
n

x

n

n1

5
5

0 1 2 3, , , , ,K .

The successive approximations are
x x x
x

0 1 2

3

0 4 0 2551454079 0 2591682786
0

. , . , . ,

.. , . .2591711018 0 25917110184x
Thus, the value of the root is correct to 10 decimal places.

EXAMPLE 3.10
Find by Newton–Raphson method, the real root of the equation 3 1x xcos .

Solution. The given equation is
f x x x( ) cos3 1 0.

We have
f ( ) ( )0 2 ve  and f ( ) . . ( )1 3 0 5403 1 1 4597 ve .

Hence, one of the roots of f x( ) 0  lies between 0 and 1. The values at 0 and 1 show that the root is 
nearer to 1. So let us take x 0 6. . Further,

f x x( ) sin .3
Therefore, the Newton–Raphson formula gives

x x
f x
f x

x
x x

xn n
n

n
n

n n

n
1

3 1
3

 
( )
( )

cos
sin

33 3 1
3

x x x x x
x

x xn n n n n

n

n nsin cos
sin

sin cos xx
x

n

n

1
3 sin

.
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Hence,

x
x x x

x1
0 0 0

0

1
3

0 6 0 5646 0 825sin cos
sin

. ( . ) . 33 1
3 0 5646

0 6071
.

. ,

x
x x x

x2
1 1 1

1

1
3

0 6071 0 5705sin cos
sin

( . )( . ) 00 8213 1
3 0 5705

0 6071.
.

. .

Hence the required root, correct to four decimal places, is 0.6071.

EXAMPLE 3.11
Using Newton–Raphson method, find a root of the equation f x x x x( ) sin cos 0  correct to three 
 decimal places, assuming that the root is near to x .

Solution. We have
f x x x x( ) sin cos 0 .

Therefore,
f x x x x x x x( ) cos sin sin cos .

Since the root is nearer to , we take x0 .  By Newton–Raphson method

x x
f x
f x

x
x x x

x xn n
n

n
n

n n n

n n
1

( )
( )

sin cos
cos

x x x x x
x x

n n n n n

n n

2 cos sin cos
cos

Thus,

x
x x x x x

x x1
0
2

0 0 0 0

0 0
2

cos sin cos
cos

 cos siin cos
cos

.
.

.1 1 9 87755
3 142857

2 8
2

224,

x
x x x x x

x x2
1
2

1 1 1 1

1 1

7 975 0

cos sin cos
cos

( . )( .. ) ( . )( . ) ( . )
( . )( . )

95 2 824 0 3123 0 95
2 824 0 95

7 576 0 8819 0 95
2 6828

7 5179
2 6828

2 8. . .
.

.

.
. 0022,

x3

7 8512 0 9429 2 8022 0 3329 0 9429. ( . ) ( . )( . ) .
(22 8022 0 9429

7 4029 0 93285 0 9429
2

. )( . )
. . .

.66422
7 39285
2 6422

2 797.
.

. .

Calculate x4  and x5  similarly.

3.7 SQUARE ROOT OF A NUMBER USING NEWTON–RAPHSON METHOD
Suppose that we want to find the square root of N. Let

x N  or x N2 .
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We have
f x x N( ) .2 0

Then, Newton–Raphson method yields

x x
f x
f x

x
x N

xn n
n

n
n

n

n
1

2

2
( )
( )

1
2

0 1 2 3x N
x

nn
n

, , , , ,K .

For example, if N = 10, taking x0 3  as an initial approximation, the successive approximations are

x x
x

1 2

3

3 166666667 3 162280702
3 16227766
. , . ,
. 00 3 1622776604, .x

correct up to nine decimal places.
However, if we take f x x Nx( ) 3  so that if f x( ) ,0  then x N . Now f x x N( ) 3 2  and so 

the Newton–Raphson method gives

x x
f x
f x

x
x Nx

x N
x

xn n
n

n
n

n n

n

n
1

3

2

3

3
2

3
( )
( )

nn N2 .

Taking x0 3, the successive approximations to 10  are

x x x x1 2 3 43 176 3 1623 3 16227 3 16227. , . , . , .

correct up to five decimal places.
Suppose that we want to find the pth root of N. Then consider f x x Np( ) .  The 

Newton–Raphson formula yields

x x
f x
f x

x
x N
px

p x

n n
n

n
n

n
p

n
p

n

1 1

1

 
( )
( )

( ) pp

n
p

N
px

n1 0 1 2 3, , , , , .K

For p = 3, the formula reduces to

x
x N

x
x N

xn
n

n
n

n
1

3

2 2

2
3

1
3

2 .

If N = 10 and we start with the approximation x0 2,  then

x x

x

1 2

3

1
3

4 10
4

2 16666 2 154503616. , . ,

22 154434692 2 154434690 2 1544346904 5. , . , .x x

correct up to eight decimal places.

3.8 ORDER OF CONVERGENCE OF NEWTON–RAPHSON METHOD
Suppose f (x) = 0 has a simple root at x  and let n be the error in the approximation. Then xn n. 
Applying Taylor’s expansion of f xn( )  and f xn( )  about the root , we have
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f x an n
r

r

( ) r
1  

and
 

f x rn r n
r

r

( ) a 1

1
,

where a f
rr

r( ) ( )
!

. Then
f x
f x

a
a

n

n
n n n

( )
( )

( )2

1

2 3O .

Therefore, Newton–Raphson formula

x x
f x
f xn n

n

n
1

( )
( )

gives

n n n n n1
2

1

2 3a
a

O( )

and so

n n n

a
a

f
f1

2

1

2 21
2

( )
( )

.

If 1
2

1f
f

( )
( )

,  then

 n n1
2 .  (3.10)

It follows therefore that Newton–Raphson method has a quadratic convergence (or second order  convergence) 

if 1
2

f
f

( )
( )

1.

The inequality (3.10) implies that if the correction term f x
f x

n

n

( )
( )

 begins with n zeros, then the result 

is correct to about 2n  decimals. Thus, in Newton–Raphson method, the number of correct decimal 
roughly doubles at each stage.

3.9 FIXED POINT ITERATION
Let f  be a real-valued function f : . Then a point x  is said to be a fixed point of f if 
f (x) = x.

For example, let I :  be an identity mapping. Then all points of  are fixed points for I 
since I x x( )  for all x . Similarly, a constant map of  into  has a unique fixed point.

Consider the equation

 f x( ) .0  (3.11)

The fixed point iteration approach to the solution of equation (3.11) is that it is rewritten in the form 
of an equivalent relation

 x x( ).  (3.12)

Then any solution of equation (3.11) is a fixed point of the iteration function . Thus, the task of 
solving the equation is reduced to find the fixed points of the iteration function .
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Let x0 be an initial solution (approximate value of the root of equation (3.11) obtained from the 
graph of f or otherwise). We substitute this value of x0  in the right-hand side of equation (3.12) and 
obtain a better approximation x1  given by

x x1 0( ).
Then the successive approximations are

x x
x x

x x nn n

2 1

3 2

1 0 1 2

( ),
( ),

( ), , , ,

K K K
K K K

33, .K

The iteration
x x nn n1 0 1 2 3( ), , , , ,K

is called fixed point iteration.
Obviously, Regula–Falsi method and Newton–Raphson method are iteration processes.

3.10 CONVERGENCE OF ITERATION METHOD
We are interested in determining the condition under which the iteration method converges, that is, 
for which xn 1  converges to the solution of x x ( ) as n . Thus, if x xn 1  up to the number of 
 significant  figures considered, then xn  is a solution to that degree of approximation. Let  be the true 
solution of x x( ), that is,

 ( ). (3.13)

The first approximation is

 x x1 0( ). (3.14)

Subtracting equation (3.14) from equation (3.13), we get

x x
x x

1 0

0 0 0 0

( ) ( )
( ) ( ), ,

by Mean Value Theorem. Similar equations hold for successive approximations so that

x x x
x x

2 1 1 1 1

3 2 2

( ) ( ),
( ) ( ), xx

x

2 2

K L L                             

nn n n n nx x1 ( ) ( ),

Multiplying together all the equations, we get

x xn n1 0 0 1( ) ( ) ( ) ( )K

and so
x xn n1 0 0( ) ( ) .K

If each of ( ) , ( )0 K n  is less than or equal to k < 1, then

x x k nn
n

1 0
1 0 as .
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Hence, the error xn 1  can be made as small as we please by repeating the process a sufficient 
number of times. Thus, the condition for convergence is

( )x 1

in the neighborhood of the desired root.
Consider the iteration formula x x nn n1 0 1 2( ), , , ,. If  is the true solution of x x( ), then 
( ). Therefore,

x x x

x
n n n1 ( ) ( ) ( ) ( )

         ( nn k k) , ( ) ,1

which shows that the iteration method has a linear convergence. This slow rate of convergence can be 
accelerated in the following way: we write

x x kn n1 ( )

x x kn n2 1( ) .
Dividing, we get

x
x

x
x

n

n

n

n

1

2 1

or
( ) ( )( )x x xn n n1

2
2

or

 
x

x x
x x x

x
x

n
n n

n n n
n

n
2

2 1
2

2 1
22

( ) ( 11
2

2

)
.

xn  
(3.15)

Formula (3.15) is called the Aitken’s Δ2-method.

3.11 SQUARE ROOT OF A NUMBER USING ITERATION METHOD
Suppose that we want to find square root of a number, say N. This is equivalent to say that we want to 

find x such that x N2 ,  that is, x N
x

x x x N
x

or . Thus,

x
x N

x
2

.

Thus, if x0  is the initial approximation to the square root, then

x
x N

x
nn

n
n

1 2
0 1 2, , , ,K .

Suppose N = 13. We begin with the initial approximation of 13 found by bisection method. The 

 solution lies between 3.5625 and 3.625. We start with x0

3 5625 3 6250
2

3 59375. . . . Then, using the 

above  iteration formula, we have

x x x1 2 33 6055705 3 6055513 3 6055513. , . , .

correct up to seven decimal places.
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3.12  SUFFICIENT CONDITION FOR THE CONVERGENCE 
OF NEWTON–RAPHSON METHOD

We know that an iteration method x xn n1 ( )  converges if ( ) .x 1  Since Newton–Raphson method 

is an iteration method, where ( ) ( )
( )

x x f x
f x

 and therefore it converges if ( ) ,x 1  that is, if

1 1
2

2

( ( )) ( ) ( )
( ( ))

,f x f x f x
f x

that is, if
f x f x f x( ) ( ) ( ( )) ,2

which is the required sufficient condition for the convergence of Newton–Raphson method.

EXAMPLE 3.12
Derive an iteration formula to solve f x x x( ) 3 2 1 0  and solve the equation.

Solution. Since f ( )0  and f ( )1  are of opposite signs, there is a root between 0 and 1. We write the 
equation in the form

x x3 2 1,  that is, x x2 1 1( ) ,  or x
x

2 1
1

,

or equivalently,

x
x

1
1

.

Then

x x
x

( ) ,1
1  

( )
( )

x
x

1

2 1
3
2

so that
( )x x1 for  < 1.

Hence, this iteration method is applicable. We start with x0 0 75.  and obtain the next approximations 
to the root as

x x
x

x x x1 0

0

2 1 3

1
1

0 7559 0 7546578( ) . , ( ) . , 0 7549249. ,

x x x x4 5 6 70 7548674 0 754880 0 7548772 0. , . , . , .775487767

correct up to six decimal places.

EXAMPLE 3.13
Find, by the method of iteration, a root of the equation 2 710x xlog .

Solution. The fixed point form of the given equation is

x x1
2

710(log ) .

From the intersection of the graphs y x1 2 7  and y x2 10log ,  we find that the approximate value 
of the root is 3.8. Therefore,
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x0 3 8. , x1

1
2

3 8 7 3 78989(log . ) . ,

x2

1
2

3 78989 7 3 789313(log . ) . ,

x3

1
2

3 789313 7 3 78928026(log . ) . ,

x4 3 789278. , x5 3 789278.
correct up to six decimal places.

EXAMPLE 3.14
Use iteration method to solve the equation e xx 5 .

Solution. The iteration formula for the given problem is

x en
xn

1

1
5

.

We start with x0 0 3.  and get the successive approximations as

x1

1
5

1 34985881 0 269972( . ) . , x2 0 26198555. ,

x3 0 25990155. , x4 0 259360482. ,

x5 0 259220188. , x6 0 259183824. ,

x7 0 259174399. , x8 0 259171956. ,

x9 0 259171323. , x10 0 259171159. ,

correct up to six decimal places.
If we use Aitken’s Δ2-method, then

x x
x
x

x
x x

x x x3 2
1

2

2
0

2
2 1

2

2 1 02
0 261

( ) ( )
. 998555 0 000063783

0 02204155
0 259091.

.
.

and so on.

3.13 NEWTON’S METHOD FOR FINDING MULTIPLE ROOTS
If  is a multiple root of an equation f x( ) ,0  then f f( ) ( ) 0  and therefore the Newton–
Raphson method fails. However, in case of multiple roots, we proceed as follows:
Let  be a root of multiplicity m. Then

 f x x A xm( ) ( ) ( )  (3.16)
We make use of a localized approach that in the immediate vicinity (neighborhood) of x , the 
relation (3.16) can be written as

f x A x m( ) ( ) ,

where A = A( ) is effectively constant. Then

f x mA x
f x m m A m

m

m

( ) ( )
( ) ( ) ( ) ,

1

21 and sooon.
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We thus obtain
f x
f x

m
x

( )
( )

or

x mf x
f x

( )
( )

,

where x is close to , which is a modification of Newton’s rule for a multiple root. Thus, if x1  is in the 
neighborhood of a root  of multiplicity m of an equation f (x) = 0, then

x x m
f x
f x2 1

1

1

( )
( )

is an even more close approximation to . Hence, in general, we have

 
x x m

f x
f xn n

n

n
1

( )
( )

.
 

(3.17)

Remark 3.1.  (i) The case m = 1 of equation (3.17) yields Newton–Raphson method.
(ii) If two roots are close to a number, say x, then

f x( ) 0  and f x( ) 0,

that is,

f x f x f x f x f x f( ) ( )
!

( ) , ( ) ( )
!

2 2

2
0

2
L ( ) .x L 0

Since  is small, adding the above expressions, we get
0 2 02f x f x( ) ( )

or
2 2 f x

f x
( )
( )

or
2 f x
f x

( )
( )

.

So in this case, we take two approximations as x  and x  and then apply Newton–Raphson method.

EXAMPLE 3.15
The equation x x x x4 3 25 12 76 79 0  has two roots close to x = 2. Find these roots to four deci-
mal places.
Solution. We have

f x x x x x( ) 4 3 25 12 76 79

f x x x x( ) 4 15 24 763 2

f x x x( ) 12 30 242 .

Thus
f ( )2 16 40 48 152 79 1

f ( ) .2 48 60 24 36



328 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M03\LAYOUT\M03_BABUISBN_10_C03.indd

Modif cation Date: April 29, 2010 11:14 AM Modif cation Date: 29-04-10, 11:14

Therefore,
2 2

2
2

36
0 2357f

f
( )

( )
. .

Thus, the initial approximations to the roots are

x0 2 2357.  and y0 1 7643. .
The application of Newton–Raphson method yields

x x
f x
f x1 0

0

0

2 2357 0 00083 2 0365
( )
( )

. . . .

x
f x
f x2 1

1

1

2 2365 0 000459 2 24109x
( )
( )

. . . .

x x
f x
f x3 2

2

2

2 24109 0 00019 2 2410
( )
( )

. . . .

Thus, one root, correct to four decimal places is 2.2410. Similarly, the second root correct to four deci-
mal places will be found to be 1.7684.

EXAMPLE 3.16
Find a double root of the equation

x x x3 25 8 4 0
near 1.8.

Solution. We have

f x x x x( ) 3 25 8 4

f x x x( ) 3 10 82

and x0 1 8. .  Therefore,
f x f( ) ( . ) . . . .0 1 8 5 832 16 2 14 4 4 0 032

f x( ) . . .0 9 72 18 8 0 28
Hence,

x x
f x
f x

f
f1 0

0

0

2 1 8 2 1 8
1 8

1 8 2
( )
( )

. ( . )
( . )

. 00 032
0 28

2 02857.
.

. .

We take x1 2 028. .  Then
f x
f x
( ) . . . .
( )

1

1

8 3407 20 5639 16 224 4 0 0008
112 3384 20 28 8 0 0584. . . .

Therefore,

x x
f x
f x2 1

1

1

2

2 028 2 0 0008
0 058

( )
( )

    . ( . )
. 44

2 0006. ,

which is quite close to the actual double root 2.
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EXAMPLE 3.17
Find the double root of x x x3 2 1 0  close to 0.8.

Solution. We have
f x x x x
f x x x
( ) 
( ) .

3 2

2

1 0
3 2 1

We choose x0 0 8. .  Then

x x m
f x
f xn n

n

n
1

( )
( )

and so

x x f
f1 0

3 2

2 0 8
0 8

0 8 2 0 8 0 8 0( . )
( . )

 . ( . ) ( . ) .88 1
3 0 8 2 0 8 1

1 01176

2

2

2 1

( . ) ( . )
.

(x x f 11 0118
1 0118

1 0118 0 0126 0 9992. )
( . )

. . . ,
f

which is very close to the actual double root 1.

3.14 NEWTON–RAPHSON METHOD FOR SIMULTANEOUS EQUATIONS
We consider the case of two equations in two unknowns. So let the given equations be

 ( , )x y 0, (3.18)

 ( , )x y 0  (3.19)
Now if x0 , y0  be the approximate values of a pair of roots and h, k be the corrections, we have

x x h0  and y y k0 .

Then equations (3.18) and (3.19) become

 ( , )x h y k0 0 0  (3.20)

 ( , ) .x h y k0 0 0  (3.21)
Expanding equations (3.20) and (3.21) by Taylor’s Theorem for a function of two variables, we have

( , ) ( , )x h y k x y h
x

k
x x

0 0 0 0

0
y

x h y k x y h

y y0

0

0 0 0 0

L ,

( , ) ( , )
x

k
yx x y y0 0

0L .

Since h and k are relatively small, their squares, products, and higher powers can be neglected. Hence,

 
( , )x y h

x
k

yx x y y
0 0

0 00

0
 

(3.22)

 
( , )x y h

x
k

yx x y y
0 0

0 00

0.
 

(3.23)

Solving the equations (3.22) and (3.23) by Cramer’s rule, we get
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h

x y
y

x y
y

y y

( , )

( , )

0 0

0 0

0

y y

D
0 ,

k

x
x y

x

x x

x x

0

0

0 0( , )

( , )x y

D

0 0

,

where

D
x y

x

x x y y0 0

x x y yy
0 0

Thus,
x x h y y k1 0 1 0, .

Additional corrections can be obtained by repeated application of these formulae with the improved 
values of x and y substituted at each step.

Proceeding as in Section 3.10, we can prove that the iteration process for solving simultaneous 
equations ( , )x y 0 and ( , )x y 0  converges if

x x y y
1 1and .

Remark 3.2. The Newton–Raphson method for simultaneous equations can be used to find complex 
roots. In fact the equation f z( ) 0  is u x y iv x y( , ) ( , ) 0. So writing the equation as

u x y
v x y
( , )
( , ) ,

0
0

we can find x and y, thereby yielding the complex root.

EXAMPLE 3.18
Solve by Newton–Raphson method

x x y
x xy x

3 0
2 5 1 0

10
2

2

log ,
.

Solution. On plotting the graphs of these equations on the same set of axes, we find that they intersect 
at the points (1.4,−1.5) and (3.4, 2.2). We shall compute the second set of values correct to four decimal 
places. Let

( , ) log ,

( , ) .

x y x x y

x y x xy x

3

2 5
10

2

2 1
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Then

x
M
x

M

x

y

1 3 0 43429

1 1 30287

, .

     .

2

4 5

y

x
x y

y
x.

Now x y0 03 4 2 2. , . .  Therefore,

( , ) . , ( , ) . ,x y x y

x x

0 0 0 00 1545 0 72

xx y y

x

y

x

0 0

1 383 4 4. , . ,

x y yy
0 0

6 4 3 1. , . .

Putting these values in

( , )x y h
x

k
yx x y

0 0 1 1

0 yy

x x

x y h
x

k
y

0

0

0

0 0 1 1

,

( , )
y y0

0,

we get
0 1545 1 383 4 4 0

0 72 6 4
1 1

1 1

. ( . ) ( . )
. ( . ) (

h k
h k 3 1 0. ) .

Solving these for h1
 and k1, we get

h1 0 157.  and k1 0 085. .

Thus,
x
y

1

1

3 4 0 517 3 557
2 2 0 085 2 285
. . . ,
. . . .

Now

( , ) . , ( , ) . ,x y x y

x

1 1 1 10 011 0 3945

xx x y yy

x

1 1

1 367 4 57. , . ,

x x y yy
1 1

6 943 3 557. , . .
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Putting these values in

( , )x y h
x

k
yx x y

1 1 2 2

1 y

x x

x y h
x

k
y

1

1

0

1 1 2 2

,

( , )
y y1

0

and solving the equations so obtained, we get
h k2 20 0685 0 0229. , . .

Hence,
x x h2 1 2 3 4885.  and y y k2 1 2 2 2621. .

Repeating the process, we get
h k3 30 0013 0 000561. , . .

Hence, the third approximations are
x3 3 4872.  and y3 2 26154. .

Finding the next approximation, we observe that the above approximation is correct to four decimal places.
EXAMPLE 3.19
Find the roots of 1 02z , taking initial approximation as ( , ) ,x y0 0

1
2

1
2

.

Solution. We have
f z x iy x y ixy u iv( ) ( ) ,1 1 22 2 2

where
u x y x y
v x y xy
( , ) ,
( , ) .

1
2

2 2

Then
u
x

x u
y

y

v
x

y v
y

x

2 2

2 2

, ,

, .

Taking initial approximation as ( , ) ,x y0 0

1
2

1
2

, we have

u x y u

v x y v

( , ) , ,

( , )

0 0

0 0

1
2

1
2

1 1
4

1
4

1

1
22

1
2

2 1
2

1
2

1
2

0 0

, ,

( , )u x yx uu

u x y u

x

y y

1
2

1
2

2 1
2

1

1
2

1
0 0

, ,

( , ) ,
22

2 1
2

1

1
2

1
20 0

,

( , ) ,v x y vx x 2 1
2

1

1
2

1
2

2 1
0 0

,

( , ) ,v x y vy y 22
1.
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Putting these values in
u x y h u x y k u x yx y( , ) ( , ) ( , )0 0 1 0 0 1 0 0 0

and
v x y h v x y k v x yx y( , ) ( , ) ( , )0 0 1 0 0 1 0 0 0,

we get

1 01 1h k  and 1
2

01 1h k .

Solving these equations for h1  and k1 , we get h k1 1
3
4

1
4

, . Hence,

x x h

y y k

1 0 1

1 0 1

1
2

3
4

1
4

1
2

1
4

3
4

,

.

Now

u x y

v x y

u xx

( , ) ,

( , ) ,

(

1 1

1 1

1 1
16

9
16

1
2

2 1
4

3
4

3
8

11 1

1 1

1 1

2 1
4

1
2

2 3
4

3
2

2

, ) ,

( , ) ,

( , )

y

u x y

v x y

y

x
33
4

3
2

2 1
4

1
21 1

,

( , ) .v x yy

Putting these values in
u x y h u x y k u x yx y( , ) ( , ) ( , )1 1 2 1 1 2 1 1 0

and
v x y h v x y k v x yx y( , ) ( , ) ( , ) ,1 1 2 1 1 2 1 1 0

we get
1
2

1
2

3
2

0 3
8

3
2

1
2

02 2 2 2h k h kand .

Solving these equations, we get h k2 2

13
40

9
40

, . Hence,

x x h

y y k

2 1 2

2 1 2

1
4

13
40

3
40

0 075

3
4

9
40

39
40

0 975

. ,

. .

Proceeding in the same fashion, we get
x3 0 00172.  and y3 0 9973. .
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EXERCISES
1. Find the root of the equation x – cos x = 0 by bisection method.

Ans. 0.739.
2. Find a positive root of equation xex = 1 lying between 0 and 1 using bisection method.

Ans. 0.567.
3. Solve x3−4x−9 = 0 by Bolzano method.

Ans. 2.706.
4. Use Regula–Falsi method to solve x3 + 2x2 + 10x −20 = 0.

Ans. 1.3688.

5. Use the method of false position to obtain a root of the equation x x3 4 0.
Ans. 1.796.

6. Solve exsin x = 1 by Regula–Falsi method.
Ans. 0.5885.

7. Using Newton–Raphson method find a root of the equation x log10x = 1.2.
Ans. 2.7406.

8. Use Newton–Raphson method to obtain a root of x xcos .0
Ans. 0.739.

9. Solve sin x = 1 + x3 by Newton–Raphson method.
Ans. −1.24905.

10. Find the real root of the equation 3x = cos x+1 using Newton–Raphson method.
Ans. 0.6071.

11. Derive the formula x x N
xi i

i
1

1
2

 to determine square root of N. Hence calculate the square 
root of 2.

Ans. 1.414214.
12. Find a real root of the equation cos x = 3x − 1 correct to three decimal places using iteration 

method.

Hint: Iteration formula is x xn n
1
3

1( cos ).
Ans. 0.607.

13. Using iteration method, find a root of the equation x x3 2 100 0.
Ans. 4.3311.

14. Find the double root of the equation x x x2 2 1 0  near 0.9.
Ans. 1.0001.

15. Use Newton’s method to solve
x y2 2 4, x y2 2 16

taking the starting value as (2.828, 2.828).
Ans. x = 3.162, y = 2.450.

16. Use Newton’s method to solve
x x y
x y

2

2 2

2 0 5 0
4 4 0

. ,
,

taking the starting value as (2.0, 0.25).
Ans. x = 1.900677, y = 0.311219.
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4 Linear Systems of Equations

In this chapter, we shall study direct and iterative methods to solve linear system of equations. Among 
the direct methods, we shall study Gauss elimination method and its modification by Jordan, Crout, 
and triangularization methods. Among the iterative methods, we shall study Jacobi and Gauss–Seidel 
methods.

4.1 DIRECT METHODS
Matrix Inversion Method
Consider the system of n linear equations in n unknowns:

     

a x a x a x b
a x a x

n n11 1 12 2 1 1

21 1 22 2

 +  +  +  = 
 + 

K

  +  +  = 

 + +1 2 2

K

K K K K K
K K K K K

K

a x a

a x a x

n n

n n

2 2

1   +  = a n bnn n n  

(4.1)

The matrix form of the system (4.1) is

 AX = B, (4.2)
where

A

a a a
a a a

a a a

n

n

n n

11 12 1

21 22 2

1 2

… …
… …

… … … … …
… … … … …

… … nnn n

x
x

x

, X

1

2

…
…

, and B

b
b

bn

1

2

…
…

.

Suppose A is non-singular, that is, det A ≠ 0. Then A 1  exists. Therefore, premultiplying (4.2) by A 1, 
we get

A AX A B1 1

or
X A B1 .

Thus, finding A 1  we can determine X and so x1, x2,..., xn.

EXAMPLE 4.1
Solve the equations

x � y � 2z � 1
 x � 2y � 3z � 1
  2x � 3y � z � 2.
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Solution. We have

A
1 1 2
1 2 3
2 3 1

4 0.

Also

A 1 1
4

7 5 1
5 3 1

1 1 1
.

Hence,

X A B
x
y
z

1 1
4

7 5 1
5 3 1

1 1 1

1
1
2

1
4

4
0
0

1
0
0

and so x = 1, y = 0, z = 0.

Gauss Elimination Method
This is the simplest method of step-by-step elimination and it reduces the system of equations to an 
equivalent upper triangular system, which can be solved by back substitution.

Let the system of equations be

a x a x a x b
a x a x

n n11 1 12 2 1 1

21 1 22 2

 +  +  +  = 
 + 

K

  +  +  = 

 + 1 2 2

K

K K K K K
K K K K K

a x b

a x a x

n n

n n

2 2

1

 
 

  +  +  = K a x bnn n n

.

The matrix form of this system is

AX � B,

where

A

a a a
a a a

a a a

n

n

n n

11 12 1

21 22 2

1 2

K K

K K

K K K K K
K K K K K

K K nnn

, X

x
x

xn

1

2

K
K

, B

b
b

bn

1

2

K
K

.
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The augmented matrix is

[ : ] ...AA BB

a a a

a a a

a a

n

n

n n

11 12 1

21 22 2

1 2

K K

K K

K K K K
K K K K K

K KK

K
K

a

b

b

bnn n

1

2

.

The number arr at position (r, r) that is used to eliminate xr in rows r � 1, r � 2,..., n is called the r th 
pivotal element and the rth row is called the pivotal row. Thus, the augmented matrix can be written as

pivot
/

/

2,1

,1

m a a

m a a

a a a

a

n n

n

21 11

1 11

11 12 1

2

K K

11 22 2

1 2

1

2a a

a a a

b
b

b

n

n n nn n

K K

K K K K K
K K K K K

K K

K
K

pivotal row 

The first row is used to eliminate elements in the first column below the diagonal. In the first step, 
the element a11 is pivotal element and the first row is pivotal row. The values mk,1 are the multiples of 
row 1 that are to be subtracted from row k for k � 2, 3, 4,...., n. The result after elimination becomes

pivot
m c c

m c c

a a a
c

n

n

3,2

,2

/

/

32 22

2 22

11 12 1

2

n

K K

22 2

32 3

2

1

2

3

K K

K K

K K K K
K K

K

c

c c

c c

b
d
d

d

n

n

n nn n

pivotal row.

The second row (now pivotal row) is used to eliminate elements in the second column that lie below the 
 diagonal. The elements mk,2 are the multiples of row 2 that are to be subtracted from row k for k � 3, 4,...., n.

Continuing this process, we arrive at the matrix:

a a a
c c

h

b
d

p

n

n

nn n

11 12 1

22 2

1

2

K K

K K

K K K K
K K K K

K
K

.

Hence, the given system of equation reduces to

a x a x a x b
c

n n11 1 12 2 1 1

22

 +  + +  = 
            

K

xx c x d

h c p

n n

nn n n

2  + +  = 

  = 

K

K K K
K K K

2 2

.
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In the above set of equations, we observe that each equation has one lesser variable than its preceding 
equation. From the last equation, we have x

p
hn

n

nn

. Putting this value of xn in the preceding equation, 

we can find xn 1. Continuing in this way, putting the values of x x xn2 3, , ,K  in the first equation, x1 can 
be  determined. The process discussed here is called back substitution.
Remark 4.1. It may occur that the pivot element, even if it is different from zero, is very small and 
gives rise to large errors. The reason is that the small coefficient usually has been formed as the differ-
ence between two almost equal numbers. This difficulty is overcome by suitable permutations of the 
given equations. It is recommended therefore that the pivotal equation should be the equation which 
has the largest leading coefficient.

EXAMPLE 4.2
Express the following system in augmented matrix form and find an equivalent upper triangular system 
and the solution:

2 + 4 6 4
+ 5 + 3 10
+ 3 + 2 5.

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

Solution. The augmented matrix for the system is

pivot
m

m
2 1

3 1

0 5

0 5

2 4 6
1 5 3
1 3 2

4
10
5

,

,

.

.

ppivotal row 

The result after first elimination is

pivot
/

piv
m3 2 1 3

2 4 6
0 3 6
0 1 5

4
12
7,

ootal row 

The result after second elimination is
2 4 6
0 3 6
0 0 3

4
12
3

.

Therefore, back substitution yields

3 3 1
3 6 12 2
2 4

3 3

2 3 2

1 3

x x
x x x
x x

and so
and so

,
,

66 4 33 1x xand so .

Hence, the solution is x1 � –3, x2 � 2, and x3 � 1.

EXAMPLE 4.3
Solve by Gauss elimination method:

10 7 3 5
6 4

3 4 11

x y z u
x y z u

x y z u

 
 
 

= 6
+ 8 = 5

+ == 2
= 7.5 9 2 4x y z u 
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Solution. The augmented matrix for the given system is

pivot

      

m

m

m

2 1

3 1

4 1

0 6

0 3

0 5

10 7 3 5
,

,

,

.

.

.

6 8 1 4
3 1 4 11
5 9 2 4

6
5
2
7

pivotaal row 

The first elimination yields

pivot

m

m
3 2

4 2

0 81579

1 4474

10 7 3

,

,

.

.

55
0 3 8 0 8 1
0 3 1 3 1 9 5
0 5 5 3 5 1 5

6
8. .

. . .
. . .

 
..
.
6

0 2
4

pivotal row

The result after second elimination is

        pivot

4,3m 0 957

10 7 3 5
0 3 8 0 8 1
0 0 2

.

. .
.. .
. .

.
.

.
4474 10 3158

0 0 2 3421 0 0526

6
8 6

6 8158
16 444764

pivotal row 

The result after third elimination is
10 7 3 5
0 3 8 0 8 1
0 0 2 4474 10 3158
0 0 0 9 9248

6
8 6. .

. .
.

.
6 8158

9 9249
.

.

.

Therefore, back substitution yields
9 9248 9 9249. .u  and so u 1

2 4474 10 3158 6 8158. . .z u  and so z 6.9999 7
3.8 0.8 8.6 y z u  and so y 4

10 7 3 5 6 x y z u  and so x 5.
Hence, the solution of the given system is x = 5, y = 4, z = −7, and u = 1.

EXAMPLE 4.4
Solve the following equations by Gauss elimination method:

2 10, 3 2 3 18, 4 9 16.x y z x y z x y z

Solution. The given equations are

2  +  + =10, 3  + 2  + 3  = 18,  + 4  + x y z x y z x y 99  = 16.z
The augmented matrix for given system of equations is

pivot
/

/

m

m
2 1

3 1

3 2

1 2

2 1 1
3 2 3
1 4 9

10
18
16

,

,

pivotal row 
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The result of first Gauss elimination is
2 1 1 10

0 1
2

3
2

3

0 7
2

17
2

11

  pivotal rrow

The second elimination yields
2 1 1 10

0 1
2

3
2

3

0 0 2 10

  

    

Thus, the given system equations reduces to
2 10

0.5 1.5 3
2 10

x y z

y z

z

+ + =
+ =

− = −
Hence, back substitution yields

 z y x= 5, = 9, = 7.

Jordan Modification to Gauss Method
Jordan modification means that the elimination is performed not only in the equation below but 
also in the equation above the pivotal row so that we get a diagonal matrix. In this way, we have the 
 solution without further computation.

Comparing the methods of Gauss and Jordan, we find that the number of operations is essentially 
n3

3
 for Gauss method and n3

2
 for Jordan method. Hence, Gauss method should usually be preferred 

over Jordan method.
To illustrate this modification we reconsider Example 4.2. The result of first elimination is 

unchanged and we have
m

m

1 2

3 2

4 3

1 3

2 4 6
0 3 6
0 1 5

4
12
7

,

,

/

pivot
/

pivotal row 

Now, the second elimination as per Jordan modification yields

m

      m
1 3

2 3

14 3

2
2 0 14
0 3 6
0 0

,

,

/

     pivot 33

20
12
3 pivotal row 

The third elimination as per Jordan modification yields
2 0 0
0 3 0
0 0 3

6
6
3

.
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Hence,
2 = 6  1x  and so x1 = 3,

3x2 = 6  and so x2 = 2,

3x3 = 3  and so x3 = 1.

EXAMPLE 4.5
Solve

x y z
x y z
x y z

+ 2 + = 8
2 + 3 + 4 = 20
4 + 3 + 2 = 16

by Gauss–Jordan method.

Solution. The augmented matrix for the given system of equations is

pivot
m

m
2 1

3 1

2

4

1 2 1
2 3 4
4 3 2

8
20
16

,

,

ppivotal row 

The result of first elimination is

m

m

1 2

3 2

2

5

1 2 1
0 1 2
0 5 2

8
4
16

,

,

pivot pivotal row 

The second Gauss–Jordan elimination yields

m

m
1 3

2 3

5 12

1 6
1 0 5
0 1 2
0 0 12

16
4
36

,

,

/

/

pivot pivotal row 

The third Gauss–Jordan elimination yields

1 0 0
0 1 0
0 0 12

1
2
36

.

Therefore, x � 1, y � 2, and z � 3 is the required solution.

EXAMPLE 4.6
Solve

10x y z
x y z
x y z

+  +  = 12
+10  +  = 12
+  + 10  = 122

by Gauss–Jordan method.
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Solution. The augmented matrix for the given system is

pivot
/

/

m

m
2 1

3 1

1 10

1 10

10 1 1
1 10 1
1 1 10

12
12
12

,

,

pivotal row 

The first Gauss–Jordan elimination yields

m

  m

1 2

3 2

10 99

1 11

10 1 1
0 99 10 9

,

,

/

     pivot
/

/ //
/ /

/
/

pivo10
0 9 10 99 10

12
108 10
108 10

ttal row 

Now the Gauss–Jordan elimination gives

m

m
1 3

2 3

10 108

11 120
10 0 10 11
0

,

,

      

/

/

pivot

/
999 10 9 10

0 0 108 11

120 11
108 10
108 11

/ /
/

/
/
/ pivotal row 

The next Gauss–Jordan elimination yields

10 0 0
0 99 10 0
0 0 108 11

10
99 10
108 11

/
/

/
/

.

Hence, the solution of the given system is x � 1, y � 1, z � 1.

EXAMPLE 4.7
Solve by Gauss–Jordan method

x y z
x y z
x y z

9
2 3 4 13
3 4 5 40.

Solution. The augmented matrix for the given system is

m
m

21

31

2
3

1 1 1 9
2 3 4 13
3 4 5 40

pivotal  row

The first Gauss–Jordan elimination yields

m

m

12

32

1
5

1
5

1 1 1 9
0 5 2 5
0 1 2 13

pivootal row.



Linear Systems of Equations � 343

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M04\LAYOUT\M04_BABUISBN_10_C04.indd

Modif cation Date: April 29, 2010 11:17 AM Modif cation Date: 29-04-10, 11:19

The second Gauss elimination yields

m
m

13

23

7 12
10 12

1 0 7
5

8

0 5 2 5

0 0 12
5

12

/
/

pivotal row

The third Gauss elimination yields

1 0 0 1
0 5 0 15

0 0 12
5

12

.

Thus, we have attained the diagonal form of the system. Hence, the solution is

x y z1 15
5

3 12 5
12

5, , ( ) .

Triangularization (Triangular Factorization) Method
We have seen that Gauss elimination leads to an upper triangular matrix, where all diagonal ele-
ments are 1. We shall now show that the elimination can be interpreted as the multiplication of the 
original coefficient matrix A by a suitable lower triangular matrix. Hence, in three dimensions, 
we put

l
l l
l l l

11

21 22

31 32 33

11 12 13

21

0 0
0

a a a
a aa a
a a a

u u
u22 23

31 32 33

12 13

23

1
0 1
0 0 1

.

In this way, we get nine equations with nine unknowns (six l elements and three u elements).
If the lower and upper triangular matrices are denoted by L and U, respectively, we have

LA U

or
A L U1 .

Since L 1  is also a lower triangular matrix, we can find a factorization of A as a product of one lower 
triangular matrix and one upper triangular matrix. Thus, a non-singular matrix A is said to have a tri-
angular factorization if it can be expressed as a product of a lower triangular matrix L and an upper 
triangular matrix U, that is, if A� LU. For the sake of convenience, we can choose lii � 1 or uii � 1. 
Thus, the system of equations AX � B is resolved into two simple systems as follows:

AX B
or

LUX B

or
LY B and UX Y.

Both the systems can be solved by back substitution.
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EXAMPLE 4.8
Solve the following system of equations by triangularization method:

x x x
x x x
x x x

1 2 3

1 2 3

1 2 3

2 3 14
2 5 2 18
3 5 2

   

 00.

Solution. The matrix form of the given system is
AX B,

where

A
1 2 3
2 5 2
3 1 5

, XX
x
x
x

1

2

3

, BB
14
18
20

.

Let
A LU,

that is,
1 2 3
2 5 2
3 1 5

1 0 0
1 0

1
21

31 32

l
l l

u u u
u u

u

11 12 13

22 23

33

0
0 0

and so we have
 1 � u11
 2 � l21u11 and so l21 � 2
 3 � l31u11 and so l31 � 3
 2 � u12
 5 � l21u12 � u22 � 2(2) � u22 and so u22 � 1
 1 � l31u12 � l32 u22 � 3(2) � l32(1) and so l32 � 5
 3 � u13
 2 � l21u13 � u23 � 2(3) � u23 and so u23 � –4
 5 � l31u13 � l32u23 � u33 � 3(3) � (–5) (–4) � u33 and so u33 � –24.

Hence,

LL UU
1 0 0
2 1 0
3 5 1

1 2 3
0 1 4
0 0 24

and .

Now we have
AX � B

or
LUX � B

or
LY � B where UX � Y.

But LY � B yields
1 0 0
2 1 0
3 5 1

14
18
20

1

2

3

y
y
y
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and we have
y1  = 14,

2  +  = 18 1 2y y  and so y2 � −10,
3 5 + = 20 1 2 3y y y  and so y3 � −72.

Then UX � Y yields
1 2 3
0 1 4
0 0 24

1

2

3

       
     
   

x
x
x

14
10
72

and so
–24x3 � –72 which yields x3 � 3,

x2 – 4x3 � –10 which yields x2 � 2,
x1 � 2x2 � x3 � 14 which yields x1 � 1.

Hence, the required solution is x1 � 1, x2 � 2, and x3 � 3.
EXAMPLE 4.9
Use Gauss elimination method to find triangular factorization of the coefficient matrix of the system

x1 � 2x2 � 3x3 � 14
2x1 � 5x2 � 2x3 � 18
3x1 � x2 � 5x3 � 20

and hence solve the system.
Solution. In matrix form, we have

AX � B,
where

A
1 2 3
2 5 2
3 1 5

, XX
x
x
x

1

2

3

, B
14
18
20

.

Write
←⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎣ ⎦ ⎣ ⎦

2,1

3,1

1 0 0 1 2 3 pivotal row
0 1 0 2 5 2 2
0 0 1 3 1 5 3

m

m

A IA

The elimination in the second member on the right-hand side is done by Gauss elimination method while 
in the first member l21 is replaced by m21 and l31 is replaced by m31. Thus, the first elimination yields

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − ←⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − = −⎣ ⎦ ⎣ ⎦ 3,2

1 0 0 1 2 3
2 1 0 0 1 4 pivotal row
3 0 1 0 5 4 5m

A

Then the second elimination gives the required triangular factorization as

A
1 0 0
2 1 0
3 5 1

1 2 3
0 1 4
0 0 24

        � LU,
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where
1 0 0 1 2 3
2 1 0 and 0 1 4
3 5 1 0 0 24

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

L U .

The solution is then obtained as in Example 4.8.

EXAMPLE 4.10
Solve

2x1 � 4x2 – 6x3 � –4
x1 � 5x2 � 3x3 � 10
x1 � 3x2 � 2x3 � 5.

Solution. Write
A � IA,

that is,
2 4 6
1 5 3
1 3 2

1 0 0
0 1 0
0 0 1

2 4 66
1 5 3
1 3 2

1 22 1

3 1

pivotal row
/
 

,

,

m

m 11 2/

Using Gauss elimination method, discussed in Example 4.9, the first elimination yields

A
1 0 0

1 2 1 0
1 2 0 1

2 4 6
0 3 6
0 1 5

/
/

pivotal row
/
 

,m3 2 1 3

The second elimination yields

A
1 0 0

1 2 1 0
1 2 1 3 1

2 4 6
0 3 6
0 0 3

/
/ /

LU.

Therefore, AX � B reduces to LUX � B or LY � B, UX � Y.
Now LY � B gives

1 0 0
1 2 1 0
1 2 1 3 1

1

2

3

/
/ /

y
y
y

44
10
5

and so
y1 � – 4

1
2

101 2y y  which yields y2 � 12,

1
2

1
3

51 2 3y y y  which yields y3 � 3.
Then UX � Y implies

2 4 6
0 3 6
0 0 3

4
12
3

1

2

3

x
x
x
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and so
 3x3 � 3 which yields x3 � 1,
 3x2 � 6x3 � 12 which yields x2 � 2,
 2x1 � 4x2 – 6x3 � –4 which yields x1 � –3.

Hence, the solution of the given system is x1 � –3, x2 � 2, and x3 � 1.

EXAMPLE 4.11
Solve

x � 3y � 8z � 4
x � 4y � 3z � –2
x � 3y � 4z � 1

by the method of factorization.

Solution. The matrix form of the system is AX � B, where

A
1 3 8
1 4 3
1 3 4

, 
x

y

z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X  and B
4
2

1
.

Write

2,1

3,1

1 0 0 1 3 8  
0 1 0 1 4 3 1
0 0 1 1 3 4 1

pivotal row

m

m

←⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎣ ⎦ ⎣ ⎦

A IA

Applying Gauss elimination method to the right member and replacing l21 by m21 and l31 by m31 in the 
left member, we get

A
1 0 0
1 1 0
1 0 1

1 3 8
0 1 5
0 0 4

pivotal row

                           � LU.

Then AX � B reduces to LUX � B or LY � B and UX � Y. Now LY � B gives
1 0 0
1 1 0
1 0 1

4
2

1

1

2

3

y
y
y

and so
y1 � 4, y2 � –6, y1 � y3 � 1 which implies y3 � –3.

Then UX � Y gives
1 3 8
0 1 5
0 0 4

4
6
3

x
y
z

.

Hence, the required solution is x 19
4

, y 9
4

, z 3
4

.
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Triangularization of Symmetric Matrix
When the coefficient matrix of the system of linear equations is symmetric, we can have a particularly 
simple triangularization in the form

A LLT

or

a a a
a a a

a a a

n

n

n n

11 12 1

12 22 2

1 2

K

K K

K K K K K
K K K K K

K K

...

nnn

l
l l
11

21 22

0 0
0 0
K K

K

K K K K K
K K KK

K K

l

l l l

l

n n

n n nn

1 1

1 2

11

0,

ll l
l l

l

n

n

nn

21 1

22 20

0 0

K K

K K

K K K K K
K K K K K

K K

l l l l l
l l l l l l

n

n

11
2

11 21 11 1

11 21 21
2

22
2

21 1

K K

K K ll l

l l l l l l l

n

n n n n

22 2

1 11 1 21 2 22 1
2

K K K K K
K K K K K

K K ll ln nn2
2 2K

Hence,
l a l l l l a l l a
l
11
2

11 21 31 22 32 23 21
2

22
2

22

11

, ,
ll a

l l l l l l l an n n n

21 12

11 1 1 21 1 22 2 2

, ,

,

K K

K K K K

nn n nn nnl l a, 1
2 2K

However, it may encounter with some terms which are purely imaginary but this does not imply 
any special complications. The matrix equation AX � B reduces to LL X BT  or LZ � B 
and L X ZT .

This method is known as the square root method and is due to Banachiewicz and Dwyer.

EXAMPLE 4.12
Solve by square root method:

4x – y � 2z � 12
–x � 5y � 3z � 10
2x � 3y � 6z � 18.

Solution. The matrix form of the given system is

AX � B,

where

A
4 1 2
1 5 3

2 3 6
, XX

x
y
z

, B
12
10
18

.
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The matrix A is symmetric. Therefore, we have triangularization of the type A LLT , that is,

4 1 2
1 5 3

2 3 6

0 0
0

11

21 22

31 32 33

l
l l
l l l

l l l
l l

l

11 21 31

22 32

33

0
0 0

l l l l l
l l l l l l l l

11
2

11 21 11 31

11 21 21
2

22
2

21 31 22 332

11 31 21 31 22 32 31
2

32
2

33
2l l l l l l l l l

.

Hence,
l11

2 4  and so l11 � 2,

l11l21 � –1 and so l21

1
2

,

l11l31 � 2 and so l31 � 1,

l l21
2

22
2 5 and so l22 5 1

4
19
4

,

l l l l l l21 31 22 32 32 323 1
2

19
4

3 7
19

and so or .

l l l l l31
2

32
2

33
2

33
2

336 1 49
19

6 46
1

and so or
99

.
Thus,

2 0 0

1 19 0
2 4

7 461
1919

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L .

Then, LZ � B yields
2 0 0

1
2

19
4

0

1 7
19

46
19

1

2

3

z
z
z

12
10
18

and so
z1 � 6

3 19
4

102z  which yields z2

26
19

.
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6 7
19

26
19

46
19

183z ,  which yields z3

46
19

.

Now L X ZT  gives

2 1
2

1

0 19
4

7
19

0 0 46
19

x
y
z

6
26
19
46
19

.

Hence,
z � 1,

19
4

7
19

26
19

y z  or y 19 4
19

2,

2 1
2

6x y z  which gives x � 3.

Hence, the solution is x � 3, y � 2, and z � 1.

Crout’s Method
Crout suggested a technique to determine systematically the entries of the lower and upper triangles in 
the factorization of a given matrix A. We describe the scheme of the method stepwise.

Let the matrix form of the system (in three dimensions) be AX � B, where

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A , 
1

2

3

x

x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X , BB
b
b
b

1

2

3

.

The augmented matrix is

[ : ]A B
a a a
a a a
a a a

b
b
b

11 12 13

21 22 23

31 32 33

1

2

3

.

The matrix of the unknowns (in factorization of A), called the derived matrix or auxiliary matrix, is
l u u y
l l u y
l l l y

11 12 13 1

21 22 23 2

31 32 33 3

.

The entries of this matrix are calculated as follows:
Step 1. The first column of the auxiliary matrix is identical with the first column of the augmented 
matrix [ : ]A B .
Step 2. The first row to the right of the first column of the auxiliary matrix is obtained by dividing the 
 corresponding elements in [ : ]A BB  by the leading diagonal element a11.
Step 3. The remaining entries in the second column of the auxiliary matrix are l22 and l32. These entries 
are equal to corresponding element in [ : ]A B  minus the product of the first element in that row and in 
that column. Thus,
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l22 � a22 – l21u12,
l32 � a32 – l31u12.

Step 4. The remaining elements of the second row of the auxiliary matrix are equal to:
[corresponding element in [ : ]A B  minus the product of the first element in that row and first element 
in that column]/leading diagonal element in that row. Thus,

u
a l u

l23
23 21 13

22

y
b l y

l2
2 21 1

22

.

Step 5. The remaining elements of the third column of the auxiliary matrix are equal to:
corresponding element in [ : ]A B  minus the sum of the inner products of the previously calculated 
elements in the same row and column. Thus

l33 � a33 – (l31u13 � l32u23).

Step 6. The remaining elements of the third row of the auxiliary matrix are equal to:
[corresponding element in [ : ]A B  minus the sum of inner products of the previously calculated 
elements in the same row and column]/leading diagonal element in that row. Thus,

y
b l y l y

l3
3 31 1 32 2

33

( )
.

Following this scheme, the upper and lower diagonal matrices can be found and then using

UX
y
y
y

1

2

3

,

we can determine x1, x2, x3.

EXAMPLE 4.13
Solve by Crout’s method:

x1 � 2x2 � 3x3 � 1
3x1 � x2 � x3 � 0
2x1 � x2 � x3 � 0.

Solution. The augmented matrix of the system is

1 2 3
3 1 1
2 1 1

1
0
0

.

Let the derived matrix be

M
l u u y
l l u y
l l l y

11 12 13 1

21 22 23 2

31 32 33 3

.



352 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M04\LAYOUT\M04_BABUISBN_10_C04.indd

Modif cation Date: April 29, 2010 11:17 AM Modif cation Date: 29-04-10, 11:19

Then

2 3 11
1 1 1

1 3(3) 0 3(1)3 1 3(2)
5 5

8 0 [2(1) ( 3) (3 / 5)]2 1 2(2) 1 3(2) ( 3)
5 1 [6 (24 / 5)]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −= −⎢ ⎥− −⎢ ⎥
⎢ ⎥− + −⎡ ⎤⎛ ⎞− − + −⎢ ⎥⎜ ⎟⎢ ⎥ − −⎝ ⎠⎣ ⎦⎣ ⎦

M

�

1 2 3 1
3 5 8 5 3 5
2 3 1 5 1

/ /
/

Now UX � Y gives

1 2 3
0 1 8 5
0 0 1

1
3 5
1

1

2

3

/ /
x
x
x

.

Hence,
x3 � 1

x x x2 3 2
8
5

3
5

3
5

8
5

1and so

x1 � 2x2 � 3x3 � 1 and so x1 � 1 – 2x2 – 3x3 � 1 � 2 – 3 � 0.
Hence, the solution is x1 � 0, x2 � –1, and x3 � 1.

EXAMPLE 4.14
Solve by Crout’s method:

2x � y � 4z � 12
8x – 3y � 2z � 20
4x � 11y – z � 33.

Solution. The augmented matrix for the given system of equations is

2 1 4
8 3 2
4 11 1

12
20
33

.

Let the derived matrix be

M
l u u y
l l u y
l l l y

11 12 13 1

21 22 23 2

31 32 33 3

.
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Then

M

2 1
2

4
2

12
2

8 3 8 1
2

2 8 2
7

20 8 6
7

4 11 4 1
2

[ ( )] [ ( )]

11 4 2 9 2 33 6 4 9 4
27

[ ( ) ( )] [ ( ) ( )]

2 1 2 2 6
8 7 2 4
4 9 27 1

/
.

Now UX � Y gives
1 1 2 2
0 1 2
0 0 1

6
4
1

/ x
y
z

.

By back substitution, we get
z � 1,

y � 2z � 4 and so y � 4 – 2z � 2,

x y z x z y1
2

2  = 6andso 6 2 31
2

.

Hence, the required solution is x � 3, y � 2, z � 1.

EXAMPLE 4.15
Using Crout’s method, solve the system

x � 2y – 12z � 8v � 27
5x � 4y � 7z – 2v � 4

–3x � 7y � 9z � 5v � 11
6x – 12y – 8z � 3v � 49.

Solution. The augmented matrix of the given system is

1 2 12 8
5 4 7 2
3 7 9 5

6 12 8 3

27
4

11
49

.

Then the auxiliary matrix is

M

1 2 12 8 27
5 6 67 6 7 131 6
3 13 709 6 372 709 1

/ /
/ / 1151 709

6 24 204 11319 709 5
/

/

.

The solution of the equation is given by UX � Y, that is,
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1 2 12 8
0 1 67 6 7
0 0 1 372 709
0 0 0 1

/
/

xx
y
z
v

27
131 6

1151 709
5

/
/

or
x � 2y – 12z � 8v � 27

y z v67
6

131
6

7   

z v372
709

1 151
709
,

v � 5.
Back substitution yields

x � 3, y � –2, z � 1, v � 5.

4.2 ITERATIVE METHODS FOR LINEAR SYSTEMS
We have seen that the direct methods for the solution of simultaneous linear equations yield the solu-
tion after an amount of computation that is known in advance. On the other hand, in case of iterative 
or indirect methods, we start from an approximation to the true solution and, if convergent, we form 
a sequence of closer approximations repeated till the required accuracy is obtained. The difference 
between direct and iterative method is therefore that in direct method the amount of computation is 
fixed, while in an iterative method, the amount of computation depends upon the accuracy required.

In general, we prefer a direct method for solving system of linear equations. But, in case of matri-
ces with a large number of zero elements, it is economical to use iterative methods.

Jacobi Iteration Method
Consider the system

     

a x a x a x b
a x a x

n n11 12 2 1 1

21 1 22 2

 + +  +  = 
 + + 

K

KK

K

 +  = 
+ +  +  = 31 1 32 2

a x b
a x a x a x b

n n

n n

2 2

3 3

  
 
K K K K K
K K K K K

Ka x a x a x bn n nn n n1 1 2 2 +  + +  = 
 

(4.3)

in which the diagonal coefficients aii do not vanish. If this is not the case, the equations should be rear-
ranged so that this condition is satisfied. Equations (4.3) can be written as

     

x
b
a

a
a

x
a
a

x

x
b
a

a
a

n
n1

1

11

12

11
2

1

11

2
2

22

21

22

K

xx
a
a

x

x
b
a

a
a

x
a
a

n
n

n
n

nn

n

nn

n n

1
2

22

1
1

K

L L L L

K
nnn

nx 1

 

(4.4)
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Suppose x x xn1
1

2
1 1( ) ( ) ( ), , ,K  are first approximation to the unknowns x1, x2, ..., xn. Substituting in the right 

side of equation (4.4), we find a system of second approximations:

x b
a

a
a

x
a
a

x

x b
a

a
a

x

n
n1

2 1

11

12

11
2
1 1

11

1

2
2 2

22

21

22
1

( ) ( ) ( )

( ) (

K

11 2

22

1

2 1
1
1 1

) ( )

( ) ( ) ,

K

L L L L
L L L L

K

a
a

x

x
b
a

a
a

x
a
a

n
n

n
n

nn

n

nn

n n

nnn
nx 1
1( )

.

In general, if x x xn n
n
n

1 2
( ) ( ) ( ), , ,K  is a system of nth approximations, then the next approximation is given 

by the formula

x b
a

a
a

x
a
a

x

x b
a

a
a

n n n
n
n

n
n

1
1 1

11

12

11
2

1

11

1 2

22

21

2

( ) ( ) ( )

( )

K

22
1

2

22

1 1
1

x
a
a

x

x
b
a

a
a

x
a

n n
n
n

n
n n

nn

n

nn

n n n

( ) ( )

( ) ( ) ,

K

L L L L

K 11

a
x

nn
n
n( )

.

This method, due to Jacobi, is called the method of simultaneous displacements or Jacobi method.

Gauss–Seidel Method
A simple modification of Jacobi method yields faster convergence. Let x x xn1

1
2
1 1( ) ( ) ( ), , ,K  be the first 

approximation to the unknowns x1, x2, ..., xn. Then the second approximations are given by:

x b
a

a
a

x
a
a

x

x b
a

a
a

x

n
n1

2 1

11

12

11
2
1 1

11

1

2
2 2

22

21

22
1

( ) ( ) ( )

( ) (

K

22 23

22
3
1 2

22

1

3
2 3

33

31

33
1

2 32

3

) ( ) ( )

( ) ( )

a
a

x
a
a

x

x b
a

a
a

x a
a

n
nK

33
2
2 3

33

1

2 1
1

2 2
2

x a
a

x

x
b
a

a
a

x
a
a

x

n
n

n
n

nn

n

nn

n

nn

( ) ( )

( ) ( )

K

L L L L L

(( ) , ( )2 1
1

2K
a
a

xn n

nn
n

.

The entire process is repeated till the values of x1, x2, ..., xn are obtained to the accuracy required. Thus, 
this method uses an improved component as soon as available and so is called the method of successive 
displacements or Gauss–Seidel method.
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Introducing the matrices

A1

11

21 22

1 2 3

0 0 0
0 0

a
a a

a a a an n n nn

L
L

M M M M M
L

 and A2

12 13 1

23 2

0
0 0

0 0 0 0

a a a
a a

n

n

L
L

M M M M M
L

,

it can be shown that the condition for convergence of Gauss–Seidel method is that the absolutely 
largest eigenvalue of A A1

1
2 must be absolutely less than 1. In fact, we have convergence if for 

, , ,i n= …1 2 , a Sii i , where S ai ik
k i

. Thus, for convergence, the coefficient matrix should have 
a clear diagonal dominance.

It may be mentioned that Gauss–Seidel method converges twice as fast as the Jacobi’s method.
EXAMPLE 4.16
Starting with (x0, y0, z0) � (0, 0, 0) and using Jacobi method, find the next five iterations for the system

5x – y � z � 10
2x � 8y – z � 11
–x � y � 4z � 3.

Solution. The given equations can be written in the form

x y z 10
5

, y x z2 11
8

, and z x y 3
4

, respectively.

Therefore, starting with (x0, y0, z0) � (0, 0, 0), we get

 
x

y z
1

0 0 10
5

2

            
y

x z
1

0 02 11
8

1 375.

      
z

x y
1

0 0 3
4

0 75. .

The second iteration gives

 
x y z

2
1 1 10

5
1 375 0 75 10

5
2 125. . .

   
y x z

2
1 12 11

8
4 0 75 11

8
0 96875. .

  z x y
2

1 1 3
4

2 1 375 3
4

0 90625. . .
The third iteration gives

 
x y z

3
2 2 10

5
0 96875 0 90625 10

5
2 0125. . .

                
y x z

3
2 22 11

8
4 250 0 90625 11

8
0 95703125. . .

 z x y
3

2 2 3
4

2 125 0 96875 3
4

1 0390625. . . .
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The fourth iteration yields

x
y z

4
3 3 10

5
0 95703125 1 0390625 10

5
. . =1.98359375

y
x z

4
3 32 11

8
4 0250 1 0390625 11

4
. . 0.8767578

z
x y

4
3 3 3

4
2 0125 0 95703125 3

4
. . 1.0138672,

whereas the fifth iteration gives

x y z
5

4 4 10
5

1.9725781

y x z
5

4 42 11
8

3 9671875 1 0138672 11
8

. . 1.005834963

z x y
5

4 4 3
4

1 98359375 0 8767578 3
4

. . = 1.02670898.

One finds that the iterations converge to (2, 1, 1).

EXAMPLE 4.17
Using Gauss–Seidel iteration and the first iteration as (0, 0, 0), calculate the next three iterations for the 
solution of the system of equations given in Example 4.16.

Solution. The first iteration is (0, 0, 0). The next iteration is

x
y z

1
0 0 10

5
2

y
x z

1
1 02 11

8
4 0 11

8
0.875

z x y
1

1 1 3
4

2 0 875 3
4

. 1.03125.

Then

x y z
2

1 1 10
5

0 875 1 03125 10
5

. . 1.96875

y x z
2

2 12 11
8

3 9375 1 03125 11
8

. . 1.01171875

z x y
2

2 2 3
4

1 96875 1 01171875 3
4

. . 0.989257812 .

Further,

x y z
3

2 2 10
5

1 01171875 0 989257812 10
5

. . 2.004492188

y
x z

3
3 22 11

8
4 008984376 0 989257812 11

8
. . 0.997534179
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z
x y

3
3 3 3

4
2 004492188 0 997534179 3

4
. . 1.001739502.

The iterations will converge to (2, 1, 1).

Remark 4.2. It follows from Examples 4.16 and 4.17 that Gauss–Seidel method converges rapidly in 
comparison to Jacobi’s method.

EXAMPLE 4.18
Solve

54x � y � z � 110
2x � 15y � 6z � 72
–x � 6y � 27z � 85

by Gauss–Seidel method.

Solution. From the given equations, we have

x y z110
54

, y x z72 2 6
15

, and z x y85 6
27

.

We take the initial approximation as x0 � y0 � z0 � 0. Then the first approximation is given by

x1
110
54

2.0370

y
x z

1
1 072 2 6

15
4.5284

z
x y

1
1 185 6

27
2.2173.

The second approximation is given by

x y z
2

1 1110
54

1.9122

y x z
2

2 172 2 6
15

3.6581

z
x y

2
2 285 6

27
2 4061. .

The third approximation is

x y z
3

2 2110
54

1.9247

y
x z

3
3 272 2 6

15
3.5809

z
x y

3
3 385 6

27
2.4237.

The fourth approximation is

x
y z

4
3 3110

54
1.9258
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y
x z

4
4 372 2 6

15
3.5738

z
x y

4
4 485 6

27
2.4253.

The fifth approximation is

x y z
5

4 4110
54

1.9259

y
x z

5
5 472 2 6

15
 = 3.5732

z
x y

5
5 585 6

27
2.4254.

Thus, the required solution, correct to three decimal places, is
x � 1.926, y � 3.573, z � 2.425.

EXAMPLE 4.19
Solve

28x � 4y – z � 32
2x � 17y � 4z � 35
x � 3y � 10z � 24

by Gauss–Seidel method.

Solution. From the given equations, we have

x y z32 4
28

,
 

y x z35 2 4
17

, and
 
z x y24 3

10
.

Taking first approximation as x0 � y0 � z0 � 0, we have

x1 � 1.1428571, y1 � 1.9243697, z1 � 1.7084034
x2 � 0.9289615, y2 � 1.5475567, z2 � 1.8428368
x3 � 0.9875932, y3 � 1.5090274, z3 � 1.8485325
x4 � 0.9933008, y4 � 1.5070158, z4 � 1.8485652
x5 � 0.9935893, y5 � 1.5069741, z5 � 1.8485488
x6 � 0.9935947, y6 � 1.5069774, z6 � 1.8485473.

Hence the solution, correct to four decimal places, is
x � 0.9935, y � 1.5069, z � 1.8485.

EXAMPLE 4.20
Solve the equation by Gauss–Seidel method:

20x � y – 2z � 17
3x � 20y – z � –18
2x – 3y � 20z �25.

Solution. The given equation can be written as

x y z1
20

17 2[ ]
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y x z1
20

18 3[ ]

z x y1
20

25 3 3[ ].

Taking the initial rotation as ( , , ) ( , , )x y z0 0 0 0 0 0 , we have by Gauss–Seidal method,

x1
1
20

17 0 0 0 85[ ] .

y1
1
20

18 3 0 85 1 1 0275[ ( . ) ] .

z1
1
20

25 2 0 85 3 1 0275 1 0108[ ( . ) ( . )] .

x2
1
20

17 1 0275 2 1 0108 1 0024[ . ( . )] .

y2
1
20

18 3 1 0024 1 0108 0 9998[ ( . ) . ] .

z 2

1
20

25 2 1 0024 3 0 9998 0 9998[ ( . ) ( . )] .

x3

1
20

17 0 9998 2 0 9998 0 99997[ . ( . )] .

y3
1
20

18 3 0 99997 0 9998 1 00000[ ( . ) . ] .

z3
1
20

25 2 0 99997 3 1 0000 1 00000[ ( . ) ( . )] . .

The second and third iterations show that the solution of the given system of equations is 
x y z1 1 1, , .

Convergence of Iteration Method
(A) Condition of Convergence of Iteration Methods
We know (see Section 3.14) that conditions for convergence of the iteration process for solving 
 simultaneous equations f x y( , ) 0 and g x y( , ) 0 is

f
x

g
x

1

and
f
y

g
y

1.

This result can be extended to any finite number of equations. For example, consider the following 
system of three equations:
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a x a x a x b
a x a x a x b
a x a x a x

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 bb3.

Then, in the fixed-point form, we have

     

x f x x x
a

b a x a x

b
a

1 1 2 3
11

1 12 2 13 3

1

11

1( , , ) ( )

 
aa
a

x
a
a

x12

11
2

13

11
3,

 

(4.5)

     

x g x x x
a

b a x a x

b
a

a

2 1 2 3
22

2 21 1 23 3

2

22

1( , , ) ( )

221

22
1

23

33
3a

x
a
a

x ,
 

(4.6)

     

x h x x x
a

b a x a x

b
a

a

3 1 2 3
33

3 31 1 32 3

3

33

1( , , ) ( )

331

33
1

32

33
2s

x
a
a

x .
 

(4.7)

Then the conditions for convergence are

     

f
x

g
x

h
x1 1 1

1, (4.8)

     

f
x

g
x

h
x2 2 2

1, (4.9)

     

f
x

g
x

h
x3 3 3

1. (4.10)

But partial differentiation of equations (4.5), (4.6), and (4.7) yields
f
x

f
x

a
a

f
x

a
a1 2

12

11 3

13

11

0, , ,

g
x

a
a

g
x

g
x

a
a1

21

22 2 3

23

22

0, , ,

h
x

a
a

h
x

a
a

h
x1

31

33 2

32

33 3

0, , .

Putting these values in inequalities (4.8), (4.9), and (4.10), we get

     

a
a

a
a

21

22

31

33

1, (4.11)

     

a
a

a
a

12

11

32

33

1, (4.12)
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a
a

a
a

13

11

23

22

1. (4.13)

Adding the inequalities (4.11), (4.12), and (4.13), we get
a
a

a
a

a
a

a
a

a
a

a
a

21

22

31

33

12

11

32

33

13

11

23

22

3

or

     

a
a

a
a

a
a

a
a

a
a

a
a

12

11

13

11

21

22

23

22

31

33

32

33

3
 

(4.14)

We note that inequality (4.14) is satisfied by the conditions
a
a

a
a

12

11

13

22

1
 

or
 

a a a22 12 13

a
a

a
a

21

22

23

22

1 or a a a22 21 23

a
a

a
a

31

33

32

33

1 or a a a33 31 32 .

Hence, the condition for convergence in the present case is

a a i i jii ij
j 1

3

1 2 3, , , ; .

For a system of n equations, the condition reduces to

 
a a i n i jii ij

j

n

1

1 2, , , ;K . (4.15)

Thus, the process of iteration (Jacobi or Gauss–Seidel) will converge if in each equation of the system, 
the absolute value of the largest coefficient is greater than the sum of the absolute values of all the 
remaining coefficients in that equation.

A system of equations satisfying condition (4.15) is called diagonally dominated system.
(B) Rate of Convergence of Iteration Method
In view of equations (4.5), (4.6), and (4.7), the (k�1)th iteration is given by

     
x b

a
a
a

x
a
a

xk k k
1

1 1

11

12

11
2

13

11
3

( ) ( ) ( ), (4.16)

     
x b

a
a
a

x
a
a

xk k k
2

1 2

22

21

22
1

1 23

22
3

( ) ( ) ( ) , (4.17)

     
x

b
a

a
a

x
a
a

xk k k
3

1 3

33

31

33
1

1 32

33
2

1( ) ( ) ( ). (4.18)

Putting the value of x k
1

1( ) from equations (4.16) in (4.17), we get

x b
a

a
a

b
a

a
a

x
a
a

x
ak k k

2
1 2

22

21

22

1

11

12

11
2

13

11
3

2( ) ( ) ( ) 33

22
3a

x k( )
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b
a

a b
a a

a a
a a

x
a a
a a

x
ak k2

22

21 1

22 11

21 12

11 22
2

21 13

22 11
3

23( ) ( )

aa
x k

22
3
( ) .

Then

x b
a

a b
a a

a a
a a

x
a a
a a

k k
2

2 2

22

21 1

22 11

21 12

11 22
2

1 21 13

22 11

( ) ( ) xx
a
a

xk k
3

23

22
3

( ) ( ).

Hence,

     
x x

a a
a a

x xk k k k
2

2
2

1 21 12

11 22
2

1
2

( ) ( ) ( ) ( )( ) . (4.19)

In terms of errors, equation (4.19) yields

e a a
a a

ek k
2

1 21 12

11 22
2

( ) ( ) .

Therefore, the error will decrease if a a
a a

12 21

11 22

1.

4.3 ILL-CONDITIONED SYSTEM OF EQUATIONS
System of equations, where small changes in the coefficient result in large deviations in the solution 
is said to be ill-conditioned system. Such systems of equations are very sensitive to round-off errors.

For example, consider the system
3 91 2x x

3 015 31 2. x x .

The solution of this system is

x1
9 3

3 3 015
400

.  
and

 
x2

9 9 3 015
3 3 015

1209( . )
.

.

Now, we round off the coefficient of x1 in the second equation to 4.02. Then the solution of the system is

x1
9 3

3 3 02
300

.  
and x2

9 9 3 02
3 3 02

909( . )
.

.

Putting these values of x1 and x2 in the given system of equations, we have the residuals as

r1 900 909 9 0 and r2 3 015 300 909 3 1 5. ( ) . .

Thus, the first equation is satisfied exactly whereas we get a residual for the second equation. This hap-
pened due to rounding off the coefficient of x1 in the second equation. Hence, the system in question is 
 ill-conditioned.
Let A aij  be an n n coefficient matrix of a given system. If C AA 1 is close to identity matrix, 
then the system is well-conditioned, otherwise it is ill-conditioned. If we define norm of the matrix A as

1 1

n

ij
i n j

A a
≤ ≤ =

= ∑max ,

then the number A A 1  is called the condition number, which is the measure of the ill-conditioned-
ness of the system. The larger the condition number, the more is the ill-conditionedness of the system.
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EXERCISES

1. Solve the system
2x � y � z � 10
3x � 2y � 3z � 18
x � 4y � 9z � 16

by Gauss elimination method.
Ans. x � 7, y � �9, z � 5

2. Solve the following system of equations by Gauss elimination method:
x1 � 2x2 � x3 � 3
3x1 � x2 � 2x3 � 1
2x1 � 2x2 � 3x3 � 2

Ans. x1 � �1, x2 � 4, x3 � 4

3. Solve the following system of equations by Gauss elimination method:
2x � 2y � z � 12
3x � 2y � 2z � 8
5x � 10y � 8z � 10.

Ans. x � �12.75, y � 14.375, z � 8.75

4. Solve the following system of equations by Gauss–Jordan method:
5x � 2y � z � 4
7x � y � 5z � 8
3x � 7y � 4z � 10.

Ans. x � 11.1927, y � 0.8685, z � 0.1407

5. Solve by Gauss–Jordan method:
2x1 � x2 � 5x3 � x4 � 5
x1 � x2 � 3x3 � 4x4 � �1
3x1 � 6x2 � 2x3 � x4 � 8
2x1 � 2x2 � 2x3 � 3x4 � 2.

Ans. x1 � 2, x2
1
5

, x3 � 0, x4
4
5

6. Solve by Gauss–Jordan method:
x � y � z � 9
2x � 3y � 4z � 13
3x � 4y � 5z � 40.

Ans. x � 1, y � 3, z � 5

7. Solve by Gauss–Jordan method:
2x � 3y � z � �1
x � 4y � 5z � 25
3x � 4y � z � 2.

Ans. x � 8.7, y � 5.7, z � �1.3

8. Solve Exercise 4 by factorization method.
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9. Solve the following system of equations by factorization method:
2x � 3y � z � 9
x � 2y � 3z � 6
3x � y � 2z � 8.

Ans. x � 1.9444, y � 1.6111, z � 0.2777

10. Solve the following system of equations by Crout’s method:
3x � 2y � 7z � 4
2x � 3y � z � 5
3x � 4y � z � 7.

Ans. x 7
8

, y 9
8

, z 1
8

11. Use Crout’s method to solve
2x � 6y � 8z � 24
5x � 4y � 3z � 2
3x � y � 2z � 16.

Ans. x � 1, y � 3, z � 5

12. Solve by Crout’s method:
10x � y � z � 12
2x � 10y � z � 13
2x � 2y � 10z � 14.

Ans. x � 1, y � 1, z � 1

13. Use Jacobi’s iteration method to solve
5x � 2y � z � 12
x � 4y � 2z � 15
x � 2y � 5z � 20.

Ans. x � 1.08, y � 1.95, z � 3.16

14. Solve by Jacobi’s iteration method
10x � 2y � z � 9
2x � 20y � 2z � �44
�2x � 3y � 10z � 22.

Ans. x � 1, y � �2, z � 3

15. Solve by Jacobi’s method
5x � y � z � 10
2x � 4y � 12
x � y � 5z � �1.

Ans. x � 2.556, y � 1.722, z � �1.055

16. Use Gauss–Seidel method to solve
54x � y � z � 110
2x � 15y � 6z � 72
�x � 6y � 27z � 85

Ans. x � 1.926, y � 3.573, z � 2.425
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17. Find the solution, to three decimal places, of the system using Gauss–Seidel method.
83x � 11y �4z � 95
7x � 52y � 13z � 104
3x � 8y � 29z � 71

Ans. x � 1.052, y � 1.369, z � 1.962

18. Solve Exercise 14 by Gauss–Seidel method.

19. Show that the following systems of equations are ill-conditioned:
 (i) 1 2

1 2

2 25
2.001 25.01

x x

x x

+ =
+ =

  (ii) y x
y

2 7
2 01 3.
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5 
 Finite Differences 
and Interpolation

Finite differences play a key role in the solution of differential equations and in the formulation 
of interpolating polynomials. The interpolation is the art of reading between the tabular values. 
Also the interpolation formulae are used to derive formulae for numerical differentiation and 
integration.

5.1 FINITE DIFFERENCES
Suppose that a function y f ( )x  is tabulated for the equally spaced arguments 0 0, ,x x h+  

0 02 , ,x h x nh+ +…  giving the functional values y y y yn0 ,y .1 2y,  The constant difference between two 
consecutive values of x is called the interval of differencing and is denoted by h.

The operator Δ defined by

     

y y y
y y y

0 1y 0

1 2y 1

y
y

,
,

 ,          KKKKK
KKKKK ,,

.y y yn n ny 1y yny nyny n

is called the Newton’s forward difference operator. We note that the first difference y y yn ny ny 1  is 
itself a function of x. Consequently, we can repeat the operation of differencing to obtain

     

2
0 0 1 0 1 0

2 1 1 0

y0 y1 y y1

y y2 y1y
( )0 ( )0y y1 y ,

( )0y y1y y y2 1y 02 ,y y1y 0

which is called the second forward difference. In general, the nth difference of f  is defined by

     
n

r
n

r
n

ry yr yy1
1

1 .

For example, let

     f x x x)x x x3 23 5x2 7.

Taking the arguments as 0, 2, 4, 6, 8, 10, we have h = 2 and

     

f x)x ( )x ( )x ( )x ( )x x(x (x (x) 5) 7) xx3 2( )(3 ) 3 2 6 6
6 6

2

2 2 2f x f x 6
,

)x ( f )) ( )6 626x 6 ( )22 f )x xff )) ( )(( ,
) ( ) ( )

24 24
24 2) 4 (

2

3

x) 24
f x( ) (2) 4 (

))
(24 2424 ) 4844

04 5

,
) ( ) .)4 f x(( f x(f ( )f ( K



368 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M05\LAYOUT\M05_BABUISBN_10_C05.indd

Modif cation Date: April 29, 2010 2:41 PM Modif cation Date: 29-04-10, 15:16

In tabular form, we have
Difference Table

x f (x) Δ f (x) Δ2f (x) Δ3f (x) Δ4f (x) Δ5f (x)
0 7

6
2 13 24

30 48
4 43 72 0

102 48 0
6 145 120 0

222 48
8 367 168

390
10 757

Theorem 5.1. If f (x) is a polynomial of degree n, that is,

   `  
f x a xi

i

i

n

)x ,
0

then n f x)x  is constant and is equal to n a hn
n!  

Proof: We shall prove the theorem by induction on n. If n = 1, then f x a a)x a x1 0x ax  and 
f x f x h)x x hf x  f a h( )x( )xf (x 1  and so the theorem holds for n = 1. Assume now that the result is true 

for all degrees 1  2 1., , 2 ,K n  Consider

     
f x a xi

i

i

n

)x .
0

Then by the linearity of the operator Δ, we have

     

n
i

n i

i

n

f x a xi)x .
0

For i < n, Δnxi is the nth difference of a polynomial of degree less than n and hence must vanish, by 
induction hypothesis. Thus,

     

n
n

n n
n

n n

n
n n n

f x a x a

a x h n

)x ( )nx

[( ) ]nxn

x

xna [(

1

1

a g xn
n 1 1n[ (nhx g1nhh )]

where g(x) is a polynomial of degree less than n−1. Hence, by induction hypothesis,

     
n

n
n

n
n

nf x a a h hn)x ( )nhx( )nnhx ( )hn ( )n ! !h an n( )nhx )!h1 1nnn 1 hhn .

Hence, by induction, the theorem holds.
Let y y yn0 ,y ,1 K  be the functional values of a function f  for the arguments 0 0 00 00x x h x0 0000 +00h x  

02 , , .h x nh… +  Then the operator ∇ defined by

     y y yr ry r 1

is called the Newton’s backward difference operator.
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The higher-order backward differences are

     

2
1

3 2 2
1

y y y

y y y

y

r ry r

r ry r

n
r

KKKKKKKK
n

r
n

ry yr
1 1n

1.

Thus, the backward difference table becomes

x y 1st
difference

2nd
difference

3rd
difference

x0 y0

y1

x1 y1
2

2y

y2
3

3y

x2 y2 2
3y

y3

x3 y3

EXAMPLE 5.1
Form the table of backward differences for the function

     f x x x)x x x3 23 5x2 7

for x = −1, 0, 1, 2, 3, 4, and 5.
Solution.

x y 1st
difference

2nd
difference

3rd
difference

4th
difference

−1 −16
9

0 −7 −6
3 6

1 −4 0 0
3 6

2 −1 6 0
9 6

3 8 12 0
21 6

4 29 18
39

5 68
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An operator E, known as enlargement operator, displacement operator or shifting operator, is 
defined by

     yr ry 1.

Thus, shifting operator moves the functional value f x)x  to the next higher value f x )x h . Further,

     

E y E E y y

E y E E y
r ry r

r ry r

2
2y

3 2E 2

E

E
ryry(EyEy( )EyEEEyEE ( )y

(E yy )E y2EE y ( )yr 2 ) .)) y

E y y

r

n
r ry

3

KKKKKKKKKKKK
KKKKKKKKKKKK

nn           

Relations between Δ, ∇, and E
We know that

     y y y Ey yEE yr ry r ry r ryy EyEE1 ( )E IE ,

where I is the identity operator. Hence,
 or .        (5.1)
Also, by definition,

     y y y y E y y Ir ry ryr r ry1 1)I E 1I E ,

and so
I E E I1 1Eor

or

     E I
I

.
 

(5.2)

From equations (5.1) and (5.2), we have

     I
I

1  (5.3)
or

     I
I

I
I

. (5.4) 
From equations (5.3) and (5.4)

     I I
I 1

 (5.5)

Theorem 5.2. f
n
k

fx nff h
k

xff
k 0

Proof: We shall prove our result by mathematical induction. For n = 1, the theorem reduces to 

f f fx hff x xff fff ff  which is true. Assume now that the theorem is true for n − 1. Then

f E f E f E
n

i
fx nff h

n
xff

n
xff

i
xff

i

E f ( )E fxff
1

0

1

 
by induction hypothesis.
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But E II . So

     

E f f E f E f

n
i

n
xff

n
xff xff

n
xff( )II E f E f EEn E fn) 1 1f nf EnEnf En 1

1 ii
x

i

i
x

i

fx

n
i

fx

n
i

1

1
0

1

0

ii
x

j

j
x

i

fx

n
j

fx

1
110

The coefficient of k
xf kx ,k , , , )n1, 2K  is given by

     

n
k

n
k

n
k

1 1n
1

.

Hence,

     
f E f

n
k

fx nff h
n

xff
k

xff
k

E f
0

,

which completes the proof of the theorem.
As a special case of this theorem, we get

     
f E f

x
k

fxff
x kf

x
k

E f 0k
ff0ff

0

,

which is known as Newton’s advancing difference formula and expresses the general functional value 
f x in terms of f 0 and its differences.

Let h be the interval of differencing. Then the operator d defined by

     
f f fxff x h x hf

x
2 2

is called the central difference operator.
We note that

     
f f f E f E f fxff x h x h xE ff x xff fff f E f E EE Ex

2 2

1
2

1
2 .

Hence,

     E E
1
2

1
2 . (5.6)

Multiplying both sides by E
1
2, we get

 
E E IEEE E

1
2

1
2

2
2

1 0
2 4

0or

or

     
E I IE

1
2

2 1
2

2

2 4 2 4
E II

2

I
2

o

or

     
E I I II II I

2 2 2
1

2 2

4 4
1

4 2 4
.

 
(5.7)
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Also, using equation (5.7), we note that

     
E I I

2 2

2 4  
(5.8)

                         
 

I I
E

I I I

I

2 2
1

2 2

2 4

2 44
.

 
(5.9)Conversely,

     

E E I

I I
II

1
2

1
2

1
2

1 2( )I
( )I /

 
(5.10)

and

     
E E I

I

1
2

1
2

1
.1  (5.11)

 
Let h be the interval of differencing. Then the operator µ defined by

     
f f f

xff x h x hx
1
2 2 2

is called the mean value operator or averaging operator. We have

     f f f
E f E fxff x h x h

x xff ffx
1
2

1
22 2

1
2

1
2 .

Hence,

     
1
2

1
2

1
2E E2

 
(5.12)

or

     2 E E
1
2

1
2 .  (5.13)

Also, we know that

     E E
1
2

1
2 .  

(5.14)

Adding equations (5.13) and (5.14), we get

     
2 2

2

1
2

1
2E E2 or .

 
(5.15)

 
Also,

     
E I

1
2

2

2 4
I
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Hence,

     2 2 4 4

2 2

I Io
 

(5.16)
 

The relation equation (5.16) yields

     
I

2
2 2

4
2 .I2

 
(5.17)

 
Multiplying equation (5.13) throughout by E

1
2 , we get

     E I E II E2 2E E 0
1
2

1
2E2E E

or

     
I E I

2
2

1
2 20E

1
2

2 I E 202 E 2 2

or

     E I E I
1
2 2 2I E 22I2I E I 2I 2or .  (5.18) 

Then

       2 2 22E I I22 I  2 2
 (5.19) 

and

     

I I
E

I

I2 2

2

1

22 22 22 I I  
(5.20)

The differential operator D is defined by

     f x f x)x )x .f

By Taylor’s Theorem, we have

     

f x h f x h f x h f x

f x

x h ( )x )x
!

)x     

)x

h h f )x

f )x

f h(x h f))
2

2
K

hDhh f xD h D f

h f

)x
!

( )x( )

!
(

D f ( )x
2

2

2
2

2

2

K

)f x(1 hD h D
!

D2

2
))

and so

     
Ef x f hD h D f(x ( )x h

!
( )x .f (x D1

2
2

2
Hence,

     
E h h e U hDhD U1 whD h D e ehD UD e h

2
2

2!
, .U hD        K

 
(5.21)
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Then

     E I eU U.I e UI e

We note that

     

E E e e
U

U U1
2

1
2 2e 2

2
2

  

   sinh
 

(5.22)

     

1
2

1
22

.
 

(5.23)

Conversely

     e e
U U
2 2 2e 2e

or

     
e eU

U

e
U

1 2 2e

or

     e I
U
2 2

or

     
U I Il g I . (5.24)

 
Since, by equation (5.22),

     
2

2
sinh ,U

it follows that

     
U sinh .1

2  
(5.25)

From the above discussion, we obtain the following table for the relations among the finite difference 
 operators:

Δ ∇ d E U = hD

Δ Δ I) 1
2 2

2 4
I E − I e IU

∇ I I
I ∇ −

2 2

2 4
I I

E
1

I e U

d
I I

d E E
1
2

1
2 2

2
sinh U

E I+Δ
I

I II
2 2

2 4
E eU

U = hD log (I+Δ) log I
I

2sinh 
2

log E U
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EXAMPLE 5.2
The expression  d y0 cannot be computed directly from a difference scheme. Find its value expressed in 
known central differences.

Solution. We know that

     
I I I

2
1
2 2

1
2

4 4
or

or

     

y0

2
1
2

0

2

1
4

1
8

1
2

1
2

1

1

1
2 16

1
2

1
2

1 1
2

2

3

4

!

4

!!

8

0

0

2
0 4

0

64

8
3

128
4

0

K

K

y

y
y

y .
 

(5.26)

 

But

     

y
y y

y y0 0y
1
2

1
2

1
2

1
2

2
1
2

y y

1
2

1
21 0 0 1 1 1( )1 1 ( )1 .y y0 00 0 y11

Hence, equation (5.26) reduces to

     
y yy y y y0 1y 0

2
1

2
1

4
1

41
2

1
16

3
256

[ ]y y1yy ]y y1
2[ [2 2y2

1y y4
1

4y4
1 1] K

which is the required form. 

5.2 SOME MORE EXAMPLES OF FINITE DIFFERENCES
EXAMPLE 5.3
Find the missing term in the following table:

x 0 1 2 3 4

f (x) 1 3 9 – 81

Solution. Since four entries y y y y y0 1y 2 3y 4,y1y ,y3y are given, the given function can be represented by a 
third degree polynomial. The difference table is
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x f (x) Δf (x) Δ2f (x) Δ3f (x) Δ4f (x)

0  1
2

1  3 4
6 y3 − 19

2  9 y3 − 15 124 − 4y3

y3 − 9 105 − 3y3

3 y3 90 − 2y3
81 − y3

4 81

Since polynomial is of degree 3, 4 f x)x 0 and so 124 4 34y4y44 0 and hence y3 31.

EXAMPLE 5.4
If y0 3, y1 = 12, y2 = 81, y3 = 2000, and y4 = 100, determine Δ4y0.

Solution. The difference table for the given data is

x y Δy Δ2y Δ3y Δ4y

0 3
9

1 12 60
69 1790

2 81 1850 −7459
1919 −5669

3 2000 −3819
−1900

4  100

From the table, we have Δ4y0 = −7459.

EXAMPLE 5.5
Establish the relations

(i)  2 ;

(ii)  1
2

( );

(iii)   E E
1
2 .

Solution. (i) We know that

     
E I I I

E
 and  = .I
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Therefore,

     
( ) I

E
I
E  

(5.27)
 

and

     
E I

E
I2

 
(5.28)

 
Furthermore,

     
E E E I

E

1
2

1
2

1
2

1 2/

and so

     
E I

E
2 .I

 
(5.29)

 
The result follows from equations (5.27), (5.28), and (5.29).

(ii) We have

1
2

1 2 1 2 ./ /2 1 / /2 1E E1/2

Therefore,
1
2
1
2

1
2

1 2 1 2

1

( )1 2 ( )1 2

( )1

/ /2 12 1 / /2 12 11 2 11 22

E

)2 (1 1 2

(

)2 (1 1 2

I
E

E I I I
E

1
2

1
2

( ).

(iii) We have

E E I I
E

E I

I
E

E E I

E

E

E E1

( ) ./ / /E E/ I1/ 2/ 1 2//

Hence,

     E EE
1
2 .

EXAMPLE 5.6
Show that

     
E E E

E E
r E tr

r tE EE1

1

2
2

2sinh
sinh

sinh
sinh 22

,

where t = 1−r and 
hD
2

.



378 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M05\LAYOUT\M05_BABUISBN_10_C05.indd

Modif cation Date: April 29, 2010 2:41 PM Modif cation Date: 29-04-10, 15:16

Solution. We have

     

E E
E E

E E
E E

E E E
E E

r tE r
rE1

1

1 1rE
1

1

1 Er .

Also,

     E E e ehD hDE ehD1 2 2si h .
Therefore,

     

E E
E E

EEr tE
r r

E1

1

1 1r

1

1
2

1
2

1
2

( )E Er 1rE

( )E E 1

[ Er 1

2

]

sinh

     

Er rE 1r1
2

[ (E ) ]E E 1rE

sin

( )r 1r

hh

[ ( )] ( )

sinh

2
1
2

1
2

2

1 1E( E )] ()])] (1)] (r rE

     

[1
2

E( )(( ] (] ( )

sinh
si h

( )E E

E rsinh

r r )])] (E1
2
2

2

1 (Er (E (

siss nh
sinh

sinh
sinh

sinh
sinh

2
2

2
2

2
2

t

r E tE ..

EXAMPLE 5.7
Show that

     

2

0

1

0f f f0kff
k

n

nfff .

Solution. We have

     

2
0 0 1 0 1 0

2
1 1

f f0 0 f1 0 f f1 0

f f1 1 f

)00 )f ( )0f f1 0f

)11)f ( 2 122ffff 2 1f f1 2 f1

       
2ff2 ff

KKKKKKKKKKKKKK
KKKKKKKKKKKKKKKKK                         

2
1f f(1nff n nnnffff n n nf f fn n1n nf fn n1 nfn n 1) ( ) .nf fn nf 1f ff 1f f( ) ffff ff

Adding we get

     

2
1

0

1

0 2 1f f1 f f0 2 f f1 fkff
k

n

n nff ff1f1 f0f 2f2 f12f2 11

0

)

.f f0nff
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EXAMPLE 5.8

Show that 2
2 1

0

1

2 02
f2

U f2 0k
k

n

tanh ( )0f f2 0 .

Solution. We have

     

2
1
2

1
2 2

1
2

1
2 2

1
2

1
2

1
2

1
2

2

( )2 2 ( )2 22 ( )2 2
22

2 22

E E2

( )( )

( ) (

E E

E E
U U

1
2

1
2 1

1
2

1
2

2 2 11

2 2

1

2
) ta (n

2
).

e e2

U E EU U nn

Thus,

     

2
2 1

1
2 12

f2

U f E f1
2

U
k k1 22 k1 22

f2tanh [ ]1 2 1Ef E f1
2k2Ef2 k2f2 E f tanh

22 2[ ].f2f f2k k2 22f2 22 2

Therefore,

  

2
2 1

0

1

2 0 4 22
f2

U f f2 0 f f4 2k
k

n

0f0tanh [( ) ( ) K ( )] tan [h ].f U f fn n n2ff n ff 2 2)] tanh [ ff 0ff2

EXAMPLE 5.9

Find the cubic polynomial f (x) which takes on the values f f f f f f0 1f ff f 2 3f ff f 4 5f ff f1f 2f 5 fff 105f1 25 f,1ff 1f1ff ,3ff 2f3ff 5 .f5ff 105
Solution. The difference table for the given function is given below:

x f (x) Δ f (x) Δ2f (x) Δ3f (x) Δ4f (x)
0 −5

6
1 1 2

8 6
2 9 8 0

16 6
3 25 14 0

30 6
4 55 20

50
5 105

Now,

     

f f

x x x x
xff

x xf IE f0 0f If ff

21
2

2xx

)III

( )x 1
!

( )x 1 (x( )x 1 ))
!3

2
3 2

6

3
0

0 0

2
2

0

3 23
0

3

f0

f x00 0f0

x x f0

x 33 33 x 3
0

2 3 2
3 25 6

2
3 22

6
23 7

f0

x x x x x3 x x x26x 3 23( )2 ( )6 xx 5,

which is the required cubic polynomial. 
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EXAMPLE 5.10

Determine

     [(1 )(1 )(1 )(1 )].10 2 3)(1 4)(1 )(1ax bx cx dx

Solution. We have

     

[(1 )(1 )(1 )(1 )]
 = [

10 2 3)(1 4

10

)(1 )(1ax bx cx dx
abcd + +1].x A+ x B+ xBB10 9 8B+ xB

The polynomial in the square bracket is of degree 10. Therefore, Δ10f (x) is constant and is equal to 
a n hn

n! .hn  In this case, we have an = abcd, n = 10, h = 1. Hence,

      ( ) =10 f x(( abcd( )10 !

EXAMPLE 5.11
Show that

     
2

5 1 5 42y y5 y y5y .

Solution. We know that

     
2 .

Therefore,

     

2
5 5 5 5 6 5 5 4

6 52
y5 y y5 y y6 y5

y y6 2 y
5 y y

y
( ( )4y y5yyy5y

44 .

EXAMPLE 5.12
Show that

     
e

E
e Ee

e
x x

x

x

2

2 ,

the interval of differencing being h.

Solution. We note that

     

Ee e e e e e
e e

x x h x x h x x h

x x h

e e e
e

h x x, ( )eh

( )ehe2 2x x h( )h 22

and

     

2
2 1 2

E
e E e e e e ex x2 1 x h h x2 h xe e2 x2( )e )x (eeh 1 2) .2

Hence,

     

2

2
2

1E
e Ee

e
e e e

e e
x

x

x
h x h

x h

x h( )1eh

( ))
.2 ex
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EXAMPLE 5.13
Show that

(i)  n
x

k

k

n

x n k
y n

k n k
y( ) !

!( )!0 2

(ii) n
i

n
i1

.

Solution. (i) We have

     
n

n n
nEE E E 2 ( )E IE

Therefore,

     

n
x

n

x n
n n ny Ex I yn E

n
E

n
E( )E IE [

2

1

1 2
2

2

K ( )1 ]n

x ny

     

2

( )1 !
!( )!

k n! k

x n
k

n
k n!( k

E yn k

0

20

n

k

x n k n
k

n

k

n
k n k

y

n

( )1 !
!( )!

( )1 !
k nkk k

y
x n kk

n

!( )! .
20

 (ii) We have n
i

n
n i1 1in
!

( )i 1 !(!( )!
.

Now,

     

n
i

n
i

n
i

n
1

1
1i1

!( )i 1
( )(( !( )!

!
!( )!

.
n)!( i

n
i n!(

n
i1)!( )! !()!( i i n!(n)!(

EXAMPLE 5.14
Assuming that the following values of y belong to a polynomial of degree 4, find the missing values in the table:

x 0 1 2 3 4 5 6 7
y 1 −1 1 −1 1 – – –
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Solution. The difference table of the given data is shown below:

x y Δy Δ2y Δ3y Δ4y

0 1
−2

1 −1 4
2 −8

2 1 −4 16
−2 8

3 −1 4 Δ3y2 − 8
2 Δ3y2

4 1 Δ2y3 Δ3y3 − Δ3y2

Δy4 Δ3y3

5 y5 Δ2y4 Δ3y4 − Δ3y3
Δ y5 Δ3y4

6 y6 Δ2y5
Δ y6

7 y7

Since the polynomial of the data is of degree 4, Δ4y should be constant. One of Δ4y is 16. Hence, all of 
the fourth differences must be 16. But then

 8 162
3 y 8  giving  242

3 y

 162 2
3 3y2  giving  402

3 y

 164 3
3 3y4

giving 3 y4 56

 243 242 34y y3 43 44 and so 2 y3 28

 404 3 3
2 2 3y4 y and so 2 y4 68

 565 4 4
2 2 3y5 y and so 2 y5 124

y4 3y 2y3y 82 and so y4 30

y y y5 4y 2
4y 68 and so y5 98

     y y y6 5y 5 124y 2 and so y6 222

Hence,                      y5 4y1 3y4y 0yyyy which gives y5 31

                       y y y6 5y 5 98y yy which gives y6 129

          y y y7 6y 6y yy 222 which yields y7 351.
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Hence, the missing terms are

y y y5 6y 7y31 129, 351.

5.3 ERROR PROPAGATION
Let y y y y y y y y y0 1y 2 3y 4 5y 6 7y 8,y1y y y3y , ,y y7y, ,4 5 6  be the values of the function f  at the arguments 
x x x x x x x x x0 1 2 3 4 5x 6 7 8x,x1x x x3x 4 , x6 , ,x8x,  respectively. Suppose an error  is committed in y4  during tabulation. 
To study the error propagation, we use the difference table. For the sake of convenience, we construct dif-
ference table up to fourth difference only. If the error in y4  is , then the value of the function f  at x4  is 
y4 . The difference table of the data is as shown below.

x y Δy Δ2y Δ3y Δ4y

x0 y0
Δ y0

x1 y1 Δ2y0
Δ y1 Δ3y0

x2 y2 Δ2y1 Δ4y0 + 
Δ y2 Δ3y1 +

x3 y3 Δ2y2 + Δ4y1 − 4
Δ y3 + Δ3y2− 3

x4 y4 + Δ2y3− 2 Δ4y2 + 6
Δ y4 − Δ3y3 + 3

x5 y5 Δ2y4 + Δ4y3 − 4
Δ y5 Δ3y4 −

x6 y6 Δ2y5 Δ4y4 + 
Δ y6 Δ3y5

x7 y7 Δ2y6
Δ y7

x8 y8

We note that

(i) Error propagates in a triangular pattern (shown by fan lines) and grows quickly with the order 
of difference.

(ii) The coefficients of the error  in any column are the binomial coefficients of ( )n  with 
alternating signs. Thus, the errors in the third column are , , , .3, 3 3

(iii) The algebraic sum of the errors in any difference column is zero.
(iv) If the difference table has even differences, then the maximum error lies on the same horizontal 

line on which the tabular value in error lies.

EXAMPLE 5.15
One entry in the following table of a polynomial of degree 4 is incorrect. Correct the entry by locating it
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x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

y 1.0000 1.5191 2.0736 2.6611 3.2816 3.9375 4.6363 5.3771 6.1776 7.0471 8.0

Solution. The difference table for the given data is shown below. Since the degree of the 
 polynomial is four, the fourth difference must be constant. But we note that the fourth differ-
ences are oscillating for the larger values of x. The largest numerical fourth difference 0.0186 is at 
x = 1.6. This suggests that the error in the value of f  is at x = 1.6. Draw the fan lines as shown in 
the difference table.

x y Δy Δ2y Δ3y Δ4y

1.0 1.0000
0.5191

1.1 1.5191 0.0354
0.5545 −0.0024

1.2 2.0736 0.0330 0.0024
0.5875 0

1.3 2.6611 0.0330 0.0024
0.6205 0.0024

1.4 3.2816 0.0354 0.0051 Fan line
0.6559 0.0075

1.5 3.9375 0.0429 −0.0084
0.6988 −0.0009

1.6 4.6363 0.0420 0.0186
0.7408 0.0177

1.7 5.3771 0.0597 −0.0084
0.8005 0.0093

1.8 6.1776 0.0690 0.0051
0.8695 0.0144

1.9 7.0471 0.0834
0.9529

2.0 8.0000

Then taking 1.6 as x0, we have

      + 0.00514
4fff

      4 0.00844
3fff 4

      + 6 0.01864
2fff

      4 0.00844
1fff 4

     
4

0  + 0.0051.0f00f  +0Δ44 f0  
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We want all fourth differences to be alike. Eliminating Δ4f  between any two of the compatible equations and 
solving for  will serve our purpose. For example, subtracting the second equation from the first, we get

     5 = 0 0135 d = 0.0027.= 0.0135and so

Putting this value of  in the above equations, we note that all the fourth differences become 0.0024. 
 Further,

     f ( . ) . ,6. 6363

which yields

     f ( . ) .  . . . .6. 6363 4 6363 0 0027 4 63366363 4 6363

Thus, the error was a transposing error, that is, writing 63 instead of 36 while tabulation. 

EXAMPLE 5.16
Find and correct the error, by means of differences, in the data:

x 0 1 2  3  4  5   6   7   8   9  10

y 2 5 8 17 38 75 140 233 362 533 752

Solution. The difference table for the given data is shown below. The largest numerical fourth differ-
ence −12 is at x = 5. So there is some error in the value f ( ). The fan lines are drawn and we note from 
the table that

     
4

4fff + 2

     
4

3fff 4 8

     
4

2fff + 6 12

     
4

1fff 4 8

     
4

0f0 + 2

and

     
3

3fff + 4

     
3

2fff 3 12

     
3

1fff + 3 0

3
0f0 8.

Subtracting second equation from the first (for both sets shown above), we get 
5 10 (for the first set) and 4 8  (for the second set).
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Hence, 2.
Difference table

x y Δ Δ2 Δ3 Δ4

0 2
3

1 5 0
3 6

2 8 6 0
9 6

3 17 12 −2 Fan line
21 4

4 38 16 8
37 12

5 75 28 −12
65 0

6 140 28 8
93 8

7 233 36 −2
129 6

8 362 42 0
171 6

9 533 48
219

10 752

We now have

     f fff ( ) ( ) .7) 5 75 ( 77

Therefore, the true value of f ( )  is 77. 

5.4 NUMERICAL UNSTABILITY
Subtraction of two nearly equal numbers causes a considerable loss of significant digits and may 
magnify the error in the later calculations. For example, if we subtract 63.994 from 64.395, which 
are correct to five significant figures, their difference 0.401 is correct only to three significant 
figures.

A similar loss of significant figures occurs when a number is divided by a small divisor. For exam-
ple, we consider

f x
x

x)x , .x .1
1

0 9.2

Then true value of f (0.9) is 0.526316 × 10. If x is approximated to x* = 0.900005, that is, if some error 
appears in the sixth figure, then f x*xx ) = 0.526341 10.  Thus, an error in the sixth place has caused 
an error in the fifth place in f x)xx .

We note therefore that every arithmetic operation performed during computation gives rise to 
some error, which once generated may decay or grow in subsequent calculations. In some cases, error 
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may grow so large as to make the computed result totally redundant. We call such a process (procedure) 
numerically unstable.

Adopting the calculation procedure that avoids subtraction of nearly equal numbers or division by 
small numbers or retaining more digits in the mantissa may avoid numerical instability.

EXAMPLE 5.17 (WILKINSON): CONSIDER THE POLYNOMIAL

     

x x

x x
20PP ( )xx  = (x 1)( 2x )(x 20)

= 210 + +

x
20 19 ( )20 !

The zeros of this polynomial are 1, 2,..., 20. Let the coefficient of x19 be changed from 210 to ( ).23  
This is a very small absolute change of magnitude 10 7 approximately. Most computers, generally, 
neglect this small change which occurs after 23 binary bits. But we note that smaller zeros of the new 
polynomial are obtained with good efficiency while the large roots are changed by a large amount. The 
largest change occurs in the roots 16 and 17. For example, against 16, we get 16 73 i2 81. .73 i2K  where 
magnitude is 17  approximately. 

5.5 INTERPOLATION
Interpolation is the process of finding the value of a function for any value of argument (independent 
 variable) within an interval for which some values are given.

Thus, interpolation is the art of reading between the lines in a given table. 
Extrapolation is the process of finding the value of a function outside an interval for which some 

values are given.
We now discuss interpolation processes for equal spacing.

(A) Newton’s Forward Difference Formula

Let , f f f f fff 2 1fff 0 1f ff f 2ff, , ,  be the values of a function for K K, x h x h x h x h0 0 0 0 0x,hh  ,x h0  x0 +x , + 2 , . 

Suppose that we want to compute the function value f pff  for x x ph +x0 ,  where in general −1 < p < 1. 
We have

f f x ph p
x x

hpff (f x +ph0
0 ,

where h is the interval of differencing. Then using shift operator and Binomial Theorem, we have

     

f E f f

I p p p p p
xff

p pf IE fp f

I p
0 0f If ff

2

2
1

)III

( )p 1
!

( (p )(p p )p 1 22
3

1 2

3
0

0 01

)
!

...

0

f0

f00

p
f0

p 2
0

3
03

f0

p
f0 ...

 

(5.30)

The expression (5.30) is called Newton’s forward difference formula for interpolation.
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(B) Newton’s Backward Difference Formula

Let. . . f f f f fff 2 1fff 0 1f ff f 2ff, , ,K  be the values of a function for. . . x h x h x x h x h0 0x 0 0xx,hhhh , x0 + ,h + 2 ,0 K. 
 Suppose that we want to compute the function value f pff  for x x phx0 , −1 < p < 1. We have

     
f f ph p

x x
hpff f (x phx0

0 .p

Using Newton’s backward differences, we have

     

f E f f

I p p p p p p
xff

p pf IE fp f

I p
0 0f If ff

2

2

)III

( )p 1
!

( )p 1 ( 22
3

2

3
0

0 0
2

0

)
!

( )1
!

(

3

0
2

0

K f0

f p00 00

p p( f00

p p( 1 211
3

3
0

)( )
!

,p f0
3

0f0 K

which is known as Newton’s backward difference formula for interpolation.

Remark 5.1. It is clear from the differences used that

(i) Newton’s forward difference formula is used for interpolating the values of the function near 
the beginning of a set of tabulated values.

(ii) Newton’s backward difference formula is used for interpolating the values of the function near 
the end of a set of tabulated values.

EXAMPLE 5.18
Calculate approximate value of sin x for x = 0.54 and x = 1.36 using the following table:

x 0.5 0.7 0.9 1.1 1.3 1.5

sin x 0.47943 0.64422 0.78333 0.89121 0.96356 0.99749

Solution. 
We take

     x0 0.50, 
xp 0.54,

 
and

 
p 0 54 0 50

0 2
0 2. .54 0

.
. .2

Using Newton’s forward difference method, we have

   

f f p f p f p p p fpff f0 0ff p ffff 2
0ff

3
0ff2 3

ff p p
0fff

( )p 1p 1
!

( )p 1 ( )p 2pp
!

p ppp p p f p p p p p( )p ( )p ( )p
!

( )p ( )p ( )p ( p)()( p)( p
4

)( p)( p4
0ff

44
5

0 0 2

5
0

)
!

. (2 .

f0

 0.47943 + 0.2(0.16479) 11
2

0 0 2 2
6

00555

)

. (2 . )2 1 ( .0 ) ( .0 )

( 0.0268)

21 0 0 0 2 2 0
4

0 2

. (2 . )2 1 ( .0 )( . )2 3
!

.

 (0.00125)

( .(( )( . )( . )( . )
!

2. 1 0)( 2. 3 0)(
5

1 0)( 3 0)( (0.00016) 0.551386.55
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Difference table

x sin x 1st 
difference

2nd 
difference

3rd 
difference

4th 
difference

5th 
difference

0.5 0.47943
0.16479

0.7 0.64422 −0.02568
0.13911 −0.00555

0.9 0.78333 −0.03123 0.00125
0.10788 −0.00430 0.00016

1.1 0.89121 −0.03553 0.00141
0.07235 −0.00289

1.3 0.96356 −0.03842
0.03393

1.5 0.99749

Further, the point x = 1.36 lies toward the end of the tabulated values. Therefore, to find the value of the 
 function at x = 1.36, we use Newton’s backward differences method. We have

     
xp =1.36,

 x0 =1.3,  and
 

p 1 36 1 30
0 2

0 3. .36 1
.

. ,3

  

f f p p p f p p p f p
pff f ff f f0 0ff p ffff ff 2

0ffff
3

0ffff2 3
( )p 1

!
( )p 1 ( )p 2pp

!
( )(( ( )( )

!
p p)( p f)()()()(

4
4

0ff

0.96356 + 0.3(0.07235)55 (0.03553)0 0
2

0 0 3 2

. (3 . )3 1

. (3 . )3 1 ( .0 )
66

00430 0 0 3 2 0
24

( .0 ) . (3 . )3 1 ( .0(0 )( . )3 300430.0 ) 31 .0 (0.00125)00

0.96356 + 0.021705 0.006128 0.00060 96356 + 0 021705  40.006128 0.000642 + 0.00015444 0.977849.

EXAMPLE 5.19
Find the cubic polynomial f (x) which takes on the values f (0) 4,  (1) 1, (2) 2, (3) 11,f f f= − = =  

(4) 32, (5) 71.f f= =  Find f (6) and f (2.5).
Solution. The difference table for the given data is

x f  (x) Δ f (x) Δ2f (x) Δ3f (x)
0 −4

 3
1 −1  0

 3 6
2 2  6

 9 6
3 11 12

21 6
4 32 18

39
5 71
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Using Newton’s forward difference formula, we have

     

f f x f x f x fxff f0 0ff x ffff 2
0ff

3
0ff2 3

ff x
0fff

( )x 1x 1
!

( )x 1 ( )x 2xx
!

444
2

3 2
6

3

2 3 2

3 23

3x x x x33 x

x x3 x

( )33 ( )0 ( )6

2 3x 4
3 5 4,x x3 x3 23

which is the required cubic polynomial. Therefore,

     

f (6) 6 3(6 ) 5(6) 4
216 108 30 4 134.

3 23(66 5(6)
216 30

On the other hand, if we calculate f (6) using Newton’s forward difference formula, then take x0 0

p
x x

h
0 6 0

1
6p  and have

     
f f f f f f( )( ) ( )( )( )f f )(

2
)(

66 0ff ffff ff 0ff
2

0ff
3

0fff f ( )( ))(ff0ff

     4 6(3) 15(0) 20(6) 134 (exact value of f (6)).

Again taking x0 2,  we have p
x x

h
0 2.5 2.0 0.5. Therefore,

     
f f pf p p f p ff0 0ff pffff 2

0ff
3

0ff2 6
( )p 1

!
( )p 1 ( )2ppf p p p2

0ff
)p 1 ( )p 2p

     

(0.5)(0.5 1) 0.5(0.5 1)(0.5 2)2 0.5(9) (12) (6)(0.5)(0.5 1) 0.5(0.5 1)(0.5 2)
2 6

( )( )1) 0 5(0 5 1)(0 51) 0 5(0 5 1)(0 5= 2 0.5(9) (12)0.5(9) (12)( )( )

          2 4.50 1.50 0.375

          6.875 1.500 5.375 (exact value of f (2.5)).

EXAMPLE 5.20
Find a cubic polynomial in x for the following data:

x 0 1 2 3 4 5

y −3 3 11 27 57 107
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Solution. The difference table for the given data is

x y y 2 y 3 y

0 3
 6

1  3 2
 8 6

2 11 8
16 6

3 27 14
30 6

4 57 20
50

5 107

Using Newton’s forward difference formula, we have

     
f f x f x f x fxff f0 0ff x ffff 2

0ff
3

0ff2 3
ff x

0fff
( )x 1x 1

!
( )x 1 ( )x 2xx

!

3 6
2

3 2
6

2 3 2

x x x x x3 x( )2 ( )6

x x x x3 2 23 2x2 6 3x

x x3 22 7x2 3.

EXAMPLE 5.21
The area A of a circle of diameter d is given for the following values:

d 80 85 90 95 100

A 5026 5674 6362 7088 7854

Calculate the area of a circle of diameter 105.

Solution. The difference table for the given data is

d A

80 5026
648

85 5674 40
688 −12

90 6362 28 32
716 22

95 7088 50
766

100 7854
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Letting x xp x105 1000, ,x 1000  and p 105 100
5

1, we shall use Newton’s backward difference formula

  
f f p p p f p p p f p

pff f ff f f0 0ff p ffff ff 2
0ffff

3
0ffff2 3

( )p 1 ( )p 1 ( )p 2pp
!

( p ppp p f2p1 3
4

4
0ff

)( )( )
!

.

Therefore,

     f ( ) .7854 766 50 22 32 87247854 50 32

Remark 5.2. We note (in the above example) that if a tabulated function is a polynomial, then interpo-
lation and extrapolation would give exact values.
(C) Central Difference Formulae
Let ..., , , ,...f f, f f, fff 2 1f, ff 0 1f ff f, 2ff  be the values of a function f  for ..., x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h,....
Then

     E E
1
2

1
2

and so

     E E I
1
2 E ,  

2 22 E, and 3 3
3
23E .

Thus,

     
f E f fffff 2

1

2 3f
2

E f fE f2

     
f E f fffff 1

1

1 1f
2

E f fE f2

     
f E f f0ff

1

0 1f ff f
2

E f f2 ffE f2

     
f E f f1ff

1

1 3f ff f
2

E f f2 ffE f2

and so on. Similarly,

     
2

2
2

2
2

1f E2 f f2
2ff 2 ff ff2 2E2 f 2EEfE

     
2

1
2

1
2

0f E1 f f1
2

0ff 1 ff2 E2 f 1EEfE

     
2

0
2

0
2

1f E0 f f0
2

1
2 2E2 f0EEfE

and so on. Further,

     

3
2

3
3

2
3

1
2

f E2 f f2
3ff 2 ff3 2 3E3 f 2

2E f
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3
1

3
3

1
3

1
2

f E1 f f1
3

1ff 1 ff3 2 3E3 f 1
2E f

3
0

3
3

0
3

3
2

f E0 f f0
3

3
3 2 3E3 f0

2E f

and so on. Hence, central difference table is expressed as

x f (x) fxff
2 fxff

3 fxff
4 fxff

x 2 fff 2

f 3
2

x 1 fff 1
2

1fff

f 1
2

3
1
2

f

x0 f0ff
2

0f0
4

0f0

f 1
2

3
1
2

f

x1 f1ff
2

1f1

f 3
2

x2 f2ff

Now we are in a position to develop central difference interpolation formula.

(C1) Gauss’s Forward Interpolating Formula:

Let ..., , , ,...f f, f f, fff 2 1f, ff 0 1f ff f, 2ff  be the values of the function f  at ... x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h,.... 

Suppose that we want to compute the function value for x = x0 + ph. In Gauss’s forward formula, we use 
the differences f f f f1ff

2

2
0ff

3
1f
2

4
0ff,f0ff ,f0ff K  as shown by boldface letters in the table given below. The value 

f p can be written as

     
f f g f g f g f g fpff f f g f0 1ff gff 1f

2
2

2
0 3ff gff g 3

1ff
2

4
4

0fffff gg1ff 2 f gf g3
1ffff 4 K

where g g g1 2g 3,g2g ,K are the constants to be determined. The above equation can be written as

     
E f f g f f g E f fp

0 0ff ff 1

1

0 2ff g 2
0 3ff g 3

1

0 4f gf 4
0fffff f0ff f4
0ffE f g2

0ff g 2gg E f g3 2
4f gf 4g4g K
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Difference table

x f (x) fxff
2 fxff

3 fxff
4 fxff

x 2 fff 2

f 3
2

x 1 fff 1
2

1fff

f 1
2

3
1
2

f

x0 f0ff
2

0f0
4 f0ff

f 1
2

3
1
2

f

x1 f1ff
2

1f1

f 3
2

x2 f2ff

Hence,

     E I g E g g gp I 1

1

2
2

3
3

1

4
4E gg2 2 E gg3 2

4
4 K

or

     
( )

( )1 11 2

2 3

4

4

2) 1)) p g g11 g g
13 K

     I g g g1 2g 2 2
3

3 2
4

4 133 g4)22 ( )22 (g3g ( 2 K).

The left-hand side equals

     
1

2 3
2p p p p p p3 p pp p( )1p 1p

!
( )111p ( )2p 22

!
( )1p 11 ( )2p ( )((

!
.p

4
K

Comparing coefficients of the powers of Δ on both sides, we get

     
g p g p p

1 2p g
2

p g, ( )p 1
!

,
 
g g p p p

3 2g
6

g ( )p 11 ( )p 2pp
 

and so

     
g p p p p p p p p p p

3 6 2
3p3p( )p 11 ( )p 2pp ( )p 1 ( )p 1 ( )p 2pp ( )p 1pp

66

     
p p p p p p( )p ( )p ( )p ( )p

!
,)( p

6
) (
3

     
g g p p p p

4 3g 2 4
g3g ( )p 11 ( )p 2pp ( )p 3

!
,
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and so

     
g p p p p g4 3g 24

gg( )p 11 ( )p 2pp ( )p 3
!

     
p p p p p p p p p( )p ( )p ( )p

!
( )p ( )p

!
( )p

!
)( p

4
) ( p
3 2

    
p p p p p( )[( )( ) ( ) ]

!
2p1)[( 3) 1)

4

     
p p p p p p p p( )p [ ]p p

!
( )p ( )p ( )p

!
,)[ p p

4
) ( p

4

2

and so on. Hence,

  
f f p p f p p p fpff f0 1ff p ffff

2

2
0ff

3
1ff
2

2
pp
3

f p p
1ff 2 3( )p 1p 1

!
( )p 1 ( )p 1pp

!
( ) ( )( )

!
p p) p p)( f) (

4
4

0ff
4 K

   
f

p p
f

p
f0 1ff f

2

2
0ff

3

21 1f
2

1
3

f
p

1ff 2 3

11
2

1
4

2
5

4
0

5
1
2

p
f0

p
f1

24
0

5f0

p
K .

(C2) Gauss’s Backward Interpolation Formula: 

The central difference table for this formula is shown below:

x f (x) fxff
2 fxff

3 fxff
4 fxff

x 2 fff 2

f 3
2

x 1 fff 1
2

1fff

f 1
2

3
1
2

f

x0 f0ff
2

0f0
4

0f0
f 1

2

3
1
2

f

x1 f1ff
2

1f1

f 3
2

x2 f2ff

In Gauss’s backward interpolation formula, we use the differences
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f f f f1
2

2
0ff

3
1
2

4
0ff,f0ff ,f0ff K. Thus, f p can be written as

     
f f g f g f g f g fpff f f f0 1ff gff 1

2
2

2
0 3ff gff 3

1
2

4
4

0fffff gg1
2 f gg3

1
4 K

where g g g1 2g 3,g2g ,K  are the constants to be determined. The above equation can be written as

     E f f g f f g E f fp
0 0ff ff 1

1

0 2ff g 2
0 3ff g 3

1

0 4f gf 4
0fffff f0ff f4
0ffE f g2

0ff g 2gg E f g3 2
4f gf 4g4g KK

and so

     E I g E g g gp I 1

1

2
2

3
3

1

4
4E gg2 2 E gg3 2

4
4 K

or

     
( )

( ) (
I) g g g g

( )
p) 1 2g

2

3

3

4

4

1 12g
1) (

g
)2 4 ))2 K

     

1 1
2 3

2
2 2 3

3
3

g g1

g

2( )2 311 2 ( )2 31 2

(
2g (

1 211 1 24
42 2 K1 2K 2(4) (4

44 ).g

But

     

( ) ( )
!

( )( )
!

(
2

)(
3

2 3))() )() 1)) )( )2 )( ))(p p p p( p((((

p p( 1 211 3
4

4)( )( )
!

.p p2)( p2)(
K

Therefore, comparing coefficients of the powers of Δ, we have

     g p1 ,
 
g g p p

2 1g
2

g ( )p 1
!  

and so
 
g p p p p

2 1g
2 2

g1g( )p 1
!

( )p 1
!

,

     
g g p p p

3 2g 1 3
g2g ( )p 11 ( )p 2pp

!  
and so

 
g p p p

3 3
p( )p 11 ( )p 1p
!

.

Hence,

     
f f p p f p p p fpff f0 1ff p fff

2

2
0ff

3

2
pp
3

f p p
1f 2 3( )p 1p

!
( )p 1 ( )p 1pp

! 11
2

K

     
f

p p
f

p
0 1ff f

2

2
0ff1

1
2

1
3

f
p

1f
1 3

1
2

4
0

2
4

f
p

f0 K.

(C3) Stirling’s Interpolation Formula:
The central differences table for this formula is shown below. In this formula, we use f f f0 1f ff

2
1ff
2

2
0ff,1f ,f0fff f,f 1f f2 ,f0ff

f f f3
1
2

3
1f
2

4
0ff,f1f ,3 f3 4,f1ff K
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Difference table

x f (x) fxff
2 fxff

3 fxff
4 fxff

x 2 fff 2

f 3
2

x 1 fff 1
2

1fff

f 1
2

f 1
2

x0 f0ff
2

0f0 f0ff

f 1
2

f1ff
2

x1 f1ff
2

1f1

f 3
2

x2 f2ff

By Gauss’s forward interpolation formula, we have

     

f f
p p

f
p

pff f0 1ff ffff
2

2
0ff21 1f

2

1
3

p
f1ff 2 3 433

0

5
1
2

1
2

1
4

2
5

f
p

f0

p
f1

4

5 K
 

(5.31)

and by Gauss’s backward interpolation formula, we have

     
f f

p p
f

p
pff f0 1ff fff

2

2
0ff1

1
2

1
3

f
p

1f 21 43
01

2

2
4

f
p

f0 K.
 
(5.32)

Adding equations (5.31) and (5.32), we get

     

f f
p

f
p

pff f 1f0ffff
2

1
2

1
2 1

1
2 2

f fff
p

f

p
f

1
2

1
2

1
3

2
0ff

3
1ff
2

2

3 3
1
2

1
2

1
4

2
4

f

p p1 4
0f0 K
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f p f p f

p p p

0ff ff
2

1
2

2
2

0ff22
f1f

2
1
2

p
2

f fff 2

( )p 1 ( )p 1p
( !(( )

( ) ( )
( !)
) (

4(

3
1
2

3
1
2

4

3 3

4

f f1
3

1

p p( p p(() (( ff0ff K

     

f
p

f p p p
0 0ff ff 2

01 2 1
1

3
f f

p2
0ff

1
3

3
0

4
0

5
04

1
3

2
5

f0

p p p
f0

,

  KK

which is the required Stirling’s formula.

Second Method: We have

     
f f S S f S f f

pff f f f S f0 1ff SSff ff
2SS 2

0 3ff Sff
3

1ff
2

3
1
2

f fff 2 f3 ff 3
S f4SS 4

0ff
4 K,

 
(5.33)

where S S1 2SS K are the constants to be determined. Expression (5.33) can be written as

   E f f S f f f E fp
0 0ff ff 1

1

0ff
1
2

0 2ff 2
0 3ff 3

0ff
1
2fff (E f S f( f E f0ff 0ff S 0 3ffE f0ff2E f0ff

2 3(f S0 3ff S 3
0 4

4
0

1

f0 f4
4

0 K

   
I S S S1 2SS S

2

3S
3 3

21 12 1 ( )1
S f4SS

4

4 0ff( )1
.

Therefore, expression (5.33) gives

     

E I S Ip p( )III [ ( ) ( )I Sp I) [ II( ) SS1SSS 2
2

2 2( K(K) SSSSS ]]

[ ( ) ( )] ( )( )]I[ (S [[ ( S3S 3 2( 3
4S 41 2((I(( )2 )])] S4SK K) (( 2) ..

The left-hand side is

  
( ) ( )

!
( )( )

!
(I p) p p( p( p) pp) p) p) p )(p p( p )

2
)()(

3
)2 p( )(p( ))()( 1 211 3

4
4)( )( )

!
.p p2)( p2)(

K

Comparing coefficients of the powers of Δ, we get

S p
1 2

,

S S p p p
2 1S S

2

2 2
S1S ( )p 1 ,

S p p p
3S

2
( )p 11 ( )p 1p

( !3 )
,

S p p p p
4S

2

4

2

3
p2( )p 11 ( )p 1p
!

.
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Thus,

     

f f p p f p p p
pff f f f p f0ffff

f
2

2
0ffff2 2

pp
2 3

f fff 2 ( )p 1 ( )p 1pp
( !)!!

( ) ( )
!

,

3
1
2

3
1
2

4
04

) (
3

f f1
3

p p( p p( f0

)) ((
K

which is the required Stirling’s formula.
(C4) Bessel’s Interpolation Formula

Let K K, , ,,f f, f f, fff 2 1f, ff 0 1f ff f, 2ff  be the values of a function at K K, ,x h x h x x h x h0 0 0 0 0xhh + h + 2 . Sup-
pose that we want to compute the function value f p for x x ph= +x0 . In Bessel’s formula, we use the 
differences as  indicated in the table below. In this method f f f f f f0 1f ff

2

2
0ff

2
1ff

3
1ff
2

4
0ff

4
1ff,1f ffff ffff ,f 2,f1ff ff2 3fff ff4 4fff Kare 

used to approximate f pff . These values are shown in this difference table in boldface. Therefore, f pff  can 
be written in the form

     
f f B f f f f B fpff f f0 1ff BBff 1ff

2
2

2
0ff

2
1 3ff 3

1ffff
2

4B 4
0fff BB1ff BB 2 f BB2

3BB 3 4f ff0ffff fff2 ff ( 4
1f1) K

where B B1 2BB ,B2B K are the constants to be determined.

x f (x) fxff
2 fxff

3 fxff
4 fxff

x 2 fff 2

f 3
2

x 1 fff 1
2

1fff

f 1
2

3
1
2

f

x0
f0ff

2
0f0

4
0f0

f 1
2

3
1
2

f

x1
f1ff

2
1f1

4
1f1

f 3
2

x2 f2ff

The above equation can be written as

   
E f f B f f f E f Bp

0 0ff ff 1BB
1

0 2ff 2
0ff

2
0 3ff 3

1
2

0fffff E f2 ffE f B2
0ff B 2BB B2

3
3B3Bf f0ff 0fff0ff Ef2

0ff 44B 4
0

4
0 )0( 4 44 f00

4
0 f00 )0

4
0 K

or

     E I B E Bp I E1BB
1

2
2 2

3
3

1
2

4B 4 4E BB2
2B 2 BB2

3B 3 4 4( )2 E2 ( )EE44 K

or

  

3
2 2 4

1 2 3 4( ) [ ( ) ( )]2 2 4
1 2 3 4

p ⎛ ⎞2 Δ⎞2
2 +[ ( ) ( )]( ) (2 2 422 2))) [ ( ) ([ ( ) () [ ( )2 2 4222 2

1 2 3 42 32 3
⎛⎛ 222222

+ Δ3 133
⎝ ⎠1⎜⎜1

…  (5.34)
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The left-hand side equals

   
I p p p p p p p pp p p( )pp

!
)p( )p ( p( )
!

( )p ( )p
2

)( pp
3

)( pp2 p )p ( p)( p ( )((
!

p
4

4 K (5.35)
 

Comparing coefficients of the powers of Δ in equations (5.34) and (5.35), we have

     B p1BB ,p

     
2

22B2

p p( )1p
!  

and so
 
B p p

2B 1
2 2

( )p 1
!

,

     
B B p p p

2 3B B
3

( )p 1 ( )p 2p
!

,

and so

     
B p p p p p

p p p

3B
3

1
2 2

2p 3
2

p
( )p 11 ( )p 2pp

!
( )p 1

( )p 11

3

1
2

3!

( )1

!

p p( p

and

     
B B B p p p p

2 3B 4B2
4

B3B ( )p 11 ( )p 2pp ( )p 3
!

,

which yields

     
B p p p p p p p

4B 1
2 4 3

( )p 11 ( )p 2pp ( )p 3
!

( )p 11 ( )p 2pp
!

     

1
2 4

1
2

1p p p p p p p( )1p ( )2p
!

( )3 4p ( )1p ( )()) )
!

.p 2
4

Similarly

     
B

p p p p p

5B

1
2
5

pp( )p 11 ( )p 11 ( )p 2pp

!

and so on. Therefore,

f f p f p p f f
p p

pff f0 1ff p ffff
2

2
0ff

2
1ff

22

1

f
f2 ff 2( )p 1

!
22
3

4

3
1
2

4
0

( )1

!

( )11 ( )1 ( )2
!

p
f1

p p)11 p p)1 ( f0

3

4 4
1

2
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f p p f
p p

0 1f pf
2

2
1ff
2

2

1
2
3

f p
1ff

2
2( )p 1p 1

!

( )p 1

!
3

1
2

4
1
2

4

f1

p p p p f1

( )1p 11 ( )1p 1 ( )2p
!

K

f p
p

f
p p

0 1f pf
2

2
1ff
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1
2
3

f
p

1ff
2

2

( )p 1

!
3

1
2

4
1
2

1
4

p
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f p f
p

f
p p

0 1f ff
2

1ff
2

2
1ff
2

1
2

1
2 2

f p f1ff 1 2

1
2
3

1
4

3
1
2

4
1
2

( )1

!

p
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p
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3

4 K

f f f p
p

f0 1f ff f 0 1f pf
2

2
1ff
2

1
2

1
2 2
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p p
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p
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1
2
3

1
4

3
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4
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!
3
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1
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2
1
2
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2
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1
2
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1
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3
1
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4
1
2
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!

p
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p
f

p
f

0
1
2 21

2
1ff
2

2
1ff
2

f p f1
21ff 2 1

3
1
2 2

1
4

3
1
2

4
1

p
p

f1

p
f1

3

4

22

K

If we put p 1
2

, we get

     
f f f1ff

2
1
2

2
1
2

4
1ff
2

1
8

3
128

f1fff1ff
8

f f2
1ff 3

128
4 K,

which is called formula for interpolating to halves or formula for halving an interval. It is used for 
computing values of the function midway between any two given values.

(C5) Everett’s Interpolation Formula

Let K K, , ,,f f, f f, fff 2 1f, ff 0 1f ff f, 2ff  be the values of the function f  at K K, ,x h x h x h x h0 0 0 0 0xhh +x + 2 . 
 Suppose that we want to compute the function value for x x ph= +x0 . In Everett’s formula, we use dif-
ferences of even order only. Thus, we use the values f f f f f f0 1f ff f 2

0ff
2

1ff
4

0ff
4

1ff,f1ff ,f1ff ,f1ff ,f2 ff 2 f4 ff 4 K which have been 
shown in boldface in the difference table below:

x f  (x) fxff
2 fxff

3 fxff
4 fxff

x 2 fff 2 f 3
2

x 1 fff 1
2

1fff

f 1
2

3
1
2

f

x0
f0ff

2
0f0

4
0f0

f 1
2

3
1
2

f

x1 f1ff
2

1f1
4

1f1

f 3
2

x2 f2ff

By Bessel’s formula, we have

     

f f p f p p f f
p p

pff f0 1ff p ffff
2

2
0ff

2
1ff

22

1

f
f2 ff 2( )p 1

!
22
3

4

3
1
2

4

( )1

!

( )11 (( )11 ( )2
!

p
f1

p p)11 p p)11 p f

3

4
00ffff

4
1

2

4 f1 K

Since Everett’s formula expresses f p in terms of even differences lying on the horizontal lines through 
f 0 and f 1, therefore we convert f f1f

2

3
1f
2

,f1ff K in the Bessel’s formula into even differences.
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By doing so, we have

f f p f f p p f f
p

pff f0 1ff p ffff 0ff
2

0ff
2

1ff
22

)f ff1ff 0ffff
( )p 1
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f2 ff

p ppp
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p p p

1
2
3

p

2
1ff

2
0ff

( )p 1

!
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!
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!
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4
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0
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p
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p
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0

4f0

p
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ffpppp
p

f
p

f1ff
2

1ff
4

1ff
1

3
2

5
f

p2
1ff

42
K

qf
q

f
q

f0ff
2

0ff
4

0ff
1

3
2

5
f

q2
0ff

42
K

pf
p

f
p

f1ff
2

1ff
4

1ff
1

3
2

5
f

p2
1ff

42
K,

where q = 1 − p.

Second Method: Let K K, , ,,f f, f f, fff 2 1f, ff 0 1f ff f, 2ff  be the values of a function f  for K, x h x h x0 0 0xhh
K,h x h0 0+x + 2 . We want to compute f p, where x x ph= +x0 .  We use the even  differences lying on the 

 horizontal lines through f 0 and f 1. So let

     

f E f E f f

F f F f f
pff E f

F f
0 0E ff 2EE 2

0 4ff 4
0ffff

0 1F fF fF fF f 2FF 2
1 4ff 4

1ff

f Ef E2
4f Eff Ef 4

f F2
1ff FF 4

K

K.

Therefore,
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0 4ff 4
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0 0ff 2FF 2
0 4ff F

f0ffEE

F EfEF EF ffE

f0ff Ef E2 4f E0ff E
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0 2E E 2

4
4
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4E 4
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4F 4
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(5.36)
 



404 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M05\LAYOUT\M05_BABUISBN_10_C05.indd

Modif cation Date: April 29, 2010 2:41 PM Modif cation Date: 29-04-10, 15:16

The left-hand side of equation (5.36) is

     
I p p p p p p p pp p p( )pp

!
)p( )p ( p( )
!

( )p ( )p
2

)( pp
3

)( pp2 p )p ( p)( p ( )((
!

,p
4

4 K

whereas the right-hand side is

     
E E E0 2E 2 2 3

4
4E2E [ (2 )] [ (4 )]III22 2 I 22(4 KE4EK)] [ (I 2( K

     F F0 2
2

4F 4 2 3( )I [ (4 )]F2) II(4 2 KK)]

Comparing coefficients of  , ,, 2 3,K  on both sides, we get
     p F E FF0 0FF E 0FF, 1 and so E p0EE 1 ,

     
E p p p E F p p

2 2E E 23 2
( )p 1 ( )p 2p

!
, ( )p 1

 and so F
p

2FF
1

3
.

Similarly, other coefficients are obtained. Hence,

     

f p f
p

f
p

fpff )p
2

3
3

50ff
2

0ff
4

0fff
p32

0ff
4 K

pfpp
p

f
p

f0ff
2

1ff
4

1ff
1

3
2

5
4p 2

f2
1ff K

      

qf
q

f
q

f

pf
p

0ff
2

0ff
4

0ff

0ff

1
3

2
5

f
q2

0ff
42

K

11
3

2
5

2
0

4
1

22
0

4f00

p
f1 K,

where q p1 .p
Remark 5.3. The Gauss’s forward, Gauss’s backward, Stirling’s, Bessel’s, Everett’s, Newton’s forward and 
Newton’s backward interpolation formulae are called classical formulae and are used for equal spacing.

EXAMPLE 5.22
The function y is given in the table below:

x 0.01 0.02 0.03 0.04 0.05
y 98.4342 48.4392 31.7775 23.4492 18.4542

Find y for x = 0.0341.
Solution. The central difference table is

x y d d2 d3 d4

0.01 98.4342
−49.9950

0.02 48.4392 33.3333
−16.6617 −24.9999

0.03 31.7775 8.3334 19.9998
−8.3283 −5.0001

0.04 23.4492 3.3333
− 4.9950

0.05 18.4542
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Letting x0 = 0.03, we have p
x x

h
0 0 0341 0 030

0 01
0 41

. .0341 0
.

. .41  Using Bessel’s formula, we have

     

f f p p f f
p p

( )p ( )f f
4

1
2

0 1ff p ff
2

2
0ffff

2
1fffff0ff )ffff p p )p (1ff 2 2
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!

( ) ( )( )
!

p
f

p p) p p)( f

3

) (p)
4

3
1ff
2

4
0ff

3

4 4
1

2
f1 K

     
 = 31.7775 0.41(8.3283) (0.2419)0.41(8.3283) 11 6667

4
.

                     = 27.475924  approximately.

EXAMPLE 5.23
If third differences are constant, prove that

 
y y

x x xy x xyyx1
2

2 21
2

1
16

( )y yx yy ( )y yxyyx
2

1
2 .yy2

1

Solution. The Bessel’s formula in this case becomes

     
y

y y
p y p p y y

p p0 1y
0

2
1

2
0

2
1
2 2

yy
y2( )p 1

!
[ ]]

2

     

( )

!
,

1
2
3

3
1

pp p
y

because the higher differences than that of third order will be equal to zero by the hypothesis. Putting 

p 1
2

, we get

     
y

y y
y y1

2

0 1y 2
2

2
02

1
16

( )y y2 2
0y .2 y2

Changing the origin to x, we have

     
y y

x x xy x xyyx1
2

2 21
2

1
16

( )y yx yy ( )y yxyyx
2

1
2 .yy2

1

EXAMPLE 5.24

Given y y y y y y0 1y 2 3y 4 5y,y1y ,y3y  (fifth difference constant), prove that

     
y c b a

5
2

2
25 3

256
( )c bb ( )a c ,

where a y y b y y c y yy y y0 5y 1 4y 2 3y,b y yy 4y .

Solution. Putting p 1
2  

in the Bessel’s formula, we have
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y

y y y y y
1
2

0 1y 2
1

2
0

4
2

4

2
1
8 2

3
128

yy0y2 y4
2 yy 1

2
.

Shifting the origin to 2, we obtain

     
y y y y y y5

2
2 3y 2

1
2

2
4

0
4

1

1
2

1
16

3
256

( )y y2 yy2 ( )y y2
1

2 (2 y2
1

4 y4
0 ).))

 
(5.37)

But

     
2

1 3 2 1
4

0 4 3 2 1 044
4 6 42y1 y2 y0 y3 6 y y1

4
0 4y3 4y1,  etc.

Substituting these values in equation (5.37), we get the required result.  

5.6 USE OF INTERPOLATION FORMULAE
We know that the Newton formulae with forward and backward differences are most appropriate for 
calculation near the beginning and the end, respectively, of tabulation, and their use is mainly restricted 
to such situations.

The Gaussian forward and backward formulae terminated with an even difference are equivalent 
to each other and to the Stirling’s formula terminated with the same difference. The Gaussian forward 
formula terminated with an odd difference is equivalent to the Bessel formula terminated with the same 
difference. The Gaussian backward formula launched from x0 and terminating with an odd difference 
is equivalent to the Bessel’s formula launched from x−1 and terminated with the same difference. Thus, 
in place of using a Gaussian formula, we may use an equivalent formula of either Stirling or Bessel for 
which the coefficients are extensively tabulated.

To interpolate near the middle of a given table, Stirling’s formula gives the most accurate result 
for

 
1
4

1
4

p  and Bessel’s formula is most efficient near p 1
2

,  say 1
4

3
4

p . When the highest 

difference to be retained is odd, Bessel’s formula is recommended and when the highest difference to 
be retained is even, then Stirling’s formula is preferred.

In case of Stirling’s formula, the term containing the third difference, viz.,

     

p p f( )p2
3

1
2

6
3

may be neglected if its contribution to the interpolation is less than half a unit in the last place. This means 
that

p p f( )p2
3

1
2

6
1
2

3

 
for all p in the range 0 ≤ p ≤ 1.

But the maximum value of p p( )p2

6
 is 0.064 and so we have

     

0 064 1
2

3
1
2

. 3 f

 
or

 

3
1
2

f <8.

If we consider Bessel’s formula, the contribution from the term containing the third difference will be 
less than half a unit in the last place, provided that

     

p p p
f

1
2
6

1
2

3
1ff
2

( )p 1
.3
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But the maximum value of 
p p p

1

2

6

( )pp 1

 is 0.008 and so

3
1
2

60f1 .

Thus, if we neglect the third differences, Bessel’s formula is about eight times more accurate than 
 Stirling’s formula. If the third differences need to be retained (when they are more than 60 in 
 magnitude), then Everett’s formula may be gainfully employed since Everett’s formula with second 
difference is equivalent to Bessel’s formula with third differences.

5.7 INTERPOLATION WITH UNEQUAL-SPACED POINTS
The classical polynomial interpolating formulae discussed so far are limited to the case in which inter-
vals of independent variables were equally spaced. We shall now discuss interpolation formulae with 
unequally spaced values of the argument.

(A) Divided Differences
Let f (x0), f (x1),..., f (xn) be the values of a function f  corresponding to the arguments x0, x1,..., xn where 
the intervals x1− x0, x2 − x1,..., xn − xn−1 are not necessarily equally spaced. Then the first divided differ-
ences of f  for the arguments x0, x1, x2,... are defined by

     
f x

f x f x
x x

,xx  )x0 1, x 1 0f x

1 0x
)x1 )x0x

,

     
f x

f x f
x x

,xx  )x  =1 2, x 2 1f x

2 1x
( )x2 ( )x1x

,

and so on. The second divided difference (divided difference of order 2) of f  for three arguments x0, x1, 
x2 is defined by

     
f x x

f x x f x
x x

,xx  ,x  )x  =0 1, x 2
1 2x 0 1

2 0x
( ,x1 ) (f , )x1x

and similarly, the divided difference of order n is defined by

     
f x x

f x x x f x x x
n

n nf
,xx , , )xn  =0 1x, 1 2x 0 Kx0x,x1 , ,K ) ff) ff ,1, xx1x , 1

0

)
.

x xn

Remark 5.4. Even if the arguments are equal, the divided difference may still have a meaning. For 
example, if we set x1 0xx0x , then

f x x f x
f x f x

,x (f , )
)x )x

0 1x, 0 0, x 0 0f x) x
x(f , xx

))

and in the limit when 0, we have
f x x f,x0 0x, 0f x0  if f  is derivable.

Similarly,

f x x x
f x

r
,x , , )

)x
!

( )r

0 0x, 0
0

 
for r + 1 equal arguments

 
x0 .
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Further, we observe that

     

f x x
f x f x

x x
f x f x

x x
,x )

)x )x )x )x
0

1 0f x) x

1 0x
0 1f x) x

0 1x1 f xff x

f x x
f x x f x

x x

( ,x )

( ,x , )x
( ,x ) (f , )x

1

1 2, x

0

0
1 2x, 0 1, x

2 0x
,,

( ) ( ) ( ) ( )1

2 0

2 1)

2 1

1 0)

1 0x x2

f x( f ((
x x2

f x( f ((
x x1

f x f x
x

)x
( )x x ( )x x

)x
( )x x (

0

0 1x 0 2x
1

1 0x 1 xx
f x

2

2

2 0 2 1)
)x2

( )x x2 0x ( )x x2 1x)x (x

and in general,

( ) ( ) ( )( ) ( )

( )( ) ( ) ,

f(x ) f(x )0 1f(x ,x ,…,x )n0 1,x,x
x - x … x - x x - x x - x … x - x) ( ) ( )( ) ( nx0 1 0 1 0 1 2 1) ( ) ( )( ) (- x … x - x x - x x - x … x- x … x - x x - x x - x … x) ( ) ( )( ) (n ) ( )( ) (x x x x … xx x x … x) ( )( ) (

f(x )n

x - x x - x … x - x)( ) (n x0 1 n-1)( ) (x - x … x - xx - x)( ) (n nn)( ) (x x … xx … xx x)( ) (

= + +( ) ( ) ( )( ) ( )
0 1

+�

Hence, the divided differences are symmetrical in their arguments. It follows therefore that for any 
function f , the value of the divided difference remains unaltered when any of the arguments involved 
are interchanged. Thus, the value of the divided difference depends only on the value of the arguments 
involved and not on the order in which they are taken. Thus,

 

f x x f x
f x x f x x f

,x (f , )x
,x , )x ,x , )x

0 x,

0 0x f x x, ) ,x , x
1 0, x1f x(f
, x x,f xx )x ( ,(( , ).x,1 2, ,x, 0

Theorem 5.3. The nth divided differences of a polynomial of the nth degree are constant. 
Proof: Consider the function f x xn)x . The first divided difference

f x x
f x f x

x x
x x
xr r

r rf

r r

r
n

r
n

r

,xr )
)xr )xr

1
1

1

1

1
1

1
2 2

1
1

x

x x1 x x1 x x
r

r
n

r r
n

r
n

r r1
nK K1x x 1

is a homogeneous polynomial of degree n 1 in x xr r, .xr 1
Similarly, it can be shown that second divided differences are homogeneous polynomials of degree 

n − 2. Proceeding by mathematical induction, it can be shown that divided difference of nth order is a 
polynomial of degree n − n = 0 and so is a constant.

For a polynomial of the nth degree with leading term n
0 , the nth divided difference of all terms except 

the leading term are zero. So the nth divided differences of this polynomial are constant and of value a0.

Remark 5.5. Let the arguments be equally spaced so that 1 0 2 1 1 .x x x x x x h1 0 2 1 10 2 1x x x x xx x x x x  Then

f x x
f x f x

h
f
h

f x x
f x

,x )
)x )x

,x , )x
,x

0 1x, 1 0f x) x 0ff

0 1x, 2
1

ff

x fxx x
x x h

f
h

f
h

h

2 0f x 1

2 0x
1 0ff ff1

2

1
2

(ff , )x1 ff ff1ff ff

22
2

0 2
2

0

1
2

1
0 2

2 1 1f0f0 h
f0!
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and, in general,

f x x x
n h

fn n
n,x , , )

!
.0 1x, 0ff

1 11 1

If the tabulated function is a polynomial of nth degree, then n f0ff  would be constant and hence the nth 
divided difference would also be a constant.

5.8 NEWTON’S FUNDAMENTAL (DIVIDED DIFFERENCE) FORMULA
Let f x f x f xn)x , f ), , f )0 1f x), f K be the values of a function f  corresponding to the arguments x x xn0 1,x1x , ,xnK

where the intervals x x x x x xn n1 0x 2 1 1x x, ,x x2 1x ,K are not necessarily equally spaced. By the definition of 
divided  differences, we have

     
f x x

f x f x
x x

,x )
)x )x

0
0

0

and so

     f x f x f x x)x )x ( )x x ,x ).f )x0 0) (x x) 0  (5.38)

Further,

f x x
f x x f x

x x
,x , )x

,x (f , )x
,0

0 0f x(f 1

1
1

which yields

     f x x f f x x,x (f , )x ( )x x ,x , )x .0 0f x(f 1 1) (x x 0 1, xx(f , )xx(f )  (5.39)

Similarly,

     f x x f x f x x x x,x , )x ,x , )x ( )x x ,x ,x )0 1, x 0 1x, 2 2) (x x 0 1, x 2f x,x , )xx, )  (5.40)

and in general,

     f x x x f x f x x xnf n,x ) ff , , )xn ( )x xn ,x ,0 1n, , 0 , 0K,x x) f1x, 0 , xx xf , x , )xxf , x0 , x 11, , ).xn  (5.41) 
Multiplying equation (5.39) by ( )0  (5.40) by ( )0  ( ),1  and so on and finally the last term 
(5.41) by ( ) ( ) ( )x x x xn) (x0 1) (x x 1  and adding, we obtain

f x f x f x x x x x f x)x )x ( )x ,x ) ( )( (f ,f )x f x)x ,x ) x x0 0) (x x) x 0 1x, x, 0 1x x)( 0 xxx

n

1 2

0 1 1

, )x2x
           ( 0( )x x )1( )x x ( )x xn 1)x (x KK ( )x x0 ( )x x1x x f xff x x Rn,x , , )0 1x,

where
R x f x xn nf( )x xx ( )x xx ((x xx ( ,( ,x , , ).0 1)(x x 0xfK(x x ( ,x ,0

This formula is called Newton’s divided difference formula. The last term R is the remainder term after 
(n + 1) terms.

Remark 5.6. If we consider the case of equal spacing, then we have

f x x x
h n

fn n
n,x , , )

!0 1x, 0ff
11
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and so

     

f x f x
x x

h
f

h
f)x )x )

( )x x ( )x x
!

f )x
)x (x

0
0

0ff
)(x x
2

2
0ff2

ff
( )

0ff
0 1)(

2 K

ff
x h x

h
f

h0ff
0 0ph x

0ff 2
2

2
phph

ff0ff
0 0p 0 1p

2

( )x h x0ph xphph 0p ( )x h x1ph xphph 1p
!

ff

f p f p f

0ff

0 0f pf ff 2
0ff2

fff

K

Kff p p
0fff

( )p 1p 1
!

,

which is nothing but Newton’s forward difference formula.

EXAMPLE 5.25
Find a polynomial satisfied by (−4, 1245), (−1, 33), (0, 5), (2, 9), and (5, 1335).
Solution. The divided difference table based on the given nodes is shown below:

x y

−4 1245
− 404

−1   33 94
−28 −14

 0   5 10 3
  2 13

 2   9 88
442

 5 1335

In fact,

f x x
f x f x

x x
,x )

)x )x
,0 1x, 0 1f x) x

0 1x
1245 33

3
404

f x x
f x f x

x x
,x )

)x )x
,1 2x, 1 2f x) x

1 2x
28

1
28

f x x
f x f x

x x
,x )

)x )x
,2 3x, 2 3f x) x

2 3x
5 9

2
2

f x x
f x f x

x x
,x )

)x )x
,3 4x, 3 4f x) x

3 4x
9 1335

3
442

f x x
f x x f x

x x
,x , )x

,x (f , )x
0 1x, 2

0 1x, 1 2, x

0 2x
404 28404

44
94,

f x x
f x x f x

x x
,x , )x

,x (f , )x
1 2x, 3

1 2x, 2 3, x

1 3x
28 2

3
28 1011 ,

f x x
f x x f x

x x
,x , )x

,x (f , )x
2 3x, 4

2 3x, 3 4, x

2 4x
2 442

5
8888 ,
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f x x x x
f x x f x x

x x
,x , ,x )

,x , )x ,x , )x
0 1x, 2 3x, 0 1x, 2 1f x) x 2 3, x

0 3x
94 10

6
14,

f x x x x
f x x f x x

x x
,x , ,x )

,x , )x ,x , )x
1 2x, 3 4x, 1 2x, 3 2f x) x 3 4, x

1 4x
10 88

6
13,

f x x x x
f x x x x f x x x

,x , ,x , )x
,x , ,x (f ,x

0 1x, 2 3x, 4
0 1x, 2 3x, 1 2, x 3,, )

.
x

x x
4

0 4x
14 13

9
314

 
Putting these values in Newton’s fundamental formula, we have

f x f x f x x x x x f x)x )x ( )x ,x ) ( )( (f ,f )x f x)x ,x ) x x0 0) (x x) x 0 1x, x, 0 1x x)( 0 xxx
x x x x x x f x x x

1 2

0 1x x 2 0f x 1 2x 3

, )x2x
 ( )( )( ) ff , x1 , )x3x( xx )(

( )(( ( )( )( ) ( , , , , )f x( x x, x ,)( )(0 1)( 2 3)( 0 1, x 2 3, x 4

124511 4 4( 4) 94( 4)( 1) 14( 4)( 1)4 4( 94( 1) 4)(0 x( 4( ) 94(((( 94(( x( 1( ) 14((1) x( 1( ))((
3( 4)( +1)x(( 4)(( x))

x
( )2x

.3 5x 6 1x 4 5x4 35 2

EXAMPLE 5.26
Using the table given below, find f (x) as a polynomial in x.

x −1 0 3 6 7
f (x) 3 −6 39 822 1611

Solution. The divided difference table for the given data is shown below

x f (x)

x0 −1 3
−9

x1 0 −6 6
15  5

x2 3 39 41 1
261 13

x3 6 822 132
789

x4  7 1611

Putting these values in the Newton’s divided difference formula, we have

f x f x x x f x x x x x x f x( ) ( ) ( ) ( , ) ( )( ) ( ,0 0 0 1 0 1 0 xx x
x x x x x x f x x x x

1 2

0 1 2 0 1 2 3

, )
 ( )( )( ) ( , , , )
 (( )( )( )( ) ( , , , , )x x x x x x x x f x x x x x0 1 2 3 0 1 2 3 4

33 9 6 5 3
1

( ) ( ) ( ) ( )  
( ) (

x x x x x x
x x x

1 1 1
1 33 6)( ) .x x x x4 3 23 5 6
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EXAMPLE 5.27
By means of Newton’s divided difference formula, find the value of f (8) and f (15) from the following 
table:

x 4 5 7 10 11 13
f (x) 48 100 294 900 1210 2028

Solution. The divided difference table is

x f (x)

x0  4 48
52

x1  5 100 15
97 1

x2  7 294 21 0
202 1 0

x3 10 900 27 0
310 1

x4 11 1210 33
409

x5 13 2028

Using the formula
f x f x f x x x x x f x)x )x ( )x ,x ) ( )( (f ,f )x f x)x ,x ) x x0 0) (x x) x 0 1x, x, 0 1x x)( 0 xxx

x x x x x x f x x x
1 2

0 1x x 2 0f x 1 2x 3

, )x2x
( )( )( ) ff , x1 , )x3 ,x( xx )(

we obtain
f ( ) ( )( ) ( )( ) ( )( )() ( )( ))( )( (15 8 7 448)( )1  and

f ( ) ( )( ) ( )( )( ) ( ))(48 )( ) ())( )( ) (( ( )(( ( )( ) .)()( 0) 315

5.9 ERROR FORMULAE
Let f x)x  be approximated by a polynomial p x( )x  of degree n by Newton’s divided difference formula. 
Then f x)x  and p x( )x coincide at (n + 1) distinct point x x xn0 , ,x ,1 K  and the error E f x p x( )x )x)x ( )xf )x  is 
given by

     E x f x x n( )x (x ( ,x , ,x , )xn ,0 1, x K  (5.42)

where

     ( ) ( )( ) ( )( )( ) ( n0 1)()( K  (5.43)

is a polynomial of degree n + 1.
Assume that f  possesses n + 1 continuous derivatives in the relevant interval. Consider a linear 

combination of )x , p x( )x ,
 
and ( ) as

     F f x p x( )x )x ( )x ( )x ,f )x K  (5.44)
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where K is a constant to be determined in such a way that F (x) vanishes not only at the n + 1 points but 
also at an arbitrarily chosen point X which differs from all these points.

Let I  constitute the closed interval limited by the smallest and largest of n+2 values x x x Xn0 1,x1x , ,xn .K  
Then F  vanishes at least n + 2 times in the closed interval I . By Rolle’s Theorem F ( )x  vanishes at least 
n + 1 times in I , F ( )x  at least n times, and finally F ( )n ( )x  vanishes at least once inside I . Let x be 
the one such point. It follows from equation (5.44) that

     0 f ( )11n 11 ( )1 ( )1n) ( ).p( )1n ( ) ( )  (5.45)

But since p(x) is a polynomial of degree n, its (n + 1)th derivative vanishes identically. Also, by 

equation (5.43), we have ( ) ( ) ( )!( . Hence, equation (5.45) yields K f1
( )n 1 !

( )( )n 1 ( ) , 

and relation F (x) = 0 becomes

f X p X x f I)X )X( )X (x ( )
( )n !

, .I
( )n

p )X ( )

Even if X is taken any of the arguments x x xn0 , ,x , ,xn1 K  both sides of this relation vanishes. Since X is 
arbitrary, we have

     
E f x p x f x( )x )x)x ( )x

( )n !
)x( )nf )x 1

 
(5.46)

for some x ∈I, where x is in the interval limited by the largest and smallest of the numbers x x x xn0 1,x1x , ,xn .K  
Since equations (5.42) and (5.46) must be equivalent, we have

f x x x fn,x ,x , )xn ( )n !
( )( )n

0 1, x 1
K ( )

for some argument in the interval I.

EXAMPLE 5.28
Find the maximum error in interpolating to find sin x for any x within the range of the table given 
below:

x 0° 15° 30° 45° 60° 75° 90°
sinx 0 0.25882 0.5 0.70711 0.86603 0.96593 1.0

Solution. We have

f x x n)x nsinxxx nd 1 7.  
Then f x x( ) )x cos . The formula for error will not yield the maximum error because we know 
nothing about x except that it lies in the range 0 9090 . But since cos x is bounded in that interval, the 
formula will give us an upper bound on the size of the error. Thus,

f x p x x x x)x ( )x
!

( )xp( )x x1
7 12

2
12
2
K

6
12

.

For example, if we compute the value of sin ,5
24

 then

pf 5
24

5
24

1
5040

35 ( )5 ( )3 ( )1 ( )1 ( )()) )( )
( )

( . ) .5 7)( 0. 6)
7

7
7
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EXAMPLE 5.29
The function y = f (x) is supposed to be differentiable three times. Show that

f x f x)x
( )x x ( )x x x

( )x x
)x

( )x x ()x (x1 0)(x x 1

1 0x 2 0
0 x xxx

x x
f x

f x R

1

0 1x 0

0
2

1 0
2 1

)
)x0

( )x x0

( )x x1 0x
)x1 ( )x ,,

where

R f x( )x ( )x x ( )x x .(x1
6 0

2
1 0f) 1x ,x xxx0xx

Solution. We apply Newton’s divided difference formula to three points x x x0 0 1,x0x  and have

f x f x f x x x x x f x)x )x ( )x ,x ) ( )( (f ,f )x f x)x ,x ) x x0 0) (x x) x 0 0x, x, 0 0x x)( 0 xxx R0 1, )x1x ( )x ,

where

R f x x( )x (
!

) ( )x x ( )x x (( )x x)x ( )x x (f( ) ( )( )x
3 6!

( )( ) 0 0)(x x 11

0
2

16

)

( ) ( )0 ( )1 .) (f ( )

But f x x f x,x (f ).0 0x, 0  Therefore,

f x f x f x
f x x f x

)x )x ( )x x )x ( )x
,x (f

f )x (x0 0) (x x) 0 0) (x x(x 2 0 0x, 0 100

0 1

0 0 0 0
2

, )1 ( )

( )0 ( )0 ( )0 ( )0

x x0

R(

f x(f ( f x()0f ( (

f x f x f x

x x
R

f x

)x [ f ) f )]
( )x x

( )x
0 0f x) [ f 1

0 1x

0 1x

0 ) ()) ) )
( ) ( ) ( )

(x x x(
f x(

x x
f

0 0) f x( 0
2

0

0 1x
0

2 ( )((
( )

( ) ( )
( )

( )

(

f x(
R(

f

0

0 1
2

0
2

1

0 1
2

xx f x0
0

2

0 1
2 0

01)
( )x x0

( )x x0 1x
)x0

( )x x0 (xxx x x
x x

x x
f x0 1x 0

0 1x
0

2

0 1
2 1

x1x ) ( )
( )x x0 1x

) ()) )

( )( )
( )

( )
()(

x(

f x(
x x0 0)( 1

1 0
2 0

0 100

0 1
0

0
2

0 1
2 1

)( )
( )0

( )0

( )0 1

( )1

x x
x x0

f x(
0

f x( R( )(( .

EXAMPLE 5.30
Find the missing term in the following table:

x 0 1 2 3 4
y 1 3 9 – 81

Explain, why the result differs from 33 = 27.
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Solution. The divided difference table is

x y

x0 0 1
2

x1 1 3 2
6 2

x2 2 9 10
36

x3 4 81

Therefore, using Newton’s divided difference formula, we have

f f x f x x x x f x( )x (x x ( ,x ) ( )( ) f ,0 0) (x x 0 1x, 0 1x x)( 0f ( )x f xx ( ,x )x 1x x x)( xxx f x x x x1 2 0 1 2 0f x 1 2 3, )x2x ( )x x0 ( )x x1x x ( )x x2 ,x0x ,x2x )(x )x (x
1 (( )(( ( ) ( )( )( ) ( )( )( )( ))( ) ( )) ()()()( )( ))( ()( ( )( )()( )()()(
1 6 12 12 31.

It differs from 33 = 27 because of the error E f( )x ( )
( )n !

( )x .
( )n ( )

Remark 5.7. Using Newton’s divided difference formula, the polynomial satisfying the given data in 
the above example is

f x x x x
x x

)x ( )x ( )x ( )x     1 2 2 (xx(x 2 (xx(x
2 4x xxx3 24 4 1x .

5.10 LAGRANGE’S INTERPOLATION FORMULA
Let f  be continuous and differentiable ( ) times in an interval ( , )b, and let f f f fnff0 1f ff f 2ff,f1ff  be the 
values of f  at x x x xn0 1 2,x1x , ,  where x x x xn0 1 2,x1x , , are not necessarily equally spaced. We wish to find 
a  polynomial of degree n, say Pn ( )x such that

     P f x f i nn iP i iff( )xix )xi )x ,i , , .f )x 1i ,i  (5.47)

Let

     P a a x a x a xn n
n( )x ,a a x0 1a 2

2 K  (5.48)

be the desired polynomial. Substituting the condition (5.47) in equation (5.48), we obtain the following 
 system of equations:

     

f a a x a a x

f a a x a
n

n
0 0f af 1 0x 2 0x2

0

1 0f af 1 1x 2 1x2

a0a a x0x2

a0a a x1x2

K

K a xaa

f a a x a a x
n

n

n
n

1

2 0f af 1 2x 2 2x2
2a0a a x2x2 K

.....................................................

................................................... .....

f a a x a x a xn nff n n n
n

0 1a 2
2 K  

(5.49)

This set of equations will have a solution if the determinant
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1

1

1

0 0
2

0

1 1
2

1

2 2
2

2

x x0 x

x x1 x

x x2 x

n

n

n

KKKK

KKKK

KKKK

KKKKKKKKKKKKKK
KKKKKKKKKKKK

KKKK1

0

2x x xn n n
n

.

 
The value of this determinant, called Vandermonde’s determinant, is ( )( ) ( )( )0 1 0 2 0 1)(n )( )))( )(K( )( ))( )

)( ) (x xn)()( 1) (x) () (xK)( ))( ) ) ()) ).x xn n1  Eliminating a a an0 1,a1a ,K  from  equations (5.48) and (5.49), we obtain

     

P x x x

f x x x

f x x x

n
n

n

( )x 1 2

0 0f xf 0
2

0

1 1f xf 1
2

KKKK

KKKK

KKKK 11

2

n

n n nf x1n x

KKKKKKKKKKKKKKK
KKKKKKKKKKKKKKK

KKKKKK xn
n

0,

 

(5.50)

which shows that Pn(x) is a linear combination of f f fnff0ff ,f , .fnff1ffff K  Hence, we write

     
P L fn iP L iff

i

n

( )xx ( )x ,
0  

(5.51)

where Li ( )x  are polynomials in x of degree n. But P fn jP jff( )x jx  for j n0 .n1 2 Therefore, equa-
tion (5.51) yields

     

L i j

L i j
i j

i j

( )x jx

( )x jx

i

i

0

1

f

for
 
for all j. (5.52)

Hence, we may take Li ( )x  as

     
Li

i i n( )x
( )x x ( )x x ( )x xi ( )x x ( )x xn

(
)x (x )x (x0 1)(x x 1iiiK K( )x xi ( )x x)(x xix x

x xxx x x x x x x x xi x i i i i i nxx x x x0 1x xix 1 1i ii i)( ) ( )( ) ( )x xx xi ix 1x xi ix1( )( )
 

(5.53)

which clearly satisfies the condition (5.52). Let

     ( ) ( )( ) ( )( )( ) (( )( ) ( )( )( x) (i i i0 1)()( 1)()( K)K(( )( )( ))()( )()()( xn ). (5.54)

Then

     
( ) ( ) ( )( ) (

x
) ( )( x) (i

x x
i i

i

d
dxx 0 1)( i)()( K x x x x xi i i ix nx xix i)( ) ( )

and so equation (5.53) becomes

     
Li

i i

( )x ( )x
( )x xi ( )xix

.
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Hence, equation (5.51) becomes

     
P fn

i i
iff

i

n

( )x ( )x
( )x xi ( )xix

,
0  

(5.55)

which is called Lagrange’s interpolation formula. The coefficients Li ( )x  defined in equation (5.53) are 
called Lagrange’s interpolation coefficients.

Interchanging x and y in equation (5.55), we get the formula

     
P y y

y y
xn

i iy i
i

n

( )y ( )y
( )y yi ( )yiy

,
0  

(5.56)

which is useful for inverse interpolation.

Second Method: Let f x f x f xn)x , f ), , f )0 1f x), f K  be the values of the function f  corresponding to the argu-
ments x x xn0 1,x1x , ,xnK  not necessarily equally spaced. We wish to find a polynomial Pn ( )x in x of degree 
n such that

P f x x f x x f xn n n n n( )x )x , (Pn ) f ), , (Pn ) f ).ff) x 1 1f x) ff x)x P ) K

Suppose that

     

P A An n( )x ( )x x ( )x x ( )x x ( )x ( )x xA x x x A (x0A (x x 1n) ( )n 0 2)( K( )x xx x ( )x xA (x1A( )x x AA )(x x ( )((
( )( )( ) ( )
(

A ( )( )()( ) (
A x(A (

n

n

n

A ( )( )
A x(

2 0(A (A ( 1 3)()( K K( )( )
x xxx x x xn0 1x x 1)( ) () ( ).xx

 (5.57)

where A A An1 2AA  ,A2A2 ,K are the constants to be determined.

To determine A0, we put x x0 and P f xn ( )x )x0 0f x) x  and have

f x A n)x ( )x x ( )x x ( )x xn0 0A) 0 1x 0 2x 0A x x xK

and so

A
f x

n
0A 0

0 1 0 2 0

)x0

( )x x0 1xx ( )x x0 2xx ( )x xn0

.
K

Similarly, putting x x x xn1 2, ,x2x , .xnK  we get

A
f x

A
f x

n
1AA 1

1 0 1 2 1 3 1

2A

( )x1

( )x x1 0xx ( )x x1 2xx ( )x x1 3xx ( )x xn1x
(

K

22

2 0 2 1 2 3 2

)
( )2 0 ( )2 1 ( )2 3 ( )22 2 2 2 n)( ) (K

KKKKKKKKKKKKKKKKKKKK
KKKKKKKKKKKKKKKKK

A
f x

xn
n

nx
)xn

( )x xx (1 0x x xxx xn n1 1x xn n) ( )
.

Substituting these values in equation (5.57), we get

P L f xn iP L i
i

n

( )xx ( )x )xi ,
0
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with

Li
i i n( )x

( )x x ( )x x ( )x xi ( )x x ( )x xn

(
)x (x )x (x0 1)(x x 1iiiK K( )x xi ( )x x)(x xix x

x xxx x x x x x x x xi x i i i i i nxx x x x0 1x xix 1 1i ii i)( ) ( )( ) ( )
,

x xx xi ix 1x xi ix1( )( )

which is Lagrange’s interpolation formula.
Clearly,

L i j ji j i j( )x jx , i ( ) .i ji ix jxi j, (L )i0 f j,i

Remark 5.8. If f takes same value, say k, at each of the points x x xn0 1,x1x , ,xnK  we have

P LnP
i

n

i
i

n

( )xx ( )x .L k kiL ( )x( )x kL )x
0 0ii

This yields

Li
i

n

0

1( )x ,

which is an important check during calculations.
Further, dividing both sides of Lagrange’s interpolation formula by ( )( ) ( ),n)(0 1)( K  

we obtain

P f x
x x

n

n

( )x
( )x x ( )x x ( )x xn

)x
( )x x ()x (x x)x (0 1)(x x

0

0 1x 0 2xK ) ()) )

    
)

( )( ) (K

x x x x
f x(

x

0 0)x x xn

1

1 0 1 2

1

)( 1 111

1

1
x x x

f x
x

n

n

n n0 n

)

    
)xn

( )0x xn 0 ( )1x x (K x xxx xn n1

1
)

Thus, 
Pn

n

( )x
( )x x ( )x x ( )x xn)x (x0 1)(x x K

 has been expressed as the sum of partial fractions.

EXAMPLE 5.31
Use Lagrange’s formula to express the function x

x

2 6 1x6x
( )x 11 ( )xx( )1xx 1x ( )x 4x ( )6x

 as a sum of partial frac-
tions.

Solution. We have

P xn ( )x ,x2 6 1x

and so
P f x fn ( )x )x ( )0 0f x) x 6)f )x

P f x fn ( )x )x ( )1 1f x) x 6)f )x )

P f x fn ( )x )x ( )2 2f x) x 3) 9f )x

P f x fn ( )x )x ( ) .3 3f x) x 7) 1f )x
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Therefore,

 

x
x

2 6 1x 66x
( )x 11 ( )xx 1xx 1x ( )x 4x ( )6x ( )x 11 ( )22 ( )3 ( 55

6 39 7
)

( )1 ( )2 ( )5 ( )7 ( )4 ( )3( )3 ( )5( )5 ( )21 4 )3 (5)( )2 ( 5 )7 ()1 5
11

1
5

3
35

13
10

( )6 ( )5 ( )7 ( )2

( )1 ( )1 ( )435)1 (
71

70( )6
.

 

EXAMPLE 5.32
Use Lagrange’s interpolation formula to express the function

x x
x x x

2

3 2

3
2 2x x2

x
x

as sum of partial functions.

Solution. We have

x x
x x x

x x
x

2

3 2

23
2 2x x2

3x
x

x
( )x 11 ( )xx( )1xx 1x ( )x 2x

.

Let

     P x xn ( )x ,x2 3

and let x x0 1 21 1x 2x x1,1x 1x1x . Then

     

P f x f
P f x f
P

n

n

n

( )x )x ( )
( )x )x ( )

0 0f x) x

1 1f x) x
1)

3)
f )x
f )x )

( )(( ( ) ( ) .x f) f)2 2(f) 3)(f )

Therefore,

     

x x
x

f x2
0

0 1 0 2

3 1x
( )x 11 ( )xx 1xx 1x ( )x 2x

)x0

( )x x0 1xx ( )x x0 2xx (x xxx
f x

f x
x

0

1

1 0 1 2 1

2

1

)
)x1

( )x xx1 0x ( )x xx1 2x ( )x x1

)x2

( 2 022 2 1 2

1

1 3
xx0 x x1 x)( ) ( )

( )1x 11 ( )222 ( )11 ( )1x ( )(( ( ) ( )( )( )

( ) ( ) (

)()(
3
)(

1
2(

1
2(

1
) (2( x 2)22

.
 

EXAMPLE 5.33
Using Lagrange’s interpolation formula, prove that

     32 1 5f f2 f f3 f5( ) 2 ( ) ( ).01f3 ( )4)4 2
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Solution. We have

     x x x0 1 2 34 2x 2 4x 1x,1x 2x1x .x3x 4x3x 1and

Then

     
L

x x0L 1 2 3

0 1 0 2 0

( )x
( )x x1 ( )x x2x x ( )x x3

( )x x0 1x ( )x x0 2x (
)x (x
)x (x 33

3
32)

( )1 2 ( )1 2 ( )1 4
( )4 2 ( )4 2 ( )4 4

.)2 (1
4 4 4

Similarly

     
L x L1 2L 3L5

16
15
16

5
32

( )xx , (L2L ) ,15
16

( )x .xL )

We observe that Li
i

( )x .1
0

3

 Therefore,

     
f x L f xi if x

i

)x ( )xx )xix
0

3

or

     
f f f f f5

16
15
16

5
32

3
321 2ff ff

16 3 0ff ff
32

f1ff f

or

     
32 1 5f f2 f f3 f5( ) 2 ( )2 ( )4 .01f3 ( )4)4 2

EXAMPLE 5.34
The function y f ( )x is given in the points (7,3), (8,1), (9,1), and (10,9). Find the value of y for 
x 9 5 using Lagrange’s interpolation formula.

Solution. We have

x y = f (x)

x0  7 3
x1  8 1
x2  9 1
x3 10 9

By Lagrange’s formula, we have

     
f x P L f xn iP L i

i

n

)x )xx( )x ( )x )xi ,P )x
0

where

     
Li

i i n( )x
( )x x ( )x x ( )x xi ( )x x ( )x xn

(
)x (x )x (x0 1)(x x 1iiiK K( )x xi ( )x x)(x xix x

x xxx x x x x x x x xi x i i i i i nxx x x x0 1x xix 1 1i ii i)( ) ( )( ) ( )
.

x xx xi ix 1x xi ix1( )( )

In the present problem, x = 9.5 and we have
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L
x0L 1 2 3

0 1 0 2 0

( )x
( )x x1 ( )x x2x x ( )x x3

( )x x0 1x ( )x x0 2x (
)x (x
)x (x xx3

5 8 9 5 10
)

( .9 )( . )5 9 ( .9 )
( )7 8 ( )7 9 ( )7 10

8 9 5
)8 (7

0 375
6

0 06250. . ,06250

    

L
x1

0 2 3

1 0 1 2 1

( )x
( )x x0 ( )x x2x x ( )x x3

( )x x1 0x ( )x x1 2x (
)x (x
)x (x xx3

5 7 9 5 10
)

( .9 )( . )5 9 ( .9 )
( )8 7 ( )8 9 ( )8 10

7 9 5
)7 (8

0 625
2

0

2
0 1 3

.  .0 ,

( )
( )0 ( )1 (

3125

L2 (
x x ))

( )( )( )
( . )( . )( .

2 0 2 1 2 3

5. 7 9)(7 9)( 5.
)(

7 9)( 1011

1 875
2

0

3

)
( )9 7 ( )9 8 ( )9 10

. . ,

( )
(

)7 (9

9375

L3(
x xxx x x x xx x0 1x x 2

3 0 3 1 3 2

)( )( )
( )x xx3 0x ( )x xx3 1x ( )x x3 2x

( .9 5 755 9 5 9

1 875

7 9)( . )5 85 ( .9 )
( )10 77 ( )10 810 ( )10 9

.
66

0. .3125

We observe that L L L L0 1L LL 2 3L L 1( )xx ( )x( ) ( )xx ( )x( )LLL )x LL )x  and therefore, so far, our calculations are correct. 
Hence,

P P x f x

L f L f L f

i ix f x
i

( )x ( .( ) (Li (ff )P

L f L f

5.
0

3

0 0L fL fL ff 1 1fL f 2 2L ffL ff L fLL3 3L ffL
(0.06250)(3) 0.3125(1) 0.9395(1) 0.3125(22 9)
0.1875 0.3125 0.9375 2.8125 3.625.0.3125 0.9375

EXAMPLE 5.35
Find the interpolating polynomial for (0, 2), (1, 3), (2, 12), and (5, 147).

Solution. The given data is

x 0 1 2 5
f (x) 2 3 12 147

The Lagrange’s formula reads

P L f xn iP L i
i

n

( )xx ( )x )xi ,
0

where

Li
i i n( )x

( )x x ( )x x ( )x xi ( )x x ( )x xn

(
)x (x )x (x0 1)(x x 1iiiK K( )x xi ( )x x)(x xix x

x xxx x x x x x x x xi x i i i i i nxx x x x0 1x xix 1 1i ii i)( ) ( )( ) ( )
.

x xx xi ix 1x xi ix1( )( )
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Thus,

L
x x0L 1 2 3

0 1 0 2 0

( )x
( )x x1 ( )x x2x x ( )x x3

( )x x0 1x ( )x x0 2x (
)x (x
)x (x 33

31
10

)
( )1 ( )2 ( )5
( )0 1 ( )0 2 ( )0 5

(

)1 (0
)1 (1

x 8 188 7 102 171717 )

L
x x1L 0 2 3

1 0 1 2 1

( )x
( )x x0 ( )x x2x x ( )x x3

( )x x1 0x ( )x x1 2x (
)x (x
)x (x 33

31
4

7

)
( )0 ( )2 ( )5
( )1 0 ( )1 2 ( )1 5

(

)0 (1

(

)00

x x7 22 10x)
 

L
x x2L 0 1 3

2 0 2 1 2

( )x
( )x x0 ( )x x1x x ( )x x3

( )x x2 0x ( )x x2 1x (
)x (x
)x (x 33

31
6

6

)
( )0 ( )1 ( )5
( )2 0 ( )2 1 ( )2 5

(

)0 (2
)00

x x6x xxx2 5 )

L
x x3L 0 1 2

3 0 3 1 3

( )x
( )x x0 ( )x x1x x ( )x x2

( )x x3 0x ( )x x3 1x (
)x (x
)x (x 22

31
60

3

)
( )0 ( )1 ( )2
( )5 0 ( )5 1 ( )5 2

(

)0 (5

(

)00

x x3x xxx2 2 ).

Putting these values in Lagrange’s formula, we have

P L f xi if x
i

( )x )xx( )x )xix )x ( )xfL )x )x (x
0

3
3 22

10
x xx 3

4
( )((

( ) (x) (

3 2

3 2 3 212
6

147
60

3 2x2(x( 3 xxx) .x x xx x3 2

EXAMPLE 5.36
Use Lagrange’s interpolation formula to find the value of y when x 5 , if the following values of x 
and y are given:

x 1 2 3 4 7
y 2 4 8 16 128

Solution. Let y fi if ( )xix  be the value of a function at x ni , .i n0 ii  Then Lagrange’s interpolating 
 polynomial Pn ( )x  is given by

P L f xn iP L i
i

n

( )xx ( )x )xi ,
0

where

Li
i i n( )x

( )x x ( )x x ( )x xi ( )x x ( )x xn

(
)x (x0 1)(x x 1)(x xix xiiL L( )x x ( )x x)x (x

x xxx x x x x x x x xi x i ix i i i nxx x0 1x xix 1 1x xi ixi i)( ) ( )( ) ( )
.

x xxx xx( )( )
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In the given problem, x = 5 and we have

x x0L 1 2 3 4

0 1 0 2x
( )x

( )x x1 ( )x x2x x ( )x x3 ( )x x4x x
( )x x0 1x (

)x (x )x (x
x)x ( )()) )( )

( )( )( )( )
( )(x x x x0 3x 0 4x)(x x

)( )(
1 311 1 4 1 7

1
3

3 1)( )( )

L
x x1

0 2 3 4

1 0 1 2x
( )x

( )x x0 ( )x x2x x ( )x x3 ( )x x4x x
( )x x1 0x (

)x (x )x (x
x)x ( )()) )( )

( )( )( )( )
( )(x x x x1 3x 1 4x)(x x

)( )(
2 322 2 4 2 7

8
5

3 2)( )( )

L
x x2

0 1 3 4

2 0 2 1x
( )x

( )x x0 ( )x x1x x ( )x x3 ( )x x4x x

( )x x2 0x (
)x (x )x (x

x)x ( )()) )( )
( )( )( )( )
( )(x x x x2 3x 2 4x)(x x

)()(
3 233 3 4 3 7

3
2 3 4 3)( )( )

0 1 2 4
3

3 0 3 1 3 2 3 4

( )( )( )( )0 1 2 41 2 (5 1)(5 2)(5 3)(5 7)( )
( )( )( )( ) (4 1)(4 2)(4 3)(4 7)3 0 3 1 3 2 3 43 1 3 2

8
3

)( )( )()( )( )(0 1 21 21 2L3 (
)( )( )()( )( )(3 0 3 1 3 2 33 1 3 20 3 1 3 2 3

)( )( )()( )( )()( )( )( 1)(5 2)(5 3)(51)(5 2)(5 3)(5
= =

) (4 1)(4 2)(4 3)(41)(4 2)(4 3)(4)( )( )()( )( )()( )( )(

=

L
x x4L 0 1 2 3

4 0 4 1x
( )x

( )x x0 ( )x x1x x ( )x x2 ( )x x3x x
( )x x4 0x (

)x (x )x (x
x)x ( )()) )( )

( )( )( )( )
( )(x x x x4 2x 4 3x)(x x

)( )(
7 277 7 3 7 4

1
15

2 7)( )( )

.

We note that Li
i

n

( )x .
0

1  Hence, our calculations are correct up to this stage. By Lagrange’s formula

P P L x fi ix f
i

n

( )x ( ) (xx ( )xix

( ) ( ) ( )

P

(1
3

8
5

) ()

0

( )(( ( ) ( )8
3

1
15

2
3

32
5

24 128
3

128
15

( )

3233 933. .933

5.11 ERROR IN LAGRANGE’S INTERPOLATION FORMULA
The error in this case is the difference between f x)x  and the Lagrange’s polynomial Pn ( )x  at a given 
point. Let f x Pn)x ( )x  at the n + 1 points x x xn0 1,x1x , .xnK  Suppose that the point X lies in the closed 
interval I bounded by the extreme points of ( x x xn0 1,x1x ,K ) and further that X x k nk , , , , .nK Also, 
we assume that f can be differentiated n 1 times. We define the function

F f x Pn( )x )x ( )x ( )x ,f )x R
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where ( ) ( )( )...( )( )( x)...( xn0 1)()( and R is a constant to be determined such that F( )X .0  
 Obviously, F( )x 0 for x x x xn0 1, ,x1x , .xnK  Using Rolle’s Theorem repeatedly, we conclude that 
F ( )n ( ) ,( ) 0 where I .  Since Pn ( )x is of degree n, we have

F R( )n ( ) ) ( )n !)) () ff ( )n ( )f ( ) ((f (n

and so F ( )n ( ) 0( ) implies R f ( )n ( )
( )n !

( ) . Thus, F( )X 0 implies

f X P R f
n)X ( )X ( ) ( )

( )n !
( )X .

( )n

P )X ( )X ( )

Replacing X by x, we get

f x P f
n)x ( )x( )x ( )

( )n !
( )x

( )n

P )x ( )

or

f x P f

L f

n

i
i

n

)x ( )x ( )
( )n !

( )x

( )x (

( )n

P )x

0

( )

xx f
i n) ( )

( )n !
( )x x ( )x x ( )x xn .

( )n

)x (x0 1)(x x( )
K

5.12 INVERSE INTERPOLATION
Inverse interpolation is the process of finding the value of the argument to a given value of the function 
when the latter is intermediate between two tabulated values.

(A) Inverse Interpolation Using Newton’s Forward Difference Formula
Let K K, , , ,,f f, f f, f f, fff ff3 2f, ff 1 0ff, 1 2f ff f, 3ff  be the functional values of a function f  at K K, , , , ,x x, x x, x x, x3 2, 1 0, 1 2, 3
. Then Newton’s forward difference formula reads as

     
f f p f p f p p p fpff f0 0ff p ffff 2

0ff
3

0ff2 3
ff p p

0fff
( )p 1p 1

!
( )p 1 ( )p 2pp

!
K

 
(5.58)

We want to find value of x between x0 and x x h1 x0 such that f x f pff)x , where f pff is a given value. 

As before, we denote 
x x

h
p0 , that is, x x phx0 . Thus, our aim is to find p to get the value of x. 

From equation (5.58), we have

p
f

f f p p f p fpfff1 f f p
2 30ff

0ff
2

0ff
3

0ffff
f p p p2

0ff
( )p 1p

!
( )p 1p 1 ( )2ppp 2p

!
KK .

We use iteration technique to find p. So, we first neglect the second and higher differences and find 
first approximation to p as

p
f

f fpff1
0ff

0ff
1
ff

( )f fff 0fff .

Now the approximate value p1 of p is inserted in the second difference term to get
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p
f

f f
p

fpff2
0ff

0ff
1 1p 2

0ff
1

2
f

ff
( )p1p 1

!
.

Next retaining the term with third difference, we get

p
f

f f
p

f
p p

pff3
0ff

0ff
2 2p 2

0ff
2 2p 21

2 3
f

ff
( )p2p 1

!
( )p2p 11 ( )p2 2p2p

!!
3

0f0 .
 

The process is carried out till two successive approximations of p agree with each other up to desired 
accuracy. Then

x x p hnx0 . 
EXAMPLE 5.37
Find the value of x for f (x) = 10 using the following table:

x 2 3 4 5
f (x) 8 27 64 125

Solution. The difference table for the given data is

x f (x) Δf Δ2f Δ3f 

2   8
19

3  27 18
37 6

4  64 24
61

5 125

We are given that f pff 10, h 1, f0ff 8, x0 2, 
x x

h
p0 .  Using Newton’s forward differences, the 

first approximation to p is

p
f

f fpff1
0ff

0ff
1 1f f

19
0 1

ff
[ ]f fff 0fff ff ( )10 810 . .

The second approximation to p is

p
f

f f
p

fpff2
0ff

0ff
1 1p 2

0ff
1

2

1
19

10 8

f

10

ff
( )p1p 1

!

 0 0
2

0. (1 . )1 1 ( )18 .15
  

The third approximation to p is

p
f

f f
p

f
p p

pff3
0ff

0ff
2 2p 2

0ff
2 2p 21

2 3
f

ff
( )p2p 1

!
( )p2p 11 ( )p2 2p2p

!!

. ( . ) ( ) .

3
0

1
19

10 8 0. 0(
2

0 1. 5

f0

10 ( .(( )( . ) ( )

. .

1. 5 1 0.0
6

0

)(1 0

1532
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The fourth approximation (using the same available differences but replacing p2 by p3) is

p
f

f f
p

f
p

pff4
0ff

0ff
3 3p 2

0ff
1

2 6
f

ff
f

p p2
0ff

3 3p 3( )p3p 1 ( )p3p 113p ( )p3 2p3pp3 33
0

1
4

10 8 0 0
2

0

f0

10 . (1532 . )1532 ( )18 .153211 1532 1 0
6

0

( .0 )( . )1532 2 ( )6

. .

1 0 1532

1541

The next approximation is

     p5 0 1542. .1542

Thus, p = 0.154 correct to three decimal places.
Hence,

     x x phx0 2 0 1. (154 ) . .154  

(B) Inverse Interpolation Using Everett’s Formula
Let a function f  be tabulated with d2f  and d 4f . We want to find a value x between x0 and x h1 0xx0x such 

that f x f pff)x where f p is a given value. If p
x x

h
0 , then by Everett’s formula, we have

     

f pfpp
p

f
p

f

p f

pff pfp 1ffff
2

1ff
4

1ff
1

3
2

5
f

p2
1ff

42

( p1 00ffff
2

0
4

0

2
3

3
5

p
f0

p
f0

432
0f0

p
.

To determine the first approximation to p, we have

p f p f f pff1 1ff 1 0ff( p11 .

This approximated value is inserted into d  2f  terms and we have second approximation p2 given by

     
p f p f f

p
f

p
pff2 1ff 2 0ff

1 2
1ff

11
3

2
3

f( p11 2
0f0 .

Next, we obtain p3 from

     

p f p f f
p

f
p

pff3 1ff 3 0ff
2 2

1ff
11

3
2

3
f( p11 2 2

0

2 4
1

2 4
0

2
5

3
5

f0

p
f1

p
f0 .

If necessary, the process is repeated until we get value to the required accuracy.
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EXAMPLE 5.38

The function y xlog( !)  has a minimum between 0 and 1. Find the abscissa from the data below:

x
d
dx

log ( !)x d 2 d 4

0.46 −0.0015805620 −0.0000888096 −0.0000000396

0.47 0.0080664890 −0.0000872716 −0.0000000383

Solution. The problem is clearly of inverse interpolation. We are provided with even differences and 
therefore Everett’s formula is to be used. The relevant terms in the Everett’s formula are

f p f
p

f
p

f

pf

pff )p
2

3
3

50ff
2

0ff
4

0fff
p32

0ff
4

11ffff
2

1
4

1

1
3

2
5

p
f1

p
f1

42
1

2
f1

p
.

For minimum, d
dx

xlog ( !) .0  We choose x f0 0ff0 0xx 0 00 0 0x . , . ,00 0 047 562  and 

f1ff 664890 00 08 0. .6648900 08 0  Therefore,

0
2

3
1

30 1
2

0
2

11( )11 p f0) f11

p
f0

p
f1

12
0

2f0

p

.
3

5
2

5
4

0
4

1

p
f0

p
f1

24
0

4f0

p

First we determine a value p1 from the equation

     p f p f1 1ff 1( p11 0ff 0

and get

     

p
f

f f1
0ff

1 0f ff f
0 0015805620
0 0096470510

0

.

.
.163833887677.33

This value is inserted in the d  2f  terms while d  4f  terms are neglected. Then we obtain a value p2 from

     
p f

p
f

p
2 1ff 2 0ff

1 2
1ff

11
3

2
3

( p11 f
p2

1ff
12 22

0f0

and so

     

p p p f2 1p3
1

2
0ff

1
0 0096470510

0 1
6.

(00 0 0 1 2 1
6

0 0

1
3

1
2

1
2

0( )3 23
1
2

.

p p1 31 p f1
2

0)1
2

1632192 55377.77

Next inserting the value of p2 in Δ4f  terms, we obtain p3 = 0.16321441. The value is correct to five 
decimal places. We have h = 0.01. Hence,

     x x phx0 0 0 00 0. .0 .163321 46163321.
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(C) Inverse Interpolation Using Lagrange’s Interpolation Formula
While deriving Lagrange’s formula, we observed that it is a relation between two variables either 
of which may be taken as independent variables. Therefore, interchanging f  and x in the Lagrange’s 
formula, we have

     
x L f xi if x

i

n

( ff ,
0  

where

     
L f

f f f f f f
i

i iff nff)f
( )f f ( )f f ( )f fff ( )f f ( )f fnff
(

)f ( f )f ( f0 1ff f ff)ff ( f ff 1ff fffif ffff ffK K( )f fff ( )f f)( f ff ff
f fff f f f f f f f fif ffff i if ff f i i i nf ff ff f f f0 1ff f ffiff ff 1 1f ff ff fffi if ff f)( ) ( )( ) ( )

.
f ff ff ff f 1f ff ff f1( )( )

EXAMPLE 5.39
Apply Lagrange’s formula inversely to obtain the root of the equation f (x) = 0 given that

f f f f(f ) , ( ) .) , 03(f 4) f, 1f ( )f ( )f ( )

Solution. Since f ( ) 13and f ( ) 3, the root lies between 34 and 38. We have

(D) x (E) f (x)

x0 30 −30
x1 34 −13
x2 38  3
x3 42  18

In the present case f (x) = 0. Therefore,

L f
f f f f

f f f f0LL 1 2ff f ff 3f

0 1f ff f 0 2f ff f 0ff
)f

( )f f1ff ( )f f2f ff ( )f f3ff
( )f f1f ff f ( )f f2f ff f (

)f ( f
)f ( f 33ffff 30 18)

( )0 13 ( )0 3 ( )0 18
( )30 13 ( )30 3 (

13 0
30 30 30 ))

.702
26928

0 0. 261

L f
f f f f
f f f f1

0 2ff f ff 3f

1 0f ff f 1 2f ff f 1ff
)f

( )f f0ff ( )f f2f ff ( )f f3ff
( )f f0f ff f ( )f f2f ff f (

)f ( f
)f ( f 33ffff

1620
8432

0
)

( )30 ( )3 ( )18
( )17 ( )16 ( )31

.3
)16 (

19211

L f
f f f f

f f f f2L 0 1ff f ff 3f

2 0f ff f 2 1f ff f 2ff
)f

( )f f0ff ( )f f1f ff ( )f f3ff
( )f f0f ff f ( )f f1f ff f (

)f ( f
)f ( f 33ffff

7020
7920

0 8
)

( )30 ( )13 ( )18
( )33 ( )16 ( )15

. 86488

L f
f f f f

f f f f3L 0 1ff f ff 2ff

3 0f ff 3 1f ff 3ff
)f

( )f f0ff ( )f f1f ff ( )f f2ff
( )f f0f ff f ( )f f1f ff f (

)f ( f
)f ( f 22ffff

1170
22320

0
)

( )30 ( )13 ( )3
( )48 ( )31 ( )15

.0524.00

Therefore,

x L x L x L x L xL x L x0 0L xL x 1 1x 2 2L xL x 3 3L x 0 7830 6 5314 33. .7830 6 . 26832 222 2008 37 2312 2008. .2008 37 .

EXAMPLE 5.40
A function f  is known in three points x1, x2, and x3 in the vicinity of an extreme point x0. Show that

x
x x f x x

f x x0
1 2x 3 1f 2 2f x 3

1 2x 3

2
4 4
x2x2 ( ,x1x ) (ff , )x3

( ,x1 , )x3

..
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Use this formula to find x0 when the following values are known:

x 3.00 3.6 3.8
f 0.13515 0.83059 0.26253

Solution. By Newton’s divided difference formula, we have

f x f x x f x x x x f x x)x x x ( ,x ) ( )( ) f , ,xf f xx ( ,x ) x x)(1 1f xf x xff x 1 2x, x 1 2x x)( 1 2, x xx3 ).  
Now x0 is given to be an extreme point, therefore derivative at x0 vanishes. Therefore,

0
0

21 2 1 2 32[ )] [ (00 , )2 ( ,11 , )33 (f x( f x( x2)2 f x(x 22 ,x x x xxx f x x x

f x f x
x x1 2x 1 2 3

1 2x 1xxf

) f , ,x2x )]

 x1x1 ) x f2 ,
0

0 xxx f x x2 3 1 2 1 2x 3, )x3x ( )x(x1 2x ,x1 , )x3(x

and so
2 1 2 3 1 2 1 2 3 1 2x f x x f2 x x f3 x0 ( ,1x1 , )3x3 ( 1 x2 ( ,1x1 , x3 ( ,1x1 )( 1x

which yields

     

x
x x f x x

f x x
x x f

0
1 2x 1 2x

1 2x 3

1 2x 3

2 2
2
4
x2x2

( ,x1 )
( ,x1 , )x3

( ,(( )
( , , )
(

x,
f x( ,

x x

x x f x

1 2, x,

1 2, x 3

3 1x

1 2x 3

2 4, , )f ( x ,, x
2
4
x2x2 1 211 1 2 3 3 1

1 2 3

1

4

2

, ) ( ,1 , )3 ( )3 1

( ,1 , )3

f2 )2 1 3

f x( x2 ,

x x1 2

2( , , )( 3f x,1 )3 (

2 322
1 2 3 1

2 3 1 2

3

4

2 3x
f x xx2 x

f x x f3 x1

x
,1x ) ( )

,2x (f , )2x
x

f x x
x x f x

1

1 2x 3

1 2x 3 1f 2

4
2
4

,x1 , )x3

( ,x1x ) f xff x
f x x

,x )
,x , )x

.2 3x,

1 2x, 34  
(5.59)

 
Further, we have

f x x
f x f x

x x
,x )

)x )x . .
1 2x, 2 1f x) x

2 1x
0 83059 0 13515

0..
.

6
0 1 159 6

f x x
f x f x

x x
,x )

)x )x . .
2 3x, 3 2f x) x

3 2x
0 26253 0 83059

0..
.

2
0 02 8. 4 30

f x x
f x x f x

x x
,x , )x

,x (f , )x .
1

2 3x, 1 2, x

3 1x
2 8403

2 3, x 0 100 15906
0 8

0.
.

.0.4 9992

Putting these values in equation (5.59), we have

     x0  3 4915925. .4915925  
EXAMPLE 5.41

The equation x x3 15  4x15 0 has a root close to 0.3. Obtain this root with six decimal places using 
inverse interpolation (for example, with Bessel’s interpolation formula).
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Solution. Taking h to be 0.02, we tabulate the values as below:

x f(x) d d2 d3 d4

x−2 0.22 0.710648
−0.296824

x−1 0.24 0.413824 0.000576
−0.296248 0.000048

x0 0.26 0.117576 0.000624 0
−0.295624 0.000048

x1 0.28 −0.178048 0.000672 0
−0.294952 0.000048

x2 0.30 −0.47300 0.000720 0

−0.294232 0.000048
x3 0.32 −0.767232 0.000768 0

−0.293464 0.000048
x4 0.34 −1.060696 0.000816 0

−0.292648 0.000048
x5 0.36 −1.353344 0.000864

−0.291784
x6 0.38 −1.645128

It is visible from the table that the root lies between 0.26 and 0.28. Therefore, we take 0.26 to be x0. 
The  Bessel’s formula reads as

     
f f p f p p f f

p p

pff f0 1ff p ffff
2

2
0ff

2
1ff

22

1
2

f
f2 ff 2( )p 1

!

( )

!

p
f

3
3

1ff
2

3 K

where p
x x

h
0 . Using first order difference, we get the first approximation p1 from the equation

0 0 1
2

f p00 f1ff

which yields

p
f
f1
0ff

1ff
2

0 117576
0 295624

0 39772
f

.

.
. .39772

This value is inserted in d 2f  terms and p2 is obtained from the equation

0
4 2

0

0 2 1
2

1
2

1
2

0
2

11f p00 f1

p p1 f f0
2

1f
2 22 f00

  .117576 55 29562422p ( . ) . ( . )0 001296
4

23915

and so

p2

0 117576 0 00007755
0 295624

0 397460 117576. .117576 0117576
.

.39746

Inserting the value of p2 in d 3y term, we have the next approximation p3 given by
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0
4

0012960 3 1
2

2
2

2

2
2

2 2

f p00 f1

p p2

p p2 pp

f ( .0 )

)2( )2p p2

11
2

3
0000

!
( .0 )48

which yields
p3 397530. .

Thus,
x x phx0 0 0 0 0 00 0. .0 . .0 .3975(0.02) 796 26779577 0.

EXERCISES

1. Evaluate 
(i) cos 22 x22   (ii) n

x
1 .

Ans. (i)   4 sin cos ( + 2 )2 h x cos (22

(ii) ( ) !
( )( ) ( ))()(

n n
x( ) (K

2. Show that  +  = .

3. Show that 3 y y y y yi iy i iy i3y3 +y 3+3 +1y3y .

4. Find the function whose first difference is 9  + 11  + 5.x9  9 + 1112

 Ans. 3  +  + x x3  3 + x k + 3 2+
5. Find the missing values in the following data:

x 45 50 55 60 65

y 3.0 – 2.0 – −2.4
Ans. f f (60) = 0.225

6. Express 3 4 + 6 2 +1x x44 x i+ 2 xii4 34 2  as a factorial polynomial and find fourth order difference
Ans. 3[ ] +14[ ] +15[ ] + 7[ ]+1, = 724 3+14[ ] 2 4+ 7[ ]+1x x[[ ] +14[[ x x[[ ] + 7[[ y  

7. Form a difference table to fourth differences

x 1 2 3 4 5 6 7 8
f x 7.93 10.05 12.66 15.79 19.47 23.73 28.60 34.11

Repeat the procedure for the same table when f5ff = 19.47 + , where ∈ represents an error. How 
many n

xfx are affected?

8. If f (x) is a cubic polynomial, use the difference table to locate and correct the error in the data:

x 0 1 2 3 4 5 6 7

f (x) 25 21 18 18 27 45 76 123

Ans. f (3) is in error, true value is 19 
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9. If f (x) is a polynomial of degree 4, locate and correct the error in the table

x 1 2 3 4 5 6 7 8

y 3010 3424 3802 4105 4472 4771 5051 5315

10. The function y is given in the table below:

x 20 24 28 32

y 2854 3162 3544 3992

 Find y for x = 25 using Bessel’s interpolation formula.
Ans. 3250.875 approx. 

11. Evaluate f (3.75) from the table

x 2.5 3.0 3.5 4.0 4.5 5.0
y 24.145 22.043 20.225 18.644 17.262 16.047

(Hint: Use Gauss’s forward formula).
Ans. 19.40746093

12. Use Stirling’s interpolation formula to find f (35) from the table

x 20 30 40 50
y 512 439 346 243

Ans. 395
13. Using Newton’s divided difference formula find f (x) as a polynomial in x for the table:

x 0 1 2 4 5 6
y 1 14 15 5 6 19

Ans. x x3 29  xx2 + 21xx + 1

14. Let f x x x)xx  =xx 4xx3 . Construct the divided difference table based on the nodes x x0 x1 2xx 61 5x, ,x 2x1 2
and find the Newton’s polynomial P3(x) based on x0, x1, x2, x3.

Ans. P x x x x3PP ( )xx  =3+3(x 1)+6( 1x )(x 2)+(x 1)( 2x )(x)(x 3)x xx xx
15. Using Lagrange’s interpolation formula, find the value of t for A = 85 using the table

t 2 5 8 14

A 94.8 87.9 81.3 68.7

Ans. 6.5928

16. Use Lagrange’s interpolation formula to find the value of y for x = 10  using the table given 
below:

x 5 6 9 11
y 12 13 14 16

Ans. 14.3 
17. Find the Lagrange’s interpolating polynomial for (1, −3), (3, 9), (4, 30), and (6, 132).

Ans. x3 23 +x3 +x2x 5 6xx
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Let p(x) be an interpolation polynomial approximating satisfactorily a given function f (x) over a certain 
interval I. We may hope that the result of differentiating p(x) will also satisfactorily approximate the 
corresponding derivative of f (x). However, if we observe a curve representing the polynomial approxi-
mating and oscillating about the curve representing f (x), we may anticipate the fact that even though 
the deviation between p(x) and f (x) be small throughout the interval, still the slope of the two curves 
representing them may differ quite appreciably. Also it is seen that the round-off errors of alternat-
ing sign in consecutive ordinates could affect the calculation of the derivative quite strongly if those 
ordinates were fairly closed spaced. That is why, numerical differentiation is considered the weakest 
concept in the subject of numerical analysis.

6.1 CENTERED FORMULA OF ORDER O h( )2

Let f be a function defined in [a,b]. The derivative of f is defined by

     f x f x h f x
hh

( ) ( ) ( )lim
0

.

Suppose further that f has continuous derivatives of order 1, 2, and 3 and that x h x x h a b, , ,[ ] . 
Then, by Taylor’s expansion, we have

     
f x h f x hf x h f x h f c( ) ( ) ( )

2!
( )

3!
(

2 3

+ 11)  (6.1)

and

     
f x h f x hf x h f x h f c( ) ( ) ( )

2!
( )

3!
(

2 3

2 )).  (6.2)

Subtracting equation (6.2) from equation (6.1), we get

f x h f x h hf x h f c f ( ) ( ) 2 ( )
3!

[ ( )
3

1 + (( )].2c

Since f x( ) is continuous, by intermediate value theorem, there exits a value c such that

f c f c
f c

( ) ( )
( )1 2

2
.

Therefore,

f x h f x h hf x
h

f ( ) ( ) 2 ( ) 2 [3

3!
( )]c

6 Numerical Differentiation
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and so

     

f x f x h f x h
h

f c h( ) ( ) ( )
2

( )
!

( ) (

2

3
f x h f x h

h
E f h) ( , )

2 trunc

 

(6.3)

where

E f h h f c O htrunc ( , ) ( ) ( )
2

2

6

is called truncation error. Expression (6.3) for the derivative of f is called the centered formula of order 
O h( )2 .

If the third derivative f c( ) does not change too rapidly, that is, f c( )  is bounded, then the trun-
cation error in equation (6.3) tends to zero along with h2 .

6.2 CENTERED FORMULA OF ORDER O h( )4

It is not desirable to choose h too small when computer is used for calculation of derivative. For this 
reason, a formula for approximating f x( ) and having a truncation error term of order O h( )4  is used.

Suppose f has continuous derivatives of order 1, 2, 3, 4, 5 and x − 2h, x − h, x, x + h, x + 2h be the 
points in (a, b). Then, by fifth degree Taylor’s expansion, we have

     
f x h f x h hf x f x h f c
( ) ( ) 2 ( 2 ( )

3!
(3 (v)

)
2 1))

5!

5h
.  (6.4)

If we use step size 2h instead of h, then

    
f x h f x h hf x f x h f
( ) ( ) ( ) ( )

!
2 2 4 16

3
643 (v)) ( )

!
.

c h2
5

5
 (6.5)

Multiplying both sides of equation (6.4) by 8 and subtracting equation (6.5) from it, we get

f x h f x h f x h f x h hf x( ) ( ) ( ) ( ) ( )2 8 8 2 12
166 64

120
1 2

5f c f c h(v) (v)( ) ( )
.

If the sign and magnitude of f xv( ) ( )  does not change rapidly, we can find a value c in [x − 2h, x + 2h] 
so that

16 ( ) 64 ( ) 48 ( )(v)
1

(v)
2

(v)f c f c f c

and so

f x f x h f x h f x h f x h
h

f( ) ( ) ( ) ( ) ( )2 8 8 2
12

((v)
4( )

30
( ) 8 ( ) 8 ( ) (

c h

f x h f x h f x h f x h2 2 ))
12

( )trunch
E f h, ,

where

E f h f c h O htrunc

(v)
4 4) ( )

30
( )( ,

is the truncation error.
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EXAMPLE 6.1
Approximate the derivative of f x x( ) sin  at x 0.50  by

(i) centered formula of order O h( )2

(ii) centered formula of order O h( )4

and determine which of the two yields a better approximation.
Solution. (i) Using centered formula of order O h( )2

 and taking spacing h = 0.01, we get

f f f( ) (0.51) (0.49)
2(0.01)

0.488177 0.0 50. 4470626
0.02

0.87755.

 (ii) Using centered formula of order O h( ),4  we have

f f f f f(0.50) (0.52) 8 (0.51) 8 (0.49) (0.48)
00 12.

0496880 + 3.905418 3.765007 + 0.4617779
0.12

 0.877583.

Since f x x( ) cos ,  we have
f (0.50) 0.877582.

Hence, formula of O h( )4  yields better result.

6.3 ERROR ANALYSIS

(A) Error for Centered Formula of Order O h( )2

Suppose f x h( )0 and f x h( )0 are approximated by y 1 and y1, and e 1 and e1 are the associated round-
off errors, respectively. Then

f x
y y

h
E f h( )

2
( )0

1 1 , ,

where the total error E f h( ), is given by
E f h e f h E f h

e e
h

h

( ) ( ) ( )

2 6

round trunc

1 1
2

, , ,

f c( ).

If e 1 and e1 and M f x
x a b
max ( ) ,

[ , ]
then

     
E f h

h
Mh Mh

h
( , ) .

2 3

6
6

6  
(6.6)

The derivative of equation (6.6) is

h Mh Mh
h

(3 ) 6 )2 3

2

( .

Equating this derivative to zero, we get 2 63Mh and so the value of h that minimizes the right-hand 
side of equation (6.6) is
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h
M
3

1
3

.

(B) Error for Centered Formula of OrderO h( )4

If f x kh y ek k( )0 ,  then

f x
y y y y

h
E f h( )

8 8
12

( )0
2 1 1 2 , ,

where

E( )
12 30

( ).2 1 1 2
4

(v)f h
e e e e

h
h f c,

If ek and M f x
x a b
max ( )

[ ]

(v)

,
,  then

     
E f h

h
Mh( ) 3

2 30

4

,
 

(6.7)

and the value of h that minimizes the right-hand side of equation (6.7) is h
M

45
4

1
5

.

6.4 RICHARDSON’S EXTRAPOLATION
The method of obtaining a formula for f x( )0 of higher order from a formula of lower order is called 
 Richardson’s extrapolation.

Let D h0 ( ) and D h0 2( ) denote the approximations to f x( )0 obtained from centered formula of 
order O h( )2 with step size h and 2h, respectively. Then

     f x D h ch( ) ( ) 2
0 0  (6.8)

and

           f x D h ch( )0 0
22 4( ) .  (6.9)

Multiplying equation (6.8) by 4 and subtracting equation (6.9) from the product, we get

3 4 2

4
2 4

0 0 0

1 1 2 2

f x D h D h
f f

h
f f

h

( ) ( ) ( )

and so

    

f x
D h D h

f f f f
h

( )
( ) ( )

0
0 0

2 1 1 2

4 2
3

8 8
12

,

which is nothing but centered formula of order O h( ).4

Similarly, if D h1( ) and D h1 2( ) denote the approximation to f x( ),0  obtained from centered for-
mula of order O h( )4 with step size h and 2h, respectively, then
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f x
f f f f

h
h f c

D

( ) ( )

(

0
2 1 1 2

4

1

1

8 8
12 30

(v)

hh ch) 4

 

(6.10)

and

       

f x
f f f f

h
h f c

D

( ) ( )0
4 2 2 4

4

2

8 8
12

16
30

(v)

11
42 16( ) .h ch  

(6.11)

Multiplying equation (6.10) by 16 and subtracting equation (6.11) from the product, we get

f x
D h D h

( )
( ) ( )

.0
1 116 2

15

In general, if two approximations of order O h k( )2 for f x( )0 are D hk 1( ) and D hk 1 2( ) and if

f x D h c h c hk
k k( ) ( )0 1 1

2
2

2 2 K

and
f x D h c h c hk

k k k k( ) ( ) ,0 1 1
2 1

2
2 22 4 4 K

then an improved approximation is of the form

f x D h O h

D h D h
k

k

k
k k

k

( ) ( ) ( )

( ) ( )
0

2 2

1 14 2
4 11

2 2O h k( ).

This result is known as Richardson’s extrapolation.

EXAMPLE 6.2
The voltage E t( )  in an electrical circuit obeys the equation

E t L I
t

RI t( ) ( ),d
d

where L is the inductance and R is the resistance. If L = 0.05, R = 2 and I(t) at time t is given by the table

t: 1.0 1.1 1.2 1.3 1.4
I(t): 8.2277 7.2428 5.9908 4.5260 2.9122

Find I ( . )1 2 by numerical differentiation and compute E(1.2).

Solution. Using centered formula of order O h( ),2  we have

I I x h I x h
h

( . ) ( ) ( ) . .
( . )

1 2
2

4 5260 7 2428
2 0 1

13 5840.

and then
E( . ) . ( . ) ( . )

. .
1 2 0 05 13 5840 2 5 9908

0 6792 11 99816 11 3024. .
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If we use centered formula of order O h( ),4  then

I I x h I x h I x h I x h
h

( . ) ( ) ( ) ( ) ( )1 2 2 8 8 2
12

2 9122 8 4 5260 8 7 2428 8 2277
12 0 1

. ( . ) ( . ) .
( . )

2 9122 36 2080 57 9424 8 2277
1 2

60 854

. . . .
.

. 66 49 4357
1 2

13 6824.
.

.

and so
E( . ) . ( . ) ( . )

. .
1 2 0 05 13 6824 2 5 9908

0 6841 11 99816 11 2975. .

EXAMPLE 6.3
Find I ( . )1 2 in the Example 6.2 using Richardson’s extrapolation.

Solution. We have

D h I x h I x h
h

I I
0 2

1 3 1 1
2 0 1

4

( ) ( ) ( ) ( . ) ( . )
( . )

.. .
.

.

( ) ( ) (

5260 7 2428
0 2

13 5840

2 2
0D h I x h I x 2

4
1 4 1 0

0 4
2 9122 8 227

0 4
1

h
h

I I) ( . ) ( . )
.

. .
.

33 28875. .

Therefore,

I
D h D h

( . )
( ) ( )

( . ) .

1 2
4 2

3
4 13 5840 13 28875

0 0

33
54 3360 13 28875

3
13 6824. . . .

We observe that this value is exactly that we found by centered formula of order O h( ).4

EXAMPLE 6.4
From the following table, find f ( . ).1 4

x: 1.2 1.3 1.4 1.5 1.6
f(x): 1.5095 1.6984 1.9043 2.1293 2.3756

Solution. Using centered formula of order ( )h4  and proceeding as in Example 6.2, we have
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f f x h f x h f x h f x h
h

( . ) ( ) ( ) ( ) ( )1 4 2 8 8 2
12

2 3756 8 2 1293 8 1 6984 1 5095
12 0 1

. ( . ) ( . ) .
( . )

2 3756 17 0344 13 5872 1 5095
1 2

2 1509. . . .
.

. .

6.5 CENTRAL DIFFERENCE FORMULA OF ORDER O h( )4  FOR f x( )
By Taylor’s expansion

     

f x h f x hf x h f x h f x h( ) ( ) ( )
!

( )
!

( )
2 3

2 3

44

4
f x(iv) ( )

!
K

 
(6.12)

and

     
f x h f x hf x h f x h f x h( ) ( ) ( )

!
( )

!
( )

2 3

2 3

44

4!
( ) .f x(iv) K

 
(6.13)

Adding equations (6.12) and (6.13), we have

f x h f x h f x h f x h f x( ) ( ) ( )
!

( )
!

( )( )2 2
2

2
4

2 4
iv K,,

which yields

f x f x h f x f x h
h

h f x( ) ( ) ( ) ( ) ( )( )2 2
242

2
iv KK.

Truncating at the fourth derivative, we get

f x f x h f x f x h
h

h f c( ) ( ) ( ) ( ) ( )2
122

2
(iv)

and hence the desired formula is

     
f x

f f f
h

( ) .0
1 0 1

2

2

 
(6.14)

Let f y ek k k , where ek  is the error in computing. Then the total error in equation (6.14) is

E f h
e e e

h
h f c( , ) ( ).1 0 1

2

22
12

(iv)

If ek and f c M( ) ( ) ,iv then

E f h
h

Mh( , ) .4
122

2

Differentiating the right-hand side and equating the differential to zero gives

h
M

48
1

4

for minimum error.
The central difference formulae of order O h( )2  for f x( )0 and f x(iv) ( )0 are, respectively,
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f x
f f f f

h
( ) ,0

2 1 1 2
3

2 2
2

     
f x

f f f f f
h

(iv) ( ) .0
2 1 0 1 2

4

4 6 4

On the other hand, central difference formulae of order O h( )4  for f x( ),0  f x( ),0  and f x(iv) ( )0 are, 
 respectively,

f x
f f f f f

h
( ) ,0

2 1 0 1 2
2

16 30 16
12

  
f x

f f f f f f
h

( ) ,0
3 2 1 1 2 3

3

8 13 13 8
8

      
f x

f f f f f f f(iv) ( )0
3 2 1 0 1 212 39 56 39 12 33

46h
.

6.6 GENERAL METHOD FOR DERIVING DIFFERENTIATION FORMULAE
Suppose the function f is analytic and tabulated at equidistant points. We know that

e E IhD .
Therefore,

hD Ilog( )
2 3 4

2 3 4
K

and so

D
h
1

2 3 4

2 3 4

K .

Hence,

     

f x
h

f x f x f x f x( ) ( ) ( ) ( ) ( )1
2 3 4

2 3 4

K .
 

(6.15)

To find second derivative, we have
h D E2 2 2 2

2 3 4

1

2 3 4

(log ) (log( ))

K
2

and so

D
h

2
2

2 3 4 2
1

2 3 4
K .

Hence,

     
f x

h
f x( ) ( ).1

2 3 42

2 3 4 2

K
 

(6.16)
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In terms of central differences, we know that

U hD 2
2

1sinh .

If we put f x x( ) sinh ,1  then

f x x x x( ) ( ) ,1 1 1
2

3
8

2
1

2 2 4 K

which on integration yields

f x x x x( ) .
3

5

6
3

40
K

Thus,

f
2 2 2 48

3
1280

1
3

5sinh K

and so

     
hD

3
5 7

24
3

640
5

7168
K.  (6.17)

Hence,

D
h
1

24
3

640
5

7168

3
5

3 K

and we have

     

f x
h

f x f x f x f( ) ( ) ( ) ( ) (1
24

3
640

5
7168

3
5 7 xx) .K

 
(6.18)

Squaring equation (6.17), we have

h D2 2 2 4 61
12

1
90

K

or

D
h

2
2

2 4 61 1
12

1
90

K

and so we have

     

f x
h

f x f x f x( ) ( ) ( ) ( )1 1
12

1
90

1
5602

2 4 6 8 ff x( ) .K

 
(6.19)

The above derived formulae (6.15), (6.16), (6.18), and (6.19) yield derivatives at the nodes. We now 
seek derivatives at interior points. Let x x ph0 .  Then dx = hdp. Therefore,
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d
d

d
d

f
x

f
h p

.

Newton’s forward difference formula states that

f f p f p p f p p fp 0 0
2

0
3

0

1
2

1
3

( )
!

( )
!

Therefore,

     

d
d

d
d

f
x

f
h p h

f p f p p fp p 1 2 1
2

3 6 2
30

2
0

2
3

! ! 00 K .
 

(6.20)

Usually, we are interested in the derivative at a tabular point x0 or at a mid-interval x1 2. These are 

obtained by putting p = 0 and 1
2

, respectively. Thus, we get

     

f
h

f f f0 0
2

0
3

0

1 1
2

1
3

K
 

(6.21)

and

     

f
h

f f1 2 0
3

0

1 1
12/ .K

 
(6.22)

When the point is midway the table, then we use central differences formulae. For example, if we take 
 Bessel’s formula

f f p f p p f f
p p

p 0 1 2

2
0

2
11

2 2

1
2

/

( )
!

( )

! /

p
f

1

3
3

1 2 K

then

     

d
d

d
d

f
x

f
h p h

f p f fp p 1 2 1
2 2

3
1 2

2
0

2
1/ ( ) !

( )
pp p

f
2

3
1 2

3 1
2

3! / K . (6.23)

If we put p = 0, then x = x0 and we have

     
f

h
f f f f0 1 2

2
0

2
1

3
1 2

1 1
4

1
12/ /( ) K .

 
(6.24)

If we put p 1
2

, the coefficients of even differences become zero and we have

     
f

h
f f f1 2 1 2

3
1 2

5
1 2

1 1
24

3
640/ / / / K . (6.25)

If we use Everett’s formula, then we have

f p f p p p f pf p p p
p ( ) ( )( )

!
( )(1 1 2

3
1

0
2

0 1L
2

3
2

1

)
!

f L
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Therefore,

     
f

h
f f p f p p fp

1 3 1
3

3 6 2
31 0

2
2

1

2
2

0! !
K .

 
(6.26)

Similarly, Stirling’s formula reads that

f f p f p f p p p f p
p 0 0

2
2

0
3

0

2

2
1 1

3
( ) ( )

!
L

(( )( )
( ) !

.p p f1 1
4 3

4
0 L

Therefore,

     

f
h

f p f p f p p fp

1 3 1
6

4 2
240

2
0

2
3

0

3
4

0 K . (6.27)

Putting p = 0, we get

     

f
h

f f f

h
f

0 0
3

0
5

0

1

1 1
6

1
30

1
2

K

( ff f f f f1
2

1
2

1
4

1
4

1

1
6

1
30

) ( ) ( ) K .
 

(6.28)

Also,

     
f

h
f p f p fp

1 1
122

2
0

3
0

2
4

0 K
 

(6.29)

Putting p = 0, we have

     
f

h
f f f0 2

2
0

4
0

6
0

1 1
12

1
90

K .
 

(6.30)

From equation (6.30), we have

h D2 2 2 2 41 1
12

1
90

K

or

2 2
2

4

1

2

2
2

1
12

1
90

1
12

1
240

h D

h

K

4 2K D

and so

2
0

2
0

2
0

4
0

1
12

1
240

f h f f f" ,K

which expresses the second difference of f in terms of second and higher differences of f ″.

EXAMPLE 6.5
The function y = sin x is tabulated below. Find the derivative at the point x = 1.
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x: 0.7 0.8 0.9 1.0 1.1 1.2 1.3
y: 0.644218 0.717356 0.783327 0.841471 0.891207 0.932039 0.963558

Solution. The difference table for the given data is

x y d d 2 d 3 d 4

0.7 0.644218
0.073138

0.8 0.717356 −0.007167
0.065971 −0.00660

0.9 0.783327 −0.007827 0.000079
0.058144 −0.00581

1.0 0.841471 −0.008408 0.000085
0.049736 −0.00496

1.1 0.891207 −0.008904 0.000087
0.040832 −0.00409

1.2 0.932039 −0.009313
0.031519

1.3 0.963558

Since x =1 is tabulated argument, we have p = 0 and it will be better to use Stirling’s formula. Using

f
h

f f f

h
f

p

1 1
6

1
30

1
2

0
3

0
5

0

1
2

K

f f f f1
2

3
1
2

3
1
2

5
1
2

1
6

1
30

5
1
2

1 1

1
2

1
6

f

h
f f

...

( ) ( 22
1

2
1

4
1

4
1

1
30

1
0 2

f f f f) ( ) ...

.
(00.891207 0.783327) 1

6
(0.008904 0.007827) +  1

30
(0.000087 0.000079)

= [0.107881
0 2.

00 0.0001795 + 0.0000003] = 0.538504.

The tabulated value of cos 1 is 0.540302. Thus, the computed value of the derivative is in good agree-
ment with the tabulated value.

EXAMPLE 6.6
The function y = f (x) has a minimum in the interval 0.2 < x < 1.4. Find the x coordinate of the minimum 
point.

x: 0.2 0.4 0.6 0.8 1.0 1.2 1.4
y = f (x): 2.10022 1.98730 1.90940 1.86672 1.85937 1.88737 1.95063
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Solution.

x y d d 2 d 3 d 4 d 5

0.2 2.10022
−0.11292

0.4 1.98730 0.03502
−0.07790 0.00020

0.6 1.90940 0.03522 −0.00009
−0.04268 0.00011 0

0.8 1.86672 0.03533 −0.00009
−0.00735 0.00002 −0.00002

1.0 1.85937 0.03535 −0.00011
0.02800 −0.00009

1.2 1.88737 0.03526
0.06326

1.4 1.95063

Taking x0 = 0.80, we shall use Everett’s formula

f p f p p p f pf p p p
p ( ) ( )( )

!
( ) (1 1 2

3
1

0
2

0 1K
2

3
2

1

)
!

f K

and obtain

f
h

f f p f p p fp

1 3 1
3

3 6 2
31 0

2
2

1

2
2

0! !
K

1 0 00735 3 1
3

0 03535 3 6 2
3

2 2

h
p p p.

!
( . )

!
(( . )

[

0 03533

1
6

2

K

h
p0.00735 0.03535 (3 1 6 )3 22p p ]

since 0.03533 ≈ 0.03535. Now for minimum, f p 0  and so we get

0.00735 0.03535
6

 (6 3) 0,p

which yields

p 0 025025
0 03535

0 707921.
.

. .

Therefore,
x x ph0 0.80 (0.707921)(0.2)

0.80 0.1415842 0.9416. 

EXAMPLE 6.7
y is a function of x satisfying the differential equation xy ay x b y( ) 0, where a and b are known 
to be integers. Find the constants a and b from the table below:

x: 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
y: 1.73036 1.95532 2.19756 2.45693 2.73309 3.02549 3.33334 3.65563
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Solution.
x y d d 2 d 3 d 4

0.8 1.73036
0.22496

1.0 1.95532 0.01728
0.24224 −0.00015

1.2 2.19756 0.01713 −0.00019
0.25937 −0.00034

1.4 2.45693 0.01679 −0.00021
0.27616 −0.00055

1.6 2.73309 0.01624 −0.00024
0.29240 −0.00079

1.8 3.02549 0.01545 −0.00022
0.30785 −0.00101

2.0 3.33334 0.01444
0.32229

2.2 3.65563

We have to find two constants a and b and so we require two equations. So, we evaluate y′ and y′′ at 
two points say 1.4 and 1.6. Thus, p = 0 in this case and the formula to be used will be that derived from 
Stirling’s formula. We have

y
h

y y y y y yp

1
2

1
6

1
301 1

2
1

2
1

4
1

4
1( ) ( )) K

and

y
h

y y yp

1 1
12

1
902

2
0

4
0

6
0 K .

Thus,

y (1.4)   1  
0.4

(2.73309 2.19756) (0.01621
6

44 0.01713) 1
30

( 0.00024 0.00019)

1

L

00.4
[0.53553 0.000148 0.000002]

1.33919,

y (1.4)   1  
0.04

(0.01679 1
12

( 0.00021) 0 419325. ,

y (1.6)   1  
0.4

(3.02549 2.456693) (0.01545 0.01679)+ 1
30

( 0.00022 + 01
6

..00021)

  1  
0.4

[0.56856 0.00022 0.00000003] 1.42195,

y ( . )
.

. (1 6 1
0 04

0 01624 1
12

0 00024. ) 0.4065.

Thus, we have two equations
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(1.4)(0.419325) (1.33919) (1.4 )(2.45693)a b 0
(1.6)(0.40650) (1.42195) (1.6 )(2.7330a b 99) 0

or
1.33919 2.45693 4.026757
1.42195 2.73309

a b
a bb 5.02 3344.

We shall use Cramer’s rule to find a and b. We have

3.6601268 3.493632 0.1664948
11.0054891 112.34200 1.336515

1.0013652

and so

a 1 8.0273 
 
and

 
b 2 6.0143.

The true values of a and b are 8 and 6, respectively. 

EXAMPLE 6.8
A function y  =  f (x) is given in the table below. The function is a solution of the equation 
x y xy x n y2 2 2 ( ) 0, where n is a positive integer. Find n.

x: 85 85.01 85.02 85.03 85.04
y: 0.0353878892 0.0346198696 0.033849002 0.0330753467 0.032298975

Solution. The difference table for the given data is

x y 2 3 4

85.0 0.0353878892
−0.0007680196

85.01 0.0346198696 −0.0000028498
−0.0007708694 0.0000000657

85.02 0.0338490002 −0.0000027841
2

109

−0.0007736535 −0.0000027182 0.0000000659
85.03 0.0330753467 −0.0000027182

−0.0007763717
85.04 0.0322989750

Differentiating Stirling’s formula, the value of f  ′ at p = 0 and the value of f  ″ at p = 0 are

f
h

f f f f f0 1 1
2

1
2

1
4

1
41

2
1
6

1
30

 ( ) ( ) ( ff

f
h

f f

1

0 2
2

0
4

0

1 1
12

)

  

K

K ..

We calculate y0 and y0  at x = 85.02. We have
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y0

1
0 02

0 0330753467 0 0346198676 1
6.

. . {( 0.00000027182) 0.0000028498}

[ 0.001544

L

1
0 02.

55229 0.0000002193] 0.077227,

y0
21

0 001.
ff f0

4
0

1
12

0.02784116.

Putting these values in x y xy x n y2 2 2( ) 0, we have

0.033849002 201.238667136 6.56583954 2242n ..6741116.

Thus, n2 = 1089.23 and so n ≈ ±33.003. Hence, n = 33 is the required value.

EXAMPLE 6.9
Given that

x: 1.0 1.1 1.2 1.3 1.4 1.5
y: 7.989 8.403 8.781 9.129 9.451 9.750

Find d
d

and d
d

y
x

y
x

2

2  at x = 1.6.

Solution. Differentiating Newton’s backward formula, we get

d
d
y
x h

y y y
x x

n n n

n

1 1
2

1
3

2 3 K

and
d
d

2

2 2
2 3 41 11

12
y

x h
y y y

x x
n n n

n

L .

The difference table is

x y

1.0 7.989
0.414

−0.036
1.1 8.403 0.006

0.378
−0.030 −0.002

1.2 8.781 0.004 0.001
0.348

−0.001 0.002
−0.026

1.3 9.129 0.003 0.003
0.322

−0.023 0.002
1.4 9.451
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x y

0.299 0.005
−0.018

1.5 9.750
0.281

1.6 10.031

Therefore, for the given spacing h = 0.1, we have

d
d
y
x x 1 6

1
0 1

0 281 1
2

0 018 1
3

0 0
. .

. ( . ) ( . 005 1
4

0 002 2 7416) ( . ) . .

and
d
d

2

2
1 6

1
0 01

0 018 0 005 11
12

0y
x x .

.
. . ( .002 1 117) . .

6.7 DIFFERENTIATION OF A FUNCTION TABULATED
IN UNEQUAL INTERVALS

Let f be a function continuously differentiable in the interval [c,d ]. If x x xn0 1, , ,K  are distinct points in 
[c,d ], then

     f x P x f x x x x xn n n( ) ( ) + [ , , , , ] ( ),0 1 L  (6.31)

where Pn(x) is a polynomial of degree ≤ n which interpolates f (x) at x0, x1,..., xn, and

n i
i

n

x x x( ) ( ).
0

Also,
d
d

[ , , , , ] = [ , , , , , 0 1 0 1x
f x x x x f x x x xn nK K xx].

Therefore, differentiating equation (6.31), we get

f x P x f x x x x x x f x xp n n( ) ( ) [ , , , , , ] ( ) [ ,0 1 0 1K ,, , , ] ( ).K x x xn n

Thus, if a∈[c,d], then

f a P a f x x x a a a f x xn n n( ) ( ) [ , , , , , ] ( ) [ ,0 1 0 1K ,, , , ] ( )K x a an n

and so if we approximate f  ″(a) by P an ( ), the error in the approximation is

E f f x x x a a a f x x x an n n( ) [ , , , , , ] ( ) [ , , , , ]0 1 0 1K K n
n

n
n

n

a

f a
n

f a

( )

( ) ( )
( )!

( ) (( ) ( )2 1

2
))

( )!n 1
for some ξ, η ∈ [c,d].

In light of the above discussion, we can derive derivative formulae differentiating Lagrange’s 
 polynomial.
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6.8 DIFFERENTIATION OF LAGRANGE’S POLYNOMIAL
Consider the Lagrange’s interpolation polynomial for f(x) based on three points x0 , x1 , and x2. We have

f x f
x x x x

x x x x
f

x x
( )

( )( )
( )( )

( )(
0

1 2

0 1 0 2
1

0 xx x
x x x x

f
x x x x

x x
2

1 0 1 2
2

0 1

2 0

)
( )( )

( )( )
( )(xx x2 1)

.

Differentiating, we get

f x f
x x x x
x x x x

f
x x

( )
( ) ( )
( )( )

(
0 0

1 2

0 1 0 2
1

00 2

1 0 1 2
2

0 1

2

) ( )
( )( )

( ) ( )
(

x x
x x x x

f
x x x x
x x x x0 2 1)( )

and so

f x f
x x x x
x x x x

f
x

( )
( ) ( )
( )( )

(
0 0

0 1 0 2

0 1 0 2
1

00 0 0 2

1 0 1 2
2

0 0 0x x x
x x x x

f
x x x) ( )

( )( )
( ) ( xx

x x x x
1

2 0 2 1

)
( )( )

.

But x1 − x0 = h, x2 − x0 = 2h. Therefore,

     

f x f h h
h h

f h
h h

( ) ( ) ( )
( )( )

( )
( )( )0 0 1

2
2

2 f h
h h

f
h

h f h
h

f

2

0
2 1 2 2

2

2
3 2

( )
( )( )

( ) ( 1
2

3 4
2

0 1 2

)
h

f f f
h  (6.32)

which is first order differential formula.
If we consider Lagrange’s interpolation polynomial for f (x) based on four points x0, x1, x2, and x3, then

f x f
x x x x x x

x x x x x
( )

( )( )( )
( )( )(0

1 2 3

0 1 0 2 0 xx
f

x x x x x x
x x x x x3

1
0 2 3

1 0 1 2 1)
( )( )( )

( )( )( xx

f
x x x x x x

x x x x x

3

2
0 1 3

2 0 2 1 2

)
( )( )( )

( )( )( xx
f

x x x x x x
x x x x x3

3
0 1 2

3 0 3 1 3)
( )( )( )

( )( )( xx2 )
.

Differentiating twice, we get

f x f
x x x x x x
x x x

( )
[( ) ( ) ( )]
( )(0

1 2 3

0 1 0

2
xx x x

f
x x x x x x
x x2 0 3

1
0 2 3

1 0

2
)( )

[( ) ( ) ( )]
( ))( )( )

[( ) ( ) ( )]
(

x x x x

f
x x x x x x

1 2 1 3

2
0 1 32

xx x x x x x
f

x x x x x

2 0 2 1 2 3
3

0 12
)( )( )

[( ) ( ) ( xx
x x x x x x

2

3 0 3 1 3 2

)]
( )( )( )

.

Putting x x0 and taking x x i j hi j ( ) , we get

  

0 0 1 2

3

0 1 2 33 3 3 3

0 1

2[( ) ( 2 ) ( 3 )] 2[0 ( 2 ) ( 3 )] 2[0 ( ) ( 3 )]( )
( )( 2 )( 3 ) ( )( 2 ) (2 ) ( )

2[0 ( ) ( 2 )]
(3 )(2 )

12 10 8 6
6 2 2 6

2 5 4

h h h h h h h
f x f f f

h h h h h h h h h

h h
f

h h h

h h h h
f f f f

h h h h
f f

− + − + − + − + − + − + −
≈ + +′′

− − − − − −
+ − + −

+

− − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠− −
− +

= 2 3
2

f f

h

−

 

(6.33)

which is second order derivative formula.
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EXAMPLE 6.10
Find the approximations to f  ′(xn) of order O h( )2 at x = 0 and x = 0.1 in the following table:

x: 0.0 0.1 0.2 0.3
f(x): 0.989992 0.999135 0.998295 0.987480

Solution. Using first order differential formula (6.32), we have

f ( ) ( . ) ( . ) .
( .

0 3 0 989992 4 0 999135 0 998295
2 0 11

2 969976 3 99654 0 998295
0 2

3 99654 3

)
. . .

.
. ..

.
.

.
968271

0 2
0 028269

0 2
0.141345

and

f ( . ) ( . ) ( . ) .
.

0 1 3 0 999135 4 0 998295 0 987480
0 22

2 997405 3 99318 0 987480
0 2

0 041475

. . .
.

.

. .

6.9 DIFFERENTIATION OF NEWTON POLYNOMIAL
Consider the Newton polynomial P(x) based on the three nodes x0, x1, and x2. We have

     P x a a x x a x x x x( ) ( ) ( )( ),0 1 0 2 0 1  (6.34)

where

a f x a
f x f x

x x0 0 1
1 0

1 0

( ),
( ) ( )

,

a

f x f x
x x

f x f x
x x

x x2

2 1

2 1

1 0

1 0

2 0

( ) ( ) ( ) ( )

.

Differentiating equation (6.34) with respect to x, we get

     P x a a x x x x( ) [( ) ( )]1 2 0 1
 (6.35)

and so

P x a a x x( ) ( ).1 2 0 10

Thus,

     f x P x a a x x( )0 0( ) ( ).1 2 0 1  (6.36)
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If we set x0 = x, x1 = x + h, and x2 = x0 + 2h, then

a
f x f x

x x
f x h f x

h

a

f x f x

1
1

1

2

2

( ) ( ) ( ) ( ) ,

( ) ( 11

2 1

1

1

2

2

) ( ) ( )

( ) ( )

x x
f x f x

x x
x x

f x h f x h
h

f x h f x
h

h
f x f x h f x h

h

( ) ( )

( ) ( ) ( ) ,

2
2 2

2 2

and so equation (6.35) becomes

P x f x h f x
h

f x f x h f x h
h

( ) ( ) ( ) ( ) ( ) ( ) (2 2
2 2 xx x

f x h f x
h

f x f x h f x h
h

1

2

2 2
2

)

( ) ( ) ( ) ( ) ( ) (( )

( ) ( ) ( )

h

f x f x h f x h
h

3 4 2
2

and so

f x P x f x f x h f x h
h

( ) ( ) ( ) ( ) ( ) ,3 4 2
2

which is second order forward difference formula for f  ′(x) (see equation 6.32).

EXAMPLE 6.11
Find the maximum value of f (x) using the table given below:

x: −1 1 2 3
f(x): −21 15 12 3

Solution. We note that the arguments given are not equispaced. Therefore, we shall use Newton’s 
divided difference formula. The divided difference table is

x f (x) f (x0, x1) f (x0, x1, x2) f (x0, x1, x2, x3)

−1 −21
18

1 15 −7
−3 1

2 12 −3
3 3 −9

The divided difference formula yields
f x f x x f x x x x x x f x( ) ( ) ( , ) ( )( ) ( ,0 0 0 1 0 1 0   , ) ( )( )( ) ( , , , 1 2 0 1 2 0 1 2x x x x x x x x f x x x xx

x x x x x
3 )

21 ( 1)(18) ( 1)( 1)( 7) ( 1)( 11)( 2)(1)
9 17  + 6.3 2

x
x x x 
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Therefore,
f x x x( ) 3 18 17.2

For maximum value, we should have 3x2 − 18x + 17 = 0. This equation yields x = 4.8257 or 1.1743. The 
value 1.1743 is the value in the given range. Then

Maximum value of ( ) (1.1743) 9(1.1743)3 2f x 117(1.1743) 6 15.1716.

EXAMPLE 6.12
Evaluate the first derivative at x 3 and x 0 from the following table:

x: −3 −2 −1 0 1 2 3
y: −33 −12 −3 0 3 12 33

Solution. The difference table for the given problem is

x y y 2 y 3 y 4 y
−3 −33

21
−2 −12 −12

9 6
−1 −3 −6 0

3 6
0 0 0 0

3 6
1 3 6 0

9 6
2 12 12

21
3 33

We know that (see formula (6.15) or (6.21))

f x
h

f x f x f x f x( ) ( ) ( ) ( ) ( )1
2 3 4

2 3 4

K .

Therefore,

f ( ) ( ) ( )3 1
1

21 1
2

12 1
3

6 29

and

f ( ) ( ) ( ) .0 1
1

3 1
2

6 1
3

6 2

EXAMPLE 6.13
Find the first and second derivatives of f (x) at x 1 5.  using the following data:

x: 1.5 2.0 2.5 3.0 3.5 4.0
f(x): 3.375 7.000 13.625 24.000 38.875 59.000
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Solution. The difference table for the given problem is

x f (x)

1.5 3.375
3.625

2.0 7.000 3
6.625 0.750

2.5 13.625 3.750 0
10.375 0.750 0

3.0 24.000 4.500 0
14.875 0.750

3.5 38.875 5.250
20.125

4.0 59.000

Since the tabular point x = 1.5 lies in the beginning of the table, we use the differentiation formula 
obtained by differentiating Newton’s forward difference formula. Thus,

f x
h

f x f x f x f x( ) ( ) ( ) ( ) (0 0
2

0
3

0
41 1

2
1
3

1
4 00 ) .K

Here h = 0.5. Therefore, we have

f ( . )
.

[ . . . ] . .1 5 1
0 5

3 625 1 5 0 250 4 750

For the second derivative, we have

f x
h

f x f x f x( ) ( ) ( ) ( )0 2
2

0
3

0
4

0

1 11
12

,

which implies

f ( . )
.

[ . ] .1 5 1
0 25

3 0 750 0 9

EXAMPLE 6.14
Find f ( )10  from the following table:

x: 3 5 11 27 34
f(x): −13 23 899 17315 35606

Solution. Since the spacing is unequal, we use differentiation formula derived from Newton’s divided 
difference formula. The formula is (see Section 6.9, expression 6.35)

     f x P x a a x x x x( ) ( ) [( ) ( )],1 2 0 1  (6.37)
where

a
f x f x

x x1
1 0

1 0

( ) ( )
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and

a

f x f x
x x

f x f x
x x

x x2

2 1

2 1

1 0

1 0

2 0

( ) ( ) ( ) ( )

.

In the given data, we have
x x x x0 1 25 11 27 10, , , .

Therefore,

a
f x f x

x x1
1 0

1 0

899 23
11 5

146
( ) ( )

,

a

f x f x
x x

f x f x
x x

x x2

2 1

2 1

1 0

1 0

2 0

1( ) ( ) ( ) ( ) 77315 899
16

899 23
6

22
1026 146

22
40.

Therefore equation (6.37) yields
f ( ) [( ) ( )] .10 146 40 10 5 10 11 306

EXERCISES

1. Approximate the derivative of f (x) = cosx at x = 0.1 by central formula of order O(h2).
Ans. −0.93050

2. The data given below give the distance covered by a body at a specified period. Calculate the 
velocity of the body at 0.3 second using Stirling’s formula

t: 0 0.1 0.2 0.3 0.4 0.5 0.6
x: 30.13 31.62 32.87 33.64 33.95 33.81 33.24

Ans. −5.33 units
3. Find the value of d

d
y
x

 at x = 2.03 using the following table:

x: 1.96 1.98 2.0 2.02 2.04
y: 0.7825 0.7739 0.7651 0.7563 0.7473

Ans. − 0.06
4. Find f ′(x) at x = 1.5 using the following table:

x: 1.5 2.0 2.5 3.0 3.5 4.0
f (x): 3.375 7.000 13.625 24.000 38.875 59.000

Hint: Taking x0 = 1.5, use = f
h

f f f0 0
2

0
3

0

1 1
2

1
3

K .

Ans. 4.75
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5. Find the value of cos 1.74 using the table given below:

x: 1.70 1.74 1.78 1.82 1.86
sin x: 0.9916 0.9857 0.9781 0.9691 0.9584

Ans. 0.175
6. Using the table given below, determine the value of x for which y is maximum. Also find the 

maximum value of y.

x: 1.2 1.3 1.4 1.5 1.6
y: 0.9320 0.9636 0.9855 0.9975 0.9996

Hint: Use Everett’s formula, put the derivative fp
′ equal to zero and find p. Then xp = x0 + ph. Ever-

ett’s formula then gives the maximum value.
Ans. x = 1.58, y ≈ 1.00

7. Using the table given below, find the value of x for which y is maximum:

x: 3 4 5 6 7 8
y: 0.205 0.240 0.259 0.262 0.250 0.224

Ans. x = 5.6875
8. Using Bessel’s formula and the table given below, find f  ′ (0.04):

x: 0.01 0.02 0.03 0.04 0.05 0.06
f(x): 0.1023 0.1047 0.1071 0.1096 0.1122 0.1148

Ans. f  ′ (0.04) = 0.25625
9. For the values of x and y given below, find f ′ (4):

x: 1 2 4 8 10
y: 0 1 5 21 27

Ans. 2.833
10. Find the maximum value of f(x) using the table given below:

x: −1 1 2 3
f(x): 7 5 19 51

Hint: Arguments not equispaced, so use Newton’s divided difference formula. Polynomial is 
x3 + 3x2 − 2x + 3, maximum value is at x = 0.291 and it is 2.6967.
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7 Numerical Quadrature

Numerical integration is the process of computing the approximate value of a definite integral using a 
set of numerical values of the integrand. If the integrand is a function of single variable, the process is 
called mechanical quadrature. If the integrand is a function of two independent variables, the process 
of computing double integral is called mechanical cubature.

Like numerical differentiation, the numerical integration is performed by representing the inte-
grand by an interpolation formula and then integrating the interpolation formula between the given 

limits. Thus, to find f x x
a

b

)x ,dxx  we replace the function f  by an interpolation formula involving differ-

ences and then integrate this formula between the limits a and b.

7.1 GENERAL QUADRATURE FORMULA
In equidistant interpolation formulae, the relation between x and p is

     x x phx0 ,  (7.1)
where h is the equidistance between the given nodes. Then

     d ddd pd .  (7.2)
We integrate Newton’s forward difference formula over n equidistant intervals of width h. Let the 

limit of integration for x be x0 and x0 + nh. Then equation (7.1) yields the corresponding limits of p as 
0 and n. Therefore, integration of Newton’s forward difference formula

f x f p f p f p p p f)x ( )p
!

( )p ( )p
!

f0 0f pf ffff 2
0ff

3
0ff2

)( p)( p
3

ff p p )p
0fff

p p p p f( )p ( )p ( )p
!

)( p
4

4
0ff K

yields

 

f x x h f p f f f ff)x [dxx fh [ p p p
0 0f pf ffff 2

0ff
3

0ff
4

0fffffff f3 ff K]

                   

dpd

h nfn n

n

x

x nh

0

0ff

0

0

22

0

3 2 2
0

4
3 2

3

2 30 2 2 4

2
0

4
3 2f00

n n f00 n n n
ff0ff

3!
.K

 
(7.3)

From this general formula, we obtain the distinct quadrature formulae by putting n = 1, 2, 3,...

(A) Trapezoidal Rule: Setting n = 1 in the general formula (7.3), we get the differences Δ2, Δ3,... to be 
zero and therefore for the interval [x0, x1], we have

f x x h f f h f f
x

x

)x ( )f f
0

1

0 0f ff f 0 1ff ff( ff 0ffff
1
2

1
2

fffh h f0ffdxx ffff h f f
2 0 1f ff f( )f f1f ff f ,

which is called trapezoidal rule.
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For the next intervals [x1, x2], [x2, x3], ... [xn−1, xn], we have

f x x h f

f x x h f f

x

x

nff

)x ( )f f

)x (

dxx

dxx

( f

f(

2

2

1 2f ff ff ff fff

1

1

2

L L L
L L L

nnffff
x

x

n

n

).
1

Adding all these expressions, we get

f x x h f f f f
x

x

n nff
n

)x [ f ) ]fnff ,
0

2 0 1f ff fff 2 1f ff nff[ fff fff f )1fdxx

which is known as the composite trapezoidal rule.
(B) Simpson’s one-third Rule: Setting n = 2 in the general formula (7.3), the differences Δ3, Δ4,... are 
all zero. The interval of integration is from x0 to x0 + 2h and the functional values available to us are f0, 
f1, and f2. Thus we have, from general formula (7.3),

f x x h f f
f

x

x

)x dxx h f2 ff 8
3

2
20 0f ff fffff
2

0ff

0

ffff
00 2

0 1 0 2 1 02 1
30

h

f022 0h f1 0 f2 1 0

h

( )00f f1 00 )011( f f2 12 12 f0

3
[[[ ],0 1 2f f40 14 f21f4 14

which is known as Simpson’s one-third rule.
Similarly,

4

2

6

4

2

2 3 4

4 5 6

[ 4 ]43

[ 4 ]63

].
3

n

n

x

x

x

x

x

n n n2 1
x

h
f x dx( ) [ 4) [ 42 3 43

h
f x dx( ) [ 4) [ 44 5 65

h
f x dx f f f( ) [ 4) [ 4442 1

h

−

2

[ 44[ 42 33

[ 44[ 44 55

[ 44[ 42 142 1

∫

∫

∫

� � � �
� � � �

Thus for even n, adding the above expressions gives

f x x h f f f f f
x

x nh

n nf)x [( ) ( )
0

0

3
2f f f( )0f ff ffnff ff) ( ff( 3 1ff fnff ffffff[( ff f( ff(dxx (( )],f f fnff2 4f ff f 2f4ff K
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which is known as composite Simpson’s rule or parabolic rule and is probably the most useful formula 
for mechanical quadrature. Obviously, to use this formula, we divide the interval of integration into 
an even number of subintervals of width h. The geometric significance of Simpson’s rule is that we 
replace the graph of the given function by 

n
2

arcs of the second degree polynomials or parabolas with 
vertical axis.

(C) Simpson’s three–eight Rule: If we put n = 3 in the general formula (7.3), then the values available 
are f0, f1, f2, f3 and so the differences Δ4, Δ5, ... are all zero. Then we shall obtain

3 0

0 0

6

3

3

3

0 1 2 3

3 4 5 6

3

3 [ 3 3 ]38

3 [ 3 3 ],68

3 [ 3 3 ].
8

n

n

x x h3 0 3

x x0

x

x

x

n n n n3 2 12
x

h( )d [ 3 3( )d [ 3 30 1 2 311 2
3

h
f x x f3 4 5 64 5( )d [ 3 3)d [ 3 33 4 5 644 5

3
8

h
f x x( )d [ 3 3)d [ 3 33 3 33 33 2 1222

−

3 2222

( )d [ 3 3( )d [ 3 3[ 3 30 1 2111 2

[ 3 33 3[ 3 33 4 5444 5

[ 3 33 3[ 3 33 2 12223 33 2 12222

∫ ∫f x x( )d)d

∫

∫

� � � � �
� � � � �

Thus, if n is a multiple of 3, then adding the above expressions, we get

f x x h f f f f f f
x

x nh

n)x [( ) (
0

0 3
8 0 1f ff ffnff ) ( 2 4f ff f 5fff[( ff f fff ff fdxx K f fff f fnffff ffff3ffffffff 6 3f ff nf fff nf fff )],

which is called Simpson’s three–eight rule. Thus, in this method, we divide the interval of integration 
into multiple of 3 subintervals.

(D) Boole’s Rule: If n = 4, the available values of f are f0, f1, f2, f3, f4 and therefore Δ5, Δ6, ... are zero. 
So, putting n = 4 in the general quadrature formula, we get

f x

h f f f

x

x h

x

x

( )dxxf ( )x

h

f x)x dxx
0

0

0

4

0 0ff ff 28ff0ffff
20
3

fffff 00ffff
3

0
4

0

0 1 2

8
3

28
90

2
45

7 11 27

33 f f0
4

0

28
90
28

0

h f f0 130 2 10 f2[ 32

2
45

7 12 3

3 4

4 5 6

f f73 47

f x dx h f f324 532 f6

],

  )x  [2
45
h 222 7 8

4

8

f f77 87
x

x

]

   
   
L L L
L L L

Adding these integrals, we get

f x x h f f f f f
x

x nh

)x [
0

0 2
45

7 f7 f 1f 2 f2 f 1f 40 1f ff fff ff 2 3f ff fff ff 4ff[7 fff 12 fffdxx 32 325 6 7 8f f125 612 f f147 814 K],

where n is a multiple of 4. This formula is known as Boole’s rule.
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(E) Weddle’s Rule: If n = 6, then 7 8, , ,K are zero and we have

f x x h f f f f f)x dxx h f6 ff 27 ff 123
10

33
0 0f ff fffff ff 2

0ffffff
3

0ff
4f 2ff 7fff f 123

0ff 1011
41

140
5

0
6

0
0

0
5 f f41

1400
6

0

41
0

x

x h60

6 .

The coefficient of 6
0

f
0
 differs from 3

10
 by a small fraction 1

140
. Therefore, if we replace this  coefficient 

by 3
10

,  we commit an error of only h
f

140
6

0
ff .  For small values of h, this error is negligible. Making this 

change, we get

f x x h f f f f f f f
x

x h

)x [dxx f[ f3
10

f ff
0

0

0 1f ff fff ff 2 3f ff fffff 4 5f ff fff 6ff ].]]

Similarly,
0

0

6 7 8 9 10 11 12
6

3 [ 5 6 5 ]1210

x h0 12

x h0 6

h
f x dx( ) [ 5 6 5) [ 5 6 56 7 8 9 10 11 17 8 9 107 8 9 10 11

3 [ 5 6 55 6 5[ 5 6 56 7 8 9 10 117 8 9 107 8 9 107 8 9 10 11∫
� � �
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So, if n is a multiple of 6, adding all such above expressions, we get

f x x h f f f f f f f
x

x nh

)x [dxx f[ f3
10

f ff 2f
0

0

0 1f ff fff ff 2 3f ff fffff 4 5f ff fff ff 6 766ffff 1

0

5

3
10

5 1f f7 577 5 f

h Kf

n n1ff ff

iff
i

n

]

,

where
K = 1, 5, 1, 6, 1, 5, 2, 5, 16, 15, 2 etc.

This formula is known as Weddle’s rule. It is more accurate, in general, than Simpson’s rule but requires 
at least seven consecutive values of the function. The geometric meaning of Weddle’s rule is that we 
replace the graph of the given function by n

6
arcs of sixth degree polynomials.

If we integrate Newton’s backward difference formula

f f p p p f p p p fpff f ff f f0 0ff p ffff ff 2
0ffff

3
0ffff2 3

( )p 1
!

( )p 1 ( )p 2pp
!

K,,

then we get

     

f x

h f f

x

x

x

x h

( )dxxf ( )x
0

1

0

0

0 0ff ff 21
2

5
12

f x)x dxx

h f0ff ffff 00ffff
3

0
4

0

3
8

251
720

3 251f f0
4

0720
251

K].
 

(7.4)

If we multiply the right-hand side of equation (7.4) by the identity operator ( )E) , we get
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f x x h f ff
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1ffff
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1ffff
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1
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1
24
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1f11 K.

 (7.5)

The above two formulae are used for the numerical solution of differential equations. Formula (7.4) is 
an extrapolation formula because it uses the ordinates at x0, x−1, x−2,... to find the integral up to x1. For 
this  reason, it is called a predictor, whereas formula (7.5) is called corrector and is more accurate as its 
coefficients are smaller, which make it more rapidly convergent than the predictor.

We now integrate Bessel’s formula
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p p

pff f0 1ff p ffff 2
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Integration yields
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This formula is much more powerful than the integration formula using forward or backward differ-
ences, but it cannot be used at the two ends of a table.

7.2 COTE’S FORMULAE
Let the function values of a function f be available at equidistant points x0, x1, x2,..., xn, where xn = x0 + nh. 
We replace f (x) by a suitable function
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P L fk kL ff
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and fkff is the function value at xk. But xk = x0 + kh. Also, we have x = x0 + ph, and so dx = hdp. Since
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C
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(0 ≤ k ≤ n).

are called Cote’s numbers. It can be seen that
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n
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Case I. Let n = 1. Then
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Therefore,
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which is nothing but trapezoidal rule.

Case II. Setting n = 2, we get
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which is Simpson’s formula.

Case III. Setting n = 3, we obtain
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Hence,

f x dx h f f f f
x
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which is Simpson’s three-eight rule or four point formula.

7.3 ERROR TERM IN QUADRATURE FORMULA
We have seen that in any quadrature formula, the function f is approximated by a polynomial of degree 
n, say. Thus,

f x Pn)xx ( )xx
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and quadrature formula becomes

     
x

x

x

n
x

xn n

( ) .dxxP ( )x
0 0x

f x)x dxx  (7.6)

If Rn(x) is the difference between f (x) and Pn(x) at a point belonging to the interval bounded by the 
extreme points of (x0, x1,..., xn). Then
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Therefore, the error between the true value of the integral and the value given by the quadrature formula 
(7.6) is
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But for a polynomial of degree n, we have
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If we consider equispaced ordinates, then x = x0 + ph and xn = x0 + nh.
Therefore,

x x ph
x x ph x h p h
x x x p

x
x
x

0

1 0 0

2 0xx
( )x phphx (x hh0x 1pp )
( h xhh h p h

x xn x nh

) ( 2h 2pp )

(x )h (x

0x

0 0p x)x ph (x

x0x p

xn )ph)ph

L L L
L L L

) ()) )(p n((( h

and so

F h p p p p  nn( )xx  = h ( 1p )( 2) ( )].+1 p K

Putting this value of F(x) in Rn(x), we get

R h f p x xn
n

n( )xx ( ,xx+1
0

( )n
( )n( )

( )n !
( ) ),))

where
p p p p( )n ( )p ( )p n .p( p

Therefore, the error in the quadrature formula is
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E R x

h h f p

n n
x

x

n f n

n

( )xx dxx( )x

( )n !
( )( )n (

0

1 f (n ( ) 11

0

2

0

)

( )1 ( )1

( )1 !
( ) .

d

d

pd

h p f( ) pd

n

n
(f)

n
11 (f)1 ( )

Since ξ is independent of p, this integral cannot be evaluated directly. It can be shown, however, that 
this integral takes one of the following two forms:

E h f p p nn

n n

( )x
( )n !

( )n ( )n
2

((n))

0

d (pp  odd),,

E h f p n pn

n

( )x
( )n !

( )n ( )n
3

(n) (nnn)

2
pf

)!
d (dd  even).p nd (ddd

n

0

For example,

(i) In trapezoidal rule, n = 1 (odd). Therefore,

E h f p p p

h f p p

1EE ( )xx dpp
3

0

1

3 3f 2

2

2 3

( )
!

( )p 1

)(

( )

(
2 122 2

0

1 3h f3

x x( ) .x, x)
0 1x< <

Summing over n intervals, we get

E nh f h fn n

3 2f h
012 12

( )x xn 0 ( ),( )

since nh = xn − x0. Thus, the error in trapezoidal rule is of order 2.

(ii) In the case of Simpson’s formula, n = 2 (even). Therefore, the error term is given by

E h f p p p p p

h

2E
(iv)

( )xx dpp
5

0

2

5

4
p( )

!
( )pp 1 ( )p 1p ( )pp 2( )

9099
f x(iv)

0 2< .x2xx0 <

Summing up for 
n
2

 intervals, we get

E n h f xn 2 90 180

5
4(iv) (i )

0(
( )x x0 ),h fn

180
0 4 (iv)( )

( )x xn 0 ( ) < << < .< xn

Thus, the error is of order 4 in case of Simpson’s rule. Therefore, the complete Simpson’s formula is
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f x x h f f f f f f
x

x

n n

n

)x f f
0

3
f f0 1f ff fffff

1
2 4ff fffff f

n
dxx ffff 2ff fff2ff

22

0 4

180
)

( )0 ( ).f h f4

n

n (iv) ( )

The value obtained for En shows that En is zero when f  (iv)(x) = 0. Hence, when f (x) is a polynomial of 

the first, second, or third degree, Simpson’s rule yields the exact value of f x x
x

xn

)x .
0

dxx

Similarly, we can show that error is of order 8 in case of Weddle’s rule.

Taylor’s Series Method for Finding Error
Trapezoidal Rule: Let f be a finite continuous function in the interval x = x0 to x = x0 + h and have 
continuous first and second derivatives in the said interval. Let

F f t t
x

( )x )t .d
0

Then, by fundamental theorem of integral calculus,

F f x F f x( )xx )xx , ( )xx )xx K

and so

f x x F F
x

x h

)x ( )x h ( )x .
0

0

0 0F)h (xF(xdxx

On the other hand, by trapezoidal rule,

f x x h f x f x h
x

x h

)x [ f ) f )].
0

0

2 0 0f x) fx[ f )0 )dxx

Therefore, the error is given by

E F h F x h f x f x h

F x

( )xx ( +xx (F x )

(xx

0 0h x) (F x

0

F h+x x

F xx0

2 0 0f x[ f[ ff ) ff )]

) hfhh h f x h f x F h f x( )x )x
!

)x ( )x0

2 3

0 0F) (x
2 3

f )0 2 0 000 0

2

0

3

0

2

3

) ( ) ( )
!

(

!
(

0 )(( f x h f x(

h f x(

)

))

!
( ) ( )

K

K
h f ( h f x(

h

3 3

0

3

3 4!
)f ( 0

122 0f x )0x .K

Summing over n intervals, we get

E nh f xn mf( )xx
3

12
)xm ,
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where f  ″(xm) denotes the greatest value of f  ″(x0), f  ″(x1),..., f  ″(xn−1). Thus,

E h fn
n

m( )xx
( )x xn ( )xm ,0 2

12

which shows that error is of order 2.

Simpson’s Rule: Let f be a finite and continuous function in the interval x = x0 − h to x = x0 + h and have 
continuous derivatives of all orders up to and including the fourth in the said interval. Let

F f t
x

( )xx  = )t d .t
0

Then, by fundamental theorem of integral calculus

F f x F f x F f( )xx )xx  and so ( )xx )xx , ( )xx ( )(( .(( K

Also, by the same theorem,

f x x F F
x h

x h

)x ( )x h ( )x h .
0

0

0 0F)h (xF(x F xdxx

But, by Simpson’s rule,

f x x h f x h f x f x h
x h

x h

)x [ f (f (f )].
0

0

3 0 0h f x(f 0x[ f x(f x(fdxx

Therefore, the error in Simpson’s rule is given by

E F h F x h h f x h f( )xx ( +xx (F x ) [h  f xx ( )x0 0h x) (F x 0 0h f (xF h+x h)
3

+ ++ ( + )].0f x(( h

By Taylor’s expansion

F h F x hf xh h f x h f x(xx h ( )xx )xx )0 0F)h (x 0hh hfh )x
2 3

02 3
f 0 )x00 !

)x0 KK

F h F x hf xh h f x h f x(xx h ( )xx )xx0 0F)h (x 0hfh )x
2 3

02 3
f 0 )x00 !

))

)
!

K

f x h f x hf xh h f x( hxx h ( )xx )xx0 0h fh (x 0

2 3

2 3
)f ( 0 f x

f x f hf xh h f x h

( )x

( )x

0

2

02

K

( )xx h ( )xx ( )xx0 0h fh (x 0

33

03!
( )0 .f x( K

Substituting these values in the error term, we get

E hf h f x h f x( )xx (iv)hf f2 2
3

2
50

3

0

5

0( )xx0 !
)x0 !

)xx0 K

h f x h f h f x
3

6 2
40

2
0

4

0( )x0 ( )x0 !
( )x0

(iv) K

h f x
5

090
[ f ) ].(iv)
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Summing over 
n
2

intervals, we get

E h f x x f xn( )x [ f[ f ) f ) f )x[ f )
5

0 2f x) f) 290
(iv) (iv) (iv) ].]]

If f xn
(iv) )xn denotes the greatest value of any of the n

2
 values f x x f xn

(iv) (iv) (iv) then)x , f ), , f ),0 2f x), f 2K

E nh f x h f xm
n

m( )x )xm

( )x xn (
5

0 4

180 180
(iv) (iv) ),))

since xn − x0 = nh. Hence, error in Simpson’s rule is of order 4.

7.4 RICHARDSON EXTRAPOLATION (OR DEFERRED 
APPROACH TO THE LIMIT)

Knowing the order of the error, one can get fairly accurate estimate of the true value Q of the approxi-
mate values of the derivative or integral as soon as two approximate values Q1QQ  and Q2QQ  of Q have been 
obtained by means of different spacing, say h1 and h2. Thus, if the order of error is n, truncating the 
error series after its first term, we obtain

     

Q Q Ch

Q Q Ch

n

n

Q

Q
1 1QQ Chh

2 2QQ Ch
,
 (7.7)

where in differentiation formulae the constant C depends on the pivotal point at which the derivative is 
 evaluated. From equation (7.7), we get

Q Q
h

Q Q
hn nh

1QQ

1hh
2QQ

2h
C

or

Q
h h

Q
h

Q
hn nh n nh

1 1

2 1h hh
2QQ

2h
1QQ

1hh

or

     

Q

h
h

Q Q

h
h

n

n12QQ

1hh

2h 2 1Q QQ Q

1hh

2h
1

,  (7.8)

which is called hn extrapolation formula of Richardson. This formula gives the approximate value Q12 
of Q.

We, generally, consider the cases where 
h
h

1hh

2h
2. In trapezoidal rule, order of error is 2. Therefore, 

the extrapolation formula with 
h
h

1hh

2h
2  becomes
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Q
Q Q

Q Q12QQ
2

2 1Q QQ Q
2 2 1Q QQ Q

2
2 12

4
3

1
3

Q ,

which is called 
1
3

2h  extrapolation formula.

In Simpson’s rule, the order of error is 4. Therefore, the extrapolation formula becomes 
1

15
4h
  

 
extrapolation formula given by

Q Q Q12QQ 2 1QQ QQ16
15

1
15

Q
 
with error O h( )h4  and 

h
h

1hh

2h
2.

In Boole’s rule, the order of error is 6 and so the expression (7.8) yields the following 1
63

6h  
 extrapolation formula:

Q Q Q12QQ 2 1QQ QQ64
63

1
63

Q .

EXAMPLE 7.1
Dividing the range into 10 equal parts, apply Simpon’s one-third rule to evaluate the integral 

dxdd
4 5x0

5

 
correct to four decimal places. Hence, find the approximate value of loge 5.

Solution. The values of the integrand for h 1
2  

are.

x: 0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5

f (0): 1
5

1
7

1
9

1
11

1
13

1
15

1
17

1
19

1
21

1
23

1
25

.

Therefore, by Simpson’s one-third rule,
5

0 1 3 9 2 4 6 8 105 7
0

6 4(0.142857 0.09090 0.066666 0.05263 0.04348)
25

d [ 4( ) 2( ) ]0 1 3 9 2 4 6 8 104 5 3

1             1
6
1            
6

x hdd
3 9 2 4 6 8 19 2 4 6 84( ) 2( )4( ) 2( )0 1 3 9 2 4 6 8 11 3 9 2 4 6 81 3 9 2 4 6 85 7

⎡ ⎤⎤⎤1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 11 1 1 1 1 1 1
⎢ ⎥

⎤⎤⎛ ⎞1 1 1 14 241 1 1 1 1 1 11 1 1 1 11 1 1 1 1 1 1 ⎤⎤1 1 1 11 1 1 1 1 1 11 1 1 1 11 1 1 1 1 1 1 ⎛ ⎞⎛ ⎞4 244
⎝ ⎠ ⎝ ⎠ ⎝ ⎠5 25 7 11 15 19 23 9 13 17 215 25 7 11 15 19 235 25 7 11 15 19 235 25 7 11 15 19 23 ⎦

⎥⎥
⎣⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎠5 25 7 11 15 19 23 9 13 17 215 25 7 11 15 19 23 ⎟⎟5 25 7 11 15 19 23 9 13 17 215 25 7 11 15 19 235 25 7 11 15 19 235 25 7 11 15 19 235 25 7 11 15 19 23 9 13 17 215 25 7 11 15 19 235 25 7 11 15 19 235 25 7 11 15 19 23

+ + + + + +4(0.142857 0.09090 0.066666 0.05263 0.04348)0.09090 0.066666 0.05263

= [ 4( ) 2( )4( ) 2(4( ) 2( )5 70 1 3 9 2 4 6 81 3 9 2 4 6 81 3 9 2 4 61 3 9 2 4 6 85 7

4 244 ⎛⎛4 2444

=

∫

2(0.11111 0.07692

               0.05882 0.04761)

1             [0.24 1.58613 0.58892] 0.4025.1
6

⎡
⎢
⎡⎡
⎣⎢⎢

⎤ 0.058820.05882 ⎥
⎤⎤

⎦
⎥⎥

[0.24 1.58613 0.58892][0.24 1.58613 0.58892]

Also,
dxdd

4 5x
1
4

4 5x 1
4

25

1
4

0

5

0
54x 25[log( )] [log log ]5

loll lg og .25
5

1
4

5e
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Hence,

lo (g . ) . .e

d
4 5

0( 1 6. 1
0

5

)0(xdd

The actual value is 1.6094.

EXAMPLE 7.2

Calculate 
dxdd
x1

2

 by

 (i) Simpson’s rule with h = 0.50,
 (ii) Simpson’s rule with h = 0.25,
 (iii) Richardson’s extrapolation.

Compare the results with exact value.

Solution. (i) With h = 0.50, we have

f f f0 1f ff f 2ff
1

1 5
2
3

1
2

f f
.

,

and so by Simpson’s rule

dxdd
x

h f f f
3

0 5
3

1 8
3

1
2

12 5
0 1f ff f 2ff

1

2

[ ]f f ff f1f ff fff 2ffff
. .5 1 8 1 12

1811
0.69444.

(ii) With h = 0.25, we have

f f f f f0 1f ff f 2 3f ff f 4ff
1

1 25
1

1 50
1

1 75
1
2

f f
.

,
.

, .f4ff 2

Then, by Simpson’s rule, we have

dxdd
x

h f f f f f
1

2

0 4f ff f 1 3f ff f 2ff3
f f3f ff f

0 25
3

1 0

fff fff

1

[( ) (44 ) ]f2ff2

. [( .5555 0 8 0 5714 3333 69324) (4 . .8 0 ) .1 ] .0 .0 8(4 8 3333.1 ]

(iii) We have

h
h

1hh

2h
0 50
0 25

2.
.

.

Also Simpson’s rule is of order 4. Therefore,

Q12QQ 16
15

69324 1
15

069324( .0(00 ) (1
15

. )69444 0.69316,

which is in good agreement with the exact value

log 2 − log 1 = log 2 = 0.69315.
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7.5 SIMPSON’S FORMULA WITH END CORRECTION
We now improve usual Simpson’s formula by allowing derivatives in the endpoints. Let

    
f x af bf af h cf cc

x h

x h

)x d [x hx ] [h1 0bff 1ff
2

1
0

0

ff f ff] [1 0ff 1ffaf[h 1 af ]1ff ffc 1ff ] .  (7.9)

Let
F f x x( )xx )xx dxx

and so

f x x h F
x h

x h

)x d (x Fx x )h ( )xx h .0 0F)h (x
0

0

x(F x )h

Therefore formula (7.9) becomes

     F h F h af bf ab f ha c(x h ( )x h0 0F)h (xhh )h ff[afaff afa [h1 0bffb 1ffff
2 f cffc fcffff 1 1cffc  ]   (7.10)

Expanding by Taylor’s Theorem, we get

F h F F hf h f x h(x h ( )x h ( )x ( ) )x
!0 0F)h (x 0 0hf) (x

2 3

2 3
f )0hh )h hf ( )xhf (x f x

F hf h f x h

)x

( )x ( ) )x

0

0 0hf) (x
2

0

3

2

K

33

2
3

2
5

0

3

0

5

!
)0

! !

f x(

hf h f0

h

K

2hf + 0ffff f K.

Also,

 

f f f x hf h f h fff f f1 0f 0 0hff
2

0ff
3

0ff3
f

2 0ff( )x hx0x )xx0 ! !
h f

f f f x hf h f

4

0ff

1 0f ff 0 0hff
2

0ff

4

2

!

( )x h0x ( )x0 !

(iv) K

!
 

!
h f h f

f f hf

3

0ff
4

0ff

1 0ff 0ff

3 4!
f0ff

(iv) K

!
  

!

  

h f h f

f f hf

2

0ff
3

0ff

1 0f ff f 0ff

2 3!
f0ff f0ff

(iv) K

!
 

!
.h f h f

2

0ff
3

0ff2 3!
f0ff f0ff

(iv) K

Therefore, the right-hand side of equation (7.10) is

bhf ah f h f h f0ff
(iv) + 2ah 2

2
2

0ff
2

0ff
4

0fff
(iv)

0ff! !
f

40ff K chcc hf h f2
0ff

3

0ff2 2
3

f
!

.(iv) K

Comparing the coefficients of f f f0 0f ff f 0ff,f0ff and (iv)  and on both sides, we get
2 2,

2 1
3

,

4 1
5

a b

a c2

a c4

c2

c4 ,
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which yield

a bb7
15

16
15

, ,b
15  

and
 
c 1

15
.

Hence,

f x x h f f f h f
x h

x h

)x [ ]f f f [ffdxx
0

0

15
[ f[ f f

151 0ffffff 1ffff
2

ff[ff]ffffff
150ffff 1ffff[[[ f ]fff 1 111 f1 ]

or, we can write

f x x
h

f f f
h

f
x

x h

( )x [ ]f f f [dxx
0

0

0 1f ff ff ff f 2ffff
2

0ff15
ffff fff

15∫ ≈ [ fff +]fff ′ − ′ff2ff ].

Similarly,

Adding, we get

f x h f f f f f h

x

x

nff
n

)x d [xx h 7ff 1ff 4ff 7ff ff ]0 1f ff fff fff 2 3f ff ffff
0

15
[7ffff 14ffff

22

0
6

15
[ ] ( )6 ,f f00 nff O

where xn − x0 = nh and f0, f1,..., fn are function values at the points x0, x1,..., xn.

7.6 ROMBERG’S METHOD
This method makes use of Richardson’s extrapolation in a systematic way. We have seen that for trap-

ezoidal rule, the error is ( )h2 and with the spacing ratio 
h
h

1hh

2h
2 Richardson extrapolation yields

R Q Q Q
Q Q

Q Q4
3

1
3 3

Q2QQ QQ
3

Q 2QQQQ 2 1Q QQ Q
.

We observe that R is the same result as obtained by Simpson’s rule.

Since error in R is of order 4 (Simpson’s rule), taking again 
h
h

1hh

2h
2, we get

S R R R
R R

R R16
15

1
15 152 1R
15 2

2 1R
.

As a matter of fact, S is the same result as obtained by Cote’s formula for n = 4. Now, the error is of 

order 6. So taking 
h
h

1hh

2h
2, we obtain

T S S S
S S

S S64
63

1
63 632 1S SS
63 2SS 2 1S SS

.
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The process is repeated till two successive values are sufficiently close to each other.

EXAMPLE 7.3
One wants to construct a quadrature formula of the type

f x x h f ah f
h

)x ( )f f (  f f ) .R
0

0 1f ff ff ff f 2
0 1f ff ff ff f

2
( fff dxx

Calculate the constant a and find the order of the remainder term R.

Solution. Let F f x x( )xx )xx dxx. Then

       

0
2 3 4

(iv)

5
(v)

2 3 4 5
(iv)

2 3 4 5
(iv)

0 0

( )d ( ) (0)

(0) (0) (0) (0) (0)(iv)

2 3! 4!
( ) ( )( ) ( )

(0) (0)
5!

(0)(iv)

2 3! 4! 5!

.02 3! 4! 5!0 0 00 0

h

f x x F h F( )d ( ))d ( )

h h h2 33
F(0) (0) (0) (0)(0) (0) (0)F(0) (0)

h
F (v) (0)

h h h h2 3 43 4
hf (0) (0) (0) (0)(0) (0) (0)( ) ( ) ( )( ) ( ) ( )( ) ( ) (0)(0)hf

h h h h2 3 43 4
hf f f f f0 0 0 00 0 0  05!0 0 00 00 0

h h h hh h

( )(( )

′ h hh(0) (0)(0)(0) (0)(0)(0)(0)(0)= F(0) (0) (0) (0)(0) (0)(0) (0) (0)(0) (0)(0)(0) (0)(0)

+ F (v) (0)

′ h h hh h(0) + (0) (0)(0) (0)(0) (0)(0) (0)(0) (0)(0) (0)(0) (0) +(0)(iv)= hf (0) + (0) (0) (0)(0) (0) (0)(0) (0)(0) + (0) (0)(0) (0)(0) (0)(0)

hh
ff

hh= + + + + +(iv)
00hf f f f ff f f0 0 0 00 00 0 0  0

∫

�

�

 

(7.11)

Also,

f f hf h f h f h f1 0f ff f 0ff
2

0ff
3

0ff
4

0ff3
f0ff2 4

f0ff ! !
  

!
(iv) h f

f f hf h f h

5

0ff

1 0f ff f 0ff
2

0ff
3

5

2

!

! !
f0ff 3
f0ff

(v) K

ff h f h fiv
0ff

4

0ff
5

0ff4
f0ff! !
f0ff 5
f0ff .( )vv (vi) K

Therefore,

 

h ah h f hfh h f
2 2

f f 2
2

f ff f 2 f ff f 0 0f hf ffh
2

0ff( )f ff 1f ff ff ff f ( )f ff 1f ff ff ff f
!

)f1ff f2 ff h f h f h f
3

0ff
4 5h

0ff4
f0ff3!

 
! !

f
5

( ) ( )
0ffff

+

K

ahaa hf h f h f h f2 ihf h f h f h ff0ff
2

0ff0ff
3

0ff
4

0ff2 3
f0ff  f0ff ! !

f0ff 4
( )iv ( )v hh f

5

0ff5!
( ) K

 (7.12)

Comparing the coefficients of f0ff in equations (7.11) and (7.12), we obtain

h h ah
3 3h 3

3 4!

and so a 1
12

. Hence, the formula is

f x x hfh h f h f h f
h

)x  
! !0

0ff
2

0ff
3

0ff
4

2 3
f0ff 4

hfhhfh 0ffff fdxx ffff hh f
5

5!
...,( )

0ff

which clearly shows that R is of order h5.
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EXAMPLE 7.4
If f (x) = a + bx + cx2, find the quadrature formulae of the form

     
f x f f f)x

0

1

dx Ax fA f (B f 1) + (C f 2)1 1f  AA f  BB 1CC  (7.13)

and

     
f x f B f C f)x

0

1

dx Ax f B f (C f 2).2 2f BA f B 2CC  (7.14)

By finding out the truncation error in both the cases, point out which of the two formulae is more 
accurate.

Solution. The
1

2

0

L.H.S. of equations (7.13) and (7.14) ( )d .
2 3
b c

x a)d)db 2 )d2 + +( x a)d)d2∫∫

Now,

R.H.S. of equation (7.13) ( ) + ( + + ) + ( +1= (A (11(1 B ( b+ a(1 1( + + ) +BB ( b+ 222 4 ).b+ 4

Comparing coefficients on both sides, we get

A B C

A B C

A B C

1 1A BA B 1CC

1 1A BA B 1CC

1 1BB 1CC

+ 1,

+ 2 1
2

,

3A1AA + 12 1.11

Solving these equations, we get

A B1 1AA 5
36

13
12

B ,B1BB
12  

and C1CC 2
9

.

Therefore, the first formula is

     f x x f f f R)x ( ) ( )
0

1

1

5
36

13
12

2
9

f ( fdxx  (7.15)

Further,

R.H.S. of equation (7.14) ( ) + ( + + ) + ( + 21 2( ) + 2= A (11( B (2 b+ a( b cbb ).

Comparing coefficient on both sides, we get

A B C

B C

B C

2 2A B 2CC

2 2B CC

2 2B CC

+B 1,
1
2
1
3

.

,

Solving these equations, we get
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A B2 2A 5
12

2
3

B ,B2B
3  

and C2CC 1
12

.

Therefore, the second formula is

     
f x x f f f R)x ( ) ( ) .

0

1

2

5
12

2
3

1
12

f ( ) )f (dxx  (7.16)

To find the error, we put F f x x( )xx )xx dxx. Then the left-hand side of equation (7.15) is equal to

 

F F F FF(1) (F 0) (0) (0) + (F 0) F(0) + 1
2

1
3

0( )0
!

( ))
!

( )
!

( ) ( )

( ) ( )

( )1
4

1
5

) (

1
2

F))F (( ) (( ) 1

f ff ( )( ) 1
2

(v)

1
3

1
4

1
5! !

( )0
!

( )0 .f f1
4

( )0
!

f (v) K
 

(7.17)

Also,

 (  (0) + f f(1)  f f(0) + ff(0) + 1
2

1
3

1
!

( )0
!

( )0
44

1
5! !

( )0( )f f1
5

( )0
!

f f f

(iv)

(0)  (0) 

( )0( )f K

1
2

1
3

1
4

1
5! !

( )0
! !

(( )f f1
3

( )0
!

f ff 1
5

( )0
!

(iv) 00

8
3

)

!
( )0

K

f f f f f(0) + 2ff (ff 0) 16
4

32
5! !

( )0 .( )f ff 32
5

( )0
!

(iv) K

Putting these values in equation (7.15), the right-hand side becomes 

     f f f f( )
!

( )
1
2

1
3

30
216

K

Therefore, the order of the remainder term is Cf  ″′ (0), where

C 1
24

30
216

13
72

.

Similarly, the right-hand side of equation (7.16) is equal to

f f ff( ) ( )1
2

1
6

1
36

(iv) KK

Therefore, the order of the remainder is 
1
24

f (0). Comparing the two errors, we observe that the 
second formula is better.

EXAMPLE 7.5
Using method of undetermined coefficients, derive Simpson’s one-third rule.

Solution. Let

     
f x f bf cb fc

x h

x h

)x
0

0

ffdx ax fa ,cfc1 0bffb 1ffff  (7.18)

where the coefficients a, b, c are to be determined. Put F f x x( )xx )xx dxx. Then the left-hand side of 
 equation (7.18) is equal to
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F h F F hF h F( +xx h ( )x h ( )xx ( )x  +0 0F)h (x 0 0hF) (xF(x F )x ) h F( ) +
2

02!
( )x0

h F h F

x x

3 4

0403!
( )x00 !

( )x0
(iv)

0{ (F xx ) (hF x

K

00
(iv)) h F h F h F (iv)(iv)

2 3

0

4

02 30 4!
( )x00 !

( )x0 !
( )x0 KK

K

}

( )
!

( )
!

( ))2( )2
3

2
50

3

0

5

0hF h F ( h F (((v)

22 2
6

2
50

3

0

5

0hf h f x h f x( )0x )0x
!

)0x .(iv)

Also,

f f x h f x hf h f x hff 1 0f x 0 0hf(f xf x )  )xx0 ( )x0xx(f x f )x
2 3

3
f 02!

)x00 !!
( )

!
( )

!
( ))f x( h f (f (( h f x(

f

0

4 5

04 5!
)f ( 0

(iv) (v)

1ff

K

f xff h f x hf x h f x hxx h (f x ) hf xxh )0 0h f xh (f x 0hh
2 3

3
f

2 0!
)x00 !

f xff h f x h f x)x
!

)x
!

)x .0

4 5

04 5
f

!
)0f )x(iv) (v) K

Therefore the right-hand side of equation (7.18) is equal to

a f x hf xh h f x h f x h(xx )xx0 0hf xh) xx
2 3

03
f 02!

)x00 !
)x0

44 5

0

0

4 50!
( )00 !

( )0 ]

( )0

f ( h f x((f

bf c)0 f x

(iv) (v)

[ xx

)0f (

( )bf )0

K

0 000 ) ( )0( )(( h f x h f x
2 3

03
f

2 0!
)x00 !

)x0 ]K

Comparing coefficients of f x x f x f x)x , f ), )x , f )0 0f x f x), f ), x 0f) (iv) , we get

2 0 2
6 2 2

3 2 2

h b h ch h a3 h c2 h0 ah, ,0 ah ch0 ah ,

which yield c a ha
3

 and b h4
3

. Hence,

f x x h f h f h f h f f
x h

x h

)x [
0

0

3
4
3 3 31 0ff3

ff
3

ff 1 1ff f[1ff 3 0fffff
31 3

ff ff[1ff 3
f 1 f1ffdxx f1ff ],

which is Simpson’s one-third rule.

EXAMPLE 7.6
The integral equation

y x f t y t t
x

( )x )t ( )t ,1
0

d

where f is a given function, can be solved by forming a sequence of functions y0, y1, y2,... according to

f t y t tn

x

n1
0

1( )x )t ( )t .d

Find the first five functions for x = 0, 0.25, 0.50, when f (x) is given in the table below. Start with y0 = 1 
and use Bessel’s interpolation formula and Simpson’s rule.

x 0 0.25 0.50 0.75 1

f 0.5000 0.4794 0.4594 0.4398 0.4207



Numerical Quadrature � 477

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M07\LAYOUT_M07\M07_BABUISBN_10_C07.indd

Modif cation Date: April 29, 2010 12:06 PM Modif cation Date: 29-04-10, 12:07

Solution. Bessel’s quadrature formula reads

f x x h
f f f f

x

x

)x
0

1

0 1f ff f 2
0ff

2
1ff

2
1

12 2
11

7
dxx

f2 ff 2

2022 2

4
0

4
1

4 4f f0
4

10 K

and Simpson’s formula reads

f x x h f f
x

)x ( )f f f .
0

0 1f ff ff ff f 2ffff
2

3
( fff dxx

We have

y f t y t tn nf y
x

0

1( )x )t ( )t d

and we start with y0 = 1. For x = 0, we have clearly

y y y1 2y 3 4y 51 1y 1 1y 1y y,2y 1y2y ,4y 1y4y .

Now for x = 0.25, we use Bessel’s formula and get

y f h
f f

1 0f t y
0

0 25
0 1f ff f

1f y t0f y
2

1( )ttt ( )tt ,
2

 t ht 1
.

d

since y0(t) = 1 and higher-order differences contribution is very small. Thus,

y

y f

1

2

1 0 25 0 5 0 4794
2

0 12241 . . .5 0 . ,1224

( )t
00

0 25

1
0 1 1 11 1 25

2

.

( )
( ) ( ) ( .0 )

y t)) 1( t h11
f0 ( y f1 11( )0

d

1 0.25 1.10 5 1 1224 4794
2

. .5 1 ( .0 ) 298,22

dy f t y td h
f y f

3
0

0 25

2
0 2f tf y

1df y td2 1( )t yt yy ( )tt
( )tt.

1 211ffff 25
2

1 0 25 0 5 1 1298 479

( ) ( .0 )

. . .5 1 ( .0

y)

1 44
2

14
0

0 25

3

)

( ) ( )
.

1

1.1302,

dfy 14 1 t y)) t)d hh
f y f0 3f tf y 1 3ff t yy3yf1ff 25

2

1 0 25 0 5

( )tt ( ) t( )tt ( .0 )

. .1 1 0
2

5
0

0 2

. (1302 . )4794

( )
.

1.1302

y f15

55

4
0 4 1 41 4 25

2
y t)) 4 t h11

f t0 y f4 11( )t
)t 0 ( ) ( .0 )

d ,

. . . ( . )1 0 25 0 5. 1 1302 4794
2

1.1302...

Now for x = 0.50, h = 0.25, we use Simpson’s rule
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y f t y1
0

0 50

0f y0

0 25
3

( )t yt yy ( )tt
.

d [t 1t 0 25
3

1 . 0.5 4(0.4794))) 0.4594] 1.2398,

d

0.4594]

y f t y td2
0

0 50

1 1df y td1( )t yt yy ( )tt
. hh f t y f t f t

3
[ )t y (ff ) (0.25) )t  (y 00 1f tf y)t  yy 1 1ff t y(ff 2 1f tf y)t  yt y(ff (0.25)1t y(ff .50).. ]

1 [0.5(1) 4(0.4794)(1.1224) 0.41 4(0.4794)(1.1224)0 25
3

594 (55 1.2398)] 1.2685,

dy f t y t3
0

0 50

2(f ) (yy2 )
.

tt h f t y f f t yf1
3

[ )t yy ffff ( )tt  (y 0.25) )t0 2f tf y)t yy 1 2ff t yff (tt yyy 2ff 22 (0.50)]

1 [ 0.5(1) 4(0.4794)(1.1298)1 0 25
3

0.4594(1.2685)] 1.2708,

y f t y h f t y f4
0

0 50

3f y3 3
( )tt y ( )tt

.

d [t h1t
3

1  f ) ff0 3f tf yff ) 1 311ffff 2 3( ) (3 0.25)  ( ) (0.50)]

1 [0.5

) f t2 (2 y

0 25
3

(1(( ) 4(0.4794)(1.1302) 0.4594(1.2708)] 1.274(0.4794)(1.1302) 09,00

d [ ) (00 4) y f t y d h f t(0 ( y5
0

0 50

4 ddyf 4 3
(t( )t y ( )t( )t

.

) 4)) ( ) ( ( ) (0.50)]

1 [

1 4) 2 4()) 4

1

f4 1(f4 (4 (1( f(0.25)4 2(0.25) )) 

0 25
3

0.5(00 1) 4(0.4794)(1.1302) 0.4594(1.2709)] 14(0.4794)(1.1302) .2709...

EXAMPLE 7.7
The prime number theorem states that the number of primes in the interval a < x < b is approximately 

dxdd
xa

b

log
. Use this for a = 100 and b = 200 and compare with the exact value.

Solution. We know that

log (log ) log .e e 10(2.302585) logx x x10 10

Therefore,
d dx

x
x

xlog ( . ) log100

200

10100

200

2 3025

We have the following table:

x 100 150 200

f
1

2 302585( .2 )
1

2 2. (1760 . )302585
1

2 2. (3010 . )302585

Here h = 50. We use Simpson’s rule and get
d ( 4 )0 1 2

xdd
x

h f 40 144 f2log

.

100

200

3

50
3

1
4 60517

4
5

( f0

.. .0104
1

5 282
16.6667 (0.2171 0.7983 0.1887)00 20.068.
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If h = 25, then the table is

x 100 125 150 175 200

f 0.2171 0.2071 0.1996 0.1936 0.1887

and therefore Simpson’s formula now yields

dxdd
x

h f f f f f
log

[( ) ( ) ]f

[

100

200

0 4f ff f 1 3f ff f 2ffff3
f f( )f( 3f ff f

25
3

f[( ff f( ff

00 0 2 1996 20 065. (4058 4 . )4007)4007 ( .0 )] . .06504 . )4007

The exact number of primes between 100 and 200 is 21.

EXAMPLE 7.8
Use Romberg’s method to compute

1
10

1

x
x dxx

correct to four decimal places and hence find the value of loge 2.

Solution. Let h = 0.5. Then the values of the integrand f x
x

)x 1
1

are

x 0 0.5 1.0
f (x) 1 0.6667 0.5

Therefore, by trapezoidal rule, we have

Q
x

x1
0

1 1
1

0 5
2

 .d [1 + 2(0.6667) + 0.5] = 0..70835 0.7084.

Now, let h = 0.25. Then the values of the integrand are

x 0 0.25 0.5 0.75 1.0
f (x) 1 0.8 0.6667 0.5714 0.5

Therefore,

Q2

0 25
2
. [1 + 2(0.8 + 0.6667 + 0.5714) + 0.5]] 0.6970.

Then

R Q Q1 2 1

4
3

1
3

 0.9293 0.236 0.6932.

Now, let h = 0.125. Then the values of the integrand are

x 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

f (x) 1 0.8889 0.8 0.7272 0.6667 0.6154 0.5714 0.5333 0.5



480 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M07\LAYOUT_M07\M07_BABUISBN_10_C07.indd

Modif cation Date: April 29, 2010 12:06 PM Modif cation Date: 29-04-10, 12:07

Then

R2 [1 + 4(0.8889 + 0.7272 + 0.6154 + 0 125
3

. 00.5333) + 2(0.8 + 0.6667 + 0.5714) + 0.5]

00 125
3

. [1 + 11.0592 + 4.0762 + 0.5] 0.6931.

Then

S R R16
15

1
152 1 0.7393 0.0462 0.6931.

Also,
d log 2.e

x
x

x
1

1
0

1

0

1
log( )

Hence,
log 2 0.6931.e

EXAMPLE 7.9
Use Romberg’s method to compute

log
.

x x
4

5 2.

dxx

from the data

x 4 4.2 4.4 4.6 4.8 5.0 5.2
logex 1.3863 1.4351 1.4816 1.526 1.5686 1.6094 1.6486

Solution. Let h = 0.4. Then by trapezoidal rule,

Q1

0 4
2
. [1.3863 2(1.4816 1.5686) 1.6486] 1.82271.

Now, let h = 0.2. Then, again by trapezoidal rule,

Q2

0 2
2
. [1.3863 2(1.4356 1.4816 1.526 1.5686 1.6094) 1.6484] 1.8237.

Then

R Q Q1 2 1

4
3

1
3

= 2.4316 0.6090 1.8226.

EXAMPLE 7.10

Use Romberg’s method to compute 
dx

x1 2
0

1

 
correct to four decimal places.

Solution. Let h = 0.5. The values of the integrand f x
x

( ) 1
1 2  are

x: 0 0.5 1
f (x): 1 0.8 0.5
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Therefore, by trapezoidal rule, we have

Q x
x

h f f f1 2
0

1

0 1 21 2
2 1

4
1 2 0 8 0 5d [ ] [ ( . ) . ] 0 775. .

Now, let h = 0.25. Then, the values of the integrand are

x: 0 0.25 0.5 0.75 1.0
f (x): 1 0.9412 0.8 0.64 0.5

Therefore, by trapezoidal rule,

Q x
x

h f f f f f2 2
0

1

0 1 2 3 41 2
2

1
8

1 2 0

d [ ( ) ]

[ ( .. . . ) . ] . .9412 0 8 0 64 0 5 0 7828

Then, by Romberg’s method, we get

R Q Q1 2 1

4
3

1
3

4
3

0 7828 1
3

0 775 0 7854( . ) ( . ) . .

Now, let h = 0.125. Then the values of the integrand are

x: 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0
f (x): 1 0.9846 0.9412 0.8767 0.8 0.7191 0.64 0.5664 0.5

Then, by Simpson’s one-third rule, we have

R2

0 125
3

1 4 0 9846 0 8767 0 7191 0 5664 2. [ . ( . . . . (( . . . ) . ]

. [ . .

0 9412 0 8 0 64 0 5

0 125
3

1 12 5872 4 77624 0 5 0 7854. ] . .

Therefore, by Romberg’s method,

S R R16
15

1
15

16 0 7854
15

1
15

0 7854

0 8

2 1

( . ) ( . )

. 33776 0 05236 0 7854. . .

EXAMPLE 7.11

Evaluate 
dx

x1 2
0

1

 using

 (i) Trapezoidal rule taking h = 
1
4

,

 (ii) Simpson’s one-third rule taking h = 
1
4

,

 (iii) Simpson’s three-eight rule taking h = 
1
6

,

 (iv) Weddle’s rule taking h = 1
6

.

Solution. The value of f x
x

( ) 1
1 2  for first two cases are



482 � Engineering Mathematics

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M07\LAYOUT_M07\M07_BABUISBN_10_C07.indd

Modif cation Date: April 29, 2010 12:06 PM Modif cation Date: 29-04-10, 12:07

x: 0
1
4

1
2

3
4

1

f (x): 1 0.9412 0.8000 0.6400 0.5000

Case (i): By trapezoidal rule, we have
d

2
[ 2( ) ]

1
8

[1 2(0.9

0 1 2 3 4

x
x

h f f f f f
1 2

0

1

4412 0.8000 0.6400) 0.5000]

0.7828.

Case (ii): Using Simpson’s one-third rule, we have

d [ 4( ) 2 ]

1
12

[1 4 

0 1 3 2 4

x
x

h f f f f f
1 32

0

1

((0.9412 0.6400) 2(0.8000) 0.5000] 

0.7854.

The values of f (x) for the cases (iii) and (iv) are:

x: 0
1
6

1
3

1
2

2
3

5
6

1

f (x): 1 0.9730 0.9000 0.8000 0.6923 0.5902 0.5000

Case (iii): By Simpson’s three-eight rule, we have

d [( ) 3( ) 2 ]0 6 1 2 4 5 3

x
x

h f f f f f f f
1

3
82

0

1

11
16

[(1 0.5) 3(0.9730 0.9000 0.6923 0.5902) 2(0.8)]

 0.78541.

Case (iv): By Weddle’s rule, we have

d [ 5  6  5 ]

1

0 1 2 3 4 5 6

x
x

h f f f f f f f
1

3
102

0

1

220
[1 5(0.9730) 0.9000 6(0.8) 0.6923 5(0.59002) 0.5000]

0.78542.

EXERCISES

1. Using Simpson’s rule, find the volume of the solid of revolution formed by rotating about x-axis 
the area between the x-axis, the lines x = 0 and x = 1 and a curve through the points (0, 1), (0.25, 
0.9896), (0.50, 0.9589), (0.75, 0.9089), and (1, 0.8415).
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Hint:

 

Volume = dy xdd

h y y y

0

1
2

0

1

0
2

1
2

33

ddy dd2

([y[ 2 4y2 22
2
2

4
2) ]2
4
22 22y y222

Ans. 2.8192
2. Find the approximate value of

  
cos

0

2

d

by dividing the interval into six parts.
Ans. 1.1873

3. Evaluate

  

dxdd
x1

2

by Simpson’s rule and compare the approximate value obtained with the exact solution
Ans. 0.6932

Exact value: log2 2 = 0.693147
4. Evaluate

  
sin x x

0

2

dx xx x

by Simpson’s one-third rule using 11 ordinates.
Ans. 0.9985

5. The velocity v of a particle at distance s from a point on its path is given by the table:

s ft.: 0 10 20 30 40 50 60

v ft/sec.: 47 58 64 65 61 52 38

Using Simpson’s one-third rule, determine the time taken by the particle to travel 60 ft.

Hint: v s
t

dss
d

and so d d
v

sdd1
. So find 1

0

60

v
d .ss

Ans. 1.063 sec
6. For the case of six known ordinates, show that

f x f f f f f)x  f f f
0

5

0 5ff fff ff 1 4ff ffff ff 2ff
5

288
fff f2ffdxxx f fff fffff ff3ff )]

7. The velocity v km/min of a moped started from rest is given at fixed intervals of time t(minutes) 
as follows:

t: 2 4 6 8 10 12 14 16 18 20

v: 10 18 25 29 32 20 11 5 2 0
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Using Simpson’s rule, find the distance covered in 20 minutes.

Hint: v s
t

dss
d

and so ds = vdt. So find v t
0

20

dvv . Take interval length equal to 2 and use Simpson’s 

formula.

Ans. 309.33 km
8. Obtain an estimate of the number of subintervals that should be chosen so as to guarantee that the 

error committed in evaluating 1

1

2

x
xdxx  by trapezoidal rule is less than 0.001.

Hint: E nh fn ( )x ( )
3

12
( ),

Ans. n = 8
9. Compute the value of

  

dxdd
x1 2

0

1

using trapezoidal rule with h = 0.5, 0.25, and 0.125. Then use Romberg’s method to get better 
 approximation. Compare the result obtained with the true value.

Ans. 0.77500, 0.78279, 0.78475, 0.7854

10. Use Euler–Maclaurin formula to find the value of log 2 from dxdd
x10

1

.

Hint: d
e e

xdd
x

x
1

1 2x
0

1

0

1
1log (e l) og .

 
So find dxdd

x10

1

 by Euler–Maclaurin formula.

Ans. 0.693149

11. Calculate by Simpson’s rule an approximate value of x x4

3

3

dxx by taking seven equidistant ordinates. 
 
Compare it with exact value and the estimate obtained by using trapezoidal rule.

Ans. by Simpson’s rule: 98
Exact value: 97.2

by trapezoidal rule: 115
So Simpson’s rule yields better results

12. Calculate dxdd
x12

10

by dividing the range into eight equal parts.
Ans. 1.299

13. If e0 = 1, e1 = 2.72, e2 = 7.39, e3 = 20.09, e4 = 54.60, find ex

0

4

by Simpson’s rule.

Ans. 2.97049
14. A river is 80 feet wide. The depth d(in feet) of the river at a distance x from one bank is given by 

the following table:

x: 0 10 20 30 40 50 60 70 80

d: 0 4 7 9 12 15 14 8 3
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Find approximately the area of the cross-section of the river.
Hint: Since A = ∫ ydx and h = 10 we have by Simpson’s rule, 

A 10
3

[(0 3) + 4(4 + 9 + 15 + 8) + 2(7 + 12 +++ 14)] 710 sq. feetff .

15. Show that

  
f x x f f f f)x (f ) f (f ) (f )].(f

1

1 13
12

1) f) 3 3) (f (fdxx))
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An ordinary differential equation is an equation containing one independent variable and one depend-
ent variable and at least one of its derivatives with respect to the independent variable. We know that a 
differential equation of nth order has n independent arbitrary constants in its general solution. There-
fore, we need n conditions to compute the numerical solution of an nth order differential equation.

8.1 INITIAL VALUE PROBLEMS AND BOUNDARY VALUE PROBLEMS
Problems in which all the initial conditions are specified at the initial point only are called initial value 
problems or marching problems. Thus, in an initial value problem, all the auxiliary conditions are 
specified at a point, for example, value of y, y′, ..., y n( )1 at the point x0.

As an illustration, we note that the equation

     y x y y2 0 1, ( )

is an initial value problem.
Problems involving second and higher order differential equations in which auxiliary conditions 

are specified at two or more points are called boundary value problems or jury problems.
As an illustration, we note that the equation

y xy y y, (0) 0, 2 1( )

is a boundary value problem.

8.2 CLASSIFICATION OF METHODS OF SOLUTION
Consider first order differential equation y f x y( , ). Let x x nhn 0  and let yn be the value of y 
obtained from a particular method. If the value yn+1 appears as a function of just one y-value yn, then 
the method is called a single-step method. On the other hand, if the value yn+1 appears as a function of 
several values y y yn n n p, ,1, ,K  then the method is called a multistep method. Thus, a single-step method 
is a method that requires only one preceeding value of y, while a multistep method requires two or more 
preceeding values of y.

8.3 SINGLE-STEP METHODS
1. Taylor Series Method
Let f (x, y) be a function that is differentiable for sufficient number of times and let

 

d
d
y
x

y f x y y x y( , ), ( )0 0  (8.1)

be the initial value problem. We expand y(x) into Taylor series about the point x0. Thus,

 
y x h y hy h y h

p
y h

p

p
p

p

( )
! ! (

( )
0 0 0

2

0 0

1

2
L

1
1

)!
( ),( )y p  (8.2)

8 
Ordinary Differential 
Equations
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where x is a point in [x0,x]. Since the solution is not known, the derivatives in the expansion are not 
known. However, they can be obtained by taking total derivative of the differential equation (8.1). 
Therefore,

y f x y( , ),

y f f y f ffx y x y ,

y f f f f f f f f f f f

f f
xx xy yx yy y x y

xx xy

2 2

2 ff f f f fyy y
2 2 ,

and so on.
The number of terms to be included in equation (8.2) is fixed by permissible error. If the permis-

sible error is  and the series in equation (8.2) is truncated after the term in y(p), then we have
h
p

y
p

p
1

1

1( )!
| ( ) |( )

 
or

h
p

f
p

p
1

1( )!
| ( ) | .

For a given h, we can find p and obtain an upper bound on h. For computational purposes | ( ) |f p  is 
replaced by max | ( ) |f p

n  in [x0, xn].

Advantages:

(i) A large interval can be used by increasing the number of terms.
(ii) No special starting procedure is required.

(iii) The values computed can be checked by applying Taylor’s expansion equally on either side of 
the point xn. Thus corresponding to yn+1, we may also compute yn−1 from the series

y y hy h y h yn n n n n1

2 3

2 3! !
,K

y y hy h y h yn n n n n1

2 3

2 3! !
.K

Disadvantages:

(i) The necessity of calculating the higher derivatives makes this method completely unsuitable 
on high-speed computers.

(ii) The method is labourious and so is not recommended except for a few equations. 

EXAMPLE 8.1
Solve by Taylor series method:

     
y y x

y
y x x2 0 1 0 1, ( ) , . .for 0.1 and  

Solution. The given equation is

 
y y x

y
y2 0 1, ( ) .
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Therefore,

y y yy y x y
y

yy y
y

( ) ( ) ,2 2 2 2 22

2

2

y yy y y y
y

2 3 2 2

,

KKKKKK
so that

 
y y

y
y( ) ( ) ( )

( )
( ) ,0 0 2 0

0
0 1

 

y y y y
y

( ) ( ) ( ) ( )
( )

,0 2 0 0 0 2
0

2 1 2
1

1
2

 

y y y y y y
y

( ) ( ) ( ) ( ) ( ) ( )
(

0 2 0 0 3 0 0 2 0
0

2

))
,

( )( ) ( )( ) ,2 1 1 3 1 1 2
1

3

KKKKKK
KKKKKK

Therefore,

y y y y( . ) ( ) ( . ) ( ) ( . )
!

( ) ( . )0 1 0 0 1 0 0 1
2

0 0 12 33

3
0

1 0 1 0 01
2

1 0 001
3

3

!
( ) ,

. . ( ) .
!

( )

y L

L 1 0955. .

Similarly,

y y y y( . ) ( ) ( . ) ( ) ( . )
!

( ) ( .0 1 0 0 1 0 0 1
2

0 0 12 ))
!

( ) ,

. . ( ) . ( )

3

3
0

1 0 1 0 01
2

1 0 001
6

3

y L

L 0 8955. .

EXAMPLE 8.2
Solve the differential equation y x y2 , by series expansion, for x = 0.2(0.2)1 under the initial condi-
tion y(0) = 1.

Solution. We have

y x y
y yy y x y xy y

2 ,
1 2 1 2 ( ) = 1 2 2 , 2 3

y yy y y xy y x
y

2 2 2( 4 3 ),2 2 4 2

(iv) 22 2 4 2 6 ,yy y y y y yy y y
KKKK
KKKKK



Ordinary Differential Equations � 489

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
\\Acedc\project1\Pearson\Engineering Maths_Baburam\MAIN\M08\LAYOUT_M08\M08_BABUISBN_10_C08.indd

Modif cation Date: April 29, 2010 12:11 PM Modif cation Date: 29-04-10, 12:12

Using the initial condition y(0) = 1, we get
y y
y y y

( ) ( ( )) ,
( ) ( ) ( )
0 0 0 1
0 0 0

2

1 2 1 2(11)( ) 3, 
2 2 2(1)(32

1
0 0 0y y y y( ) ( ) ( ) ))

2

2

(iv)

2 1 8
0 0 0 6 0

( ) ,
( ) ( ) ( ) ( )y y y y y ( )0 2(1)( 8) 6( 1)(3) 34.

Therefore,

y y y y y1

2

0 2 0 0 2 0 0 2
2

0 0 2( . ) ( ) . ( ) ( . )
!

( ) ( . ))
!

( ) ( . )
!

( ) ,

. .

3 4

3
0 0 2

4
0

0 2 0 06

y y(iv)

1

K

0 01066 0 002266 0 8516. . . .
Now

y y y y y2 1 1

2

1

3

0 4 0 2 0 2
2

0 2
3

( . ) . ( . )
!

( . )
!

y y1

4

1

0 2
4

( . )
!

(iv) L

But
y x y
y y

1 1 1
2 2

1 1

0 2 0 8516 0 5252
1 2

. ( . ) . ,
y

y y
1

1

1 2 0 8516 0 5252 1 8945

2

( . )( . ) . ,

 11 1 1
2

2

2

2 0 8516 1 8945 2 0 5252

y y

( . ) ( . ) ( . )    

iv

3 2267 0 5517 3 7784
21 1 1

. . . ,
( )y y y 6

2 0 8516 3 7784 6 0 5252 1
1y y

( . )( . ) ( . )( .88945
6 43537 5 96995 12 40532

)
. . . .

Therefore,

y2  0.8516 0.2( 0.5252) 0.04
2

 (1.8945) + 0.0088
6

( 3.7784) 0.0016
24

(12.40532) 

 0.8516 0.110504 + 0.03789 0.00504 + 0.000827 0.7802.
Similarly, we can calculate y(0.6), y(0.8), and y(1).

EXAMPLE 8.3
Solve the differential equation y″ = xy for x = 0.5 and x = 1 by Taylor series method. Initial values: x = 0, 
y = 0, y′ = 1.
Solution. We have

y xy
y xy y

y xy y y xy y

,
,

(iv) 2 ,,
.y xy y y xy y(v) 2 3

Initial conditions are y(0) = 0, y′(0) = 1. Further,
y
y y

y y

( ) ,
( ) ( ) ,
( ) ( )

0 0
0 0 0 0
0 0 2 0(iv) 2 1 2
0 0 3 0 0

( ) ,
( ) ( ) .y y(v)
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Hence,

y y y y y1

2

0 5 0 0 5 0 0 5
2

0 0 5( . ) ( ) . ( ) ( . )
!

( ) ( . ))
!

( ) ( . )
!

( ) ( . )
!

(( )
3 4 5

3
0 0 5

4
0 0 5

5
y y yiv (v) 00

0 0 5 1 0 0625
24

2 0 5 0 00521 0 50

)

. ( ) . ( ) . . .

L

5521.

Now we find y2 = y(1). We have

y y y y y2 1 1

2

1

3

10 5 0 5
2

0 5
3

0. ( . )
!

( . )
!

( .55
4

4

1
)
!

y(iv) L

But

y y hy h y h y1 0 0

2

0

2

02 3

1 0 5

! !

. (

( )iv L

00 0 25
2

0 0 125
6

2

1 04167

1 1 1

) . ( ) . ( )

. .

L

y x y 0 5 0 50521 0 25261
0 5 11 1 1 1

. ( . ) . .
. (y x y y .. ) . . .04167 0 50521 1 02604

21 1 1 1y x y y(iv) 0 5 0 25261 2 1 04167 2 2096. ( . ) ( . ) . .

Hence,

y y2 1 0 50521 0 5 1 04167 0 25
2

0 25261( ) . . ( . ) . ( . ) 0 125
6

1 02604 0 0625
24

2 2096

0 5052

. ( . ) . ( . )

.

L

11 0 52084 0 03157 0 021376 0 00575 1 08475. . . . . ..

2. Euler’s Method
Consider the initial value problem

 
y y

x
f x y y x yd

d
( , ), ( ) .0 0

 (8.3)

The Euler method is based on the property that in a small interval, a curve is nearly a straight line. 
Thus, if x ∈ [x0, x1], a small interval, we approximate the curve by the tangent at the point (x0, y0). But 
the equation of the tangent at (x0, y0) is

y y y
x

x x f x y x x
x y

0 0 0 0 0

0 0

d
d ( , )

( ) ( , )( ),,  using equation (8.3)

or
y y x x f x y0 0 0 0( ) ( , ).

Therefore, the value of y corresponding to x1 is
y y x f x y1 0 1 0 0 0( ) ( , ).x

If xn = x0 + nh, then we get
y y hf x y1 0 0 0( , ).

Similarly, approximating the curve by the tangent in [x1, x2] at the point (x1, y1) with slope f (x1, y1), we have
y y hf x y2 1 1 1( , ),
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and so, in general

 y y hf x yn n n n1 ( , ).  (8.4)

The Euler’s method is very slow if h is very small. On the other hand, if h is not small, then this method 
is too inaccurate. These drawbacks suggest further modifications of Euler’s method
Geometric Interpretation: The Euler method has a very simple geometric interpretation. The integral 
of equation (8.3) yields y as a function of x. Let y F x( ). Then the graph of y F x( ) is a curve in the 
 xy-plane. Since the curve is nearly a straight line in a small interval, we approximate the curve by the 
tangent at the point ( , ).x y0 0  Then, as shown in Figure 8.1, the true value y (equal to AQ in the figure) 
is  approximated by x tan  (equal to AB in the figure). Thus,

y x y
x

x
x y

tan .
( , )

d
d

0 0

Therefore

y y y
x

x x
x y

1 0 1 0

0 0

d
d ( , )

( )

In the interval xn ≤ x ≤ xn+1, the solution is assumed to follow the line tangent to y(x) at (xn, yn). Therefore,
y y hf x yn n n n1 ( , ).

When this method is applied repeatedly across several intervals in sequence, the numerical solutions traces 
a polygon segment with sides of slope f (xn, yn), n = 0,1,2, .... That is why, this method is also called polygon 
method.

Error Analysis of Euler’s Method
Let y(xn) be exact value of y at x = xn and let yn+1 be the computed value of y at x = xn+1. Then the trunca-
tion error after one step, called the local truncation error is given by

T y y x
y hy x y x

n n n

n n n

1 1 1

1

( )
( ) ( ) (by Eulerr's formula)

( ) ( )y hy x y hy x h yn n n n n n

2

2
,

( ).

[ ]x x

h y

n n

n

1

2

2

Figure 8.1

• •

•

• •

•

•

y = F(x)

P(x0, y0)

Q(x1, y1)

A

B

X

Y

O
Δx = h

x0 x1

y1

y2θ
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Hence, the local truncation error is O(h2).
The total truncation error is

e y y xn n n( ).

We assume that (i) y0 is exact so that e0 = 0 and yi are the values of y computed by Euler’s method 
(ii) Lipschitz condition

| | | |f x y f x y L y y( , ) ( , )* *

is satisfied, and (iii) y M( )  in the given interval. By Euler’s method, we have

 
y y hf x yn n n n1 ( , )  (8.5)

and by Taylor’s expansion, we have

 
y x y x hf x y x h yn n n n( ) ( ) ( , ( ))

!
( )1

2

2
.  (8.6)

Subtracting equation (8.6) from equation (8.5), we have

e e h f x y f x y x h yn n n n n n1

2

2
[ ( , ) ( , ( )]

!
( ).

Hence,

| | | | | |e e hL y y x h Mn n n n1

2

2
( )

!
or

e hL e h Mn n1

2

1
2

( ) .

Putting 1 + hL = A and h M B
2

2
,  we get

| | | |e A e B n Nn n1 0 1 2 1, , , , , .K

Thus,
| | | |

| | | | | |

| |

e A e B
e A e B A A e B

A e

1 0

2 1 0

2
0

[ ]

(( ) ,A B A
A

B A e

e A e B A e

1 1
1

2

2 0

3 2
3 0

| |

| | | | | |
A
A

B

e A e A
A

BN
N

N

3

0

1
1

1
1

,

.

L

| | | |

But e0 = 0 and
A hL e eN N NhL L x xN  ( )     .( )1 0

Hence,

| |e hM e
L

O hN

x xN1
2

10L( )

( ).
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The error tends to zero as h 0  in such a way that nh x xn 0  remains constant. From this computa-
tion it follows that the Euler method is convergent.

Improved Euler’s Method
In this method, the curve in the interval [x0, x1] is approximated by a line through (x0, y0) whose slope 
is the average of the slopes at (x0, y0) and ( , )( )x y1 1

1  such that

y y hf x y1
1

0 0 0
( ) ( , ).

Thus, the equation of the line becomes

y y x x f x y f x y0 0 0 0 1 1
11

2
( ) ( , ) ( , )( )

and so the line through (x0, y0) and (x1, y1) is

y y x x f x y f x y0 0 0 0 1 1
11

2
( ) [ ( , ) ( , )]( )

or

y y h f x y f x y

y h f x

1 0 0 0 1 1
1

0 0

2

2

( , ) ( , )

( ,

( )

yy f x h y hf x y0 0 0 0 0) ( , ( , )) .

Hence, the general formula becomes

y y h f x y f x h y hf x yn n n n n n n n1 2
( , ) ( , ( , )) ,,

where xn − xn−1 = h.

Geometrical Interpretations: Let y computed by Euler’s method is represented by AB. If PC is 
drawn parallel to the tangent at Q x y( , ),1 1  then y computed by using the slope at Q is represented by 
AC. On the other hand, if we take the average of the slopes, we have

y

y
x

y
x

hx y x y

d
d

d
d( , ) ( , )0 0 1 1

2
1
2

(( ) ( )

,

AB AC AB AB BC

AB BC

1
2

1
2

which is very close to the true value AQ (Figure 8.2).
Therefore,

y y h dy
dx

dy
dxx y x y

1 0 2
0 0 1 1( , ) ( , )

y h f x y f x h y hf x y0 0 0 0 0 0 02
[ ( , ) ( , ( , )))].
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Hence, the general formula becomes

y y h f x y f x h y hf x yn n n n n n n n1 2
[ ( , ) ( , ( , ))].

Modified Euler’s Method
In this method, the curve in the interval [x0, x1] is approximated by the line through (x0, y0) with slope 

f x h y h f x y0 0 0 02 2
, ( , ) , that is, the slope at the midpoint whose abscissa is the average of x0 and 

x1, that is, the slope at x
h

0 2
. Thus, the equation of the line is

y y x x f x h y h f x y0 0 0 0 0 02 2
( ) ( , ( , )) .

Taking x = x1, we have

y y h f x h y h f x y1 0 0 0 0 02 2
, ( , ) ..

Hence, the general formula becomes

y y h f x h y h f x yn n n n n n1 2 2
, ( , ) .

EXAMPLE 8.4
Solve, by Euler’s method, the initial value problem

d
d

y
x

x y y
2

0 1, ( )

over [0, 3], using step size 1
2

.

Solution. By Euler’s method,
y y hf x yn n n n1 ( , ).

Figure 8.2

• •

•

• •

•

•

P(x0, y0)

Q(x1, y1)

A

B

y1

C

X

Y

O x0 x1

y = F(x)

Δx = h

θ
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We are given that h 1
2

 and f x y x y( , )
2

. Therefore,

y y
x y

x yn n
n n

n n1 0 5
2

0 25 0 75. . . .

Thus,
y x y

y

1 0 0

2

0 25 0 75 0 25 0 0 75 1
0 75
0

. . . ( ) . ( )

. ,

.225 0 75 0 25 0 5 0 75 0 75
0 125 0 5

1 1x y. . ( . ) . ( . )
. . 6625 0 6875

0 25 1 0 75 0 6875
0 25 0

3

. ,
. ( ) . ( . )
. .

y
5515625 0 765625

0 25 1 5 0 75 0 7656254

. ,
. ( . ) . ( .y )) . .
. ,
. ( )

0 375 0 57421875
0 94921875
0 25 2 05y .. ( . ) . .
.

75 0 94921875 0 50 0 711914062
1 2119140663
0 25 2 5 0 75 1 211914063
0 625 0

6

,
. ( . ) . ( . )
. .

y
9908935546

1 533935547 1 533936. . .

EXAMPLE 8.5
Solve the initial value problem

d
d
y
x

y x
y x

y, ( )0 1 for x = 0.1 by Euler’s method.

Solution. By Euler’s method

y y hf x yn n n n1 ( , ).

We take h = 0.02. Therefore,

y y
y x
y xn n

n n

n n
1 0 02.

and so

y y
y x
y x1 0

0 0

0 0

0 02

1 0 02 1 0
1 0

.

. 1 02

0 022 1
1 1

1 1

. ,

.y y
y x
y x

1.02 + 00.02 1.0392,1 02 0 02
1 02 0 02
. .
. .
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y y
y x
y x3 2

2 2

2 2

0 02

1

.

 .1.0392 + 0.02 00392 0 04
1 0392 0 04

04 3

.
. .

1.05918,

y y ..

.

02

1 05918

3 3

3 3

y x
y x

1.05918 + 0.02 00 06
1 05918 0 06

0 025 4

.
. .

.

1.07917,

y y
y44 4

4 4

1 07917 0 08

x
y x

1.07917 + 0.02 . .
11 07917 0 08. .

1.09916.

Hence, the required solution is 1.09916.

EXAMPLE 8.6
Use Euler’s method and its modified form to obtain y(0.2), y(0.4), and y(0.6) correct to three decimal 
places, given that y′ = y − x2 with initial condition y(0) = 1.

Solution. By Euler’s method,

y y hf x yn n n n1 ( , ).

Here f (x, y) = y − x2 and h = 0.2. Therefore,
y y y x y xn n n n n n1

2 20 2 1 2 0 2. ( ) . . .

Thus,
y y x

y y x
1 0 0

2

2 1 1

1 2 0 2 1 2 1 1 2

1 2 0 2

. . . ( ) . ,

. ( . ) 22 2 3

3 2

1 2 0 2 1 44 0 008 1 4320

1 2

( . ) ( . ) . . . ,

.y y ( . ) ( . )( . ) ( . )( . ) . .0 2 1 2 1 432 0 2 0 4 1 68642
2 2x

Modified Euler’s formula is

y y hf x h y h f x yn n n n n n1 2 2
, ( , ) .

Taking h = 0.2, we have

y y y y x x1 0 0 0 0
2

0

2

0 2 0 2
2

0 2
2

. . ( ) .

1 0 2 1 0 1 1 0 0 0 1
1 0 2 1 0

2. [ . ( ) ( . ) ]
. ( .11 0 01 1 218
0 2 0 12 1 1 1 1

2

. ) . ,
. [ . ( ) ( y y y y x x11

1 218 0 2 1 218 0 1 1 218 0 2

+0.1) ]  2

. . [ . . ( . ( . )22 20 2 0 1
1 218 0 2 1 218 0 1178 0 0

) ( . ( . ) ]
. . [ . . . 99 1 4672] . ,
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  y y y y x x3 2 2 2 2
2 20 2 0 1 0 1

1 467

2. [ . ( ) ( . ) ]

. 22 0 2 1 4672 0 1 1 4672 0 4 0 4 0 12 2. [ . . ( . ( . ) ) ( . . ) ]]

. . [ . . . ] . .1 4672 0 2 1 4672 0 13072 0 25 1 7368

EXAMPLE 8.7
Using Euler modified method, obtain a solution of 

d
d

y
x

x y y, ( )0 1 for the range 0 0 6x .  in 
steps of 0.2.

Solution. The given differential equation is
d
d
y
x

x y y, ( ) .0 1

The modified Euler’s formula is

y y hf x h y h f x yn n n n n n1 2 2
, ( , ) .

Taking h 0 2. , we have

y y x y x y1 0 0 0 0 00 2 0 2
2

0 2
2

1 0 2

. . .

. [[ . . ( )] . .

. .
0 1 1 0 1 1 1 240

0 2 0 2
2

0
2 1 1 1y y x y ..

. . [ . . . .

2
2

1 24 0 2 0 2 0 1 1 24 0 1

1 1x y

(( . . )]
. . . .

.

0 2 1 114
1 24 0 33428 1 574

0 23 2y y x22 2 2 2

0 2
2

0 2
2

1 574 0 2 0 4

. .

. . [ .

y x y

00 1 1 547 0 1 0 4 1 255 2 0219. . . ( . . )] . .

3. Picard’s Method of Successive Integration
Consider the initial value problem

 y x f x y x a b y x y( ) ( , ( )) [ , ] ( ) .over with 0 0  (8.7)

Using fundamental theorem of calculus, we have

 
f x y x x y x x y x y x

x

x

x

x

( , ( )) ( ) ( ) ( ).d d
0

1

0

1

1 0  (8.8)

Thus,

 
y x y x f x y x x

x

x

( ) ( ) ( , ( )) .1 0
0

1

d  (8.9)
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Thus, if we start with the approximation y(x0), then

y y f x y x

y y f x y x

x

x

x

x

1 0 0

2 0 1

0

1

0

1

( , ) ;

( , ) ;

d

d

L LL L

y y f x y xn n
x

x

1 0
0

1

( , ) .d

We stop the process when yn+1 = yn upto desired decimal places.
The Picard’s method of successive integration fails if the function is not easily integrable.

EXAMPLE 8.8
Using Picard’s method, solve

d
d

 fory
x

x y y x2 0 1 0 2, ( ) . .

Solution. We start with the approximation y(0) = 1. Then

y y x y x x x

x

1 0
2

0
0

0 2
2

0

0 2

3

1 1

1
3

( ) ( )
. .

d d

xx

y

0

0 2 3

2

1 0 2
3

0 2 0 8027

1

.
( . ) . .

( ) ( . )
. .

x y x x x

x

2
1

0

0 2
2

0

0 2

3

1 0 8027

1
3

d d

0 8027 1 0 00267 0 16054 0 8
0

0 2

. [ . . ] .
.

x 4421

1 1
33

2
2

0

0 2 3

2
0

0

,

( )
. .

y x y x x y xd
22

4

1 0 00267 0 8421 0 2 0 8342
1 0

[ . ( . )( . )] . ,
[y .. ( . )( . )] . ,
[ .

00267 0 8342 0 2 0 8358
1 0 002675y ( . )( . )] . .0 8358 0 2 0 8355

Hence y(0.2) = 0.835 upto three decimal places.

EXAMPLE 8.9
Solve

y x xy y2 2 0 0, ( ) .
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Solution. We take first approximation to be y(0) = 0. Then,

y y x xy x x x x

y x

x x

1 0
2

0

2

0

3

2

2 0 0
3

0

( ( )) ,d d

22
3

0

3 5

3
2

2
3 3

2
15

0

x x x x x

y x

x

d ,

2
3

2
15 3

2
3 5

3 5

0

3 5

x x x x x xx

d
( )) ( )( )

,

( ) ( )

4
3 5 7

0 2
3

2
3 5

4
3 5

7

4
2

3 5 7

x

y x x x x x
(( )

( ) ( )

7

3
2
3 5

4
3 5

0

3 5 7

dx

x x x

x

(( ) ( )( )( )
.

7
8

3 5 7 9

9x

EXAMPLE 8.10
Solve by Picard’s method,

d
d

fory
x

xy y x1 0 1 0 1, ( ) . .
 

Solution. We take first approximation to be y(0) = 1. Then,

y y f x y x

x x x x

y

x

x

1 0
0

0

2

0

1 1 1
2

( , ( ))

( ) ,

d

d

22

2

0

2

1 1 1
2

1
2

x x x x

x x

x

d

xx x

y x x x x x

3 4

3

2 3 4

3 8

1 1 1
2 3 8

,

dx

x x x x x x

x

0

2 3 4 5 6

1
2 3 8 15 48

.

Thus,

y3

2 3 4

0 1 1 0 1 0 1
2

0 1
3

0 1
8

0 1( . ) . ( . ) ( . ) ( . ) ( . )55 6

15
0 1
48

0 01
2

0 001
3

0 0001
8

( . )

. . .1 + 0.1 + 0 00001
15

0 000001
48

. .

1.105346.
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Further,

y x x x x x x x
4

2 3 4 5 6

1 1 1
2 3 8 15 48

dx

x x x x x x x

x

0

2 3 4 5 6 7

1
2 3 8 15 48 105

xx8

384
.

Thus,

y4 0 1 1 0 1 0 01
2

0 001
3

0 0001
8

0 00001
1

( . ) . . . . .
55

0 000001
48

0 0000001
105

0 00000001
384

. . .

1.11053465.

Hence,
y( . )0 1 1.1053465.

4. Heun’s Method
Consider the initial value problem

 
y x f x y x y x y( ) ( , ( )), ( )0 0  (8.10)

over the interval [a, b]. By fundamental theorem of calculus, we have

 
f x y x x y x x y x y x

x

x

x

x

( , ( )) ( ) ( ) ( ).d d
0

1

0

1

1 0  (8.11)

Hence,

 
y x y x f x y x x

x

x

( ) ( ) ( , ( )) .1 0
0

1

d  (8.12)

Using trapezoidal rule with h = x1 − x0, equation (8.12) reduces to

 
y x y x h f x y x f x y x( ) ( ) [ ( , ( )) ( , ( ))].1 0 0 0 1 12

 (8.13)

We observe that y(x1) appears on both sides of equation (8.13). We replace y(x1) on right-hand side of 
equation (8.13) by Euler’s method. Thus, y(x1) on the right-hand side is replaced by

y hf x y0 0 0( , ).

Hence,

 
y x y x h f x y f x y hf x y( ) ( ) [ ( , ) ( , ( , ))]1 0 0 0 1 0 0 02

,,  (8.14)

which is called Heun’s method.
The process is repeated to get closer and closer approximation. At each step, Euler’s method is 

used as a predictor and trapezoidal rule is used as corrector. Thus, the general step for Heun’s method 
can be expressed as

p y hf x y

y y h f x y f x

n n n n

n n n n n

1

1 12

( , )

[ ( , ) ( ,, )].pn 1
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EXAMPLE 8.11
Use Heun’s method to solve the initial value problem y x x y y( ) , ( ) [ , ]

2
0 1 0 2over  using step size 1

2
.

Solution. By Example 8.4, we have
p1= 0.75.

Therefore,

y y h f x y f x p1 0 0 0 1 12

1 1
4

1
2

1 2 0

[ ( , ) ( , )]

( / ) ..

. .

75
2

1 1
4

1
2

0 25
2

1 1 25
8

=0.844375.

Again, by Example 8.4,
p2 0 6875. .

Therefore,

y y h f x y f x p2 1 1 1 2 22
1
4

1 2

[ ( , ) ( , )]

( /0.84375 + )) . .0 84375
2

1 0 6875
2

0.84375 + 1
8

[ 0.334375 0.3125] 0.83984.

Further,
p3 0.765625 

and so

y y h f x y f x p3 2 2 2 3 32

0 8 1
4

1 0 8

[ ( , ) ( , )]

. .3984 33984
2

1 5 0 765625
2

. .

0.83984 + 1
8

[0.160016 0.73475] 0.95170375.

Now,
p4 0.94921875 

and so

y y h f x y f x p4 3 3 3 4 42

0 1
8

[ ( , ) ( , )]

.95170375 + [((1.5 0.9517035) (2 0.94921875)]

0.95170375 1
8

[0.5482965 1.05078125]=1.151588.
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5. Runge–Kutta Method
Consider the initial value problem

y x f x y y x y( ) ( , ), ( ) .0 0

We note that
y x f x y
y x f f y f f f

y x
x y x y

( ) ( , ),
( ) ,

( ) ff f y f y y f f y

f f y f
xx xy y yx yy

xx xy

( )

2 yy yy

xx xy y x y yy

y f y

f f y f f f f f f

( )

( )

2

22

ff f y f f f f f fxx xy yy y x y2 2 ( ),

and is general
y x d f x y xn n( ) ( )( ) ( , ( )),1

where

d
x

f
y

.

If we put
F f ff

F f ff f f

F f ff

x y

xx xy yy

xxx xxy

1

2
2

3

2

3

,

,

3 2 3f f f fxyy yyy ,

then
y x f x y
y x F
y x F F f

y
y

( ) ( , ),
( ) ,
( ) ,

(

1

2 1

iv)) ( ) .x F F f F f F fy y y3 2 1 1
23

Using Taylor’s series expansion, we have

 

y y x h y hy h y h y h yr r r r r r1

2 3 4

2 3 4
( )

! ! ! rr

r r r y

O h

y hf x y h F h F F f

iv ( )

( , )
!

( )

5

2

1

3

2 12 3
h F F f F f F f O hy y y

4

3 2 1 1
2 5

4
3

!
( ) ( ).  (8.15)

On the other hand, by Taylor’s theorem for function of two variables, we have

 
f x h y k f x y h

x
k

y
f hr r r r( , ) ( , )

!
1
2 x

k
y

f
2

L  (8.16)

A Runge–Kutta method of order n is a formula which expresses yr+1 − yr in terms of n values of 
the function f (x, y) in such a manner that the values obtained coincide with equation (8.15) as far as 
the terms involving hn .
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Second Order Runge–Kutta Method
Define

 

K hf x y
K hf x mh y mK

r r

r r

1

2 1

( , )
( , ).  (8.17)

Our aim is to obtain an expression of the form

 y y aK bKr r1 1 2 .  (8.18)

If we put
F f ff

F f ff f ff
x y

xx xy yy

1

2
22 ,

then the left-hand side of equation (8.18) becomes

 

y y hy h y h y h y Or r r r r r1

2 3 4

2 3 4! ! !
((iv) hh

y hf x y h F h F F fr r r y

5

2

1

3

2 12 3

)

( , )
! !

( )L  (8.19)

Now expanding K2 by Taylor’s series for a function of two variables, we have

 

K f x y mh
x

mK
y

f mh
x

mKr r2 1

1
2

( , )
! 11

2
3

y
f O h

h f x y mhfr r x

( )

( , ) mmK f m h f m hK f
m K

f O hy xx xy yy1

2 2
2

1

2
1
2

3

2 2
( )

Putting the value of K1 in K2, we get

K h f x y mhf mhf f x y m h f m hr r x y r r xx2

2 2
2

2
( , ) ( , ) 22

2 2
3

2
f f x y m h f f x y O hxy r r yy r r( , ) ( , ) ( ) .

Thus, putting the values of K1 and K2 from equation (8.17) into equation (8.18), we get

1

2 2 2 2
2 2 3

2 3
2 2 4

2 3
2 4

1 2

( , )

( , ) ( , ) ( , ) ( , ) ( )
2 2

( ) ( ) ( 2 ) ( )
2

( ) ( ).
2

r r r r

r r x y r r xx xy r r yy r r

r x y xx xy yy

r

y y ahf x y

m h m h
bh f x y mhf mhf f x y f m h f f x y f f x y O h

m bh
y a b hf mbh f ff f ff f f O h

m bh
y a b hf mbh F F O h

+ = +

⎡ ⎤
+ + + + + + +⎢ ⎥

⎣ ⎦

= + + + + + + + +

= + + + + +

 

(8.20)

Comparing coefficients of h and h2 in equations (8.19) and (8.20), we get

 

a b

mb

1
1
2

.  
(8.21)

Thus, there are two equations in three unknowns and so there are many solutions to equation (8.21). We 

choose a = 0, b = 1, and m 1
2

 as one of the solution. Then equation (8.18) reduces to
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y y K

y hf x h y
K

y hf x

r r

r r r

r r

1 2

1

2 2
,

hh y h f x yr r r2 2
, ( , ) ,  (8.22)

which is the required second order Runge–Kutta method. We observe that this formula is nothing but 
modified Euler’s method. If we choose a b m1

2
1, as the solution, then we have

y y K K

y h f x y f x h y

r r

r r r r r

1 1 2

1
2

2

( )

[ ( , ) ( , hhf x yr r( , ))],

which is nothing but improved Euler’s method.

Third Order Runge–Kutta Method
We define

 

K hf x y
K hf x mh y mK
K hf x n

r r

r r

r

1

2 1

3

( , ),
( , ),
( hh y nKr, ).2   

(8.23)

We want to obtain an expression of the form

 y y aK bK cKr r1 1 2 3.  (8.24)

If we put
F f ff

F f ff f f
x y

xx xy yy

1

2
22

,

,

then the left-hand side of equation (8.24) is

 y y hf h F h F F f O hr r y1

2

1

3

2 1
4

2 3! !
( ) ( ).  (8.25)

Also,

K h f x y mhf mhf f m h f m h f f m
r r x y xx xy2

2 2
2 2

2
( , ) +

22 2
3

3 2

2
h f f O h

K h f x y nhf nK

yy

r r x

( ) ,

( , ) ff n h f n hK f
n K

f O hy xx xy yy

2 2
2

2

2
2
2

3

2 2
( )

h f x y nhf nhf f x y mhf mhfr r x y r r x y[ ( , ) { ( , ) ff m h f m h f f

m h f f O h n h

xx xy

yy

2 2
2 2

2 2
3

2 2
2

2 2
( )} ff n h f f x y mhf mhf f m h f

m

xx xy r r x y xx
2 2

2 2

2
{ ( , )

22 2
2 2

3
2 2

2 2
h f f m h f f O h n h f f x yxy yy yy r r( )} { ( , ) mhf mhf f m h f

m h f f m h f f O

x y xx

xx yy

2 2

2 2
2 2

2

2
(hh3 )}].
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Therefore, putting the values of K1, K2, and K3 in equation (8.24), we get

 
y y h a b c f h bm cn F h bm cn Fr r1

2
1

3
2 2

2
( ) ( ) ( ) 22 1

42cmnF f O hy ( ).  (8.26)

Comparing the coefficients of like powers of h in equations (8.25) and (8.26), we get
a b c

bm cn

bm cn

cmn

1
1
2
1
3
1
6

2 2

,

,

,

.

Thus, we obtain four equations for five unknowns. Therefore, there exist many solutions. If we take 

a b c n m1
4

0 3
4

2
3

1
3

, , , , as the solution, then equation (8.24) becomes

y y K Kr r1 1 3

1
4

3( ),

 

K hf x y

K hf x h y
K

K hf x

r r

r r

1

2
1

3

3 3

( , ),

, ,

rr r
h y

K2
3

2
3

2, .

 

(8.27)

Formula (8.27) is called Heun’s third order formula.

If we set a b c m n2
9

1
3

4
9

1
2

3
4

, , , , ,  then

y y K K K

K hf x y

K hf x

n r

r r

1 1 2 3

1

2

1
9

2 3 4( ),

( , ),

rr r

r r

h y
K

K hf x h y
K

2 2

3
4

3
4

1

3
2

, ,

,

If we set a c b m n1
6

2
3

1
2

1, , , ,  then

y y K K K

K hf x y

K hf x

r r

r r

r

1 1 2 3

1

2

1
6

4( ),

( , ),

hh y
K

K hf x h y K

r

r r

2 2
1

3 2

, ,

( , ),

which is the most popular third order Runge–Kutta method. It is also known as Kutta’s third order rule.
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Fourth Order Runge–Kutta Method
Consider the initial value problem

y x f x y y x y( ) ( , ), ( ) .0 0

We define

 

K hf x y
K hf x mh y mK
K hf x n

r r

r r

r

1

2 1

3

( , ),
( , ),
( hh y nK

K hf x ph y pK
r

r r

, ),
( , ).

2

4 3  (8.28)

We wish to obtain a formula of the type

 y y aK bK cK dKr r1 1 2 3 4 .  (8.29)

Let
F f ff

F f ff f f

F f ff

x y

xx xy yy

xxx xxy

1

2
2

3

2

3

,

,

3 2 3f f f fxyy yyy .

Expanding yr+1 in the series, we obtain

  
y y hf h F h F F f h F F fr r y y1

2

1

3

2 1

4

3 12 3 4!
( )

!
( 22

1
53F f f f O hxy yy( )) ( ) (8.30)

Further, using Taylor’s Theorem for two variables, we have
K hf x y

K h f x y mhF m h F m h
r r

r r

1

2 1

2 2

2

3 3

2

( , ),

( , )
33

2
2

3

3 1

2
2

2

!
,

( , ) (

F

K h f x y nhF h n F mr r

L

nnF f h n F m nF f mn F fy y y1

3
3

3
2 2 2

16
3 6) ( ) L ,

( , ) ( ) (K h f x y phF h p F npF f h
r r y4 1

2
2

2 1

3

2
2

6
pp F n pF f np F f mnpF fy y y

3
3

2 2
1 1

23 6 62 ) L ..

Putting these values of K1, K2, K3, and K4 in equation (8.29) and equating the like powers of h in the 
corresponding expressions for yr+1, we obtain

 

a b c d cmn dnp

bm cn dp cmn dnp

1 1
6

1
2

2 2

, ,

, 11
8

1
3

1
12

2 2 2 2 2

3

,  

 ,  

 

bm cn dp cm n dn p

bm

,

ccn dp dmnp3 3 1
4

1
24

, .  (8.31)
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Any solution of equation (8.29) will serve our purpose. Let us take m n p a d b c1
2

1 1
6

1
3

, , , .  
Then

K hf x y

K hf x h y
K

K h

r r

r r

1

2
1

3

2 2

( , ),

, ,

 

 

ff x h y
K

K hf x h y K

r r

r r

2 2
2

4 3

, ,

( , ),

  

 
and

y y K K K Kr r1 1 2 3 4

1
6

2 2( ),
 

which is the required fourth order Runge–Kutta method.

Remark 8.1. Whenever we mention only Runge–Kutta method, we mean the Runge–Kutta method of 
order 4.

EXAMPLE 8.12
Apply third order Runge–Kutta method to the initial value problem

d
d

y
x

x y y2 0 1, ( ) ,

over [0, 0.2] taking h = 0.1.

Solution. Taking h = 0.1, we have
   

 

K hf x y x y1 0 0 0
2

00 1 0 1 0 1 0 1( , ) . ( ) . ( ) . ,

KK hf x h y
K

2 0 0
1

2 2
0 1 0 1

2
1 0, . .

2
..

. [ . . ] .

1
2

0 1 0 0025 0 95 0 09

  

4475

0 1 0 1 1 0 09473 0 0 2
2

,

( , ) . ( . ) ( .K hf x h y K 55

0 1 0 01 0 90525 0 089525

)

. [ . . ] . . 
Then, by third order Runge–Kutta method,

  y y y K K K1 0 1 2 30 1 1
6

4

1 1
6

0 1 4 0

( . ) [ ]

[ . ( .009475 0 089525

0 905245833

) . ]

. .
To find y(0.2), we have

K hf x y x y1 1 1 1 1
2

0 1

0 1 0 1 0 905

( , ) . ( )

. [( . ) .

  2

224 0 089524

2 2

0

2 1 1
1

] . ,

,

.

K hf x h y
K

  

11 0 1 0 1
2

0 905245833 0 089
2

. . . . 5524
2
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0 083798383

0 1 0 1 0
3 1 1 2

. ,
( , )

. [( .

K hf x h y K  

.. ) ( . . )]
.

1 0 905245833 0 083798383
0 0781447

2

445.

Then,

y y y K K K2 1 1 2 30 2 1
6

4

0 905245833 1
6

( . ) [ ]

. [ 00 089524 4 0 083798383 0 078144745

0 821

. ( . ) . ]

. 4435453.

EXAMPLE 8.13
Use Runge–Kutta method to solve y′ = x + y, y(0) = 1, for x = 0.1.

Solution. Taking h = 0.1, we obtain

K hf x y x y

K hf

1 0 0 0 0

2

0 1 0 1 0 1 0 1( , ) . ( ) . ( ) . , 

xx h y
K

x h y
K

0 0
1

0 0
1

2 2 2 2
,  0.1 

0.1(0 + 0.05 + 1 + 0.05)  0.11,

K hf x h
3 0 22 2

0 0 05 1 0 11
20

2, . .y
K

 0.1  0..1105,

  (  4K hf x h y K0 0 3 0 1 0 0 1 1 0 1, ) . ( . . 1105 0 12105) . .

Therefore,

 1
6

1
6

(0.1+0.

y y y K K K K1 0 1 2 3 40 1 2 2

1

( . ) ( )

222+0.2210+0.12105)=0.11034167.

EXAMPLE 8.14
Apply fourth order Runge–Kutta method to

d
d
y
x

x y y3 1
2

0 1, ( )

to determine y(0.1) and y(0.2) correct to four decimal places.

Solution. Taking h = 0.1, we have

K hf x y

K hf x h

1 0 0

2 0

0 1 0 1
2

( , ) .  0.05,

22 2
3 0 0 05 1

2
1 0 0250

1,  ( . ) ( . )y
K

0.1  0.06625,
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K hf x h y
K

3 0 0
2

2 2
3 0 0 05 1

2
1 0, ( . ) .0.1 006625

2

4 0

0.06665625,

 K hf x h( , yy K0 3 0 1 3 0 0 1 1
2

1 0 06665625

0 1

) . [ ( . ) ( . )]

. [00 3 0 533328125 0 0833328125. . ] . .
Hence,

y y K K K K1 0 1 2 3 4

1
6

2 2

1 1
6

0 05 2 0 0625

[ ]

[ . ( . ) 2 0 06665625 0 0833328125

1 06652421875

( . ) . ]

. 1 0665. .

To find y(0.2), we note that

  K hf x y1 1 1 0 1 3 0 1 1
2

1 066524 0 0( , ) . [ ( . ) ( . )] . 8833262

2 2

3 0 1 0

2 1 1
1

,

,

( . .

K hf x h y
K

0.1 005 1
2

1 066524 0 0833262
2

) . .

0.1000409515,

0.1

K hf x h y
K

3 1 1
2

2 2

3 0 1 0

,

( . .. ) . .05 1
2

1 066524 0 100409515
2

0..100836437,

0.1

K hf x h y K4 1 1 3

3 0 1 0 1

( , )

( . . ) 1
2

1 066524 0 100836437
2

. .

0.115884711.

Hence,

 

 

y y K K K K( . ) ( )

.

0 2 1
6

2 2

1 06652422 1
6

1 1 2 3 4

[[ . ( . ) ( . )0 0833262 2 0 100409515 2 0 100836437 0.. ]

. . .

11584711

1 166801756 1 1668

EXAMPLE 8.15
Apply the fourth order Runge–Kutta method to solve

d
d

y
x

x y y2 2 0 1, ( ) .
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Take step size h = 0.1 and determine approximations to y(0.1) and y(0.2) correct to four decimal places.

Solution. Taking h = 0.1, we have

K hf x y

K hf x h y
K

1 0 0

2 0 0
1

0 1 0 1 0 1

2 2

( , ) . ( ) . ,

, 0 1 0 05 1 0 1
2

2
2

. ( . ) .   

00 1105

2 2
0 1 0 053 0 0

2 2

. ,

, . ( . )K hf x h y
K

11 0 1105
2

0 111605256

2

4

.

. ,

  

K hhf x h y K( , ) . [( . ) ( .0 0 3
20 1 0 1 1 0 111605256  )) ]

. .

2

0 124566624

Therefore,

y y y K K K K1 0 1 2 3 40 1 1
6

2 2

1 1
6

0 1 2 0

( . ) ( )

( . ( .. ) ( . ) . )

.

1105 2 0 111605256 0 124566624

1 1114622856 1 11146. .

To find y(0.2), we have

 K hf x y x y1 1 1
2
1

2
1

2

0 1

0 1 0 1 1 11

( , ) . [ ]

. [( . ) ( . 114628 0 124534956

2 2

2

2 1 1
1

) ] . ,

,K hf x h y
K

   

0 1 0 1 0 1
2

1 1114628 0 124
2

. . . . . 5534956
2

0 1400142

2

3 1

 

. ,

K hf x hh y
K

2 2

0 1 0 0225 1 1114628 0 14

1
2,

. . . . 000142
2

0 1418371125

2

4

. ,
(K hf x11 1 3

20 1 0 2 1 1114628 0 1418371

h y K, )

. [( . ) ( . . 112
0 161076063

2) ]
. .
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Hence,

y y y K K K K2 1 1 2 3 40 2 1
6

2 2

1 11142856 1

( . ) ( )

.
66

0 124534956 2 0 1400142 2 0 1418371125[ . ( . ) ( . ) 0 161076063

1 2529808 1 2530

. ]

. . .

EXAMPLE 8.16
Using Runge–Kutta method of fourth order solve for y at x = 1.2, 1.4 from the equation d

d
y
x

xy e
x xe

x

x

2
2

 
with x y0 01 0, .

Solution. We have
d
d
y
x

f x y xy e
x xe

y
x

x( , ) , ( ) .2 1 02

Thus, x0 = 1, y0 = 0 and we take h = 0.2. Then,

k hf x y e
e1 0 0

1

10 2
1

0 2 2 71828
3 71

( , ) . . .
. 8828

0 1462

2 2
02 0 0

1

.

, .k hf x h y
k

22 1 1 0 0731 0 2 0 161
1 21 1 1

1 1

1 1[ ( . , . ] . .
. . (

.

.f e
e ))

. .
.

.0 2 3 1652
4 5146

0 1402

3k hf x00 0
2

2 2
1 1 0 0701

0 2 0 1542

h y
k

hf, ( . , . )

. . 22 3 0042
1 21 1 1

0 2 3 1584
4 511 1

.
. . ( )

. .
..e 446

0 1399

1 2 04 0 0 3

.

( , ) ( . , .k hf x h y k hf 11399

0 2 0 3358 3 3201
1 44 1 2 1 2

)

. . .
. . ( ).e

0 2 3 6559
5 4241

0 1348. .
.

. .

Therefore,

y y k k k k( . ) ( )

[ . ( .

1 2 1
6

2 2

0 1
6

0 146 2 0

0 1 2 3 4

11402 2 0 1399 0 1348 0 1402) ( . ) . ] . .

Now x0 = 1.2, y0 = 0.1402, h = 0.2. Calculate as above k1, k2, k3, and k4 and then find

y y k k k k

k k

( . ) ( )

. (

1 4 1
6

2 2

0 1402 1
6

2

0 1 2 3 4

1 22 3 42k k ).

It will be approximately 0.264.

6. Runge–Kutta Method for System of First Order Equations
Consider the system of equations

y F x y z z G x y z( , , ), ( , , ),
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with the initial conditions y(x0) = y0 and z(x0) = z0. Then the Runge–Kutta method for the system becomes

y y K K K K

z z L L

r r

r r

1 1 2 3 4

1 1 2

1
6

2 2

1
6

2

[ ],

[ 2 3 4L L ],

where
K hF x y z L hG x y z

K hF x h y

r r r r r r

r

1 1

2 2

( , , ), ( , , )

, rr r r r r

K
z

L
L hG x h y

K
z1 1

2
1

2 2 2 2
, , ,,

LL

K hF x h y
K

z
L

r r r

1

3
2 2

2

2 2 2
, , , , ,

(

L hG x h y
K

z
L

K hF x

r r r

r

3
2 2

4

2 2 2

h y K z L L hG x h y K z Lr r r r r, , ), ( , , ).3 3 4 3 3

EXAMPLE 8.17
Solve

y x z y
z x y z

, ( )
, ( )

0 0
0 1

for x = 0.1 and x = 0.2 by Runge–Kutta method.

Solution. We have h = 0.1 and
F x y z x z G x y z x y( , , ) , ( , , ) . 

Then,
K hF x y z L hG x y z1 0 0 0 1 0 00 1 0 1 0 1( , , ) . ( ) . ,  ( , , 00

2 0 0
1

0
1

0 1 0 0 0

2 2 2

) . ( )

, ,K hF x h y
K

z
L

, , ,        L hG x h y
K

z
L

2 0 0
1

0
1

2 2 2

0.. . . ,      . . .1 0 1
2

1 0
2

0 105 0 1 0 1
2

0 1
2

0

2 2 23 0 0
2

0
2K hF x h y

K
z

L
, , ,         , ,

. .

L hG x h y
K

z
L

3 0 0
2

0
2

2 2 2

0 1 0 1
2

1 0 105 0 1 0 1
2

. ,                   . . 0 105
2

0 00025

4 0 0 3 0

. .

( , ,K hF x h y K z L33 4 0 0 3 0 3

0 1 0 1
),     ( , , )

. [ .
   

 
L hG x h y K z L

1 0 00025 0 1 0 1 0 105
0 1100

. ],      . [ . . ]
.

  
 225 0 0205.,      . . 

Thus,

 y y K K K K( . ) ( )

[ . ( .

0 1 1
6

2 2

1
6

0 1 2 0 105

0 1 2 3 4

)) ( . ) . ] . ,2 0 105 0 110025 0 105004
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z z L L L L( . ) ( )

[ ( . )

0 1 1
6

2 2

1 1
6

2 0 00025

0 1 2 3 4

0 0205 0 99667. ] . .

Now to find y(0.2) and z(0.2), we have

K hF x y z L hG x y z1 1 1 1 1 1 1 1

0 1 0 1 0
( , , ), ( , , )

. [ .
 

 .. ] . ,  . [ . . ] .99667 0 109667 0 1 0 1 0 105004 0 0 0005004

2 2 22 1 1
1

1
1

2K hF x h y
K

z
L

L, , ,  hhG x h y
K

z
L

 

 

1 1
1

1
1

2 2 2

0 1 0 150 0

, ,

. [ . ( .. . )], . [ . ( .99667 0 00025002 0 1 0 150 0 105004 00 054816
0 114642 0 0009837

3 1

. )]
. , .   

K hF x hh y
K

z
L

L hG x h y
K

2 2 2 2 21
2

1
2

3 1 1
2, , ,,  ,,

. [ . . ],

z
L

1
2

2

0 1 0 150 0 99667 0004918   . [ . ( . . )]
. ,

0 1 0 15 0 105004 0 057321
0 101167   

   
0 0012325

4 1 1 3 1 3 4

.
( , , ),K hF x h y K z L L hhG x h y K z L( , , )

. [ . .
1 1 3 1 3

0 1 0 150 0 99667
 

  00 0012325 0 1 0 15 0 105004 0 101167. ],  . [ . ( . . ) ]]
. . . .  0 11454375 0 0056174

Hence,

y y K K K K( . ) ( )

. [ .

0 2 1
6

2 2

0 105004 1
6

0 1

1 1 2 3 4

009667 2 0 114642 2 0 101167 0 11454375( . ) ( . ) . ]

00 2143073.
and

z z L L L L( . ) ( )

. ( .

0 2 1
6

2 2

0 99667 1
6

0 0

1 1 2 3 4

0005004 2 0 0009837 2 0 0012325 0 005( . ) ( . ) ( . 66174

0 99591

)]

. .

7. Runge–Kutta Method for Higher Order Differential Equations
Since the higher order differential equations can be converted into a set of first order differential equa-
tions, therefore these equations can be solved by Runge–Kutta method. We illustrate the method in the 
form of the following example:

EXAMPLE 8.18
Using Runge–Kutta method, solve the differential equation

y x y
y

y y  
2 2

21
0 1 0 0, ( ) , ( )

for x = 0.5 and x = 1.
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Solution. We are given that

y x y
y

y y
2 2

21
0 1 0 0, ( ) , ( ) . 

Putting y′ = z, the given equation is equivalent to
y z F x y z

z x y
y

G x y z

 

= .

( , , ),

( , , )
2 2

21
Now y and z can be determined by

y y K K K K

z z L L

r r

r r

1 1 2 3 4

1 1

1
6

2 2

1
6

2

( ),

( 22 3 42L L ).
 

Taking h = 0.5, we have

K hF x y z L hG x y z1 0 0 0 1 0 0 00 5 0 0 0( , , ) . ( ) , ( , , ) .. .

, ,

5 1
1

0 5

2 2 22 0 0
1

0
1K hF x h y

K
z

L
,               , ,L hG x h y

K
z

L
2 0 0

1
0

1

2 2 2

0 5 0 5
2

0 125 0 5
0 25 2

. . . , .
( . )

 
11

1 0 5
2

0 44122

3 0

. .

K hF x h
22 2 2 2 20

2
0

2
3 0 0

2, , , , ,y
K

z
L

L hG x h y
K

z 00
2

2

0 5 0 4412
2

0 110294

L

  . . . , 0 5 0 0625 1 0 0625
1 0 2206

0 389
2

2

. [ . ( . ) ]
( . )

. 22

4 0 0 3 0 3 4 0 0K hF x h y K z L L hG x h y K( , , ), ( ,  33 0 3

0 5 0 3892 0 19460 0 5 0 25

, )

. ( . ) . ,  . .

z L

 (( . )
( . )

. .1 0 11029
1 0 3892

0 2351
2

2

Therefore,

y y K K K K( . ) ( )

( . .

0 5 1
6

2 2

1 1
6

0 0 250 0

0 1 2 3 4

222058 0 1946 0 88914

0 5 1
6

20 1 2

. ) . ,

( . ) (z z L L 2

1
6

0 5 0 8826 0 7784 0 2351 0 3

3 4L L )

( . . . . ) . 99935.

To find y(0.2), we note that x1 = 0.5, y1 = 0.88914, and z1 = 0.39935. Therefore, proceeding as above, 
we have
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K hF x y z L hG x y z1 1 1 1 1 1 1 10 199675( , , ) . , ( , , ) 00 23314
0 257936 0 0238965
0 20

2 2

3

.
. , .
.

K L
K

 
55632 0 00656937

0 2029425 0 22
3

4 4

, .
. , .

 
 
L

K L 88729.

Thus,

y y y K K K K2 1 1 2 3 41 1
6

2 2 0 667517( ) ( ) . .

EXERCISES

1. Solve 
d
d
y
x

xy1 2 , y(0) = 0 by Taylor’s series method for x = 0.2.

Ans. 0.1947
2. Using Taylor’s series method, obtain the values of y at x =0.1, 0.2, 0.3 if y satisfies the equation 

d
d

2

2 0y
x

xy  and y(0) = 1, y′(0) = 0.5.

Ans. y(0.1) = 1.050, y(0.2) = 1.099, y(0.3) = 1.145

3. Solve d
d

y
x

xy,  y(0) = 1 over [0, 0.1] with h = 0.05 using Taylor’s series method.

Ans. y(0.05) = 0.9987508, y(0.1) = 0.9950125

4. Solve d
d
y
x

y1 ,  y(0) = 0 in [0, 0.3] by modified Euler’s method taking h = 0.1.

Ans. y(0.1) = 0.095, y(0.2) = 0.180975, y(0.3) = 0.2587823 

5. Solve d
d
y
x

x y2 , y(0) = 1 for x = 0.5 by modified Euler’s method.

Ans. 2.2352 

6. Solve d
d
y
x

y x
y

2 , y(0) = 1 in [0, 0.2] using Euler’s method and taking h = 0.1.

Ans. y(0.1) = 1.095909, y(0.2) = 1.184097

7. Use Picard’s method to solve d
d
y
x

x y2, y(0) = 1.

Ans. 0.9138
8. Use Picard’s method to solve y″ + 2xy′ + y = 0, y(0) = 0.5, y′(0) = 0.1 for x = 0.1.

Ans. 0.5075

9. Use Picard’s method to solve d
d
y
x

x y2 2 , y(0) = 0 for x = 0.4.

Ans. 0.0214

10. Solve for x = 0.1, the equation d
d
y
x

x y3 2, y(0) = 1 by Picard’s method.

Ans. y(0.1) = 1.127

11. Use Runge–Kutta method of order four to solve the differential equation d
d
y
x

y x
y x

2 2

2 2
, y(0) = 1 at 

x = 0.2.
Ans. y(0.2) = 1.196
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12. Use fourth order Runge–Kutta method to find y(0.2) for the equation d
d
y
x

y x
y x

, y(0) = 1.

Ans. y(0.2) = 1.1749

13. Solve y y x
y x

2

2

2
, y(0) = 1 for x = 0.1 and x = 0.2 using Runge–Kutta method.

Ans. y(0.1) = 1.091, y(0.2) = 1.168
14. Using Runge–Kutta method, solve y′ = x + y, y(0) = 1 for x = 0.2.

Ans. y(0.2) = 0.2428
15. Use Runge–Kutta method to solve y′ = −xy, y(0) = 1 for x = 0.2.

Ans. 0.9801987
16. Use Runge–Kutta method to solve d

d
y
x

xz1 , y(0) = 0; d
d

z
x

xy , z(0) = 1 for x = 0.3 and x = 0.6.

Ans. y(0.3) = 0.3448, z(0.3) = 0.99 ; y(0.6) = 0.7738, z(0.6) = 0.9121
17. Solve y′ = x + z, y(0) = 2; z′ = x − y2, z(0) = 1 for x = 0.1 by Runge–Kutta method.

Ans. y(0.1) = 2.0845, z(0.1) = 0.586

18. Use Runge–Kutta method to solve y″ = y3, y(0) = 10, y′(0) = 5 for x = 0.1.
Ans. y(0.1) = 17.42

19. Use fourth order Runge–Kutta method to solve y″ = y + xy′, y(0) = 1, y′(0) = 0 for x = 0.2.
Ans. y(0.2) = 0.9802

20. Solve y″ = xy′2 − y2, y(0) = 1, y′(0) = 0 for x = 0.2 using Runge–Kutta method.
Ans. y(0.2) = 0.9801

21. Use Heun’s method to solve the initial value problem y′ = −ty, y(0) = 1, over [0, 0.2] taking h = 0.1.
Ans. y(0.1) = 0.995, y(0.2) = 0.980175
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Appendix: Model Question Papers
  Model Paper I

1. Attempt any four parts of the following: 5 × 4 = 20
 (a)  Define a harmonic function and conjugate harmonic function. Find the harmonic  conjugate 

function of the function U(x, y) = 2x (1 – y).

 (b) Evaluate ( )212 4
C

z iz−∫  along the curve C joining the points (1, 1) and (2, 3).

 (c) State the Cauchy’s integral formula. Show that 2
1 sin

2 1

zt

C

e
dz t

i zp
=

+∫
 if t > 0 and C is the circle 3.z =

 (d)  Define the Laurent series expansion of a function. Expand f (z) = ez / (z – 2) in a Laurent series 
about the point z = 2.

 (e)  Using Residue theorem, evaluate

2 2
1 .

2 ( 2 2)

zt

C

e dz

i z z zp + +∫

 where C is the circle 3.z =

 (f) Show that 
2 cos3

.
5 4 cos 12

dp

q

q q p
q

=
−∫

2. Attempt any two parts of the following: 10 × 2 = 20
 (a)  The first four moments of a distribution about the value ‘0’ are − 0.20, 1.76, − 2.36 and 10.88. 

Find the moments about the mean and measure the kurtosis.
 (b) Fit a second degree parabola to the following data

x 1 2 3 4 5 6 7 8 9 10
y 124 129 140 159 228 289 315 302 263 210

 (c)  In a partially destroyed laboratory record of an analysis of correlation data, the following 
results only are legible. Variance of x = 9.
Regression lines

        8x − 10y + 66 = 0
40x − 18y − 214 = 0

What were
 (i) The mean value of x and y
  (ii) The standard deviation of y and
(iii) The coefficient of correlation between x and y.
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3. Attempt any two parts of the following: 10 × 2 = 20
 (a) To test the effectiveness of inoculation against chotera, the following table was obtained.

Attacked Not attacked Total
Inoculated 30 160 190

Not inoculated 140 460 600
Total 170 620 790

(The figures represent the number of persons).
Use x2 –test to Defend or refute the statement. The inoculation prevents attack from cholera.
 (b)  If there are 3 misprints in a book of 1000 pages, find the probability that a given page will 

contain (i) no misprint (ii) more than 2 misprints.

 (c)  Show that the mean deviation from the mean of the normal distribution is about 4
5

of its 
 standard deviation.

4. Attempt any two parts of the following: 10 × 2 = 20
 (a) Derive the Newton-Raphson formula for finding a root of a non-linear equation. Find a root of

f (x) = x3 + 2x2 + 10x – 20 = 0
up to 10 iterations.

 (b)  Define the shift operator, forward and backward difference operators, the central difference 
operator and the average operators. Establish:

 (i) ( )
1 1 1
2 2 2

12 1 1
2

E E −⎛ ⎞ ⎛ ⎞+ = + Δ + Δ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

  (ii) 
1 1
2 2(1 ) (1 )

− −
Δ + Δ = ∇ − Δ

(iii) 211
4

m d⎛ ⎞= +⎜ ⎟⎝ ⎠

where all the above notations have usual meanings.
 (c)  Develop the divided-difference table from the data given below and obtain the interpolation 

polynomial f (x):

x 1 3 5 7 11
f(x) 5 11 17 23 29

also, find the value of f (19.5).
5. Attempt any two parts of the following:  10 × 2 = 20
 (a)  Describe a method for solving a system of linear equations. Solve the following system of 

linear equations using Gauss-Seidel method:

23x1 + 13x2 + 3x3 = 29
    5x1 + 23x2 + 7x3 = 37
    11x1 + x2 + 23x3 = 43
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 (b)  Derive Simpson’s 3
8

– formula for numerical integration. Using this rule evaluate 
1

3
0

.
1

dx
dx

x x+ +∫
Choose with steplength 0.25.

 (c) Solve the following initial value problem
22 , (0) 1,= − =

dy
xy y

dx

 with h = 0.2 on interval [0, 0.6] using fourth order Runge-Kutta method. Compare with the 
exact solution.

SOLUTIONS
1. (a)  Definition: Article work. 
Further, we have

( , ) 2 2 .u x y x xy= −

Therefore

   
1( , ) 2 2 ,u

u x y y
x

∂
= = −

∂

2 ( , ) 2∂
= = −

∂
u

u x y x
y

and so
= −1 2'( ) ( ,0) ( ,0)f z u z i u z

      = − − = +2 ( 2 ) 2 2i z i z

Integrating, we get

= + +
2

( ) 2 2
2
z

f z z i C i

     = + +22z i z C i

           = + + + +22( ) ( )x i y i x i y C i

           = + + − + +2 22 2 ( 2 )x i y i x y ixy C i

         = − + − + +2 2(2 2 ) ( 2 )x xy i x y y C

           ( , ) ( , ),u x y i v x y= +  say.

Comparing real and imaginary parts, we have
= −( , ) 2 2u x y x xy

          = − + +2 2( , ) 2v x y x y y c

 (b) Equation of the line passing through (1,1) and (2,3) is

   

− −
= =

− −
1 3 1 2
1 2 1 1

y

x
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or
   − = −1 2( 1)y x

or
       = −2 1y x

Therefore
         = + = + − = + −(2 1) (2 1)z x i y x i x i x i

and
(2 1) .dz i dx= +

Hence

    
−∫ 2(12 4 )

c

z i z dz

 
= + − +∫ 2[12( ) 4 ( )]

c

x iy i x iy dz

 
= + − − + −∫ 2{12[ (2 1)] 4 [ (2 1)]

c

x i x i x i x dz

 
= + + − + − − + −∫ 2 2 2{12[ (4 1 4 ) 2 (2 1) 4 [ (2 1)]}

c

x i x x i x x i x i x dz

 
= − − + + − − + −∫ 2 2 2{12[ 4 1 4 4 2 ] 4 8 4}x x x i x i x i x x dz

 
= − − + + − − + −∫ 2 2{12[ 3 1 4 4 2 ] 4 8 4}x i x x i x i x x dz

 
= − − + + − +∫

2
2 2

1

[ 36 16 48 56 28 ](2 1)x i x x i x i dx

 

⎡ ⎤
= + − − + + −⎢ ⎥

⎣ ⎦

23 3 2 2

1

(2 1) 36 16 48 56 28
3 3 2 2
x x x x

i i i

 = + − − + + −(2 1){[ 12(8) 32 16 (8) 28(4) 14 (4)]i i i

  [ 12(1) 16 16 28 14 ]}− − − + + −i i

 (2 1)[ 16 112 ] 80 240 80( 3).i i i i= + − + = − = −

 (c) For statement of Cauchy’s integral formula, see Theorem 1.10.

Let ( ) .tzf z e=   Then f is analytic within the circle 3.z =  Also = ±z i  lie within = 3.z  Hence, 
by Cauchy’s Integral Formula, we have

=
− ++∫ ∫2 ( )( )1

tz tz

c c

e e
dz dz

z i z iz

 

⎡ ⎤
= −⎢ ⎥

− +⎢ ⎥⎣ ⎦
∫ ∫

1
2

tz tz

c c

e e
dz dz

i z i z i

 
p p= − −

1 [2 ( ) 2 ( )]
2

i f i i f i
i
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p p −= −

1 [2 2 ]
2

i t i ti e i e
i

 [ ] 2 sin .i t i te e i tp p−= − =

 (d) For definition, see Theorem 1.20.
We have

/( 2)( ) .z zf z e −=

Putting 2 ,z u− =  we have

          
2 21/( 2)

+ +− = =
u

z z u ue e e

 

⎡ ⎤⎛ ⎞ ⎛ ⎞= = + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

2 2 32 1 2 1 21 ...
2 3!

ue e e
u u u

 

2 3

2 3
2 2 1 21 ...

3!2

⎡ ⎤
= + + + +⎢ ⎥

⎣ ⎦
e

u u u

 

⎡ ⎤
= + + + +⎢ ⎥− − −⎣ ⎦

2 3

2 3
2 2 21 ...

2 2!( 2) 3!( 2)
e

z z z

 (e)  The integrand 
+ +2 2( 2 2)

zte

z z z
 has a double pole at = 0z and two simple poles at = − +1z i  

and 1 .z i= − −  All these poles lie within 3.z =  Now

     
→

⎡ ⎤
= ⎢ ⎥

+ +⎣ ⎦
2

2 20

1Re (0) lim
1! ( 2 2)

zt

z

d e
s z

dz z z z

 

2

2 20

( 2 2)( ) (2 2) 1lim ,
2( 2 2)

zt zt

z

z z te e z t

z z→

+ + − + −
= =

+ +

 
→− +

⎧ ⎫⎪ ⎪− + = − − +⎨ ⎬
+ +⎪ ⎪⎩ ⎭

2 21
Re ( 1 ) lim [ ( 1 )]

( 2 2)

zt

z i

e
s i z i

z z z

− +
=

( 1 )

4

i te

 
→− −

⎧ ⎫⎪ ⎪− − = − − −⎨ ⎬
+ +⎪ ⎪⎩ ⎭

2 21
Re ( 1 ) lim [ ( 1 )]

( 2 2)

zt

z i

e
s i z i

z z z

( 1 )
.

4

i te − −
=

Hence

p= Σ
+ +∫ 2 2 2 [ ]

( 2 2)

zt

i
c

e
dz i R

z z z

or

p

− + − −−
= Σ = + +

+ +∫
( 1 ) ( 1 )

2 2
1 1

2 2 4 4( 2 2)

zt i t i t

i
c

e t e e
dz R

i z z z

 

1 1 cos .
2 2

tt
e t−−

= +
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 (f) Example 1.93.
2. (a) We are given that

m
m
m
m

= −′
=′
= −′
=′

1

2

3

4

0.20
1.76

2.36
10.88

Then the moments about the mean are

 1 0,m =

 m m m= − = − −′ ′ 2 2
2 2 1( ) 1.76 ( 0.20)

 1.76 0.04 1.72,= − =

 m m m m m= − +′ ′ ′ ′ 3
3 3 2 1 13 2( )

 
32.36 3(1.76)( 0.20) 2( 0.20)= − − − + −

 2.36 1.056 2(0.008) 1.32,= − + − = −

 m m m m m m m= − + −′ ′ ′ ′ ′ ′2 4
4 4 3 1 2 1 14 6 ( ) 3( )

 
2 410.88 4( 2.36)( 0.20) 6(1.76)( 0.20) 3( 0.20)= − − − − − − −

= + + − =10.88 1.888 0.4224 0.0048 13.1856

Further, measure of kurtosis is given by

4
2 2 2

2

13.1856 13.1856 4.457.
2.984(1.72)

m
b

m
= = = =

 (b) Changing the variables by
5, 220,u x v y= − = −

we get the following table

u v 2u 3u 4u vu 2u v

− 4 − 96 16 − 64 256 384 − 1536
− 3 − 91 9 − 27 81 273 − 819
− 2 − 80 4 − 8 16 160 − 320

− 1 − 61 1 − 1 1 61 − 61
0 08 0 0 0 0 0
1 69 1 1 1 69 69
2 95 4 8 16 190 380
3 82 9 27 81 246 738
4 43 16 64 256 172 688
5 − 10 25 125 625 − 50 − 250
5 − 41 85 125 833 1505 − 1111



Model Paper I � 523

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
W:\Pearson\Engineering Maths_Baburam\MAIN\Z01\Z01_BABUISBN_10_APP.indd

Modif cation Date: May 5, 2010 9:36 AM Modif cation Date: 05-05-10, 09:37

The normal equations are

 10 5 85 41a b c+ + = −

 + + =5 85 125 1505a b c

 + + = −85 125 822 1111a b c

Solving these equation, we get
64.033, 100.201, 81.71.a b c= = = −

Hence
= + − 264.033 100.201 81.71v u u

or
− = + − − − 2( 220) 64.033 100.201( 5) 81.71( 5)y x x

or
= − + − 21758.72 917.30 81.71y x x

 (c) Similar to Example 2.27.
The regression lines are
        − + =8 10 66 0x y  (1)

     40 18 214 0.x y− − =  (2)

Solving these, we get their point of intersection as (13, 17). But point of intersection of regression lines 
is nothing but ( ), .x y  Hence

= 13x  and 17.y =
As in Example 2.26, we observe that the line (1) is line of regression of Y on X and (2) is line of regres-
sion of X on Y. Also from (1) and (2)

 
= +

4 6.6
5

y x

     

9 214 .
20 40

x y= +

Thus the regression coefficients are

 
=

4
5yxb

   
and

   

9 .
20xyb =

Therefore the coefficient of correlation is given by

r = =2 9[ ( , )]
25yx xyX Y b b

or

                      

3( , ) .
5

X Yr =

Also

s =2 9x  and 2
cov( , ) .yx

x

X Y
b

s
=

Therefore

        
( )2 4 36( , ) .9 .

5 5yx xCov X Y b s= = =
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Now

s
= 2

( , )
xy

y

Cov X Y
b    so that   2 ( , ) 16.y

Cov X Y

bxy
s = =

Hence 4.ys =

3. (a) Similar to Example 2.120.
Let the null hypothesis be

oH :  The inoculation does not prevent attack from cholera. 

The alternative hypothesis is

=1H The inoculation prevents attack from cholera.

Using the formula ,
Row total columntotal

grand total

×
 the expected frequencies are

Total
41 149 190
129 471 600

Total 170 620 790

Therefore

c
− − − −

= + + +
2 2 2

2 (30 41) (160 149) (140 129) (460 471)
41 149 129 471

 
= + + +

121 121 121 121
41 149 129 471

 2.951 0.812 0.938 0.257 4.958.= + + + =

Also, the number of degree of freedom = (2 – 1) (2 – 1) = 1.

From c2 – table, we note that 0.05

2c  for v = 1 is 3.840. Thus the calculated value of c2
 is greater than 

the tabulated value of 2 .c  Hence 0H  is rejected and 1H  is accepted.
 (b)  Here, number of pages in the book is 1000 (very large). Then the average number of typo-

graphical error per page is given by
3 0.003.

1000
l = =

Therefore, probability of zero error per page is
l− −= = = 0.003( 0)P X e e  (by Poisson’s distribution)

 0.997.=
Further,
 > = − = + = + =( 2) 1 [ ( 0) ( 1) ( 2)]P x P X P X P X

 

2
1 .

2
e e el l ll

l− − −⎡ ⎤
= − + +⎢ ⎥

⎣ ⎦

 
− − −= − − −0.003 0.003 2 0.00311 (0.003) (0.003)

2
e e e

 = − − −1 0.997 .002991 .0.000045  = −ve



Model Paper I � 525

PROJECT: Engineering Maths for UPTU Semester III ACE Pro India Pvt. Ltd.
W:\Pearson\Engineering Maths_Baburam\MAIN\Z01\Z01_BABUISBN_10_APP.indd

Modif cation Date: May 5, 2010 9:36 AM Modif cation Date: 05-05-10, 09:37

and therefore the event is impossible.
 (c) See Article 2.20 (5)
4. (a) Article 3.6
Further, the given equation is

3 2( ) 2 10 20 0.f x x x x= + + − =

Proceed as in Example 3.7
 (b) For definitions, please see Article 5.1

     (i) Since = + Δ1E , we have

−
+ = + Δ +

+ Δ

1 1 1
2 2 2

1
2

1(1 )

(1 )

E E

 

+ Δ + + Δ
= =

+ Δ + Δ
1 1
2 2

1 1 2

(1 ) (1 )

 

1
22 1 (1 ) .

2
−Δ⎛ ⎞= + + Δ⎜ ⎟⎝ ⎠ .

     (ii) We know that

 d
Δ ∇

= =
+ Δ − ∇1 1

 (See relations 5.10 and 5.11).
Hence

         

Δ ∇
=

+ Δ − ∇1 1
or

            

1 1
2 2(1 ) (1 ) .

− −
Δ + Δ = ∇ − ∇

   (iii) See relation 5.16
 (c) The divided difference table is

x f(x)

x0 1 5
3

x1 3 11 0
3 0

x2 5 17 0
1

320
−

3
1
32

−

x3 7 23
1
4

−

3
2

x4 11 29
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Putting these values in the Newton’s Divided Difference formula, we have
= + − + − −0 0 0 1 0 1 0 1 2( ) ( ) ( ) ( , ) ( )( ) ( , , )f x f x x x f x x x x x x f x x x

 + − − −0 1 2 0 1 2 3( )( )( ) ( . , , )x x x x x x f x x x x

 + − − − −0 1 2 3 0 2 3 4( )( )( )( ) ( , , , )x x x x x x x x f x x x x

 

15 3( 1) ( 1)( 3)( 5)( 7)
320

x x x x x= + − − − − − −

 
4 3 212 3 [ 16 86 176 105]

320
x x x x x= + − − + − +

 
4 3 21 1 86 784 745 .

320 20 320 320 320
x x x x

−
= − + −�

Putting 19.5,x =  we shall get (19.5).f

5. (a) Article work of Chapter 4
Numerical is similar to Example 4.16.

− −
= 2 3

1
29 13 3

23
x x

x

− −
= 1 3

2
37 5 7

23
x x

x

1 2
3

43 11
.

23
x x

x
− −

=

Taking initial approximation as (0,0,0), we have

= =(1)
1

29 1.26
23

x

 

− −
= =(1)

2
37 5(1.26) 0 1.3

23
x

 

− −
= =(1)

3
43 11(1.26) 1.3 1.2

23
x

Proceed to get further refinements using Gauss – Seidel Method.
 (b) For Derivation see Article 7.1(B)
The table for the values of the integrand for step length = 0.25h  is

x 0 0.25 0.50 0.75 1.0

( )f x 1 1.08 0.6154 0.4604 0.3333

By Simpson’s 3
8

 rule,

+

−= + + + + + + +∫
0

0

0 1 2 4 5 1
33( ) [ ) 3( ... )
8

x nh

n n
x

h
f x dx f f f f f f f

               −+ + +3 6 32( ... )]nf f f

                  0.937[1.3333 3(1.08 0.6154) 2(0.4604)] 0.6878.= + + + =
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 (c) The given equation is
22 , (0) 1.dy

xy y
dx

= − =

For h = 0.2, we have

 = = − 2
1 0 0 0 0( , ) ( 2 )k hf x y h x y

 = − =20.2[ 2(0)(1 )] 0

 
1

2 0 0, 0.2 (0.1,1)
2 2

kh
k hf x y f

⎛ ⎞= + + =⎜ ⎟⎝ ⎠

 
20.2[ 2(0.1)(1 )] 0.04= − = −

 
2

3 0 0, 0.2 (0.1,0.98)
2 2

kh
k hf x y f

⎛ ⎞= + + =⎜ ⎟⎝ ⎠

 
20.2[ 2(0.1)(0.98) ] 0.0384= − = −

 = + + =4 0 0 3( , ) 0.2 (0.2,0.9616)k hf x h y k f

                 
20.2[ 2(0.2)(0.9616) ] 0.07397.= − = −

Therefore, by Runge – Kutta method of order 4, we have

 
= = + + + +1 0 1 2 3 4

1(0.2) ( 2 2 )
6

y y y k k k k

 

11 [0 2( 0.04) 2( 0.0384) ( 0.07397)]
6

= + + − + − + −

 

11 [ 0.08 0.0768 0.07397] 0.76923.
6

= + − − − =

Repeating the process, (0.4)y  and (0.6)y may be calculated by the candidate.

Model Paper II

1. Attempt any two of the following:  10 × 2 = 20
 (a) Find the Fourier transform of

1
( )

0
x a

f x
x a

<⎧
= ⎨ >⎩

Using this result evaluate
cos

.
sinat at

dt
t

∞

−∞
∫

 (b)  State and prove the convolution theorem for the Fourier transform. Verify this theorem for the 
functions

f (t) = e–t and g(t) = sin t.
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 (c) Define the Z-transform. Solve the difference equation

2 1 0 16 9 2 with 0.n
n n ny y y y y+ ++ + = = =

2. Attempt any two of the following:  10 × 2 = 20

 (a)  If f (z) = u + iv is an analytic function of z = x + iy and [( )sin ( ) cos ]xu v e x y y x y y−− = − − +
then find u, v and the analytic function f (z).

 (b)  State and prove the Cauchy’s integral theorem for the derivative of analytic function.
 (c)  State and prove Liouville’s theorem and using this theorem prove that every polynomial equa-

tion of degree n has n roots.
3. Attempt any four parts of the following: 5 × 4 = 20
 (a) Expand the function f (z) = tan–1z in powers of z.

 (b) Define the singularity of a function. Find the singularity (ties) of the functions.

(i) 1( ) sinf z
z

=

(ii)
 

1

2( )
ze

g z
z

=

 (c) Evaluate ( )( )
2

2 2
.

1 2 2
x dx

x x x

∞

−∞ + + +∫

 (d) Evaluate 
2

0

 if .
sin

d
a b

a b

p q
q

>
+∫

 (e) Evaluate 2
sin .

2 5
x x

dx
x x

p∞

−∞ + +∫
 (f)  Define the conformal mapping. Prove that analytic function f (z) ceases to be conformal at the 

points z0, where f �(z0) = 0.

4. Attempt any two of the following:  10 × 2 = 20
 (a)  Define the coefficients of skewness and Kurtosis. Compute the coefficient of skewness from 

the following data: 

x: 6 7 8 9 10 11 12
f: 3 6 9 13 8 5 4

 (b)  Define the coefficients of regression and correlation. Calculate the coefficient of correlation 
between the marks obtained by 8 students in Mathematics and Statistics:

Students: A B C D E F G H
Mathematics: 25 30 32 35 37 40 42 45

Statistics: 08 10 15 17 20 23 24 25

 (c)  Define the binomial distribution and obtain the expression for the Poisson distribution as a 
limiting case of binomial distribution.
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5. Attempt any two of the following:  10 × 2 = 20
 (a) Find the roots of the cubic equation

ax3 + 3bx2 + 3cx + d = 0
using Cardan’s method.

 (b) Fit a parabola y = ax2 + bx + c to the following data taking x as independent variable:

x: 1 2 3 5 7 11 13 17 19 23
f: 2 3 5 7 11 13 17 19 23 29

 (c)  The regression lines of y on x and of x on y are respectively y = ax + b and x = cy + d. 

Show that the means are 
1
bc d

x
ac

+
=

−
 and 

1
ad b

y
ac

+
=

−
 and correlation coefficient between 

x and y is .ac  Also, show that the ratio of the standard deviations of y and x is .a
c

SOLUTIONS

1. Not related to New syllabus .

2. (a) Let
     + = ( )u iv f z  (1)

so that
    ( ).i u v i f z− =  (2)
Adding (1) and (2), we get

( ) (1 ) ( ) ( ) ,u v i u v i f z F z U iV− + + = + = = +  say.

Then = +( )F z U iV  is an analytic function. We have
−= − = − − +[( )sin ( ) cos ]xU u v e x y y x y y  (Given).

Therefore

(sin cos ) [( )sin ( ) cos ]x xU
e y y e x y y x y y

x

∂
∂

− −= − − − − +

 1( , ),x yf=

 
[ cos ( cos sin ) sin (cos sin )]xU

e x y y y y x y y y y
y

∂
∂

−= − + + − −

 2[( 1)cos (1 )sin ] ( , ).xe x y y x y y x yf−= − − − − − =

Therefore, by Milne’s Method,

1 2( ) [ ( ,0) ( ,0)]F z z i z dzf f= −∫

 
−= − − −∫ [ ( 1) ( 1)]ze z i z dz

 
− −= − − − + − − + 1( 1 ) (1 )z ze z i z i i e c

 1( 1) .zz e i c−= − +
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Thus

1(1 ) ( ) ( 1) .zi f z ze i c−+ = − +

or

       
−−

= +
+ 2

1( )
1

zi
f z z e c

i

 
−= + 2

zi z e c − += + +( )
2( ) x iyi x iy e c

 
−= − − + 2(cos sin )( )xe y i y ix y c

 
−= + − + + 2[ cos sin cos sin ]xe i x y x y y y iy y c

 ( sin cos ) ( cos sin ).x xe x y y y i e x y y y− −= − + +

Comparing real and imaginary parts, we have

 ( sin cos ),xu e x y y y−= −

 ( cos sin ).xv e x y y y−= +

 (b) Please see Theorem … 1.11.
 (c)  Please see Theorem … 1.15. To prove fundamental theorem of algebra, let the polynomial 

equation =( ) 0p z  has no root. Then =
1( )
( )

f z
p z

 is analytic for all z. Also =
1( )
( )

f z
p z

 

is bounded. Hence, by Liouville’s Theorem, it follows that ( )f z  and thus ( )p z  must be a 
constant. Thus we arrive at a contradiction. Hence =( ) 0p z  has at least one root. This proves 
the theorem.

3. (a) Let

     
−= 1( ) tanf z z  (1)

Then

     
=

+ 2
1'( )

1
f z

z
    or    2(1 ) ' ( ) 1 0.z f z+ − =

 
(2)

Differentiating once again, we get

     + + =2(1 ) "( ) 2 '( ) 0z f z zf z  (3)

Differentiating n times the relation (3), we have

     
+ ++ + + + + =2 ( 2) ( 1) ( )(1 ) ( ) 2( 1) ( ) ( 1) ( ) 0n n nz f z n xf z n n f z  (4)

Substituting z = 0 in (1), (2), (3) and (4), we get
= = =(0) 0 , ' (0) 1 , "(0) 0f f f  and

( 2) ( )(0) ( 1) (0).n nf n n f+ = − +

Taking n = 1, 2, 3, we get
(3) (4) (5)(0) 2, (0) 0, (0) 4 !f f f= − = =  and so on

Hence, by Taylor’s theorem,
2 3

1tan (0) ' (0) " (0) '" (0) ...
2 ! 3!
z z

z f zf f f− = + + + +
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3 5
... .

3 5
z z

z= − + −

 (b) A singularity of a function ( )f z  is a point at which the function ceases to be regular (analytic).
(i) We have

= = − + −3 5
1 1 1 1( ) sin ...

3 ! 5 !
f z

z z z z

Since the series does not terminate, there are infinite number of terms in the principal part of the 

expansion of 1sin .
z

 Hence z = 0 is an isolated essential singularity of 1sin
z

(ii) The given function is

⎡ ⎤
= = + + + +⎢ ⎥

⎣ ⎦

1

2 2 2 3
1 1 1 1 1 1( ) 1 . . ...

2 ! 3!

ze
g z

zz z z z

            
= + + + +2 3 4 5

1 1 1 1 ...
2 ! 3!z z z z

Since the series does not terminate, z = 0 is an isolated essential singularity.
 (c) We have

2

0

.
sin

d
I a b

a b

p q
q

= >
+∫

Substituting ,iz e q=  we get q =
dz

d
iz

 and so

= =

= =
⎡ ⎤ + −⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫ 2
1 1

1 2
21

2
z z

dz dz
I

i bz iaz bb
z a z

i z

The poles of the integrand are
2 2

.
a i i a b

z
b

− ± −
=

Thus the poles are

a
− ± −

=
2 2ai i a b

b  
 and 

 

2 2
.ai i a b

b
b

− − −
=

Out of these only a  lines inside 1.z =  Now

2
2( ) lim( ),
2z

Res z
bz aiz ba

a a
→

= −
+ −

 
2 2

2 1 1lim .
2 2z bz ai b ai i a ba a→

= = =
+ + −
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Hence

2 2 2 2

1 22 .I i
i a b a b

p
p

⎛ ⎞
= =⎜ ⎟

⎝ ⎠− −

 (d) The given integral is

 

2

2 2 2 .
( 1) ( 2 2)

x dx
I

x x x

∞

−∞

=
+ + +∫

Consider the integral
2

2 2 2 .
( 1) ( 2 2)c

z
dz

z z z+ + +∫
The poles of the integrand enclosed by the contour are z = i of order 2 and z = −1 + i –1 + i.
Further,

 
→

⎡ ⎤ −
= − =⎢ ⎥

+ − + +⎣ ⎦

2
2

2 2 2
9 12Re ( ) lim ( )

100( ) ( ) ( 2 2)z i

d z i
s i z i

dz z i z i z z

→− +

−
− + = + − =

+ + − + +

2

2 21

3 4Re ( 1 ) lim ( 1 )
25( 1) ( 1 )( 1 )z i

z i
s i z i

z z i z i

Hence
2 2

2 2 2 2 2 2( 1) ( 2 2) ( 1) ( 2 2)

R

R

z dz x
dx

z z z x x xΓ −

+
+ + + + + +∫ ∫ p= 2 i

   
(sum of residues)

The first integral tends to zero as .R → ∞  Hence is the limit as ,R → ∞  we get

p
∞

−∞

− −⎡ ⎤= +⎢ ⎥+ + + ⎣ ⎦∫
2

2 2 2
9 12 3 42

100 25( 1) ( 2 2)
x i i

dx i
x x x

7 .
50
p

=

 (e) Similar to Example 1.104.
Consider

p

− Γ

= = +
+ +∫ ∫ ∫ ∫2( ) ( ) ( )

2 5

Ri z

C C R

ze dz
f z dz f x dx f z dz

z z

                   2 (Re ).i sp= Σ

Since →
+ +2

1 0
2 5z z

 as ,z → ∞  by Jordan’s Lemma 
Γ

→∫ ( ) 0f z dz  as .R → ∞  

Further, the poles of ( )f z  are 1 2 .i− ±  The pole − +1 2i  lies in the semi-circular contour. 

Then

p

→− +
− + = + −

+ − + +1 2
Re ( 1 2 ) lim ( 1 2 )

( 1 2 )( 1 2 )

i z

z i

z e
s i z i

z i z i

         
( 2 )

1 2

( 1 2 )lim .
1 2 4

i z
i

z i

z e i
e

z i i

p
p− −

→− +

− +
= =

+ +
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Therefore

    

pp − −− +⎡ ⎤= ⎢ ⎥⎣ ⎦∫ ( 2 )1 2( ) 2
4

i

C

i
f z dz i e

i

 
pp − −= − + ( 2 )( 1 2 )

2
ii e

 

p
p

p −= − +2 ( 1 2 ).
2

ii e
e

 
2 ( 1 2 )(cos sin ) ( 1 2 )cos .

22
i i i

e p
p p

p p p= − + − = − +

Equating real and imaginary part, we have

2
sin .
2 5

x x
dx

x x
p

∞

−∞

= −
+ +∫

 (f) Theorem 1.25
If 0' ( ) 0,f z =  then arg 0' ( )f z  is indeterminate and so the mapping is not conformal.

4. (a) For definitions see Article 2.3 and 2.4.
The given data is

x: 6 7 8 9 10 11 12
f: 3 6 9 13 8 5 4

We form the table given below:

x f fx 2fx

6 3 18 108
7 6 42 294
8 9 72 576
9 13 117 1053

10 8 80 800
11 5 55 605
12 4 48 576

48 432 4012

Then

( ) 432 9.
48

Mean x = =

The value of x corresponding to the maximum frequency is 9. Hence mode is 9.
Also

( )s = Σ −
Σ

22 21
i i

i

f x x
f

   
= −

1 (4012) 81
48

83.583 81 2.583.= − =
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Pearson’s coefficient of skewness mod 0,mean e

s
−

= =  and so there is no departure from symmetry.

 (b)  For definition, please see articles 2.7 and 2.8. Setting = − = −35 , 17u x v y , we have the 
following table

Math (x) Stat (y) u v 2u 2v uv

25 8 −10 − 9 100 81 90
30 10 −5 −7 25 49 35
32 15 −3 −2 9 4 6
35 17 0 0 0 0 0
37 20 2 3 4 9 6
40 23 5 6 25 36 30
42 24 7 7 49 49 49
45 25 10 8 100 64 80

6 6 312 292 296
Now
Karl Pearson coefficient of correlation is given by

              
r

s s
=

cov( , )( , )
x y

X Y
X Y

               
2 2 2 2( ) ( ( )

i i i i

i i i i

n u v u v

n u u n v v

Σ − Σ Σ
=

Σ − Σ Σ − Σ

                   

8(296) 6(6) 2332 0.938.
2496 36 2336 36 2460 2300

−
= = =

− −

Since r( , )X Y  is close to 1, there is high degree of positive correlation.
 (c) Please see articles 2.15 and 2.17

5. (a) If is related to theory to equations, which is not included in the new syllabus
 (b) Using transformations = −13X x  and = −17Y y  we construct the following table

X Y 2X 3X 4X XY 2X Y

−12 15 144 −1728 20736 180 −2160
−11 −14 121 −1331 14641 154 −1694
−10 −12 100 −1000 10000 120 −1200
− 8 −10 64 −512 4096 80 − 640
− 6 − 6 36 −216 1296 36 −216
−2 − 4 4 −8 16 8 −16

0 0 0 0 0 0 0
4 2 16 64 256 8 32
6 6 36 216 1296 36 216

10 12 100 1000 10000 120 1200
–29 – 41 621 3515 62337 862 4478
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The normal equation are

 10 29 621 41a b c− + = −

 − + + =29 621 3515 862a b c

 621 35154 62337 4478.a b c+ + =

Solve these equations for a, b, c and put in

= + + 2Y a bX cX

and then substitute = −13X x  and = −17Y y  to get the required parabola.
 (c) The regression lines of Y on X and of X on Y are respectively.

     = +y ax b  (1)

and
     = +x cy d  (2)

Since the point of intersection of the regression lines is ( ), ,x y  the means x  and y  lie on the two 
regression lines. Thus, we have

0a x y b− + =  and 0.x c y d− − =

Solving these equation, we get the means
= + −( ) / (1 )x bc d ac   and  = + −( ) / (1 )y ad b ac

Further, the equation (1) and (2) imply that the regression coefficients are
=yxb a

  
and

  
=xyb c

We know that

s
= 2

( , )
yx

x

Cov X Y
b

  
and

  s
= 2

( , )
xy

y

Cov X Y
b

or

s
= 2

cov( , )

x

X Y
a

  
and

  
2

cov( , ) .
y

X Y
c

s
=

Hence
s

s
=

2

2
y

x

a

c

or

.y

x

a

c

s
s

=
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Area Under Normal Curve from 0 to z

z 00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 0.0000 0.004 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0479 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0754
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2258 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4611 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993

Examples: (i) ( )≤ ≤ =0 0.27 0.1064P z  (ii) ( ) ( )0.81 0.5 0 0.81 0.5 0.2910P z P z≥ = − ≤ ≤ = −  
0.2090=  (iii) ( ) ( ) ( ) ( ) ( )− ≤ ≤ = − ≤ ≤ + ≤ ≤ = ≤ ≤ + ≤ ≤3 3 3 0 0 3 0 3 0 3P z P z P z P z P z    

          ( ) ( )2 0 3 2 0.4987 0.9974.P z= ≤ ≤ = =

Y

Z0
X
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Area under the Normal Curve from z to ∞

z

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4521 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4246
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2742 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2482 0.2451
0.7 0.2420 0.2388 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2004 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007

Examples: (i) ( )≥ =0.81 0.2090P z  (ii) ( ) ( )0 0.27 0.5 0.27 0.5 0.3936 0.1064.P z P z≤ ≤ = − ≥ = − =

0

Y

Z X
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Values of t  with probability P and degree of freedom v

v P = 0.50 P = 0.10 P = 0.05 P = 0.02 P = 0.01
1 1.000 6.340 12.710 31.820 63.660
2 0.816 2.920 4.300 6.960 9.920
3 0.765 2.350 3.180 4.540 5.840
4 0.741 2.130 2.780 3.750 4.600
5 0.727 2.020 2.570 3.360 4.030
6 0.718 1.940 2.450 3.140 3.710
7 0.711 1.900 2.360 3.000 3.500
8 0.706 1.860 2.310 2.900 3.360
9 0.703 1.830 2.260 2.820 3.250
10 0.700 1.810 2.230 2.760 3.170
11 0.697 1.800 2.200 2.720 3.110
12 0.695 1.780 2.180 2.680 3.060
13 0.694 1.770 2.160 2.650 3.010
14 0.692 1.760 2.140 2.620 2.980
15 0.691 1.750 2.130 2.600 2.950
16 0.690 1.750 2.120 2.580 2.920
17 0.689 1.740 2.110 2.570 2.900
18 0.688 1.730 2.100 2.550 2.880
19 0.688 1.730 2.090 2.540 2.860
20 0.687 1.720 2.090 2.530 2.840
21 0.686 1.720 2.080 2.520 2.830
22 0.686 1.720 2.070 2.510 2.820
23 0.685 1.710 2.070 2.500 2.810
24 0.685 1.710 2.060 2.490 2.800
25 0.684 1.710 2.060 2.480 2.790
26 0.684 1.710 2.060 2.480 2.780
27 0.684 1.700 2.050 2.470 2.770
28 0.683 1.700 2.050 2.470 2.760
29 0.683 1.700 2.040 2.460 2.760
30 0.683 1.700 2.04 2.460 2.750

Examples: (i) =0.05 2.26t  for = 9v  (ii) =0.05 2.14t  for = 14v  (ii) =0.01 3.50t  for 7.v =
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Statistical Tables � 539

Values of c2  with probability P and degree of freedom v

v P = 0.99 P = 0.95 P = 0.50 P = 0.30 P = 0.20 P = 0.10 P = 0.05 P = 0.01
1 0.0002 0.004 0.460 1.070 1.640 2.710 3.840 6.640
2 0.020 0.103 1.390 2.410 3.220 4.600 5.990 9.210
3 0.115 0.350 2.370 3.660 4.640 6.250 7.820 11.340
4 0.300 0.710 3.360 4.880 5.990 7.780 9.490 13.280
5 0.550 1.140 4.350 6.060 7.290 9.240 11.070 15.090
6 0.870 1.640 5.350 7.230 8.560 10.64 12.590 16.810
7 1.240 2.170 6.350 8.380 9.800 12.020 14.070 18.480
8 1.650 2.730 7.340 9.520 11.030 13.360 15.510 20.090
9 2.090 3.320 8.340 10.660 12.240 14.680 16.920 21.670
10 2.560 3.940 9.340 11.780 13.440 15.990 18.310 23.210
11 3.050 4.580 10.340 12.900 14.630 17.280 19.680 24.720
12 3.570 5.230 11.340 14.010 15.810 18.550 21.030 26.220
13 4.110 5.890 12.340 15.120 16.980 19.810 22.360 27.690
14 4.660 6.570 13.340 16.220 18.150 21.060 23.680 29.140
15 5.230 7.260 14.340 17.320 19.310 22.310 25.000 30.580
16 5.810 7.960 15.340 18.420 20.460 23.540 26.300 32.000
17 6.410 8.670 16.340 19.510 21.620 24.770 27.590 33.410
18 7.020 9.390 17.340 20.600 22.760 25.990 28.870 34.800
19 7.630 10.120 18.340 21.690 23.900 27.200 30.140 36.190
20 8.260 10.850 19.340 22.780 25.040 28.410 31.410 37.570
21 8.900 11.590 20.340 23.860 26.170 29.620 32.670 38.930
22 9.540 12.340 21.340 24.940 27.300 30.810 33.920 40.290
23 10.200 13.090 22.340 26.020 28.430 32.010 35.170 41.640
24 10.860 13.850 23.340 27.100 29.550 33.200 36.420 42.980
25 11.520 14.610 24.340 28.170 30.680 34.680 37.650 44.310
26 12.200 15.380 25.340 29.250 31.800 35.560 38.880 45.640
27 12.880 16.150 26.340 30.320 32.910 36.740 40.110 46.960
28 13.560 16.930 27.340 31.390 34.030 37.920 41.340 48.280
29 14.260 17.710 28.340 32.460 35.140 39.090 42.560 49.590
30 14.950 18.490 29.340 33.530 36.250 40.260 43.770 50.890

Examples: (i) c =2
0.05 11.07  for 5.v =
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F – Distribution F0.05 (n1, n2)

n1\ n2 1 2 3 4 5 6 7 8 9 10 12

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 243.91
2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396 19.413
3 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 8.8868 8.8452 8.8123 8.7855 8.7446
4 7.7086 6.9443 6.5914 6.3883 6.2560 6.1631 6.0942 6.0410 5.9988 5.9644 5.9117
5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8753 4.8183 4.7725 4.7351 4.6777
6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2066 4.1468 4.0990 4.0600 3.9999
7 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257 3.6767 3.6365 3.5747
8 5.3177 4.4590 4.0662 3.8378 3.6875 3.5806 3.5005 3.4381 3.3881 3.3472 3.2840
9 5.1174 4.2565 3.8626 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789 3.1373 3.0729
10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 2.9782 2.9130
11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.9480 2.8962 2.8536 2.7876
12 4.7272 3.8853 3.4903 3.2502 3.1059 2.9961 2.9134 2.8486 2.7964 2.7534 2.6866
13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144 2.6710 2.6037
14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458 2.6021 2.5342
15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 2.5437 2.4753
16 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911 2.5377 2.4935 2.4247
17 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 2.6143 2.5480 2.4943 2.4499 2.3807
18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563 2.4117 2.3421
19 4.3808 3.5219 3.1274 2.8951 2.7401 2.6283 2.5435 2.4768 2.4227 2.3779 2.3080
20 4.3513 3.4928 3.0984 2.8661 2.7100 2.5990 2.5140 2.4471 2.3928 2.3479 2.2776
21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.3661 2.3210 2.2504
22 4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965 2.3419 2.2967 2.2258
23 4.2793 3.4221 3.0280 2.7955 2.6500 2.5277 2.4422 2.3748 2.3201 2.2747 2.2036
24 4.2597 3.4028 3.0088 2.7763 2.6207 2.5082 2.4226 2.3551 2.3002 2.2547 2.1834
25 4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821 2.2365 2.1649
26 4.2252 3.3690 2.9751 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655 2.2197 2.1479
27 4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501 2.2043 2.1323
28 4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2.2360 2.1900 2.1179
29 4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2782 2.2229 2.1768 2.1045
30 4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 2.1646 2.0921

Examples: (i) F0.05(3.8) = 4.0662 (ii) F0.05(2.9) = 4.2565 (iii) F0.05(5.24) = 2.6207.
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A
Addition rule for probability, 191
Analysis of variance, 276
Analytic (holomorphic) 

function, 19
Angle between regression line, 186
Approximate values of roots, 308
Area under standard normal 

curve, 234
Arithmetic mean, 154
Attribute control charts, 290
Axiom of calculus of 

probability, 192

B
Baye’s theorem, 204
Between column sum of squares 

(or residual), 277
Between column variation, 277
Bilinear (mobius) 

transformation, 111
Binomial distribution, 214
Bisection (Bolzano) method, 309
Boole’s rule, 459
Boundary value problems, 488

C
Cauchy’s formula for 

derivatives, 48
Cauchy’s inequality, 52
Cauchy’s integral formula, 47
Cauchy’s integral theorem, 45
Cauchy’s residue theorem, 77, 81
Cauchy’s-Riemann equations, 21
Centered formula of O(h2), 433
Centered formula of O(h4), 434
Central difference operator, 371
Chi-square (x2) distribution, 266
Chord method , 312
Coefficient of correlation, 180
Conditional probability, 200
Confidence interval for mean, 243
Conformal mapping, 110
Control charts, 288

Convergence of iteration 
method, 323, 360

Convergence of Newton-Raphson’s 
method, 321

Convergence of Regla-Falsi 
method, 313

Correction term, 276
Correlation, 180
Cote’s formula, 461
Cote’s number, 462
Covariance, 178
Crout’s method, 350

D
De-moivre’s theorem, 4
Differential operator, 373
Differentiation of a function in 

unequal intervals, 449
Differentiation of Lagrange’s 

polynomial, 450
Differentiation of Newton’s 

polynomial, 451
Discrete probability 

distribution, 161
Divided differences, 407

E
Entire (integral) function, 19
Error analysis of Euler’s 

formula, 491
Error formulas 

(for interpolation), 412
Error in Lagrange’s 

formula, 423
Error propagation, 383
Error term in quadrature 

formula, 463
Errors in centered formulae, 435
Essential singularity, 73
Euler– Maclaurin’s formula, 484
Euler method, 490
Euler’s formula, 3
Exponential transformation, 119

F
Finite differences, 367
Fisher’s z-distribution, 273
Fitting of binomial distribution, 219
Fitting of normal distribution, 234
Fixed point iteration, 322
Forecasting and time series 

analysis, 282

G
Gauss–backward interpolation 

formula, 395
Gauss elimination method, 336
Gauss forward interpolation 

formula, 393
Gauss–Jordan method, 340, 341
Gauss–Seidel method, 355
General method for differentiation 

formulae, 440

H
Harmonic function, 24
Hyperbolic function, 10

I
Independent events, 202
Initial value problems, 486
Interpolation, 367
Interval of differencing, 367
Inverse interpolation, 424
Inversion, 112
Isolated essential singularity, 73
Isolated singularity, 20
Iterative methods, 308, 354

J
Jacobi iteration method, 354
Jordan’s lemma, 95
Jordan’s modification to Gauss 

method, 340

K
Karl–Pearson’s coefficient of 

correlation, 181

Index
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L
Lagrange’s interpolation 

formula, 415
Lagrange’s interpolation 

coefficients, 417
Laurent’s theorem, 66
Least square approximation, 183
Least square line approximation 

(method), 165
Least square parabola, 173, 287
Level of significance, 241
Liouville’s theorem, 52
Logarithmic transformation, 121
Lower control limit, 288

M
Mean (expectation) of random 

variables, 208
Mean deviation, 158
Mean of binomial 

distribution, 215
Measures of central tendency, 154
Measures of kurtosis, 162
Measures of skewness, 161
Measures of variability 

(dispersion), 158
Mechanical quadrature, 457
Median, 154
Meromorphic function, 77
Milne–Thomson method, 25
Mode, 155
Moment generating function, 161
Moments, 160
Morera’s theorem, 51
Moving average method, 286
Multiplication law of 

probability, 201

N
Newton–Raphson method, 317
Newton’s divided difference 

formula, 409
Newton’s backward difference 

formula, 388
Newton’s backward difference 

operator, 368
Newton’s forward difference 

formula, 387

Newton’s forward difference 
operator, 367

Normal distribution, 226
Normal equations, 167
Normal probability integral, 232
Numerical differentiation, 433
Numerical quadrature, 457

O
Overall sum of squares, 276

P
Pearson’s coefficient of 

skewness, 161
Pearson’s constants for binomial 

distribution, 216
Picard’s method for differential 

equations, 497
Poisson distribution, 222
Poisson’s integral formula, 53
Polar form of Cauchy–Riemann 

equations, 31
Pole of order n, 20
Power fit, 171
Power series, 60
Probability, 189
Probability curve, 208
Probability density function, 208
Probability distribution 

function, 207

R
Range, 158
Regression, 183
Regression coefficient, 185
Regression function, 183
Regula–Falsi method, 312
Removable singularities, 73
Residual, 166
Residue of function, 77
Root mean square error, 166
Runge–Kutta method, 502

S
Sampling, 239
Sampling with large sample, 240
Sampling with small sample, 258
Secant method, 312

Secular trend, 282
Semi–average method, 282
Shifting operator, 370
Significance test of difference 

between samples means, 262
Simpson’s one–third rule, 458
Snedecor’s F–distribution, 272
Standard deviation, 159
Statistical quality control, 288
Student–Fisher t-distribution, 259

T
Taylor series method, 486
Test of significance for difference 

of mean, 256
Test of significance for difference 

of proportion, 250
Test of significance for difference 

of standard deviation, 258
Test of significance for large 

samples, 241
Test of significance for single 

proportion, 247
Time series, 282
Total variation, 276
Trapezoidal rule, 457
Trend line, 282, 283

U
Univalent transformation, 111
Upper control limit, 288

V
Variable control charts, 289
Variability, 153
Variance of binomial 

distribution, 215
Variance of random variable, 208

W
Weddle rule, 460
Within column sum of 

squares, 277

Z
Zero of order m, 73
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