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Foreword

John Matthews

This is one of the most important books on emergent mathematical thought in
infancy and early childhood ever written.

Those of us who have devoted our lifetimes attempting to understand the origin
and development of expressive, representational and symbolic thought in infancy
and childhood, and how best to support it, quickly came to realise that the begin-
nings of linguistic and mathematical thought are embedded in rather commonplace
actions and drawings made by the infant and young child.

Developmentally, these beginnings are of the most profound importance. They
form the child's introduction to semiotic systems without which her life in the
symbol-rich society of humans will be dangerous if not impossible.

Tragically, these crucial beginnings of expressive, representational and symbolic
thought are often discounted completely and receive little or no support from the
pedagogical environment.

Why is this? It is because, if these actions are glanced at cursorily, they appear
trivial, meaningless and sometimes even as a threat to social control. Children’s
emergent semiotic understandings are often expressed in free-flowing, dance-like
and musical actions, in vocalisation and in children’s early drawings. This latter
mode of representation is of especial power for the child because it is within the
action of drawing (and please, please note that I am writing here of the child’s spon-
taneous, self-initiated, self-guided drawing) that the child comes face-to-face with the
awesome power of symbolic representation, that marks on a flat surface (whether
these be physical pigment on a piece of paper, traces of light on a screen, or images
on a liquid crystal display of a digital camera) are just that, yet simultaneously they
refer to objects, events, ideas and relationships beyond the drawing surface.

Tragically, these profound beginnings of symbolic thought are still, in the main,
discounted as ‘scribbling.” Misguided attempts to ‘improve’ children’s drawing and
‘observational’ skills, sometimes enlisting the support of so-called ‘art specialists’
make matters worse, cutting across, as they do, a crucial sequence of semantic and
organisational principles spontaneously emerging on the drawing surface.

Sometimes my students ask me to recommend a good book on children’s ‘art’. 1
tell them to read the one you have started to read now, Carruthers’s and Worthing-
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ton's Children’s Mathematics. The concept of ‘children’s art’, with its inevitable train
of consequences of ‘art lessons’ and ‘art-specialists’ in the early years, is at best, a
mixed blessing. Definitional problems about the nature of visual representation have
obscured the real meaning and significance of children’s 2 dimensional visual struc-
ture (along with their interrelated investigations into 3 and 4D structures — the
fourth dimension being the dimension of time). Many of the curriculum initiatives
which bring dance, music and art ‘expertise’ into nursery are about as appropriate to
children’s development, and about as interesting to children, as mortgage agree-
ments. Such initiatives merely add to the damage wrought upon children’s emergent
symbolisation.

Children’s earliest drawing is generated spontaneously and is interrelated with
many of their other modes of expression and representation. Although self-initiated
and driven along by the child, it requires adult companions who are able to identify
the operant modes of representation employed by the child. Such adults are there-
fore in a better position to supply intellectual and emotional support for the devel-
opment of semiotic thought. Carruthers and Worthington not only identify the
mathematical aspects of children’s early modes of expression and representation,
including drawing, they also show the teacher how these modes of representation
may be best supported.

A careful reading of this fascinating book is quite simply the best way of under-
standing the growth of mathematical thought in infancy and how adult compan-
ions might nourish and support its development.

Dr. John Matthews

Professor

Visual & Performing Arts

Centre for Research in Pedagogy & Practice,
National Institute of Education,

Nanyang Technological University



Foreword

Chris Athey

This is a very important book not least because of its range. The authors have gath-
ered evidence from children over a 15-year period. They analysed almost 700
samples of children’s graphics showing how powerful patterns of cognition
(schemas) in the early years of development gradually evolve into recognisable forms
of writing and mathematics. Their aim, and unique achievement, has been to chart
the progress of children’s thinking through their mark-making from age 3 to 8. They
have bridged the gap between Early Years and primary education.

When seen across such an age range, the children’s explanations of the meanings
of their own marks represent an exciting intellectual journey through childhood
which will provide new insights for parents and professionals into the developing
relationship between language and thought. The representations show a gradual
emergence of more complex relationships between mathematical language and
mathematical thought.

Evolving co-ordinations are vividly illustrated by children’s own graphics and
speech representations. In each case specific and appropriate references from the lit-
erature are given. These aid comprehension of complex material. The references are
extensive and illuminative and specific page numbers are given at the end of quota-
tions. This scholarly practice will be much appreciated by readers who may wish to
pursue sub-themes in the book of which there are many: variations in pedagogy in
different countries, working with parents and creating a mathematically stimulating
environment are just a few.

The authors are vigorously in favour of school procedures which encourage children
to be more participatory, and have greater autonomy, in their own learning. Many
useful references are given in support of this constructivist pedagogical position.

One aspect of the enquiry shows that the majority of teachers still rely on math-
ematics worksheets where subject matter is neatly divided into discrete steps. Some
of the children’s cognitive confusions arising from these tasks are discussed. These
confusions have to be seen against the clear conceptual understandings of children
discussing their own invented symbolic systems.

There is nothing sentimental about the child-centred orientation of the attitude
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held and evidence gathered by these two authors. They are tough teachers making a
case for improving children’s thinking, and mathematical thinking in particular.
Their central thesis is that the gap in children’s mathematical understanding is
bridged through supporting the development of children’s own mathematical
graphics. At present there is a wide, conceptually dangerous gap.

Teachers, hopefully working with parents, can develop their own knowledge of
early spontaneous patterns of thought in young children. Where adults learn the
language and thought of young children they become better translators for the chil-
dren into the language and thought of more formal mathematics. Adults are assisted
by the children themselves who want to embrace more formal aspects of mathe-
matics just as they wish to acquire more advanced strategies and skills in other areas
of the curriculum. In translating between their informal and formal mathematical
graphics children can exploit both. They will move with ease between their sponta-
neous ways of working things out, and their more newly acquired, more formal con-
cepts. This is not a one-way movement: children move in an infinite loop as their
translation supports them in becoming bi-numerate. Confidence will be maintained
as competence increases.

The book is interestingly written and will strengthen professional knowledge on
the development of meaning in children aged from 3 to 8.

Chris Athey
22 March 2006



Preface

In England over the last five years there has been some important government doc-
umentation. This has opened up tight and less flexible initiatives such as the
National Literacy (DfEE, 1998) and Numeracy (DfEE, 1999) frameworks. In 2000 the
introduction of the Curriculum Guidance for the Foundation Stage (QCA, 2000) clearly
opened the way for more child-centred approaches and highlighted a play based cur-
riculum. More importantly there was a move away from a subject based curriculum
to the recognition that each subject was intertwined and therefore interdependent
on the other. This holistic approach was further emphasised in the document Excel-
lence and Enjoyment: a Strategy for Primary Schools (DfES, 2004c) in which it was stated
that the numeracy and literacy frameworks were not statutory and that teachers
should work flexibly within a broader curriculum. Schools were asked to ‘take
control of the curriculum, and be innovative’ (p. 16). At the same time the national
assessment procedures for Key Stage One were gradually moving more to teacher
assessment in evaluating children’s attainment, thus recognising the teacher’s pro-
fessional expertise and the knowledge she had of the children in her class.

The Foundation Stage Profile was introduced in 2003 and sits well with the Cur-
riculum Guidance for the Foundation Stage. This profile reports children’s attainment at
the end of the Foundation Stage and is based on ongoing observations of children
throughout the year, rather than the very narrow task testing procedures of the pre-
vious ‘base line assessment’. This kind of assessment not only helps teachers to know
children’s achievements but also informs the learning process. The observation
based profile is important for teachers to judge the outcomes and therefore the
quality of play. Documenting what children say and do in play has highlighted for
many, who may have needed convincing, that children are challenged to the
maximum of their capabilities in play. This has helped people realise the cognitive
potential of play and of a play based curriculum. However, moving towards a play
based curriculum has meant that the downward pressure of a more formal curricu-
lum in the Primary sector did not match the ethos and principles of the Foundation
Stage. Transition from one key phase to the other has been reported as being detri-
mental to young children (NFER, 2005). To counter this negative effect the training
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materials encompassed by Continuing the Learning Journey were produced for schools,
(QCA, 2005). This has been welcomed by Early Years professionals as the materials
emphasise continuing the play based approach in year one and planning from chil-
dren’s interests, as well as looking at the objectives needing to be taught.

Again from 2006 the documentation and guidelines are to be reviewed. There is a
need to move further towards a more holistic approach to children’s learning and
teaching. The Every Child Matters agenda (DfES, 2004a) has been a catalyst for change
and is underpinning the Early Years Foundation Stage (forthcoming) where Birth to
Three Matters (DfES, 2002a) and the Curriculum Guidance for the Foundation Stage
(QCA, 2000) are meshed. The numeracy and literacy frameworks are being reviewed
with consideration to the Early Years Foundation Stage document. Many quality gov-
ernment supported materials have been produced, for example Listening to Young
Children (Lancaster and Broadbent, 2003) and Communicating Matters (SureStart,
2005). All these documents should help put the child and their family back at the
centre of the learning.

The rise of Children’s Centres as an almost organic approach to education and care
is an exciting initiative and will be both a breeding ground for new thinking and
providing a new research base. Children’s Centres play a key role in the implemen-
tation of the government’s ten year strategy for childcare (DfES, 2004b). These
centres are becoming internationally renowned as an up-to-date model of early edu-
cation and care supported by a multi-disciplinary team. The ‘British Infant School’
model of the sixties and seventies had similar acclaim as a pioneer of new thinking
with the influence of Piaget and a play centred curriculum. These new centres are
the perfect context to open up teaching and learning with a strong emphasis on
practitioner research.

Against this background this book will add to the revival of looking at young chil-
dren more closely. The area of mathematics is still riddled with questions and some
of the main ones that concern teachers are, ‘How can I move children to under-
standing the abstract symbolism of mathematics? What is the development? When
and how do you introduce standard symbols? What do children’s own mathemati-
cal graphics look like?” We are at a time of giving teachers back their professionalism
and allowing them to really observe young children and to support their own think-
ing and meaning making: this is the key to teaching and learning about children’s
mathematical mark making.

Since we wrote the first edition we have noted that settings for children under five
are well on the way to creating the body of knowledge needed to support children’s
thinking in mathematics. However, as this Advanced Skills (reception) teacher
explained:

I had long felt frustrated with some aspects of maths ‘teaching’ for reception chil-
dren. There were exceptions of recording work, even though nearly all of the
maths was practical in nature. You can take photographs of some activities, but
that only records the doing, not the thinking ... I began to question why I had
not considered maths (in the same way as emergent writing). Young children
don’t learn in convenient blocks, defined by subject areas (sorry Ofsted). They
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learn from experience. They pull together bits of knowledge they have gained:
they observe; they try things out; they learn from asking questions; they exper-
iment; they work at their understanding until they make a connection with
another bit of knowledge they have (Jacoby, 2005: p. 38).

Schools are not generally this far advanced and this is not only where the real chal-
lenge is but, paradoxically, this could be where the most benefits lie. If schools also
develop understanding of children’s own mathematical graphics, then the continu-
ity of their mathematical thinking from pre-school to school will give children the
ability to really understand and use the abstract symbolism of mathematics. If we do
not nurture children’s own thinking in schools then the work of pre-schools will not
be realised and many children will still be confused with the standard algorithm.

The publication of the first edition of this book in 2003 re-opened the debate
about ‘emergent’ mathematical approaches and interest in children’s mathematical
graphics has subsequently multiplied in England, the UK and internationally.
Increasingly we meet and hear from teachers who are discovering for themselves the
potential that mathematical graphics holds for children’s understanding of ‘written’
mathematics and how this supports children’s thinking and learning of mathemat-
ics at a deep level.

Learning and using abstract symbols and written calculations with understanding
can be challenging for young children unless teaching approaches support this
development. We are the first to have created a taxonomy of children’s visual repre-
sentations of their mathematical thinking from birth to eight years. By listening to
teachers we have developed the taxonomy further since the publication of our first
book and this can prove invaluable for teachers’ understanding and assessment (see
p- 131).

We hope that this book will encourage you to begin to make at least small changes
in your approach to teaching ‘written’ mathematics, so that you too will marvel at
the depth of young children’s early mathematical thinking and understanding.






Who Takes flotice
of Children's Own Written
Mathematics?

In Antoine de Saint-Exupéry’s poignant tale he writes:

Once when I was six years old I saw a magnificent picture in a book, called True
Stories from Nature, about the primeval forest. It was a picture of a boa constrictor in
the act of swallowing an animal ... I pondered deeply, then, over the adventures of
the jungle. And after some work with a coloured pencil I succeeded in making my
first drawing. My Drawing Number One. It looked like this:

Figure 1.1 Drawing Number One

I showed my masterpiece to the grown-ups, and asked them whether the drawing
frightened them. But they answered: ‘Frighten? Why should any one be frightened
by a hat?’

My drawing was not a picture of a hat. It was a picture of a boa constrictor digest-
ing an elephant. But since the grown-ups were not able to understand it, I made
another drawing: I drew the inside of the boa constrictor, so that the grown-ups
could see it clearly.

Elles ont toujours besoin d’explications.

They always needed to have things explained ...

I had been disheartened by the failure of my Drawing Number One and my
Drawing Number Two. Grown-ups never understand anything by themselves, and it
is tiresome for children to be always and forever explaining things to them (Saint-
Exupéry, 1958, pp.5-6).

Ilustration of the boa constrictor reproduced with the kind permission of the publisher of the
original French edition © Editions Gallimard, Paris, 1944. Text from The Little Prince © Galli-
mard 1944. First English Edition published in 1945 by William Heinemann Ltd and used with
permission of Egmont Books Limited, London.
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2 Children’s Mathematics

In the spirit of Antoine de Saint-Exupéry’s internationally known and deeply
moving fable, we have written this book to help ‘the grown-ups’ understand the
meanings of young children’s mathematical images.

Children’s mathematical graphics

This book is a study of young children’s own mathematical graphics and the way in
which they can use their own marks to make their own meanings. This allows chil-
dren to more readily translate between their informal ‘home mathematics’ and the
abstract symbolism of ‘school mathematics’: we argue that childrens’s own mathe-
matical graphics (‘thinking on paper’) enables children to become bi-numerate.

Why write about children’s mathematical graphics?

For the past fifteen years we have developed our practice and explored the theories that
underpin this book. Because we were teaching for a greater part of this period we were
able to trial ideas, hypothesise and generate our philosophies and develop our pedagogy
in our own settings. As our excitement in the development of children’s own mathe-
matical marks and their meanings grew, we focused on a number of research projects
that have helped inform and guide us. Where they have relevance for the subject of this
book, we refer to our findings (see Appendix for a list of our research topics).

On numerous occasions we have been invited to share our practice, understand-
ing and some of the hundreds of children’s examples we have collected — with stu-
dents where we have lectured and with teachers on professional development
courses and at Early Years conferences. Students’ and teachers’ responses are almost
always of surprise and great interest — that it makes sense to encourage this, that
working in this way offers a real alternative to the use of worksheets and, above all,
that it offers tremendous insight into children’s understanding and development.
But the benefits are greatest for the children.

We had come to children’s early mathematical mark-making through our own
interest and following many years of experience in supporting emergent writing in
our classrooms. We had seen wonderful progress in children’s early writing and
began to make comparisons with children’s early recorded mathematics. A signifi-
cant element in our development as teachers was the period in which we were
members of the ‘Emergent Mathematics Teachers’ group’ (see this chapter).

As we developed our practice and theory we collected samples of children’s math-
ematical marks. For a greater part of this period we taught mainly in nursery and
First Schools, and also through the primary age range to 11 years. Although we con-
centrate on the 3-8 age range in this book we feel the development of children’s own
mathematics through the school is important.

It took time to develop our practice in order to support children’s mathematical
graphics. Working with local groups of teachers encouraged us to question assumptions
and consider different perspectives on teaching mathematics in the Early Years. As we
slowly developed our practice we also traced the pattern of children’s early development
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of numerals and established some pathways that led to early calculations on paper. This
development did not reveal itself to us as readily as children’s early writing had done.

Evidence-based study

The examples of children’s mathematics have come from our own teaching either in
our own classrooms or when we were invited to teach in other classrooms. It is this
strong teaching background, coupled with our work as consultants, advisers and lec-
turers, that has made us focus on what we believe is important in the Early Years. It has
also sharpened our knowledge of underpinning theories — of mathematics and mark-
making and of all the complexity of teaching and learning in the 3-8 years age range.

International findings

Our search for literature on children’s own written mathematics in the 3-8 age range
did not reap any major findings. There were individual studies in the USA, for
example Whitin, Mills and O’Keefe, (1990); in Australia, Stoessinger and Edmunds
(1992) and in England teachers’ stories of their work (Atkinson, 1992). There was the
beginning of a movement in the direction of advocating what we term a bi-numer-
ate approach to the teaching of mathematics (see Chapter 5).

However, Alexander’s significant study of five nations — France, Russia, India, the
USA and England - found that the teaching of mathematics worldwide is heavily
influenced by textbooks and worksheets. India was the exception, not only because
of funding difficulties, but due to significant historical and cultural factors (Alexan-
der, 2000). In 1998 and again in 1999 I was fortunate to have two periods of volun-
tary work with a children’s charity in Tamil Nadu, in southern India. At first hand I
was able to see children taught in nursery and primary schools.

State-run nursery schools are found in many larger villages, including those in
which I worked. The nursery teacher may have completed primary education,
though her assistants have often had little or no schooling, and in this rural area
there was very little training for nursery teachers. In many of the villages I visited
there were few literate adults and this, combined with often extreme levels of
poverty, means that perhaps only a handful of homes in the community had any
printed matter, pens or paper in their homes. Of the ten nursery schools I visited,
nine were totally empty rooms: apart from the adults and children, there were no
toys, resources, books or pictures. Discipline was strict with commands to ‘sit up
straight’, ‘fold your arms’ and ‘sit still and be quiet’ frequent. The children attend
nursery school until they are 6 years old.

In only one of the nursery schools I visited were there any visual aids. The teacher
proudly showed me some small posters she had made - an alphabet with pictures
and a small number frieze of numbers 1-10 with pictures. Questions were fired at
these 2-6-year-olds and a rapid response was demanded. The mathematics teaching
was a transmission model with an emphasis on correct answers. In the nursery
schools I visited there were no opportunities for mark-making or drawing
since there were no resources. During a period of several months I did not once
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see a child make marks on the sandy ground outside, even in play.

Teaching in primary schools was of a very similar style, although funding permitted
children in some classes to use slates and older children to use exercise books. They
copied standard algorithms from the blackboard and filled in the answers. Alexander
includes a transcription of one spelling lesson (in a Hindi-speaking area) with children
aged 5-6 years: this is typical of what I saw in every nursery and primary school I visited:

four children come to the blackboard at the teacher’s invitation, to write ‘A’. Teacher
then writes ‘A’ herself and asks the class to recite the sound, over and over again.
Teacher writes, ana, Anamika, aachi (pomegranate; a girl’s name; good) on the board.
Three pupils come forward to circle the ‘A’ in these words. Class applauds. Teacher asks
questions to recapitulate and children chant in response. (Alexander, 2000, p. 282)

Alexander reported that lessons he had observed in England in 1998 were as tied to
textbooks and published schemes as those in Russian schools. Teachers in France and
the USA were moving away from the domain of textbooks. Alexander emphasised
the tension in the USA between those schools wanting to move away from the dom-
inance of standard textbooks, and the concern of school boards and government to
raise standards. The change noted was that instead of using workbooks exclusively,
teachers created their own worksheets for children to record their mathematics set
by the teacher. This finding is mirrored by our study (see Chapter 5).

Mathematics education in the Netherlands

In the Netherlands the main influence in mathematics education has been ‘Realistic
Mathematics Education’ (REM). This was initiated by Freudenthal who professed that
mathematics must be connected to society and children should learn mathematics by
a process of ‘progressive mathematization’ (Freudenthal, 1968). Treffers built on this
idea and describes two types of processes, horizontal and vertical (Treffers, 1978). ‘Hor-
izontal mathematization’ is Freudenthal’s term to explain the way in which the gap
between informal mathematics and formal mathematics is bridged. Horizontal math-
ematization helps children move from the world of real life into the world of symbols.
In teaching terms, for example, a picture of a real-life problem is given to the children,
perhaps people getting on and off a bus. This would later be shown with symbols and
then again, after a period of time, shown without any picture cues (Heuvel-Panhuizen,
2001). The term ‘vertical mathematization’ refers to the children working within the
world of symbols. Children move on to models such as the empty number line which
the National Numeracy Strategy in England has adopted (QCA, 1999).

Mental arithmetic is at the ‘heart of the curriculum’ in schools in the Netherlands
that use the REM curriculum (now the majority), (Buys, 2001). Children try to do
every calculation mentally and are also encouraged to write their thinking down on
scrap paper so that they remember the steps for more difficult calculations where it
is impossible sometimes, to keep track. Children’s own ways of thinking are encour-
aged through their mental work, and informal recordings through the empty
number line have a high priority.

Studies of Brazilian street children’s informal calculations have highlighted the
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significance of meaningful contexts for mathematics and emphasize the need to pre-
serve meaning within classroom contexts. Nunes et al. propose that the Dutch Real-
istic Mathematics Education, in which problem solving is central, goes a long way
in doing this (Nunes et al., 1993).

Whilst children in the Netherlands do not begin school until six years of age, in
England most children now start school during their fourth year and it is largely for
this reason that we have focused on children’s earliest marks and their
development. Such a socio-cultural approach as REM, ‘integrates both the child’s
personal constructions and the educator’s pedagogical responsibilities’ (Oers,
2004a, p. 71). The term ‘realistic’ in the Dutch curriculum refers not only to
‘connections to the real world ...” (but also) offering students ‘problem situations
that they can imagine’ (Heuvel-Panhuizen, in Anghileri, 2001b, p. 51). Pupils
following the REM curriculum ‘are expected ... to develop models and to be able to
proceed from their “own informal mathematical constructions to what could be
accepted as formal mathematics”’ (Streefland, 1990, p. 1, in Nunes et al., 1993),
something which we also expect children to do. Essentially the curriculum view is
that ‘mathematics is a cultural activity that should not be reduced to correctly
performing mathematical operations’ (Oers, 2002, p. 23).

A recent study (Anghileri, 2002a) compared pupils written calculations strategies
in England with those of children in the Netherlands using the REM approach. The
research emphasises that flexible calculation strategies are ‘more important than the
use of one sophisticated strategy’ (Anghileri, 2002a, p. 1). Acknowledging this
research, MEI argues that that in the Dutch approach ‘there is a much stronger sense
that mastery develops over time, and that fluency has to go hand in hand with
understanding (MEI, 2005, p. 73).

Whilst the majority of Dutch schools use the REM curriculum, work in the
Netherlands based on a Vygotskian perspective has led to the Developmental Edu-
cation curriculum (adopted by an increasing number of schools and pre-
schools),with children of four to seven years of age, and this is supported by the Free
University in Amsterdam. The Developmental Education approach supports chil-
dren’s meaning-making through a play-based curriculum. Oers emphasises that
whilst Vygotsky’s cultural-historical perspective (on which the core of the socio-cul-
tural approach is based) is ‘still strongly activity based ... the focus on meaning has
become more explicit’ (Oers, 2004b, p. 1, 3). Interest in the cultural historical
approach has grown internationally through the work of researchers including
Jerome Bruner, Michael Cole, Barbara Valsiner and James Wertsch, (Oers, 2004b, p.
2) and has also been linked with the work of Bakhtin, Wells, Halliday and Dewey
(Oers, 2004c, p. 1) and with Lave and Wenger's situated learning (1991). Thus in the
Netherlands, both the REM and the Developmental Curriculum appear to emphasise
the importance of allowing pupils to attach personal meaning to the cultural
transmission of mathematics.

Zevenbergen raises concerns about the philosophy that underpins mathematics
curricula in Australia and many other western countries. Comparing the Dutch
approach to that of Queensland in Australia, she argues that ‘while there are tokenis-



6 Children’s Mathematics

tic references made to children’s informal understandings, these are not central to
curriculum design’ (Zevenbergen, 2002, p. 4).

In 1999, England introduced the National Numeracy Strategy which is a framework
of objectives for teaching mathematics for 5-11-year-olds (QCA, 1999). Like the Dutch
model, this document also has a heavy emphasis on mental calculation but introduces
standard and expanded written forms of mathematics much earlier. England, unlike
other countries we have mentioned, has recognised the importance of young chil-
dren’s own mathematical marks and their own choice of written methods have been
highlighted in official documentation. Guidance for teachers emphasises: ‘children
will need to have plenty of experience of using their own individual ways of recording
addition and subtraction activities before they begin to record more formally’ (QCA,
1999 p. 19). The documents also advise that ‘at first, children’s recordings may not be
easy for someone else to interpret, but they form an important stage in developing
fluency’ (QCA, 1999, p. 12). However, although the Numeracy Strategy supports chil-
dren’s own mark making and refers to children drawing pictures and making tallies
this is not clearly explained, with the outcome that teachers are often confused as to
how they might support children’s mathematical marks and when to start teaching
standard written methods. This has resulted in teachers in the early years either intro-
ducing formal standard methods too soon or completely ignoring any written mathe-
matics whether they are children’s own representations or the standard methods.
There has been no guidance in nursery mathematics except the much criticised Math-
ematical Activities for the Foundation Stage (DfES, 2002b). Gifford reviewed these materi-
als and concluded that they gave teachers mixed messages and were not founded on
research and the general ethos of the Foundation Stage (Gifford, 2003b). Therefore
teachers of under fives are even more in the dark, and as one nursery teacher explained
to us, ‘between the ages of three and seven there is a no man’s land in the teaching of
written mathematics’. This dilemma is confirmed by the outcomes of two studies we
made with other teachers (see pp. 7-9 and 81-2, and p. 34).

Using and applying mathematics

The ‘using and applying’ strand is at the heart of mathematics in the English National
Curriculum (NCC, 1992) and concerns the processes involved in mathematics through
a problem-solving approach. This strand of the curriculum has been regarded as ‘perhaps
the most significant challenge for teaching mathematics’ (NCC, 1989, para. D.1.5).
We believe that young children are amazingly talented and that they need challeng-
ing opportunities to develop their thinking at deep levels. It is significant that ‘using
and applying mathematics’ emphasises symbol use and representing mathematics.
For children from five to seven years of age, they are expected to be able to:

¢ Select the mathematics they use, begin to represent their work using symbols and
simple diagrams and discuss and explain their work using mathematical language.
¢ Try different approaches, find ways of overcoming difficulties that arise, begin to organ-
ise work and check results. They should also use and interpret mathematical symbols
and diagrams, discuss what they have done and begin to explain their thinking.
Based on the level descriptions for Attainment 1: using and applying mathematics (DfEE, 1999a).
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From our research we found that children’s personal explorations indicate that by the
time they are tackling calculations and simple problems (for example, see Chapters 7
and 9, this volume), children are already achieving many of the criteria for this strand
of the curriculum. There are also suggestions that in some of the examples in this book
children achieve at levels expected for older children in using and applying mathematics.

Further support for children’s own mathematical graphical representations can be
seen in the English Curriculum Guidance for the Foundation Stage (QCA, 2000) for
teachers of children from 3 to 5 years of age. Teachers are recommended to promote
confidence in children when they begin to record their mathematics: ‘asking chil-
dren to “put something on paper” about what they have done or have found out will
allow them to choose how to record or whether to, for example, use a picture, some
kind of tally or write a number’ (QCA, 2000, pp. 71-2).

However, whilst curriculum innovations have been introduced the fact remains
that translating guidance into practice does not always result in intended
outcomes. In a recent study in England, researchers analysed the effect that the
introduction of the Foundation stage curriculum (a play-based approach) had had
on the quality of teaching and on children’s experiences. Their findings suggest
that mathematics teaching is often misunderstood and the authors of the study
recommend that teachers ‘re-examine the values and priorities of their approaches
to literacy and numeracy teaching ... to consider whether their current emphasis
on the smallest and most basic mechanical units of literacy and numeracy learning
is altogether appropriate’ (Adams et al., 2004, p. 27: 3.13). In a major recent study
of the effectiveness of pre-school provision researchers found that ‘sustained shared
thinking’ was of key importance (Siraj-Blatchford and Sylva, 2004). However, in
their study of reception classes, the researchers emphasise their ‘most worrying
finding: the limited opportunities for sustained, shared, purposeful talk; for
complex, imaginative play and for authentic, engaging, first-hand experiences
(Adams et al., 2004, p. 27).

A recent inspection report also raises concerns about teaching mathematics in the
Foundation stage where in many lessons pupils failed to build on the knowledge and
understanding they brought with them to school (HMI, 2005, p. 6). ). From our research
with teachers recently (Carruthers and Worthington, 2005b) it was evident that
many teachers were unclear about how they might do this, and were confused about
the official guidance on teaching the beginnings of written mathematics. This
appears to be one of the most challenging aspects of teaching in the Foundation
stage. It seems clear to us that guidance on all aspects of children’s early mark-
making including the development of mathematical graphics should be a priority.

Our findings — teachers’ questionnaire

We wanted to find out the extent to which recommendations in the National
Numeracy Strategy had influenced classroom practice, in terms of children’s own
marks and written methods.
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Our questionnaire focused on two key aspects. We asked:

¢ Do you give children worksheets for mathematics?
e Do you give children blank paper for mathematics?

We also asked teachers to give examples of the sort of things the children might do
either on worksheets or on blank paper (see Chapter 5).

When planning our questionnaire we hoped that the findings would provide us
with information about adults’ expectations and the opportunities that children had
to represent their mathematics. In doing this we made a mistaken assumption: we
thought that using blank paper would provide children with the sort of open oppor-
tunities that we believed would help them make their own meanings. When we
analysed the responses we were very surprised by the results (see Chapter 5).

Our responses were gathered during a one-year period, from 273 teachers in four
areas of England. Three areas were large cities: one in the north of England, one in
the west and one in the south-west. The remaining area was a largely rural county
in the south of the country. We had been interested to discover if teachers’ practice
was different in large, inner-city areas when compared with the mainly rural county,
but this was not the case (Worthington and Carruthers, 2003a).

Worksheet use

What was evident was the large difference in use of worksheets when comparing dif-
ferent types of Early Years settings and classes with different ages of children (Table 1.1).

Table I.1 Results of the questionnaires

Type of setting Percentage using worksheets
Maintained nursery classes 20
Private nurseries 63
Pre-schools (voluntary) 72
School classes with 4/5-year-olds 89
School classes with 4-6-year-olds 100
School classes with 7-year-olds 100
School classes with 8-year-olds 100

Children in maintained (state-run) nursery classes appeared to be freer in terms of
their mathematics, whilst voluntary run pre-schools made the greatest use of these pub-
lished materials for children under 5 years of age. Once children arrived in school - in
England this is generally at the very early age of 4 years old — almost 90 per cent of
teachers use worksheets and by the following year every one of the teachers in our study
used worksheets. Four-year-olds who were in mixed-age classes with 5-6-year-olds were
more likely to use worksheets than children in classes of only 4- and 5-year-olds. Our
findings are consistent with what Millet and Johnson observe is a ‘world-wide trend’;
‘typical teaching is assumed to be the total or significant use of a commercial mathe-
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matics scheme’ (Millet and Johnson, cited in Maclellan, 2001, p. 76).

The recommendations for teachers in the Foundation Stage (QCA, 2000) and for
primary teachers (QCA,1999) are not reflected in our research findings. Currently
teachers are unsure how they might put recommendations about children’s written
methods — particularly for children between the ages of 3 and 7 years — into practice.
This is comparable to Zevenbergen’s (2002) concerns.

Studies that relate to mathematical literacy

We had been thrilled to trace the development of young children’s early literacy in our
own classrooms for many years. A growing body of literature had supported our teach-
ing and our understanding of children’s development. Some of these studies explored
children’s writing and reading from a teaching perspective, linking theory and practice;
for example, Holdaway'’s The Foundations of Literacy (1979), Cambourne’s The Whole
Story (1988), Smith's Writing and the Writer (1982) and Hall’s The Emergence of Literacy
(1987). Others such as Bissex’s (1980) mother—child study explored a child’s natural
development in the home. Whilst there are too many to mention here, an earlier and
very influential book that stands out for many teachers is Clay’s What did I Write? (1975)
in which she documented the development in ‘understanding written codes’. Bringing
the subject up to date is Barratt-Pugh and Rohl’s book Literacy Learning in the Early Years
(2000) which includes chapters from different authors on the socio-cultural aspects of
literacy learning and critical literacies. It was this powerful range of texts that pro-
vided the foundation for us to consider an additional ‘literacy’ — of mathematics.

When in 1990 we began to explore children’s development of their mathematical
literacy, there was very little published on this aspect of teaching and learning, com-
pared with the wealth of books and articles on children’s early writing. Only one text
explored this question in depth. In his study, Children and Number: Difficulties in
Learning Mathematics, Hughes (1986) highlighted the gap that exists between chil-
dren’s early marks and drawing at home and the abstract symbolism and language
of school mathematics: this difficulty had earlier been noted by Ginsburg (1977) and
Allardice (1977). In an experiment that is now familiar to many teachers as ‘the tins
game’, Hughes demonstrated the way in which 3- and 4-year-olds could represent
numerals in personal ways which they could later ‘read’. He also included a small
number of graphical responses of addition and subtraction calculations from chil-
dren of 5-8 years. Hughes’s research appears to have influenced the writers of offi-
cial curriculum documents in England (see for example QCA, 1999; 2000). However,
as our study shows, Hughes’s influence on teaching has sadly been sparse.

Whitin, Mills and O’Keefe argue that a ‘true mathematical literacy must originate not
from a methodology, but from a theory of learning: one that views mathematics not as
a series of formulas, calculations, or even problem-solving techniques, but as a way of
knowing and learning about the world’ (Whitin, Mills and O’Keefe, 1990, p. 170).

In 1995 in a chapter entitled ‘Emergent mathematics or how to help young children
become confident mathematicians’, Whitebread discussed Hughes’s work, asserting
‘what is clear is that children cannot be encouraged to use new strategies very effec-
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tively by simply being taught them as an abstract procedure’ (Whitebread, 1995, p. 35).
Whitebread contends that within this (emergent) approach ‘it is clearly important ...
that children are encouraged to be reflective about their own processing and to adopt
strategies in ways which put them in control’ (Whitebread, 1995, p. 26).

In 1997 Gifford discussed the theory underpinning emergent mathematics
approaches and compared what she termed the ‘British’ and ‘Australian’ models,
concluding ‘the Australian model of emergent mathematics (therefore) provides a
clearer image of the teacher’s role in terms of activities and support for children’s
learning’ (Gifford, 1997, p. 79). What Gifford did not know, however, was that the
‘Australian model’ was not quite so far away: Stoessinger and Wilkinson (1991) had
written an article on emergent mathematics. Stoessinger was a researcher visiting
England from the Centre for Advanced Teaching Studies in Tasmania, and Wilkin-
son was one of the founder members of the Emergent Mathematics Teachers’ group
based in Devon, to which we belonged (see pp. 11 and 12).

Gifford argues that one benefit of encouraging children to represent their own
mathematics is the way in which the teacher ‘makes links between different aspects
of an operation. She does this by showing children that the same words and signs
relate to a variety of contexts, thus preventing children giving limited meanings to
signs’ (Gifford, 1997, p. 85). Gifford reasons that the ‘advantage of an emergent
approach in encouraging children’s own representations, is that it allows children to
make sense of ideas by representing them in their own way’ (Gifford, 1997, p. 86).

In the same year that Gifford wrote of the ‘importance of making links’, the
authors of the Effective Teachers of Numeracy report recognised the value of a ‘con-
nectionist orientation’, characterised by teachers who believe that being numerate
involves being efficient, effective and ‘having the ability to choose an appropriate
method’ (Askew et al., 1995, p. 27). Askew et al.’s study documents some of the most
significant features of a connectionist orientation of teaching.

In the Netherlands Bert van Oers has worked extensively on children’s ‘schema-
tising’ within a Vygotskian perspective: he argues that in a sense the history of math-
ematics can be characterised as a struggle for adequate symbols (notations) for the
expression and communication of (new) mathematical ideas: ‘mathematics itself
depends on the use of symbols’ (Oers, 1996, p. 96).

Discovering Athey’s (1990) inspirational study of children’s schemas, Extending
Thought in Young Children, we found we gained huge insights into children’s cognitive
behaviour or schemas. By closely observing, assessing and supporting children'’s
schemas we added considerably to what we knew about their mathematical concerns.

One means of understanding children’s mathematical graphics is to view them
from joint perspectives — from the mathematics and from the wider subject of all
their marks, including writing and drawing. In his recent and important study of the
evolution of children’s art The Art of Childhood and Adolescence: The Construction of
Meaning, Matthews traces the development of children’s early marks. He writes:

...the subject domain is important only insofar as it contains instruments, processes
and experiences which will promote human development and learning (Blenkin &
Kelly, 1996).What needs to be added to our understanding of the subject discipline,
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is how this interacts with the learner. Only then will we be in a position to provide
the kind of interaction and provision necessary to promote intellectual and emo-
tional growth. (Matthews, 1999, p. 163)

In recent years several studies have explored the rich variety of ways in which chil-
dren make meaning in ‘multi-modal ways’ through their play and with a variety of
resources and media. Kress argues that such ways form the pre-history of writing for
young children and deserve to be taken seriously by adults (Kress, 1997). Develop-
ing the same argument in her book Transformations: Meaning Making in Nursery Edu-
cation, Pahl uses detailed observations to provide powerful evidence and challenge
our ideas about communication and literacy. These studies make an enormous con-
tribution to teachers’ understanding of the complex ways in which young children
make meaning (Pahl, 1999a).

In the Froebel Block Play Project directed by Tina Bruce, Gura analysed children’s use
of block play at a deep level (Gura, 1992). Through observing children in their block
play, Gura presents ways that they represent their mathematics in three-dimensional
space. Children discover mathematical relationships as they ‘doodle’ in their block play,
which they use in more challenging structures. Gura states that when children engage
in block play that makes sense to them, and in partnerships with adults, they can make
relationships between practical mathematics and the disembedded symbolism of
formal mathematics. When children in the study voluntarily drew their structures they
used a variety of responses from pictographic to iconic. It was noted that children as
young as 3 were moving towards less embedded representations. The Froebel Block Play
Project illustrates many similar pedagogical issues that we found important in support-
ing children’s own mathematical representation. For example, Gura advocates an inter-
actionist approach which includes negotiation, respecting and enabling children and
understanding the variety and diversity of children’s own representations.

In a recent study of play entitled Teaching through Play, Bennett, Wood and Rogers
explore teachers’ thinking and classroom practice, and highlight the teaching of
another member of our Emergent Mathematics Teachers’ group, Petrie Murchison
(‘Jenny’). In their final chapter the authors consider implications for teachers’ pro-
fessional development, advocating that teachers become proactive and ‘use
informed awareness and deliberative thought processes’ (Bennett, Wood and Rogers,
1997). Such a proactive stance is outlined by Manning and Payne (1993) who rec-
ommend a social-constructivist approach which ‘involves the processes of social
interaction with knowledgeable others, scaffolding procedures, the acquisition and
application of knowledge about teaching in general and one’s own teaching in par-
ticular’ (cited in Bennett, Wood and Rogers, 1997, p. 131). In the following section
we outline our enquiry into children’s mathematics as members of the Emergent
Mathematics Teachers’ group where, as proactive teachers, we did just this.

Enquiring into children’s mathematics

Whilst he was visiting England in 1990, Rex Stoessinger, a researcher from New
Zealand, arranged to meet a county mathematics adviser, Mary Wilkinson. Rex was
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interested in ‘flipping over’ the concept of emergent writing into mathematics and
asked Mary to invite some local teachers who understood and used this approach in
their classtooms. The authors of this book were two of the first few teachers who met
to explore this idea. From our initial meeting we met regularly; discussing, reading
and challenging each other’s thinking and our own. We were anxious to see mathe-
matics in its broadest sense and within the context of Early Years and primary edu-
cation. During the period in which we met together we explored many aspects of
mathematics teaching and learning.

We have worked extensively with teachers and students and developed our class-
room practice as our emerging theories evolved. For some years we also held a series of
annual conferences with nationally known speakers from the field of Early Years edu-
cation. The speaker at our first conference posed the following question: ‘what is it you
believe you must do deliberately, to support children’s mathematical understanding?’
(Gulliver, 1992). This question was to be a key influence on our developing pedagogy.

In Chapter 2 we explore the way in which young children begin to assign mathe-
matical meaning to their marks and introduce a range of mathematical graphics
from 3- and 4-year-olds. We look at some theories of learning and show how these
different theories have influenced teachers’ beliefs and practice regarding their
expectations of children’s written mathematics.

Further Reading
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Coram Family and Open University Press.
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Cultures

e Alexander, R. (2000) Culture and Pedagogy: International Comparisons in Primary
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e Brooker, L. (2002) Starting School: Young Children Learning Cultures. Buckingham: Open
University Press

Background to emergent writing
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REM and Developmental Education in the Netherlands
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Making Marks.
Making Meaning

‘Goodbye,’” said the fox. ‘And now here is my secret, a very simple secret: It is only
with the heart that one can see rightly; what is essential is invisible to the eye.’
(Saint-Exupéry, 1958, p. 68).

Children making meaning with marks

During the past 30 years there has been a growing interest among teachers and edu-
cators in the meanings children make in a variety of contexts through their explo-
rations in the world. Studies have focused on emergent writing (Bissex, 1980; Clay,
1975; Hall, 1989); children’s schemas (Athey, 1990); drawings, model making and
play with objects (Kress, 1997; Pahl, 1999b); early mark-making, drawing and paint-
ing (Matthews, 1999). Early representations of scientific concepts have also been
explored from this perspective (Driver, Guesne and Tiberghien, 1985). ‘It is’ Vygot-
sky argued, ‘the meaning that is important, not the sign. We can change the sign,
but retain the meaning’ (Vygotsky, 1982, p. 74).

These aspects have been considered both from the child’s current perspective and
in the context of their developing understanding. In other words, as they make
actions, marks, draw, model and play, children make personal meaning. It is the
child’s own meanings that have been the focus of this developing interest, rather
than the child’s outcome of an adult’s planned piece of work, such as copied writing
or representing a person ‘correctly’.

In his long-term study of children at home and at school, Wells (1986) concluded
that children were constantly trying to make sense of their world. Tizard and
Hughes’s (1984) study of 4-year-olds again emphasised the child as a powerful
learner, struggling to make sense of all around him/her. In their studies Donaldson
(1978) and Hughes (1986) both concluded that children responded to situations that
make ‘human sense’: these studies used clinical tasks rather than evidence from
natural contexts. Both of these studies are well recognised as contributing to our
understanding of children’s learning but the tasks were not immediately purposeful
or natural to the children. More recently through clinical studies and interviews

13
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with young children, Brizuela has also focused on certain aspects of their mathe-
matical ‘notations’, recognising that young children invent their own ways of rep-
resenting (Brizuela, 2004).

We suggest that ‘now we have to jump from the idea of “human sense” to observ-
ing children’s learning in terms of “child sense”. Allowing the child to lead, gives a
deeper indication of their natural development, indicating ways to support their
growing knowledge’ (Carruthers, 1997a, p. 13). When we observe children’s own
mathematical marks on paper, then it is this ‘child sense’ that we see and that is vital
to the child’s thinking about mathematics. Their own marks make meaning to them
and through these, children can further their mathematical thinking. At the same
time, the teacher gains insights into the child’s current and developing understanding.

Different literacies: mathematical literacy

Marks on paper (and other media) can be used to represent languages and meaning,
and can be shaped to form specific symbols of that language. The Centre for
Literacy of Quebec (1999) defines literacy in the following way: ‘literacy
encompasses a set of abilities to understand and use the dominant symbol systems
of a culture for personal and community development. In a technological society,
the concept of literacy is expanding to include the media and electronic text, in
addition to alphabetic and number systems’. To this definition we would add play
with objects, model-making, art, music and science. This broader perspective is in
tune with Malaguzzi’s ‘hundred languages’, the theme of a poem that refers to the
diverse ways children can express themselves and that recognises children’s
amazing potential in making sense of their experiences and abstract symbol
systems (Malaguzzi, 1996, p. 3).

Barratt-Pugh and Rohl (2000, p. 25) argue that ‘literacy is a complex and multi-
faceted process which is continually evolving’. For young learners, representing
mathematics on paper through the use of their own marks, approximations of
symbols, numbers and other graphics is also ‘literacy’. This definition of literacy pro-
vides a much broader perspective for supporting early mathematics than seeing
writing, art, mathematics, music and science as having distinctive and unrelated
systems of symbols and visual representation.

In this book we use the term ‘literacy’ to include mathematics: we see the terms
‘mathematical literacy’, ‘emergent mathematics’ and ‘mathematical graphics’ as
sharing the same meaning.

Children represent their mathematical actions and
understanding on paper

The following examples are a selection of children’s mathematical marks on paper:
they are from children in our families and Early Years settings in which we have
worked.
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At home — Matt’s numbers

Matt ‘read’ his spontaneous scribble, ‘I spell 80354’ (Figure 2.1).

Figure 2.1. Matt’s numbers

Matt was 3 years and | month old at the time he made these marks. At home with
his older brother, Matt said he was ‘drawing’. | was sitting writing postcards at the
table nearby and Matt’s 4-year-old brother was playing computer games. Matt
rapidly covered a number of pieces of paper with a range of marks (see Figure
2.6). He showed this example to me and | asked him to tell me about it.

Matt knows that marks carry meaning and that they can sometimes represent
numbers.

Perhaps he was using a phone number as a reference point for the numbers he
talked about.

It is possible he drew on previous talk within his family, about how to spell either
his own or his brother’s name, and has linked this with the marks he made on

paper.

Whilst he talked about numbers in relation to his marks, it is unclear that he set out
to represent them. However, my interest may have encouraged him to attach some
meaning to what he had done. Matt is growing up in a family in which his marks
and early representations are encouraged and valued. It is also a family in which
reading books, using a computer and writing at home are daily events: talking about
these tools and the contents of books and written texts is also part of the family’s
daily experience.
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Nursery: Charlotte’s ‘hundreds and pounds’

Charlotte chose some different coloured felt-tip pens and shouted out, ‘Look! I'm
doing hundreds and pounds!’ (Figure, 2.2).
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Figure 2.2 Hundreds and pounds

These marks were made excitedly by Charlotte while she was with her friend
Jessica, in the nursery.They each selected a piece of paper and decided to choose
different coloured pens, dotting the whole piece of paper. Charlotte’s reference to
‘hundreds and pounds’ meant that she was making connections with the quantity
of dots: this seems a lot to her and a hundred fits into her thinking about a lot.

‘Pounds’ also fits into her sense of a large quantity. Charlotte is using spoken
language to express her actions and marks on paper.

Charlotte knows that:

¢ a hundred is a large quantity
e ‘pounds’ also have something to do with quantity

e you can represent quantity through action and pictures and attach spoken
numbers to this representation.
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Nursery: ‘the spider’

Joe has made a drawing of a spider (Figure 2.3). He told the teacher, ‘My spider’s got
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Figure 2.3. Joe’s spider

Joe had been looking at and playing with toy spiders in the nursery and had chosen
to draw this picture. He has drawn the spider with many more than eight legs.
Looking at the spider he saw lots of legs and represented that idea in his drawing.
Joe is showing a growing awareness of number and quantity and is able to describe
it. He knows that:

¢ a spider has eight legs
¢ you can represent that idea in your drawing
¢ you can attach meaning to numbers.

Reception: role-play - ‘the baby clinic’

The marks in this example (Figure 2.4) were made jointly by several children. They
include the ‘4’ of their age; the first letters of two of the children’s names; approxi-
mations of letters in the English alphabet and numerals.
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The children’s interest arose from a visit to a local baby-weighing clinic. The
children had watched babies being weighed, and listened as health visitors talked
with parents. The health visitors discussed the babies’ progress and recorded
current weights on charts and in record books. On their return to school, some
rich symbolic play developed spontaneously and the children were very
enthusiastic when, a few days later, we were able to borrow a real set of baby-
weighing scales.

Figure 2.4 The baby clinic

On one piece of paper this spontaneous example combines marks and symbols
from several children in the role-play area. During their play the children integrated
their recent experiences with their growing knowledge of symbols. Their marks show
that:

e they recognise that adults use marks in specific contexts (e.g. when weighing
babies) and for specific purposes — in this instance to record babies’ weights

e they are drawing on their knowledge of symbols, including some approximations
of letters and numerals

e some children used the initial letter of their names or their age number to stand
for what they are saying.
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Talking to each other and to themselves, they used language relating to measure-
ment such as ‘heavy’, ‘this big’, ‘three long’ and ‘getting bigger’, with general ques-
tions such as ‘how’s your baby doing?’ as they weighed dolls and teddies. The talk
between health professionals and mothers had made an impression on the children
and they were able to integrate some of this specific language and make records on
paper just as they had seen during their visit.

Reception: ‘Catherine’s fractions’

Catherine wrote ‘2’ (reversed) followed by part of a numeral 2 to represent ‘2%’ for
her sister’s age (Figure 2.5). The following day she represented her own age in a
similar way. She used an approximation of part of each numeral to represent a ‘half’.

Figure 2.5 Catherine’s fractions

This example is from Catherine on her first day at school. Although she already
knew the school from many visits and activities arranged through our ‘home/
school’ programme, this was Catherine’s first ‘real’ (whole) day at school as a pupil.
A quiet, reserved child, she was initially hesitant about deciding what to do during
a period of child-initiated play. Catherine quietly told me that her sister was 22
years old, and after chatting a little more about her sister, she went to draw a
picture of her.

Catherine showed me the drawing: she had written a ‘C’ in the top left-hand
corner of the paper, to represent her own name. | asked if she was going to put
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her sister’s age. Catherine then added the symbol next to the picture that looks
like either a ‘C’ underlined or a reversed numeral 2’ and Catherine read it out
loud as ‘two’. At this point | wondered if she was using the initial letter of her
name now to stand for ‘two’. Smiling, | remarked, ‘Oh! | thought your sister was
two and a hdlft’ Catherine turned to reach for a pen and added the ‘C’ symbol to
the right.Was this her way of representing, approximately, a half of a numeral 2?

The following day Catherine confidently walked over to the writing area and
soon brought some more marks to me saying,‘I’'m 4’ years old’. She had written a
numeral ‘4’ followed by the vertical and horizontal bars of another numeral 4 but
had omitted the short vertical line at the bottom.

¢ From these examples we can see that Catherine understands that various marks

and ways of representing are used for different conventions.

She decided to use a drawing that can be used to stand for her sister and a letter

‘C’ for her own name.

¢ She knows the conventional number symbols that on paper stand for the ages
‘two’ and ‘four’.

e Her approximation of a ‘half’ is an ingenious solution and shows considerable
insight: she has defined ‘a half’ by representing only (approximately) a half of the
preceding numeral.

Learning theories

It is valuable to look at learning theories past and present and reflect on the many
views of learning, to determine the extent to which we have developed in our think-
ing of mathematical learning and teaching. For many people including many teachers
and Early Years practitioners, mathematics teaching is synonymous with traditional
teaching, based on the behaviourist theory: mathematics has a reputation for being
that kind of subject. Ernest (1991) has challenged such a view of mathematics, opening
mathematics up to the fallibilistic viewpoint that this subject can be challenged. Math-
ematics teaching does not need to be a straitjacket for teachers or children.

Table 2.1 gives an account of the development of some theories of learning and
teaching mathematics throughout the last century to the time of writing. Although
this book centres on the current theory of socio-culturalism, one can safely assume
that it is not a well-known theory among teachers. Even those theories which we
espouse to often lie in our heads for some time, fermenting before we actually put
them into practice in our Early Years settings.

Behaviourism

The theory of behaviourism has had considerable influence on the teaching of math-
ematics and beliefs about young learners. Each child was believed to learn best at their



Table 2.1 Four views of learning mathematics

Theory Behaviourism

Constructivism

Social constructivism

Socio-culturalism

Theory based on Thorndike and Skinner

work of:

Piaget

Vygotsky

Vygotsky & Bakhtin

View of children
as learners

Children were seen as‘empty
vessels' for the teacher to fill
with prescribed facts. Learning
was seen as passive rather
than active and dynamic.

Implications for
teaching
mathematics

Skills-based teaching with
learning programmed in a
planned sequence. The value of
language and discussion was
not recognised.

Role of Early
Years teachers

Direct teaching (stimulus)
followed by praise (reward).

Role of family and
culture

There was no appreciation of
the role of the child's culture
within the home and
community, or of the
significance of the social
culture of the education
setting.

Children construct
knowledge of the world
through active involvement
with meaningful problem-
solving.

Emphasis on autonomy and
active ‘learning by doing’.

Hierarchical view of
mathematics

led to widespread use of
published schemas and
‘pre-number’ activities.

There was little appreciation
of the role of the child's
culture within the home
and community, or of the
significance of the social
culture of the education
setting.

Children construct
understanding through
interactions with peers
and adults who are
more knowledgeable.

Value of discussion
with peers and teacher
to take the child’s
understanding further.

Relate mathematical
activities to children’s
own experiences.

Talk about
mathematics used by
and within the family
and society for

real purposes
encouraged.

Children are powerful meaning-makers who use,
invent and adapt their own marks and symbols to
explore and represent their mathematical
thinking. Socio-cultural and cognitive development
work together. Language, symbolic and graphical
representations assist this process.

‘Mathematics as a subject matter is really about
problem-solving activity with symbolic tools’ (van
Oers, 20013, p. 63).

Value and build on children’s mufti-modal meanings
in diverse contexts (Kress, 1997:see pp.91 and |35).
Develop rich mathematical learning environments.
Model a range of ways of representing mathematical
meaning (including standard symbols) in different
contexts and for various purposes and audiences
(see pp.205—15). Support and extend children's own
marks (drawing, emergent writing and mathematical)
through collaborative dialogue. Emphasise thinking,
meaning and understanding.

Engage in dialogue with parents and families and
together share and recognise the child's
understanding and development.Value the
mathematical practices of the family, community
and culture.
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own pace through direct teaching and through carefully sequenced steps. Teachers
emphasised the need to practise skills and children were encouraged to ‘try and try
again’. Learning was viewed as a mechanical result following rewards such as praise or
a smile, and children were considered to be passively storing information.

These principles led to the idea of sequenced and individualised subject material
broken down into discrete steps and, subsequently, to ‘programmed learning’.
However, there were a number of disadvantages to a behaviourist approach:

¢ The experience of working with sequenced learning materials could be repetitive
and is unlikely to have motivated children.

e There was no place for children to explore their personal thinking as they worked
through a series of pre-written cards or tasks.

Constructivism

Piaget’s scientific studies of individual children led to a view of the child as a ‘lone
scientist’. Piaget viewed children’s learning as biological development. Although
children were considered actively to construct their understanding of the world
through interaction with peers and their environment, the overall view was of chil-
dren working individually and at their own pace.

Piaget’s four ‘stages of development’ and experiments on conservation have been
very influential in the teaching of mathematics. Piaget’s hierarchical view of learn-
ing unintentionally influenced the content and use of mathematics schemes that
continue to be extensively used in schools and in some Early Years settings. In the
Early Years this led to a focus on sorting, sets, matching, one-to-one correspondence
and classification as precursors to work with numbers that has only recently been
questioned (Carruthers, 1997c; Thompson, 1997).

Piaget’s work also emphasised the idea of ‘readiness’: children were not believed to
be ‘ready’ to understand particular concepts until the appropriate developmental
stage had been reached. The child’s culture, the role of language and social interac-
tion were not emphasised in Piaget’s work.

Social constructivism

Vygotsky believed that children actively construct their understanding through
solving problems in their own way. Children were believed to have a current level of
learning and a level that might be reached with the help of more knowledgeable
others (an adult, peer or older child): he termed this second level the ‘zone of prox-
imal development’. According to this theory, the child’s understanding is con-
structed through talk, social interaction and shared meaning.

The theory of social constructivism implies that teachers encourage children to
talk about their mathematical understanding. Social interaction is emphasised since
individual children construct their understanding through talk and interaction with
others. Sharing of ideas and meanings is negotiated with others. Learning that is
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socially constructed continually challenges learners’ thinking and emphasises the
personal meaning individuals make.

Socio-cultural perspectives

Socio-culturalism provides a theory of learning within which the cognitive, social,
motivational, physical and emotional combine. The belief is that all higher-order
functions such as learning grow out of social interactions. This view of cognition
moves ‘beyond the idea that development consists of acquiring skills. Rather, a
person develops through participation in an activity, changing to be involved in the
situation at hand in ways that contribute both to the ongoing event and to the
person’s preparation for involvement in other similar events’ (Rogoff, 2003, p. 254).
This allows individuals and groups to make generalisations across a range of experi-
ences which Hatano (1988) terms adaptive experience. Wood and Atfield (2005)
emphasise that Vygotsky ‘did not claim that social interaction automatically leads
learning and development: it is more the means used in social interaction, particu-
larly language, that are taken over and internalised by the child’ (p. 92).

Mathematical graphics as cultural tools

Vygotsky emphasised the significance of cultural (symbolic) tools in assisting the
learning process within socio-cultural contexts and, as van Oers argues ‘mathemat-
ics as a subject is really a matter of problem solving with symbolic tools’ (Oers,
2001a, p. 63).

The cultural (symbolic) tools described by Vygotsky include ‘language, various
systems for counting ... algebraic symbol systems, writing, diagrams, maps, techni-
cal drawings and all sorts of conventional signs’ (Wertsch, 1985, in Wood and
Atfield, 2005, p. 92). Used in specific ways and contexts within a culture, such tools
are used and adapted over time and in the process, new ones are created (Rogoff,
2003). Self-invented cultural tools are key to learning symbolic languages and are
central to our work on mathematical graphics. Drawing on the work of Jordan
(2004), Wood and Atfield stress that the children’s role in this process is one of active
and mutual engagement that allows them to transform what is internalised through
guided reinvention and co-construction (Wood and Attfield , 2005, p. 93).

In this way, an individual’s mathematical graphics becomes a ‘social product that
may develop into still higher levels of abstraction and constantly feed back into the
community’ (Oers, 2001a, p. 65). Studies by Wenger (1988) of different communities
of practice show that people who come together in a community such as a social
group, school or within a particular work context, focus on joint enterprises. Through
shared experiences of mathematical graphics in nursery or school, children explore,
discuss, adapt, internalise, reinvent and co-construct their understandings of the
written language of mathematics. Bakhtin (1981, 1986) has extended our under-
standing of the importance of creating knowledge together through talk. The belief
is that higher-order functions such as learning grow out of social interactions.
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Bakhtin focuses on different aspects of talk including the child’s ‘voice’ and the cen-
trality of dialogue — this perspective of socio-culturalism is a valuable one for chil-
dren’s mathematical graphics. Building on Bakhtin’s theory of ‘utterances’, we argue
that children’s mathematical graphics ‘also have a pre-history - of others’ marks and
written methods — and are therefore polyadic’ (Worthington, 2005b).

Children’s own representations thus mediate their higher mental processes,
allowing them to progress towards practices that are culturally appropriate (Efland,
2002). This bridging of the bi-cultural divide between their informal home
representations and the standard abstract symbolism of school mathematics
allows children to also bridge the gulf between informal and abstract written math-
ematics (see pp. 79-80). But it is in their homes and communities that children first
learn about literacies.

Early Years practitioners and educators have long believed that children’s earliest
experiences in educational settings are highly significant for young children. Viewed
from a socio-cultural perspective, creating positive learning cultures within our set-
tings will best support children’s developing understanding. In such positive cul-
tures, children’s own knowledge and understandings which Bruner describes as
‘their excellencies’ — are valued and meaning is co-constructed by adults and chil-
dren (Bruner, 1996, p. 13) they will become full members of a mathematical literacy
‘club’ (Carruthers, 1997a). But it is within their homes and communities that chil-
dren first learn about literacies.

Socio-cultural contexts of home and the community

Like writing and reading, mathematics learning is embedded in the socio-cultural
practices of the child’s family, community and culture. These socio-cultural contexts
are interdependent and are created by children and adults together. The learning is
also ‘mediated through the values and behaviours of the child’s culture’ (Barratt-
Pugh and Rohl, 2000, p. 7).

Socio-cultural practices, tools and technologies

In their studies of the literacy practices children have access to in their homes, Wein-
berger (1996) and Hill et al. (1998) found ‘a great deal of rich and diverse literacy
learning in the home’ (Barratt-Pugh and Rohl, 2000, p. 6). Adults may read television
listings in a newspaper; go to the supermarket where they read signs, labels and
prices; write a cheque; choose a DVD (reading the picture and text on the box) in the
DVD shop; read instructions from television, computers, museum displays; read a
menu from a Chinese restaurant or a catalogue dropped through the letter box. The
evening weather report we check to see if we should go for a picnic the following day
and the many road and shop signs we pass when walking or driving in urban areas
also surround us with literate symbols, marks and images. Other literacy practices in
the community outside the home are often within the child’s experiences, such as a
poster with details of a school féte or a noticeboard outside the local mosque.
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Reading and using mathematical graphics

In these literacy practices, written words, pictures, logos, numbers, advertisements,
charts, timetables, prices, lists, symbols, data, instructions or cartoons may feature. The
text messages sent by mobile-phone users have created a new ‘language’ of communi-
cation. Furthermore, members of a family may be engaged directly in representing
meaning through direct, specific practices such as writing a birthday card, doing
homework or typing a report on the computer. And young children may be involved,
either on the periphery or directly, in any of these (Lave and Wenger, 1991).

In the following examples, Matt, Sovay and Pauline are all learning something
about mathematics within the socio-cultural contexts of their families.

Sovay’s dinner money envelope

My daughter Sovay (aged 2 years and 11 months) likes to imitate her sister. The
family rush around in the morning getting ready for the day. Mhairi, Sovay’s sister,
writes £1.05p on an envelope and puts her name on it with the words ‘dinner
money’. She reads it to Sovay who is sitting beside her. I then open my purse and
count out £1.05p, and give Mhairi the money to put inside the envelope.

After Mhairi leaves for school, Sovay gets an envelope and puts marks on it with
a pen. Sovay tells me ‘Dinner money — £1.00’. I smile and give Sovay some money
to put in her envelope. I ask, ‘Is that enough dinner money?’ Sovay then takes the
money out of the envelope and counts, ‘1, 50, 52, 53’ (Carruthers, 1997c). Sovay is
learning about mathematics from a socio-cultural perspective.

The wider social perspective
A number of features are evident from this incident, showing that Sovay recognised
that:

e you can write down mathematics including numbers and money
¢ doing this has meaning

¢ what is inside the envelope relates to what is written outside

e money is important and valued enough to take to school

¢ money can be counted.

Cultural context of this family

e The mathematics was influenced by the older sibling’s need to communicate with
the school.

¢ Sovay knows that money is important.

e Exchanges in the morning centred around who has or has not money for the
envelope.

e The school’s culture expected dinner money to be brought daily rather than
weekly.

¢ Sovay is included in mathematical events in this family.
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The mathematical learning: beliefs within this family

¢ Everybody can write mathematics.

¢ The child’s own marks are accepted.

¢ The mother responds and supports the child’s mathematical play.

e The child wants to be part of the family activities of the morning and the child is
accepted into this world at her level of response.

Within this family it seems that writing down numbers is accepted by everybody.
There is no expectation that the 2-year-old needs to be right, since Sovay’s own
marks are accepted. I was delighted when Sovay showed interest and communicated
what she knew to me. The child led her chosen action. In this example, Sovay
moved from being on the edge of this literacy event, to a central and active role,
making personal sense of the dinner money episode.

In their study of children’s drawing, Anning writes that there were ‘various rites
and rituals associated with the meaning making across communities of practice in
children’s home contexts’ (Anning, 2000, p. 9). Each family has its own way of doing
things: in Sovay’s family, one of the daily rites is the morning hunt for change for
her sister’s dinner money. Different family rituals contribute to the wide range of lit-
eracy practices to which young children are exposed before they enter an Early Years
setting, and to the child’s understanding of mathematical literacy. Anstey and Bull
(1996, p. 153) argue that ‘literacy is an everyday social practice’. Literacies are not
only socially constructed on a daily basis, they are also culturally specific (Crawford,
1993).

Matt’s marks

There are pens, pencils and paper for my nephews Matt and Nicky in Canada to use
at home - in the sitting room, their bedroom and in a kitchen drawer that they can
easily reach. Matt produced these examples (Figure 2.6a and b) in a burst of activity,
on the same occasion that he ‘read’ ‘I spell 80354’ (see p. 15).

In Figure 2.6a Matt made a variety of marks that he did not name. He then showed
me other pieces. The scribbles on one he read as ‘my number’s |, 2, 3,4, 6,7 and

I I’. On one ‘Post-it’ note he had made marks that he termed ‘song’ and on
another he ‘read’ ‘| care and love you both and same day’.

On another piece of paper (see Figure 2.6b), he read ‘| love you’. Matt knew a
heart symbol and asked me to write one. He said ‘| love the number eight’ and
then ‘when someone’s being mean to you, you say “don’t even think about it!”
Other marks he ‘read’ as “You have to put names on the board’; this appeared to
relate to a practice at the day-care centre the boys attended at the time.

Matt was exploring a variety of ‘messages’ that marks can convey. During this one,
self-initiated session of about half an hour, he explored several different purposes for
marks. These included:



Making marks, making meaning 27

Figure 2.6a Matt’s marks Figure 2.6b Matt

e several ‘drawings’ (Matt’s term) in which he explored marks made with circular
actions

e a‘song’

¢ a reference to spelling

¢ two pieces that he labelled as a string of numbers and a favourite number

e one piece of persuasive, or perhaps we might use the term ‘assertive’, writing in
the last comment

¢ several personal messages including his use of the heart symbol

¢ something he had heard adults say in the day-care centre.

Wider social perspective

¢ People talk about what marks on paper ‘say’: some marks say something but they
do not all have to.

¢ Different marks can say different things.

¢ We can make marks to tell someone something: some marks are like talking, but
on paper.

Cultural context of this family

¢ In this family, people read and make marks for many different purposes.

e Making marks is a valid activity — ‘my aunt does it as well as my mum, dad and
brother’.

e ‘The grown-ups in my family like my marks — they listen when I talk about what
I've done and sometimes put them on the wall or the fridge’.

e Making marks on paper is important: ‘my mum writes for work and writes letters
to people, my dad works at home a lot on the computer and they both type emails
to people’.
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The personal messages, comments about behaviour, the heart symbol and song, use
of the term ‘spell’, reference to practice in the day-care centre and several references
to numbers each reflect the importance of the child’s socio-cultural contexts of
home and the community beyond home. These examples of Matt’s marks from just
one episode also show the tremendous knowledge he had developed about the dif-
ferent purposes of literacy by 3 years of age. Matt was making use of his observations,
drawing on a great deal of knowledge of marks, of meaning and about communi-
cating with others. He was also finding out the sort of responses his marks and
meaning might evoke from me, since I had only just arrived in Canada where he
lived — and the previous time I'd seen Matt he’d been a small baby.

Pauline’s address

In their study of 4-year-olds learning in a home environment, Tizard and Hughes
(1984) documented many interesting conversations. One such conversation is
described in the following passage.

Pauline’s mother was discussing with her what she could say to a policeman if she
was lost. Pauline’s mother pointed out that you must say where you live. Pauline
replied ‘down by the grass’. Her mother was upset because she thought that Pauline
knew her address. Pauline may not have known the word ‘address’.

CHILD: Eh?

MOTHER: Do you know your address?
CHILD: Yeah.

MOTHER: Yeah and what do you say to him?
CHILD: Um? I've ... I said ... (hesitates).
MOTHER: What number house?

CHILD: Um ... number six.

MOTHER: No, you don’t live at number six.
CHILD: What?

MOTHER: You say ‘My name is Pauline Robinson’.
CHILD: Yeah.

MOTHER: ‘And I live at seventeen ...’

CHILD: Yeah.

MOTHER: ‘ ... Fleet Flats’.

CHILD: Yeah.

MOTHER: You say it.

CHILD: Seventeen.

MOTHER: Sally does. She says it. (Sally is the older daughter.)
CHILD: Seventeen.

MOTHER: No. You tell him your name.

CHILD: Yeah. I say, ‘Seventeen Fleet Flats’'.

MOTHER: Seventeen Fleet Flats.

CHILD: Yeah.
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MOTHER: So when you're lost you tell him that.

CHILD: Yeah.

MOTHER: He'll say, ‘now we'll take you home to see your mum’.

CHILD: He don’t (laughs).

MOTHER: He will if he knows where you live.

CHILD: He won't. He say, ‘Where you live?’ I say, ‘I live down Fleet Flats’.
MOTHER: Yeah, but you gotta give him the number.

CHILD: Look! Number six.

MOTHER: He'll take you to the wrong house. If you tell him number six. You have
to tell him the proper number.

CHILD: What?

MOTHER: You say, ‘Seventeen’.

At this point in the conversation, in addition to having forgotten the number of the
flat, Pauline appeared to be anxious about the idea of being lost and of being found
by a policeman.

CHILD: He (the policeman) don’t come today.
MOTHER: Well, you never know. ‘Cause you're going down the beach in the
summer, aren’t you?

Pauline’s mother explained to her daughter that she might go to the beach with their
neighbour Irene.

MOTHER: And if you lose her?

CHILD: Yeah.

MOTHER: And you see a policeman.

CHILD: Yeah.

MOTHER: And the policeman comes up to you ‘cause someone’s bound to pick
you up on the beach, aren’t they?

CHILD: Um. I'm gonna see a policeman on the beach tomorrow.

(Tizard and Hughes, 1984, pp. 69-71)

Wider social perspective

¢ Pauline knows that her house number is important.

¢ She needs to know her house number to communicate this to others.

¢ House numbers have purpose (if you say ‘six’ the policeman will take you to the
wrong house).

Cultural context of this family

e Safety is important: you need to know your address to keep safe.

e Mum thinks this is important enough to repeatedly ask Pauline her address.
e Mum gets anxious about addresses.
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Mathematical learning: beliefs within this family
Pauline knows that:

¢ her response is not always accepted
¢ her sibling gets it right
e numbers can be confusing.

Within this family culture, there are sometimes rules — especially about safety — and
these may make something that would be accepted normally (i.e. getting your
address wrong) unacceptable. Each family’s culture has different beliefs about this.
The child getting lost is most parents’ nightmare and this is therefore reflected in
Pauline’s mother’s anxiety. Getting the door number right is important: numbers are
important. In addition to being involved in literacy practices, Sovay, Matt and
Pauline are also learning about who can be literate, from siblings and parents to
aunts and policemen. In this example, Pauline is in no doubt about her older sister’s
knowledge of her address.

These examples highlight the central role of language in socio-cultural contexts:
we use language to change our experiences into understanding. In their study, Tizard
and Hughes found that conversations in the home were more frequent, longer and
more evenly balanced between adult and child when compared to talk in nursery
schools (Tizard and Hughes, 1984).

The questions Pauline’s mother asked are genuine, out of real concern and for
good reason, whereas Smith and Elley propose that most questions asked by teach-
ers are of the ‘guessing-what-I-am-thinking’ variety (Smith and Elley, 1997, p. 27) or
‘testing’ (Tizard and Hughes, 1984). The Tizard and Hughes study raised many
important questions. From their findings, Tizard and Hughes found that ‘working-
class’ families provided equally rich learning environments in terms of activities and
parent—child interaction when compared to ‘middle-class’ families. There were dif-
ferent values and beliefs from home to home within both class structures (Tizard and
Hughes, 1984). Bruner, writing of the notion of cultural deprivation proposes that
this concept requires rethinking: ‘cultural deprivation blames the victim, even if
only indirectly’; this implies that the culture is at fault (Bruner, 1996, p. 14). Bruner
also argues that from home to home family values and cultures are different, not
better or worse.

Tizard and Hughes highlighted the importance of learning in the home and com-
pared this to learning in nursery schools. Conversations in the home were based on
history, of knowing the family routines and values: conversations in the nursery are
based on the here and now. They suggest that in order for children to thrive in edu-
cational settings, staff need to understand their home cultures and values so that
children will feel accepted, and the teacher will understand the children’s thinking
more (Tizard and Hughes, 1984, p. 255). The socio-cultural theory of learning is
based on this premise.
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Socio-cultural contexts in Early Years settings

When children move into an Early Years educational setting, they enter a different
culture where values, beliefs and literacy practices may differ from those in their
homes. Different beliefs about literacy practices across the contexts of home and
early education settings, and the ways in which children experience them, shape
children’s understanding of literacies.

In educational contexts children may experience literacies and the abstract written
language of mathematics in very different ways. In Bruner’s view, education is a con-
stant quest for meaning. From a socio-cultural perspective, teachers can create ‘com-
munities of practice’ in which learners and adults ‘co-construct’ understanding in ways
that make sense to the children, (Lave and Wenger, 1991). Bruner believes that the
aims of educational settings should be to create an ‘enabling culture in which the child
is involved in re-inventing, refurbishing and refreshing’ the culture. He emphasises the
need for pre-schools and schools to create communities of learners: ‘on the basis of
what we have learned in recent years about human learning, that it is best when it is
participatory, proactive, communal, collaborative and given over to constructing
meanings rather than receiving them ... learning in its full complexity involves the
creation and negotiation of meaning in a larger culture’ (Bruner, 1996, p. 15).

The scenario at the beginning of Chapter 8 illustrates a community of learners in
which children are building on their rich, informal knowledge from home. Through
their interactions with peers and adults they are co-constructing their understand-
ing of marks and symbols.

In enabling cultures, teachers also learn from parents and carers about the child’s
knowledge and experience of mark-making and representation that their children
bring with them. Early Years settings can then build on what the child already under-
stands and can do. Staff also need to communicate with families about the culture of
the setting and their beliefs and practices in supporting emergent learners. However,
due to different values and beliefs about the nature of learning, curriculum demands
and the very many pressures on teachers in Early Years settings, there may be a con-
flict between the socio-cultural practices of home and the educational setting. Chil-
dren may find that there is an inconsistency between beliefs and practices at home and
in their educational setting. Barratt-Pugh and Rohl argue that ‘those practices that are
valued by the family and the community may not be valued in formal learning con-
texts, and therefore hold little cultural capital’ (Barratt-Pugh and Rohl, 2000, p. 4).

In terms of representing mathematics, the focus may be on completing a task or
page. Cullen and St George point out that ‘when teachers over-emphasise teacher-
directed tasks such as worksheets, children view learning as dependent on the
teacher’ (Cullen and St George, 1996, p. 4).

In a study of the influence of different cultures and beliefs in home, pre-school
and school settings on the children’s strategies for mark-making, Anning observed
that finding time to ‘tune into children’s meaning making and listening to their per-
sonal “voices” was a challenge for adults. In educational contexts, children’s per-
sonal representations might even be discouraged if they were framed as a distraction
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from the school rites and rituals dominated by the imperative of turning children
into pupils’ (Anning, 2000, p. 12).

Anning observed that staff in a family day-care centre had changed ‘from a relaxed
attitude to children’s meaning making’ after they had been ‘colonised by educational
beliefs and practices’ (Anning, 2000, p. 12). This had led to an adult-led agenda and a
curriculum which shaped predetermined outcomes for activities. Anning refers to this
as the ‘checklist phenomena’ where staff concerns often focus on teaching children to
write their own names, ‘to know his colours’ and ‘know his numbers and shapes’
(Anning, 2000, p. 13). In such contexts, children are limited to learning what the adult
wants. When the teacher imposes her kind of symbols — including standard symbols —
on the child, the child’s enthusiasm may be dampened and her impulses to explore
creatively or to put thoughts on paper will be suppressed.

Lave and Wenger point out that children learn to do what they think is expected of
them by members of a ‘community of practice’ (1991). Unfortunately when adults set
the agenda for what children learn and how they learn, it follows that children will
stay within the boundaries that teachers have defined. The children may learn to write
their names, but they are also learning that the teacher in fact expects correct spelling,
legibility and neatness; content and meaning are valued less. From this the child also
learns that personal marks and emergent literacies do not belong in this new culture.

In such a learning culture because children have very limited opportunities to
make meaning, they soon learn that mathematics — especially mathematics repre-
sented on paper — does not always make personal sense. In the mathematical culture
of the school an unintended outcome may be that they learn that it does not always
matter if it makes sense. Whereas learning mathematics informally at home was
natural, learning mathematics in the educational context has been transformed into
a ‘subject’ that may not always make sense. Mathematics is now difficult.

Loris Malaguzzi’s poem, paraphrased below, captures these conflicts well:

The child has a hundred languages, (and a hundred, hundred, hundred more) ...
But they steal ninety nine, the school and the culture ...

They tell the child to discover the world already there ...

The child says:

No way. The hundred is there. (Malaguzzi, 1996, p. 3)

When children make marks and represent their mathematical thinking in a variety
of ways that they have chosen, they are using some of these ‘hundred languages’.

Teachers’ beliefs

The four learning theories we have explored in this chapter have also influenced
teachers’ beliefs about if, and how, children can represent mathematics. The educa-
tional theories summarised in Table 2.2 indicate the extent to which educational
theories have influenced teachers’ beliefs; contemporary theory may not yet have
influenced practice in all Early Years settings. Anning emphasises how children
struggle to make sense of the ‘continuities and discontinuities’ of home, pre-school
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and school settings. She asserts that ‘for many, the discontinuities are on children
learning to be readers, writers and mathematicians’ (Anning, 2000, p. 22). It appears
that of all the curriculum areas, mathematics — especially the ways in which young
children represent mathematics — is where the greatest discontinuity exists.

Table 2.2 Beliefs about young children’s ability to represent mathematics

Behaviourism + Children cannot represent mathematics unless they are shown what to do and
how to do it

+ Children can only learn by direct teaching (transmission)

* Children need to copy what the teacher does and learn through skills taught in
isolation
Praise for right answers reinforces ‘good work’
* Children must have a lot of repetition and practice of written mathematics
Children should work independently

Constructivism * Children can only understand certain aspects of mathematics at each stage of
their development

Young children need a lot of groundwork (‘pre-number’ work) before they are
ready to work with numbers

Social constructivism « Children can use and ‘construct’ their own meanings
* Through interaction with an adult or more knowledgeable children, can achieve
what they are unable to do on their own
* Children use a range of marks to represent their mathematical thinking
Children’s partial knowledge and ‘errors’ are recognised as part of children’s
search for meaning and understanding
Children’s development of their mathematical graphics is similar in some
respects to their emergent writing (see Chapters 4 and 5)
* Children’s emerging understanding of symbolic and graphical languages such as
emergent writing, mathematical graphics and drawing is understood and
supported

Socio-culturalism Implications for children’s developing understanding of mathematics

* Children learn symbols and mathematics through their social and cultural
contexts of home, their community and their Early Years settings and school
Early Childhood settings create cultures of practice that can support children’s
mathematical understanding in positive ways
Children develop confidence and understanding when they are encouraged to
build on their informal ‘home” mathematical representation and gradually
integrate standard, abstract forms of mathematical symbols, calculations and
other aspects of ‘written” mathematics
Young children are powerful learners who can use their own ideas, take risks,
adapt, invent, construct personal meanings, negotiate and enquire
Young children have an amazing capacity to make sense of (abstract) symbolic
languages such as writing and mathematics

The model in Table 2.2 demonstrates the gulf that may exist between the home
and Early Years settings in terms of beliefs, values and practices about early literacies,
including mathematics.

The challenge for Early Years educators is to value and build on every one of the
child’s ‘hundred languages’ in ways which make sense to the child and connect with
their early experiences within their homes and cultures. The challenge is to help
children ‘translate’ between informal ways of representing mathematics in the home
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and ‘formal’ ways in educational contexts (Hughes, 1986). If we are unable to
achieve this there will be a discontinuity between their early learning at home and
that of the Early Years setting: the implications for the children’s beliefs about them-
selves as learners and about the nature of learning mathematics are enormous.

Creativity in Mathematics

The work of researchers such as Craft (2002) explores the role of creativity in the Early
Years, whilst Csikszentmihalyi (1997) and others have investigated the creative process:
creativity is seen as worthwhile and as having a role in learning and development.

The Foundation Stage curriculum emphasises that creativity ‘begins with curiosity
and involves children in exploration and experimentation ... they draw upon their
imagination and originality. They make decisions, take risks and play with ideas ...
If they are to be truly creative, children need the freedom to develop their ideas and
the support of adults’ (QCA, 2000, p. 118). Creativity is presented almost as a ‘subject’
and generally relating to the arts such as dance, music, drawing, painting and stories:
though the same document informs practitioners that ‘yvoung children’s learning is
not compartmentalised’ (QCA, 2000, p. 45).

A study of teachers’ perspectives of creativity in mathematics

In a recent study of teachers’ perspectives of creativity within mathematics (Carruthers
and Worthington, 2005b), we invited teachers to provide specific examples of some-
thing they had seen a child do that was creative in mathematics. The majority (almost
80 per cent) gave non-specific examples that they felt supported ‘creative’ mathemat-
ics, including role play, patterns, construction, shape, art, songs and rhymes and sand.
Examples cited suggest that teachers tend to see creativity in mathematics as con-
cerned with specific resources or activities, rather than processes. Only one teacher out
of 231 responded with an explicit example of a child engaged in this way, suggesting
that teachers fail to ‘see’ mathematics when observing children.

Mathematics through self-initiated play, talk and thinking were cited as creative
by only 9 per cent of teachers, and only 5 per cent of teachers cited children’s
mathematical mark-making as creative.

Summary

We have shown how young children struggle to make their own meanings in many
different ways. We argue that emergent mathematics generates success through
social interactions and the contexts in which they take place. In respect of creativity
in mathematics, our findings suggest a narrow perspective of children as learners is
likely to severely limit creativity in mathematics and may lead to low levels of cog-
nitive challenge for young learners in respect of talk, thinking and particularly of
modes of representation: similar concerns about levels of cognitive challenge in
mathematics were also raised in another recent study by researchers Adams et al.,
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(2004) see p. 7. There is, therefore, a very real and as yet largely unrealised potential
for developing high levels of cognitive challenge and creativity in mathematics
through encouraging children’s mathematical graphics.

Teachers can support children’s mathematical literacy by:

¢ recognising and supporting the socio-cultural contexts of children’s home learn-
ing

e creating a positive learning environment in which children’s own contributions
are valued

e creating contexts for shared discussion

e recognising the significance of representation for children to make personal
meaning

e listening to what children say about what their marks mean

¢ encouraging children to reflect about what they are thinking

¢ looking at what children do know about mathematics through their own marks

¢ building on children’s own early marks and representations

e recognising that there are many ways in which children represent their mathe-
matical thinking on paper.

Without the rich experiences of diverse literacy practices within children’s families,
communities and cultures and the very specific cultures created by their teachers,
the many examples of mathematical literacy in this book would not exist.

In this chapter we have used several examples to introduce some of the possibili-
ties. In the next chapter we explore children’s mathematical marks in a different
way, through their mathematical schemas.

Further Reading

Literacy

e Barratt-Pugh, C. and Rohl, M. (2000) Literacy Learning in the Early Years. Bucking-
ham: Open University Press.

Creativity

e Craft, A. (2002) Creativity and Early Years Education, London: Continuum.

Socio-culturalism

e Rogoff, B. (2003) The Cultural Nature of Human Development. Oxford: Oxford Uni-
versity Press.

e Wood , E. and Atfield, J. (2005) Play, Learning and the Early Childhood Curriculum.
London: Paul Chapman.



Mathematical
Schemas

The cat from France likes to sing and dance but my cat likes to hide in boxes
(Sutton, 1984, pp: 4 and 6).

We have found that our knowledge of young children’s schemas has informed our
teaching immensely. It has helped us understand young children’s actions and
thoughts and therefore respond to their educational needs. Our constant discussions
about children’s schemas have given us great insight into children’s development.

What is a schema?

Chris Athey (1990) led the Froebel Research project that identified developments in
young children’s thinking, which ‘entailed developing a new approach to the descrip-
tion and interpretation of cognitive behaviour’ (Athey, 1990, p. 49). Over 5,000 obser-
vations were collected from 20 children aged 2-5 over two years and then analysed.
Athey focused on the particular patterns of behaviour that 2-5-year-old children have,
which she termed schemas. She defined schemas as ‘a pattern of repeatable behaviour
into which experiences are assimilated and that are gradually co-ordinated. Co-ordi-
nations lead to higher levels and more powerful schemas’ (Athey, 1990 p. 37).

There is now an ever growing body of research directly related to Athey’s in-depth
and rigorous study into children’s patterns of thought (schemas). For example,
Matthews (2003) studied children’s drawings; Roberts (2002) children’s emotional
development; Gura (1992) children’s block play and Arnold (1997; 2003) two case
studies of children’s development through schemas. Athey’s research has directly
influenced practice, in some Children’s Centres in England, plus early childhood
settings in China (Pan, 2004) and New Zealand (Meade and Cubey 1995). Athey’s
research has prompted practitioners to look at the educational programme offered
through children’s schemas. The power of schema research is that it can uncover
children’s cognitive concerns that flesh out their their actions and their thinking: this
in turn helps those adults who work with children to match the curriculum and
children’s interests. Athey emphasises that: ‘at the heart of the Plowden Report (1966)
was the child. At the heart of ERA (the Education Reform Act, 1988) was the

36
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curriculum. What we need in education is the co-ordination of the two’ (Athey, 2002,
p- 10).

Skemp explains the functions of schemas by saying that they integrate existing
knowledge, act as a tool for future learning and that they make understanding pos-
sible. Skemp recognises the importance of schematic development in understanding
mathematics. Like most mathematicians, Skemp’s analysis of schemas is from a
mathematical viewpoint: these are the ‘logico-mathematical’ concepts that children
need to learn first before they can understand higher concepts. As he reflects on
teaching young children, Skemp acknowledges that they already know some
number concepts before they start in an educational setting. He asks if it matters that
they do not yet have an understanding of sorting, sets and matching and one-to-one
correspondence, as long as they ‘tag on’ these concepts at some point. Skemp seems
to wrestle with young children’s schemas because his ideas somehow do not totally
fit into his current knowledge of young children’s development. He has followed the
Piagetian theory and the research model of clinical tasks and has not balanced this
by following the young child in real-life situations; at home, at play or in
autonomous situations where they are following their own thinking (Skemp, 1971).
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Figure 3.1 Note from Chloé&’s mother

Piaget particularly looked at children’s very early schematic behaviour such as a
baby dropping an object on the floor and the parent retrieving it, only to find five
seconds later that the baby has dropped the object again. This Piaget called ‘object
permanence’ (Piaget, 1958): the child may be thinking ‘is the object still there if I
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cannot see it?’ This links with babies’ fascination with the ‘peek-a-boo’ game. In his
observations Piaget saw that early schemas of 2- and 3-year-olds included children
grouping and sorting. This was unfortunately translated into the ‘pre-number’
theory of the 1960s and 1970s. It was believed that children needed to sort and do
sets before they were ready for number. Five-year-olds, who had long passed this
concept when they were 3, were made to sort objects such as green and blue frogs.
The published mathematical schemes of this time had workbook pages, so that chil-
dren could colour in sets of green frogs and blue frogs or suchlike: then the children
had to partition the sets. Very little mathematics went on; the main time was taking
up with colouring in.

Athey took Piagetian research further and, more importantly, observed children’s
actions from a positive stand, looking for what children know, not what they do not
know. For example, from a Piagetian perspective the acquisition of one-to-one cor-
respondence is seen as the watershed of the child’s knowledge about number. From
this perspective the child had little knowledge of number before she understood this
concept. Athey’s research, right from the start, threw out the deficit model and
therefore brought out many enlightening details about children’s knowledge. It is
vital to note this because it gives us as teachers an important observational strategy.
The studying of schemas is a useful observational tool. As Athey has documented, it
is a wonderful way to share children’s experiences with parents and for parents to
share experiences of their children with teachers. Done in an open, honest, way it
forms a true partnership (see for example the letter from Chlo&’s mother, Figure 3.1).

Figure 3.2 Imogen constantly lines things up
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Bruce argues that schemas are ‘biologically pre-determined and socio-culturally
influenced’ (Bruce, 1997, p. 73). In our experience as teachers, there is also a strong
connection to children’s feelings, linking here with the work of Goleman (1996).

The easiest way to explain schemas is to give an example. Nearly everyone who
has studied schemas has a story of how they first understood this concept and when
they really started to understand. In our experience of leading professional develop-
ment in this area, teachers of young children and parents can easily identify very
quickly what a schema is. They often talk about unexplained behaviours of young
children; something they, the adults, did not understand and then realised it might
be a schema.

My schema story is about my youngest child, Sovay. When Sovay was 2 years old
she used to put objects (any she could find) into plastic carrier bags and hang the
bags on the doors in our house. At any one time there could be up to 13 carrier bags
hanging up! At first I thought she was playing at shopping, but then I read Chris
Athey’s work on schemas. This highlighted for me that Sovay was in a containing
schema, she liked putting things inside. She did not seem to be interested in the
objects but her concern lay with putting things inside containers. If anything went
missing we knew where to look.

Most frequently observed schemas

Athey identified many kinds of schemas in which young children were engaged. In
a study by Arnold (1997) the most frequently observed schemas were:

* Envelopment — enveloping, covering or surrounding oneself, an object or a space.
You might see children interested in dens, things in boxes, envelopes, dressing up,
wrapping ‘presents’. Often children will paint or draw then fold the painting or
drawing to give it to you.

¢ Trajectory — this can be an unsociable schema where children might throw things
as their interest lies with straight lines, arcs or curves. Children in this schema
might kick balls, throw things from one point to another, or be interested in
playing with toys that take them from one place to the other, for example tricy-
cles, bikes and scooters.

e Enclosure — enclosing oneself, an object or space. Children in their play can be seen
putting a ‘fence’ around objects, building walls around them in block play.

e Transporting — carrying objects or being carried from one place to the other. Have
you ever observed children filling up a pram with objects (not necessarily dolls),
then transporting the objects to another place in the nursery to unload? They will
then go and fetch other objects and unload again, making several other similar
journeys. Children also do this outside with trailers.

e Connecting — an interest in connecting themselves to objects and objects to each
other, for example, children like to make and join things. They are very keen to
use sticky tape and paper clips. They like construction play.
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* Rotation — turning, twisting or rolling oneself or objects in the environment
around. Children play circle games, running in circles, and are interested in wind-
mills, wheels and roundabouts.

e Going through a boundary — causing oneself or material or an object to go through
a boundary and emerge at the other side. Children in this schema are usually
interested in going through tunnels and under fences. They like to sew, thread
beads and perhaps you might see them go in and out of doorways.

e Oblique trajectory — moving in, using or drawing oblique lines. Children might put
the water tap full on to see the angle of the water flow. They make dens using a
table with a sheet that goes at an oblique angle from the table.

e Containment — putting materials inside an object which is capable of containing
them. Children put objects in boxes, bags and suitcases and fill up containers in
the sand and water area.

¢ Transformation — transforming oneself by dressing differently or being interested in
changes in state. Children will try on hats in front of the mirror in the role-play
area. Often children are interested in cooking and making things.

This list of frequently observed schemas, recorded by Arnold, may be compared to
those identified in our study within a school setting on pages 46-7.

Schemas and mathematics

If we look at the schemas identified by Athey in the Froebel study we can see that
almost all are linked to mathematics (Athey, 1990). Perhaps this is not a surprising
finding because, as most mathematicians would argue, we live in a mathematical
world. Children explore this world and therefore they build on their natural curios-
ity about mathematics.

In her study of 3-5-year-olds in a nursery setting, Nutbrown describes the many
mathematical ideas being investigated by these young children through their
schemas (Nutbrown, 1994). When children are exploring one particular schema,
they can be finding out about different aspects of mathematics through this explo-
ration, for example:

The nursery staff have observed John, 4:2, over a period of five weeks.
They have noted he is in an enclosing and containing schema. John often
chooses to go in the play telephone box in the nursery. He goes in the
telephone box with two cars and moves them around the box, on the
floor, up the wall and around the wall. He often plays in the sand, filling up
the containers with small-world toys then sand. He chooses containers
with lids and shuts and opens the lids, taking toys out, rearranging them
and putting them back in.
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John is finding out about capacity, area, perimeter, shape, space and volume through
his schemas. When he is inside that cuboid (telephone box) he explores the space,
the shape, the corners, the vertices, the angles. He also explores these concepts in
different ways through smaller containers. He may be asking himself: ‘Is this the
same? Is this different? What else can I do to explore this kind of inside? I am
curious, I want to know.’

Children’s schemas help them grasp ideas intuitively. They notice certain aspects of
their environment that they want to use. Athey (1990) wrote that children will use
whatever they can in the environment to try out their present concern. Children in a
transporting schema will use any object at hand to move the object from one place to
the other. Adults may often not see the logic of this because it is not adult logic.

Many early schemas provide a thought ‘footstool’ for a variety of more
complicated mathematical ideas. Very early schemas can combine together, for
example:

e horizontal schema - carefully lining objects up horizontally

* connecting schema - lining objects up, one touching the other

e number schema — putting numbers to objects, but not necessarily in the standard
way. Children use numbers in their everyday talk.

Eventually all these schemas can work together to produce counting (Carruthers,
19970¢).

Key points about mathematical schemas

¢ The majority of schemas identified are mathematical.

¢ Through observations of children’s schemas we can see the early development of
mathematical concepts.

e We can support this mathematical development.

e Mathematics can be seen in its broadest sense through children’s schemas.

¢ It may also help the practitioner understand the mathematics through the chil-
dren’s schemas.

¢ Schemas highlight the mathematics in the world.

In later childhood, mathematical schemas develop into mathematical concepts
though, as Bruce argues, ‘we are only at the beginning of understanding this’ (Bruce,
1997, p. 78). It is possible to see the links between the examples of children’s
schemas and specific mathematical concepts when we consider the examples of
Sovay, Naomi, Zoé and Aaron in this chapter.

Schemas and mark-making

We have both found our study of children’s schemas fascinating. It has helped us
understand one way children explore their worlds. This schema interest is a window
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into children’s minds and is extremely mathematical. We have provided a back-
ground on mathematical schemas and are now going to focus on children’s mathe-
matical schematic mark-making on paper.

Sovay, 4:3, is interested in containing and enclosure.VVe referred to Sovay’s interest
in containing/enclosure when she was 2 years old. Her drawings are to do with her
interest in inside. In this period of her life she drew a cluster of graphics which
seemed to move from the action of doing at 2 years to the representation of ideas
at 4 years. For example, one of her drawings was an ‘apple with the rotten bit’ and
she pointed out the rotten bit.

In another of her drawings she drew a truck and said ‘this is the oil in the
engine’ and again she pointed this out. Her attention to where the oil was inside
the engine, and the engine inside the truck, is her revisiting her earlier schema of
containing: now it had gone beyond the immediate action, to symbolic
representation of some of her containing ideas. Figure 3.3 is an example of Sovay’s
engagement with her containing schema. At four years seven months she drew a
house for me. Her focus was on the inside of the house. She told me what each
room was in the house and | wrote what she said.
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Figure 3.3 Sovay’s house plan.

The drawings collected in the Froebel study were analysed by looking at forms and
what the child said about the graphics. This is important because many studies of
young children’s drawings have not placed an emphasis on meaning. Some studies,
such as Kellog’s, looked at developmental sequences at the expense of what the child
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said about her drawing (Kellog, 1969). Other studies such as Eng’s looked at changes
in content (Eng, 1999). In the examples we give, we are looking at children’s
schemas on paper: these are often when children express their schema as an action.
For example, children in a circular schema might be interested in the action of
making a circle on paper. Children may also express their schema on paper as a rep-
resentation of a pattern of thought. Hayward (2005) discusses children’s schemas
through their mark-making. She describes how one child, Chloe, explores her
schemas of lines, arcs and curves through drawings and paintings. This research also
followed the development of one child’s mark making from pre-school to school and
an implication of the study is that knowledge of children’s schematic mark making
would benefit the school curriculum in terms of pedagogy and the understanding of
children’s letter writing.
Children often transfer their schematic experience on to paper.

Supporting schemas

To support children’s schemas, it is important to first observe children closely (see
Chapter 10). Early Years teachers need to acquire skills in observing young children
to detect their present cognitive concern. It is also important to be aware of a range
of schemas and have knowledge of the current theory which relates to this area of
child development. Having identified a child’s schema, there are many ways teach-
ers can expand that child’s interest. Often a group of children will have the same
schema: if it is a containing schema then the teacher might read books that have an
‘inside theme’ such as My Cat Likes to Hide in Boxes (Sutton, 1984) and provide a
range of containers in different areas for children to fill. There are many possible
ways to support schemas, for example, see pp. 49-51.

Both the psychological and the physical atmosphere that is created within a
setting are of the utmost importance if teachers wish to nourish schemas. The psy-
chological atmosphere sets the scene. Teachers must be willing to be flexible, encour-
aging and caring, and allow the children to be themselves. Transporters can cause
concern to a teacher who likes everything to be in its place. For schemas to flourish
then Early Years settings have to be democratic, where children and teachers can
negotiate. Play that is valued by the teacher is essential in an environment that is to
support schemas.

The physical environment needs to be well stocked and easily accessible.
Resources do not need to be expensive and objects such as cardboard boxes provide
many interesting experiences for children in a containing schema. Good Early Years
settings supply open-ended resources with creative potential, rather than those that
are plastic. Plastic toys are not multi-dimensional and are not as mathematical as real
things. A plastic apple, for example has no significant weight: you cannot cut it and
you cannot eat it. Each plastic apple looks the same, so children cannot even
compare one apple with another.

Many of the usual play areas in a nursery will foster children’s schemas, including
painting, clay, mathematics, science, music, stories, books and cooking. The outside
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area is particularly important to extend children’s schemas. Many of the mathemat-
ical concepts bound up in visits also nourish schematic development. Athey found
that the details picked up from the visits were explored by the children when they
went back to their nursery setting. On page 50-1 we focus on the way in which an
informal local visit supported children’s current interest in spirals.

To support the mark-making of children’s schematical thinking, teachers first have
to value the marks the children make. Secondly, children need opportunities to
make marks both inside and outside. Materials need to be readily accessible (dis-
cussed in Chapter 8).

Observing schemas in a school setting

Studies of schemas in England have focused on children in pre-school and nursery
settings (Athey, 1990; Bruce, 1997; Nutbrown, 1994). There are now indications that
teachers’ interest in schemas extends further afield (see for example Meade, 1995).
However, the schema examples in this chapter show that the school environment
can also support schemas and high levels of cognitive challenge.

Athey (1990) argues that rich experiences enhance and extend children’s schemas,
contributing to the active construction of knowledge and development of children’s
cognitive capacities. But when young children sit at tables following teacher-directed
tasks, or on the carpet listening passively for long periods, they will not be able to
explore their schemas. This has considerable implications for their cognitive devel-
opment in the long term, including their mathematical understanding.

Starting with the home

This section draws on a study of levels of cognitive challenge within a class of 4-6 year olds
(Worthington, 1996b).

Parents are vital partners in sharing knowledge of their children’s behaviour. Fam-
ilies” knowledge of their children can contribute to a fuller understanding of the
young child’s history and socio-cultural background in all areas of their develop-
ment. Through their observations of children — especially of children playing - staff
in Early Years settings continually increase their knowledge of the children’s per-
sonal interests, skills and concerns. When staff and families share information, this
can contribute to appropriate support and extension of children’s observed schemas
and mark-making (Athey, 1990).

A group of parents of children in my class of 4-6-year-olds had become very inter-
ested in sharing ideas of ways to support their children’s development at home, first
of reading, then writing. The parents’ group suggested they focus next on mathe-
matics. I was excited about the observations of children’s schemas I was making
daily, and the parents were interested to know more. A meeting open to all families
triggered many responses from parents who recognised similar schema behaviours
in their own children at home. Subsequently several parents responded to an invi-
tation to keep a diary of their own children’s patterns of behaviour for several days.
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Chloé’s older sister, Lydia, was already in the first class in school. A week after the
meeting about schemas, Chloé’s mother sent the note at the opening of this chapter
(see Figure 3.1, p. 37).

Schemas within child-initiated play

One aspect that is significant for the development of schemas is that whilst time and
opportunities for children to explore in their own ways are crucial for schema explo-
ration, certain experiences and materials appear to offer especially rich sources of
exploration.

Painting and drawing, modelling with clay and play-dough, design/technology,
construction materials and block play offered particularly rich opportunities for
schema exploration for the children in this study. When analysed, observations of
play with these resources also had the highest percentage of cognitively challenging
minutes recorded, with art the highest (Worthington, 1996b). Sylva et al. also
found art to be the most challenging experience for children whilst Gura’s study of
block play illustrates its potential for learning (Gura, 1992; Sylva, Roy and Painter,
1980). Like the example of Naomi below, many of the observations with these
resources were of mathematical schemas. It is also interesting to note that the
resources listed above allow children to represent their thinking: this may be
significant for later representation of abstract ideas and symbols, especially in
mathematics.

Intense involvement and challenging learning

Naomi, 4:10, was with a group of children. They had had free access to clay
since entering school, during a long child-initiated play session. Today the nursery
nurse was leading a group who were exploring clay with their hands but without
other tools.

Naomi is rolling a long sausage of clay: several other children have used similar
clay ‘sausages’ to make parts of a person or animal. She joins the ends of her
sausage to form a circle and then rolls some small balls of clay that she places
inside the circle. She stands up for a moment, looks at what she has done and
then places an additional ball on the outer edge of the circle and sits down. Taking
some more clay she twists and moulds it in her hands and breaks the piece in
half, then combines the two pieces. She appears to be oblivious to the busy noise
and movement in the room around her while she rolls another cylinder. At first
the clay in her hands is short and thick but with careful attention it becomes
thinner and longer: it is about 46 centimetres long and of even thickness. Naomi
looks up briefly to see what the other children are doing, then rolls her cylinder
into a ball. Again she transforms the ball of clay into a long cylinder.
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A boy nearby shouts loudly to another child but Naomi appears untroubled
and continues to roll the clay with regular movements. Next she places her long
cylinder above those she made earlier, so that they are arranged in order of
length. The shortest is nearest to her on the table, ascending to the longest
cylinder furthest away. Naomi lifts the cylinders one at a time and joins each to
the end of the previous one.The nursery nurse asks if Naomi is going to join
them all: Naomi smiles but does not answer and looks down at her long ‘rope’ of
clay on the table.

Now she stands up for a moment and begins to roll more clay with increasing
vigour. She has a sufficient length of clay to stretch along one side of the square
table where the children are seated. Naomi begins to add more clay cylinders
around the perimeter of the table. The other children silently co-operate by
taking care not to remove her clay: they move out of the way as she walks round
or reaches across the table.

Naomi has used all the clay she had but a gap remains along of one side of the
table. She walks away from the table, looking around at various objects in the
room. After a few minutes Naomi returns to the table with some wax crayons,
bottles of paint and paint brushes — all are cylindrical. Thomas reaches to take
some things from her, occasionally instructing ‘move this one up’ and ‘one more’.
Together the two children fill the gaps to complete the perimeter enclosing the
table (Worthington, 1996b).

This observation was 25 minutes long. During this session Naomi explored going
round a boundary or perimeter and other mathematical concepts. These included
length, comparison, lining up end-to-end (also related to measuring length), ascend-
ing order and ordinality, and thick/thin and transformation (from cylinder to sphere
and back again).

Observations of schemas in this study with children 4 to 6 years of age appeared
to share a number of features highlighting the fact that:

e the children’s involvement at the time was often very intense
¢ children exploring a schema often concentrated for extended periods of time.

These qualities were certainly clear in the observation of Naomi exploring going round a
boundary with clay. Such high levels of involvement resonate with the work of Ferre
Laevers on ‘intrinsically motivated involvement’ (1993), and the ‘child-involvement
scale’ of the Effective Early Learning (EEL) Project (Pascal and Bertram, 1997).

Exploring spiral schemas in one classroom

The following section is based on a one-year study of schemas, in the same class of 4-6
year olds in which one of us taught.
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We had been very excited by our early observations, but shorter observations of
schemas are more manageable in a busy classroom. These informal observations
were spontaneous and usually only took two or three minutes. During a period of
nine months we found that the most popular schemas for these 4-6-year-olds in a
school classtoom were spirals and rotation, grids, shapes, connection and trajectories
(often explored through maps). This list can be contrasted with Arnold’s list of most
frequently observed schemas in one nursery (see pp. 39, 40).

For over two terms everyone in the class knew that Zog, 4:7, had a passion for
spirals. She drew them, cut out spirals and talked about them endlessly. Outside
she often walked in a spiral formation in the playground saying ‘I'm winding myself
up’, and then, reversing her direction, announced ‘I'm unwinding myself’. At home
she loved playing with a ‘spirograph’ set on which she made circular patterns with
the help of rotating wheels. One day her mother brought in some Greek cakes
called ‘baklavas’ for the children to share: as she handed the plate round, Zoé
proudly told her friends that ‘they’re spirals’.

Zoé’s schema was dominant for such a long time that some of the children were
drawn into her interest and explored them in their own ways. When the other chil-
dren’s schema interests were mapped (see for example Figure 3.7), it was clear that
only the children who were already interested in aspects of rotation, circles, arcs, tra-
jectories and semicircles chose to explore spirals. These children were at a point
where exploring spirals fitted with their current schemas and added to their under-
standing. At the same time other children’s new perspectives on spirals and rotation
added to Zoé’s understanding by exploring an ever-widening range of behaviours,
resources and opportunities.

Children’s representations and marks of their schemas

The children’s current schemas appeared to captivate them and often surprised us by
their endurance. In the middle of a class discussion one day, David put his finger in
his ear and said ‘Oh! Our ears are spirals!’

Several children used construction apparatus to explore spirals. Daniel, 5:1, drew
a circular scribble saying ‘It’s like my stirring wheel’ (that he’d made the previous
day with construction materials). Several weeks later when he was drawing, he
found some blunt pencils and fetching a pencil sharpener said ‘I'll get my little
stirring thing’.

A group of children in the same class decided to make a ‘spiral road’ with the big
wooden blocks. This resembled a circular maze and drew lots of children to it, to
make their own journeys to the centre and out again. James, 5:4, and Mitchell, 5:2,
cut out paper spirals and stood on the blocks waving them, repeating ‘Spirals and
spirals and spirals’ (Figure 3.4).
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Figure 3.4 James and Mitchell construct spirals

The circular paper spirals led to an interest in making different shaped spirals —
all ideas that came from the children in their play. At first they drew these shapes
and later progressed to cutting them out. The act of cutting out changed their
two-dimensional representations to three-dimensional objects that they could
manipulate. Analysis of cutting out as a process of animation ‘offers a different
opportunity to make meaning’ (Pahl, 1999b, p. | I5) and one in which ‘represented
objects come off the page and are brought into the world of physical
objects’(Kress, 1997, p. 27).

Several children decided to make square, oblong, triangular, oval, diamond and
pentagon ‘spirals’ over a period of several weeks. Their interest in different shapes
then led to a comparison of the different widths apart of their cuts as they
created spirals. They were developing their own theories: spacing the cuts further
apart led to wider strips but shorter lengths when the paper spirals were
extended.




Mathematical schemas 49

Aaron, 5:0. Spirals were one of Aaron’s dominant schemas. One day he decided to
make a ‘spiral map’ (see Figure 3.5). Starting with a small square of paper, he
added successive strips joining them with paper clips and brass fasteners to
create his map. Finally he drew a ‘spiral road’ on it, with arrows that included
some with right-angled turns. In traditional American patchwork this arrangement
is known as ‘log cabin’ but at that time Aaron’s mother thought it unlikely that he
had ever seen this pattern.

Figure 3.5 Aaron’s spiral ‘map’

Spiral marks and representations

Spirals and spiral-like marks appeared on paper, in painting and drawings. They
embellished drawings as hair, fingers, sun and flowers; one shape within another; as
patterns and as explorations of shapes (Figure 3.5). This last example is of interest
since these older children were also trying to relate other aspects of their play to their
dominant schema, though it was not clear to adults what a ‘spiral play’ or ‘spiral
aliens’ (Figure 3.6) were.

At one stage in his writing, Mitchell used tiny spirals to represent meaning (see
Chapter 4, p. 59).

Adults supporting and extending children’s spiral schemas

Adults need to support children’s play, although this is not to imply that with 25
children there will be 25 individual schemas. As these examples of children explor-
ing spiral schemas show, their schemas often cluster together.

For Zoé and her friends we provided further opportunities and resources for the
children to explore both rotation and spirals including the following:
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Figure 3.6 Spiral aliens

We put plain yoghurt in the fridge with some fruits and jam for children who
wanted to stir. On another occasion we provided ready-made pastry and dried fruit
for rolling up, and juices to mix and stir for drinks.

We brought in two giant African snails in a glass tank and put out some magni-
fying glasses.

A basket of ropes and wools that we took outside for play subsequently led to some
complicated spiral mazes outside. Following this when the grass was mown on the
school playing-field, some of the children decided to create grass mazes.

Exploring spirals together

With the whole class, we played a circle game that involved winding and unwind-
ing actions.

A group of children made coil pots with clay.

At the beginning of Advent we created an ‘Advent Spiral’ on the floor of the hall,
the pathways marked out with moss. Children took it in turns to walk in the dark
hall from the outside to the centre, to light their own candle from the central
candle that was already lit — and then to retrace their journey.

Enriching schemas through visits

When planning to support and extend children’s schemas, we often included infor-
mal, local visits. Chris Athey’s study supports the ‘critical importance of first-hand
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experience in providing the content of representation’. She argues that these first-
hand experiences could be called the ‘stuff’ or ‘content’ of mind (Athey, 1990, p. 58).

For the spiral explorers we walked across a pedestrian bridge that crossed a major
road near the school. At either end the bridge descended in a curve which the local
children referred to as the ‘curly-whirly bridge’. Many children had been exploring
rotation, linear movement, trajectories, maps, zigzags, spirals and arrows, and linked
these to spirals. Because schemas are rarely explored in isolation, there were links
between different schemas as Figure 3.7 shows.
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Figure 3.7 The pattern of Aaron’s schema interests (part)

Mapping patterns of schema exploration

We had been looking for the ‘pattern’ of repeatable behaviour to which Athey refers
(1990). When we looked at several weeks worth of observations of each child and
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traced their development, a visible pattern began to emerge that was quite unex-
pected. When represented on paper the pattern looked like the highs and lows of a
patient’s temperature chart or the stock exchange (see Figure 3.7).

Tracing Aaron’s schema development

(See also, p. 53 ‘Observations of Aaron’s dominant schemas’.)

Beginning with the first observation of Aaron, I noted his interest in rotation at the
top of the chart (see Figure 3.7). I wrote Aaron’s subsequent schemas and I observed
across the top of the chart the order in which they were observed. I gave each written
observation a number (starting with 1 for the first observation) and mapped these
onto the chart. Where a number is repeated, this shows that I observed more than
one schema on one day: Figure 3.7 shows that two observations were made on the
first day (1,1).

Mapping the children'’s explorations of different schemas provided us with a great
deal of information and all the children’s ‘maps’ shared certain features. The most
significant of these are that:

e when represented, each child’s ‘journey’ traces a similar zigzagging pathway that
moves gradually forwards

e all children revisited some earlier schema interests, allowing them to add new
understandings.

Rotation and rolling up/unrolling
Length and height; comparing, measuring and estimating length
Direction

Vertical, up, down and through
Spirals

Enclosure

Connection

Horizontal, along and through
Zigzags

Grids

On top

Trajectories

Right angles

At the same time Aaron also explored:
Rectangles

Counting one-to-one

Writing letters and numerals

Figure 3.8 Key to the pattern of Aaron’s schema journey
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Understanding Aaron’s pattern of schema explorations

Aaron appeared to move through seventeen schema interests during nine months.
See Figure 3.8 for examples of some of these.

Aaron’s dominant schemas during this period were what he referred to as
‘smokers’ which we understood to be an interest in vertical chimneys. This developed
later to include horizontal cylinders (exhaust pipes). Aaron was clearly interested in
the movement of smoke and other objects up, down and through the cylinders (chim-
neys, tubes, tunnels).

Observations of Aaron’s dominant schemas

(See Figure 3.7)

We have selected observations of Aaron’s dominant schemas from a period of nine
months (see below). The numbers in column one refer to the observation (day): ‘1’ was of
notes made on the first day of observing.

This example from my daily observation notes, highlights Aaron’s interest in rotation,
rolling up and unrolling:

Day Observation notes

1 ¢ Made along ‘car’ and rolled it up and unrolled it.
1 ¢ Made ‘helicopters’ and a ‘roundabout’ and spun them above his head.

e Made a motorbike with a wheel at either end. Said he wanted ‘to make them
go round together’ and he suggested using a ‘big rubber band’ (we had none
large enough). He tried a long strip of paper (it broke) and then string which
he estimated correctly to within 10 cm. He was thrilled when his idea worked.

12 e Intrigued when watching liquid swirl in a cup, explaining ‘it’s the stirring’.

24 e« Explaining part of a tall construction, said ‘this bends for the smoke to go
round’ (i.e. it both curved and rotated).

24 e« At the base of his model was a cross with wheels which could rotate. He
explained ‘it’s the propeller’.

33 e Made a spaceship with a steering wheel, lock, tools, microphone and dumb-
bell, all of which he demonstrated could rotate.

34 e Brought in off-cuts of a roller blind which he repeatedly rolled and unrolled.

35 e Again unrolled and rolled the off-cuts of the blind.

35 e Made a road with a ramp either end for the off-cut of blind to unroll on.

35 e Involved Katie, spending ages rolling and unrolling — pleased to demon-
strate to anyone who would watch.

35 e Brought in a door catch he’d found outside and showed me how it worked
(it rotated).

35 e Excited to watch the builder’s cement mixer rotating.

35 e« Unrolled the entire length of his off-cut of a blind and compared its length
with a track he’d made.
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Rotation and spiral schemas also complemented each other. The observations above
show the way in which Aaron added to his understanding over an extended period
of time and it is important to remember that all these observations were of child-ini-
tiated and often spontaneous play, and not direct teaching. This underlines the sig-
nificance of opportunities for children to play in ways that support their deep
cognitive concerns. Aaron could not have explored these schemas in a setting in
which child-initiated play was not valued or where staff gave no time and opportu-
nities for this.

During the nine months in which these observations were made, Aaron also
explored various schemas when choosing to write letters and numerals: these were
clearly linked with vertical, horizontal and connection schemas, and this is explored
further in Chapter 4.

Looking at Figure 3.7, Aaron’s ‘journey’ of schema explorations can be seen to
move forwards, as he visited new and often related schemas, then revisited previous
schemas. Although Aaron appears to be constantly changing his focus, it is clear that
there were relationships between his behaviours. Athey proposes that rather than
describe children’s changing interests and play behaviours as ‘flitting’, through
knowledge of schemas we can often see that the child is ‘fitting different but appro-
priate content’ into their latest ‘form’ (Athey: 1990, p. 107).

Making meaning through mark-making

As the children’s schemas developed from action to thought they recorded and rep-
resented their schemas with resources and materials to hand. As we have shown, the
children represented their cognitive constants using objects such as their actions
with their bodies, toys, cut-outs from paper, sand, grass, clay, block play, objects
made with different materials (technology), constructional apparatus, pencil sharp-
eners, yoghurt and cakes. They also recorded and represented their schemas through
making marks on paper with pens, crayons, paint and pencils.

In his significant study of young children’s art, Matthews highlights the view of
Thelen and Smith, (1994), ‘who have thought of these actions as “attractors” ...
emerging in specific contexts’ (Matthews, 2003, p. 23). This perspective points to
such patterns of behaviour as dynamic processes ‘in which the child takes advantage
of the avenues of action which present themselves’ (Matthews, 2003, p. 29). Describ-
ing aspects of the infant’s and young child’s worlds to which they are drawn,
Matthews argues that their ‘attractor systems operate like searchlights, which illu-
minate for the child aspects of the world in a systematic way’ (Matthews, 1999, p.
80). Reading the observation notes of Aaron on p. 53 the extent to which certain
forms and actions acted as attractor systems for him is clear.

Schemas highlight the mathematics in the world

When we observe children exploring a schema it enriches our experience of how they
think and learn. Mathematics can be seen in the broadest sense through children’s
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schemas. Compare a less stimulating mathematical curriculum where the teacher has
a script to ‘teach’ shapes. The teacher in this situation shows a triangle (usually equi-
lateral) and says ‘this is a triangle’, she repeats this for the four basic shapes. Very often
the geometry of the given curriculum never goes beyond the naming of the shapes. If
we give children experience and opportunities to explore their schematic concerns
then we will see that children will be engaging with the properties of shape that define
this mathematical area. They will have gone beyond the narrow curriculum and will
be investigating concepts such as perimeter, angle, circumference, height, position and
area. This is a much more useful and cognitively challenging curriculum, on an intel-
lectual level, that befits young children’s capabilities.

Key points about schemas

e Schemas can be described as a child’s repeated pattern of behaviour.

¢ Schemas cannot be taught, they come from the child’s own self-interest.

e When children are involved in a schema the level of involvement can be very
intense.

¢ Some of this schematic thinking is represented in their drawings.

¢ These schemas whether graphic or actions, form ‘footstools’ for more complex
structures and mathematical ideas.

¢ The schematic marks, like other mathematical mark-making, help bridge the gap
between informal and formal mathematics.

e Supporting children’s schemas feeds their natural curiosity which, in turn, extends
their thinking.

In the following chapter we focus on children’s early writing, showing some links
with their schemas. We look at the relationship between early writing development
and early mathematical graphics.

Further Reading

Schemas

e Arnold, C. (1997) Child Development and Learning 2-5 Years: Georgia’s Story.
London: Hodder and Stoughton.
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ham: Open University Press.

e Athey, C. (1990) Extending Thought in Young Children: A Parent-Teacher Partnership.
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¢ Bruce, T. (1997) ‘Schemas’: chapter 5 in Early Childhood Education. London: Hodder
& Stoughton.
Nutbrown, C. (1994) Threads of Thinking: Young Children Learning and the Role of
Early Education. London: Paul Chapman.



Farly Writing.
Farly Mathematics

““\H& AR

f”’lo \DRb
RLEJf 'O”f

ﬁ@\ﬂ @(\/8 R%”

T Aﬂ‘%lmw

5?

Figure 4.1 Alex’s letter

Alex, 4:7, read his letter (Figure 4.1) to me:‘Hello! | want you to write to me — I'd

like that. School’s exciting: you can do typing and we’ve got paper clips. | made an
aeroplane today and a puppet — two puppets! | made a sandwich with pocket-
money bread.

Love from Alex’.

56
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The significance of emergent writing

Two voices

Elizabeth: one of the major turning points in my teaching career came, in the early
1980s, when I took an early writing course at the Centre for Language in Primary
Education in London. This introduced me to a developmental writing approach to
teaching. Later, in 1987, at the University of Louisville in Kentucky, I took another
more intensive course on early literacy development tutored by Jean-Anne Clyde.
This helped me in my enquiry about children’s literacy and directly supported me in
my teaching of reading and writing. This developmental theory or emergent
approach was developing slowly in pockets of England (McKenzie, 1986); New
Zealand (Clay, 1975 and Holdaway, 1979), and in the USA (Goodman, 1968). The
significant change in my teaching was that I started to observe what children were
actually doing in writing when given the freedom to explore their own thinking.

Maulfry: at about the same time, I also came across emergent writing, but via a dif-
ferent route. A local teacher had visited several Early Years settings in the USA and
had seen children using the ‘writing station’ (or writing area). She talked about the
way children made their own marks and that these were accepted by the teacher. I
was intrigued by this idea and took it back to my classroom.

Gradually I encouraged children to use their own marks and, with the children’s help,
developed a writing area. Their growing confidence and deep levels of understanding
were soon evident. At the time I called this ‘thinking writing’ since I emphasised the
need to ‘really think’ about all aspects of their writing — and especially their intended
meaning, the content. At first I had no idea that other teachers were supporting chil-
dren’s early writing in England in this way. For two years I kept every piece of the chil-
dren’s writing — including writing they chose to do in their play — in order to assess and
be able to justify what the children did. Gradually I was able to trace a developing
pathway that included content, understanding of phonics, spelling, punctuation and
handwriting. As I did this I came across texts that highlighted this development within
the context of ‘whole language’. This was a major turning point in my teaching and,
like Elizabeth; it was the observations of children that helped reveal their thinking.

The literacy movement also heavily influenced many other teachers. This was a
theory based in classrooms and homes rather than specially set-up clinical tasks. This
grounded theory is based on the social environment, about the lived experiences of par-
ticipants (Glaser and Strauss, 1967). It is effective because, although it is complex, it is
based in real situations and therefore manageable to do in classrooms, because that was
where the research was based. It was argued that: ‘the classroom practice of tens of thou-
sands of Key Stage 1 teachers has been changed by the findings of emergent literacy.
Teachers are better equipped conceptually to exploit children’s knowledge of reading
and writing as a bridge to what is conventionally required’ (Hannon, 1995, p. 16).

Both of us therefore constructed strong classroom practice in literacy teaching. An
objective view of your classroom is always useful: a visitor once walked into my class-
room and remarked ‘the children are really developing their literacy but where is the
mathematics?’ Criticism is always hard to handle but once you have recovered from the
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initial shock, then you sort out whether you accept it or not. I decided this criticism of
my mathematics teaching was a fair comment, but what was more difficult to under-
stand was the visitor’s suggestion of applying the same learning principles to mathe-
matics that I did with literacy. Since 1990 both of us were able to develop this idea
with others who were also struggling with this concept, but wanted to find out more:
thus the Exeter Emergent Mathematics Teachers’ group was born (see Chapter 1).

In this chapter we review children’s literacy development and make links to math-
ematical development since it is from this basis and view of children’s learning that
we began our journey into a better way of teaching mathematics.

Young children explore symbols

Newman (1984, p. 12) proposes that ‘from an early age, young children expect
written language to make sense’ and show ‘their amazing ability to coordinate the
meaning they want to express with the form appropriate for expressing it’. Chil-
dren’s ability to link early marks with meaning and to communicate through these
marks is an important stage in becoming writers (and mathematicians). These early
marks will not look like standard letters or numerals. As Newman argues: ‘the notion
that their scribbles are merely random marks on paper must, I think, be replaced by
an understanding of how these early writing attempts are intentional efforts by
children to create and share meaning’ (Newman, 1984, p. 12).

Alex’s eagles and the ‘pocket money bread’

Alex, 4:7, was interested in things high above him. One day he repeatedly told us
a dramatic story about his father falling off a ladder: we found out later that it
was an invented story.VWhen the window cleaner came to school Alex watched
him working for a long time. In the same week Alex wrote a letter to his mum
using many capital ‘Hs’. Towards the end of his letter he joined a string of ‘Hs’, like
a fence or a ladder on its side. He was interested in making things: a ‘machine to
make bubbles’,‘a space rocket’, several planes and a kite — all things that move
above the earth. Next he told stories about huge eagles — birds unknown in
southern England — which he had watched fly away with various items. A pattern
seemed to be emerging: Alex was interested in vertical movement, trajectories and
grids, and these movements and forms were mirrored at the time in his writing.
He was also exploring containing and enveloping at this time.

To encourage the children to write letters I had arranged that they could write to
children of the same age in another school in the city. Alex’s schema concerns were
revealed in the development of his writing (see Figure 4.1).

Alex used both the first letter of his name and his full name. The strong shape of
the capital ‘H’ is similar to the ‘A’ of his name: both letters need either strong verti-
cal or oblique lines. Lower down on the page he joined three capital ‘As’ and then a
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series of capital ‘Hs” which link with his schemas at that time (height, grids and tra-
jectories and vertical and horizontal lines) and is like the ‘fence’ he’d used in the letter
he’d written to his mother. The letter also included a face and several approxima-
tions of letters, and the word ‘Hello’ (see Figure 4.1).

Alex was in his first term at school. His ‘voice’ shines through his text. Although
he had not then met his pen pal, he was able to communicate some features of his
own school that were significant to him. To support his containing and enveloping
schema that week I had put ‘pitta’ bread and some salad to fill it in the fridge, for
those children who were interested. Alex’s reference to ‘pocket money’ bread is his
personal way of naming the bread - the action of filling the bread reminded him of
putting his pocket money into a purse. At home he enjoyed making ‘houses’ out of
boxes which he then filled with snails from the garden. The content of his letter
therefore reflects part of his schema interest (containing and enveloping) at that time,
whilst the form of the letters he used to represent meaning was also influenced by
schemas (height, vertical movement, trajectories and grids) in the grid-like letters and
use of vertical and oblique lines he wrote.

We believe that the content that children explore through their early marks and
the meanings they make are of the utmost importance. At the same time the func-
tion and form of children’s early mark-making can be seen to develop in tandem
with the content if their schema interests are viewed as relating to their early
writing. We can see how both Alex’s schemas and his emerging skills support the
development of his writing.

Ferreiro and Teberosky have argued that from 3 years of age children test out their
hypotheses about both print and the process of writing in systematic ways (Ferreiro
and Teberosky, 1982). In her challenging study of schemas, Athey identified a clear
relationship between children’s schemas and their early mark-making and writing
that the example of Alex’s letter demonstrates. Alex’s understanding of the social
and cultural purposes of writing is also continually developing through observation
and co-construction within his home and early childhood setting.

Marks and approximations

At an early stage Mitchell, 4:9, used tiny spirals to represent letters, also experi-
menting with continuous wavy lines and his own approximations of numerals and
letters. To these he gradually added standard letters, increasing his repertoire. He
used the first letter of his name to stand for many words and then, having made the
link with the sound of this initial letter, widened the range of initial letters of words,
often matching the sound. Mitchell began to put dots between letters, explaining ‘so
the letters don’t get bumped’ and at this time also used spaces for the same reason.
During this period of observations Mitchell was fascinated by counting everything
he could and often labelled things he counted with numbers on small pieces of
paper. He was interested in series of numbers and experimented (for example, 20, 60,
90 and 1, 6, 1, 2, 3, 4, 8, 8, 30, 8) before counting for the first time in a standard
sequence of 1-7.
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Nicola, 5:0, used the letters of her own name and zigzag lines on different areas of
the page. She then wrote the names ‘Mummy’ and ‘Nicola’ to stand for what she
wanted to say, gradually increasing her range of letters to include others. The strong
visual shapes of capital letters and their relationship to zigzags had impressed Nicola,
and she concentrated on using these. At this stage she also used some small circles
and squares to stand for letters. Occasionally Nicola used numerals to represent
‘writing’, repeating 1, 2 and 3 across the page.

Young children do not see the division between different marks of ‘writing’ and
‘mathematics’ and ‘drawing’, and often combine them on one page. This can be seen
in the example of the birthday card that Mhairi, 4:7, made for her daddy (Figure 4.2).
Using a Christmas card that she had received, Mhairi added her special message for her
Dad’s birthday. The smiling faces and the letter ‘t’ for her dad’s name Tom are appro-
priate symbols that she has met elsewhere and she has used balloons since she knows
these are important items for birthdays in her family. Finally she added ‘from Mhairi’.
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Figure 4.2 Mhairi’s card
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There is some wonderful software available for children to use but we have rarely
seen children in Early Years settings using a computer for their own early writing or
mathematics. I was teaching in a local class with 4- and 5-year-olds for a few days
and set up a noticeboard for their use. Robert, 4:8, was new at school and used this
as an opportunity to develop friendships (Figure 4.3). Several children subsequently
invited him to play, adding their names on ‘Post-it’ notes.
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Will you play with me?

Write your name.
Robert.

Figure 4.3 Robert’s notice

Early writing and links with schemas

In the previous chapter we saw how Aaron’s schemas or attractor systems helped him
focus on certain aspects within his environment and actions. Threaded through the
observations of his schemas are notes of his developing interest in writing and
mark-making.

While sharing a book, Aaron asked ‘how does writing go?’ The following day when
writing, Aaron used some numerals he knew (rather than his own marks, letter-like
symbols or letters). Soon he was observed to use a capital ‘A’ and subsequently ‘A’ and
‘H’ to represent his own meaning when writing. Some of his schema explorations
during this period focused on comparison of lengths, vertical and horizontal lines, move-
ment up and down and connection. He was also interested in triangles and diamonds
which share some features with the written letter ‘A’. A later interest was zigzags, which
when represented with a pen on paper mimicked both the movement of an adult’s
hand as it writes and the ‘joined-up’ writing itself. Aaron’s interest in zigzags also devel-
oped the use of oblique lines, movement up and down and connection. This interest coin-
cided with his increased use of ‘M’, ‘N’, ‘V’ and ‘W’ in his writing of the time.

Figure 3.7 (p. 51) suggests a strong relationship between schemas (explored over
the nineteen days of observations represented here) and writing. At the centre (in
bold numerals) are eight observations of occasions on which Aaron explored writing
and written numerals (included in this chart since it was a dominant personal inter-
est during this period). Clustering around this interest are observations of schemas
that may have served to support his developing understanding of writing and

(~) (n?

written numerals. Rotation, spirals and enclosure are evident in letters such as ‘o’, ‘a’,
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‘g’ and ‘e’ and in numerals such as ‘3’, ‘6’ and ‘9’; whilst connecting and direction
(including vertical and horizontal) are features of ‘t’, ‘d’, ‘4’ and ‘7’. They are also
significant features of all symbolic languages in respect of the direction of writing
and for handwriting in which letters are joined. Our evidence is that there are also
links between what Matthews (1999, 2003) describes as generational marks in young
drawings and the early writing of letters and numerals (see p. 89).

While Aaron was busy comparing the length of constructions he had made, build-
ing tall chimneys and pointing out exhaust pipes on cars, he was adding to his
understanding of ‘how writing goes’ at a deep level; for example, of how ‘A’ and ‘H’
are written. It is significant that many of the first letters he focused on share the
same ‘up and down’ movement and orientation as his ‘smokers’, in addition of
course to one being the first letter of his name. Whilst he was developing theories
about writing, my observation notes show how Aaron was also developing his
understanding of the relationship between reading, writing (letter symbols), writing
numerals, number patterns and counting. At the same time Aaron was also assign-
ing his own meaning to the marks he made and listening to the meanings that other
children and the teacher gave to constructions, text, numbers, symbols and pictures
they ‘read’ - truly multi-modal meanings (Kress, 1997).

Understanding development

Knowledge about schemas and an appreciation of their significance in children’s devel-
opment can therefore help teachers to understand individual children’s writing devel-
opment and mathematical graphics. But such knowledge can only be gained through
observation of children who have opportunities to initiate their own play and learn-
ing, and an appreciation of children’s early (emergent) writing development. Athey
argues that when teachers closely observe children, this leads to ‘attempts to evaluate
(children’s) valid contributions to the negotiation of meaning, the teacher is able to
accumulate deep understanding of stage levels of cognition in children as well as other
aspects of development’ (Athey, 1990, p. 31). In our own settings, we found we were
able to appreciate and gradually understand the rich abundance of children’s visible
schemas and marks from our informal observations. In Chapter 6 we explore the early
development of young children’s mathematical marks.

Research into early literacy has established that there is a great deal of development
before formal instruction (McNaughton, 1995). Whereas formerly children were seen
as passive learners needing ‘pre-reading, writing and number’ activities, their active
involvement has been recognised. The research into early writing development during
the past 35 years builds on a long tradition of study of what children themselves actu-
ally do, that reaches back to Vygotsky and Luria: ‘writing must be something the child
needs ... writing must be “relevant to life” — in the same way that we require a relevant
arithmetic’, ‘and should become necessary for her in her play’ (Vygotsky, 1983, pp.
290-1). In researching the early development of writing in 1929, Luria observed that:

before a child has understood the sense and mechanism of writing, he has already
made many attempts to elaborate primitive methods; and these, for him, are the pre-
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Clay’s analysis of early writing

Sovay’s acquisition of number

The sign concept — letters and their own
letter-like shapes represent a message
they can read

The message concept — you can write
down a message you want to convey

Recurring principle — where children use
any letters and words they know over
and over again

A generating principle — in which they
combine the letters they know in dif-
ferent ways to produce strings of print

A directional principle — children become
aware that writing is formed in hori-
zontal lines from left to right

You can talk number words for count-
ing in different ways and you need
numbers in different situations

Numbers can be written down for pur-
poses, e.g. Sovay wrote marks on her
sister’s dinner money envelope to
convey how much money was there

Sovay-1,2,1,2,1, 2,1, 2; counting
pebbles. ‘6’ became all numbers

Playing with her sister using pencil and
paper saying ‘26, 29, 24, 3, 6, 9, 17, 16,
2, 3, 1, 7’. Making her own symbols on
the paper

Sovay’s data from this period (before she
was 44 months of age), came from her
talk. In 90 per cent of her recorded
talking and counting numbers she began
with the lowest numbers and graduated
to the highest e.g. ‘1, 59, 51, 52, 53’

history of his writing. But even these methods are not developed all at once: they
pass through a number of trials and inventions, constituting a series of stages with
which it is very useful for an educator working with children of school age children
and pre-school children to be acquainted. (Luria, 1983, p. 276)

As we shall show in Chapters 6 and 7, children’s ‘trials and inventions’ are at the
heart of their understanding of abstract symbolism in mathematics.
Marie Clay’s research in New Zealand highlighted the way in which new skills con-

tinually emerged during development. This definition led to the term ‘emergent
writing’ which has also sometimes been called ‘developmental’ or ‘process’ writing.
Since the publication of Clay’s study of young children’s writing in 1975, there has
been a considerable number of texts published on early or emergent writing; for
example, Cambourne, 1988, Hall, 1987, McNaughton, 1995.

Early writing and early mathematical marks

In my own research, in a study of my own child’s development of number, I found
parallels with the way the child in the study developed number language and Clay’s
analysis of writing development (Carruthers, 1997a; 1997b; 1997¢).
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On p. 63 is a concept map to show the possible link between the development
of early writing and Sovay’s number development (Carruthers, 1997a; 1997b; 1997c).

The child in the study above demonstrated her understanding of numerals
through her number talk (Carruthers, 1997a; 1997b; 1997c). Although we found that
young children in general do not seem to be so prolific at putting marks on paper as
older children (there are exceptions and periods they go through when this is their
chosen way to represent) they do put their mathematical marks down on paper. In
Chapter 6 we have traced a pattern of early number development through young
children’s early mathematical marks. It is notable to point out that many of their
marks are ways of expressing their thoughts and as such they may not fit neatly into
art, writing, scientific or mathematical categories. The children represent what they
want to in a way that crosses ‘subject’ boundaries.

We have argued previously that early (emergent) literacy shares certain attributes
with early mathematical marks and representations:

e Children exhibit behaviours that demonstrate they acquire conventional knowl-
edge of reading and writing in a gradual way.

¢ Children’s approximations are accepted.

¢ The developmental process is viewed as a continuum from birth throughout life.

e Teaching is based on the observations of children’s learning and behaviours:
teaching and learning are therefore intertwined.

e Children are seen as powerful learners, constantly making sense of their world.

¢ Learning is most effective when it is experienced as a whole picture which is not
being broken into meaningless parts.

¢ Learning is best when it is presented in meaningful contexts.

¢ Children have real choices in their learning.

¢ The role of the teacher is not as sole giver of knowledge, but she understands that
environmental and social factors and the child’s own knowledge are important con-
tributory factors to the learning process. She sensitively takes these aspects into con-
sideration and scaffolds the child’s learning (Worthington and Carruthers, 1998).

We would also add that:

¢ the child’s continual search for meaning in all contexts is one of the most signifi-
cant features in the development of early mathematical marks, symbols and
written methods.

e the development from informal ‘home’ mathematics, to subsequent abstract
symbolism of ‘school’ mathematics, is negotiated and co-constructed by the
members of the learning community, whether in the home or the Early Years
setting.

In this section we map out some existing research that links the development of
mathematics and language.

As can be seen in the concept map on p. 65, there are parallels with research and
writings about literacy and mathematics development. It is interesting to note that
what has been discovered about knowledge of young children’s development in
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65

Literacy

Mathematics

Chomsky'’s (1965) Language
Acquisition Device (LAD) innate
structures somehow guide the consider
the ‘right’ possibilities among an
abundance of logical alternatives.

The social learning aspect was a
significant factor in children’s language
and literacy learning. Harste, Woodward
and Burke (1984): ‘Language whether
oral or written is a social event of some
complexity. Language did not develop
because of the existence of one language
user but two.’

‘Meaning is the key to reading’.
(Smith, 1978)

Children are powerful learners and
they know a considerable amount
about literacy before they come to
school (Clay, 1975; Hall, 1987).

Pre-reading and readiness are
questioned. Coltheart (1979)
demonstrated that reading readiness
has no basis. The way to learn to read
is by reading.

Markman (1990) suggests that children
narrow down alternatives by making
certain assumptions about word mean-
ings which constrain their guesses.

Barratt-Pugh (2000) proposes that
literacy learning is embedded in the
socio-cultural practices that children
are involved in.

Gelman and Gallistel (1978) suggest
that similar innate structures as in LAD
guide children learning to count. They
claim infants are born with a non-verbal
mechanism called an ‘accumulator’.

‘Mathematics knowledge is a social
category of knowledge’ (Nunes and
Bryant, 1996).

Hughes (1986) proposes that children
need meaningful and relevant
mathematical tasks.

Aubrey (1994b) found that pre-
schoolers had a considerable amount of
informal mathematical knowledge
before they enter school.

Durham Project (cited by Pettitt and
Davis, 1994) questions pre-number
concepts. From the evidence of their
research children learn about number
by counting objects in a variety of ways
and not by traditional pre-number
activities, e.g. sorting and matching.

Gelman (1991) proposes that the
counting principles (Gelman and
Gallistel, 1978) function as constraints
for number.

Worthington and Carruthers (Chapter
2 in this volume) argue that
mathematical learning is embedded in
the socio-cultural practices of the
child’s family, community and culture.

(Source: adapted from Carruthers, 1997c.)
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early ‘written’ mathematics is considerably behind our understanding of children’s
early writing development. However, if one could claim there is a similar pattern of
development between literacy learning and mathematical learning, then there could
be a strong argument to suggest that we teach both subjects in similar ways.

Early (emergent) literacy is often misunderstood

Whatever teaching approach is used in education, there are dangers of poor teaching
or the concept being misunderstood. For example, Munn (1997) explains emergent lit-
eracy in terms of an ‘emergent literacy scheme’ and ‘pre-literate children’. These terms
are questioned in texts on emergent literacy (see for example Hall, 1987). Munn also
talks about communication as the overriding factor in emergent literacy. In her analy-
sis of her research findings, she concludes that ‘there can be little similarity between
the development of children’s understanding of numerals and their understanding of
writing’ (Munn, 1997, p. 95). Her research findings stated that children cannot com-
municate their own pictographic and tally marks in numeracy because they cannot
read them back. However, there is also a stage in emergent writing when children
cannot communicate their marks to others but they do know that they have meaning,
as when a child says ‘I am doing writing’ (for example see Hughes, 1986, p. 57). In
Mills’s experience of children’s literacy she describes an incident where several days
later a child read her same piece of writing and had completely changed the meaning.
Mills’s salient questions help us think through the dilemmas:

¢ ‘Can you pinpoint the exact moment a child attributes a sound value to a letter or
transfers from syllabic to alphabetic recording?’

¢ ‘Is it really necessary for every child to read back their early attempts at their own
invented numerical recordings several days after writing them?’ (Mills, 2002, p. 9)

In our experience there is no definite line where a child moves from one kind of under-
standing to another. The overriding point is that they do have an understanding on
which they build and develop. An emergent approach to mathematics has no easy
clear-cut pedagogy and may challenge teachers. However, in reply to Munn’s doubts
about such an approach Mills asks: ‘Is the ambiguity over the point of understanding
enough to discount an emergent approach to numeracy?’ (Mills, 2002, p. 59).

In our study we have found that children use a variety of non-conventional marks
in different ways to communicate their mathematics. It is, we believe, because they
have chosen to do it and it makes sense to them. Our findings are different to those
of Munn because, instead of the clinical interview model of research, we used situa-
tions that were based on everyday conditions in real classrooms and in the home.
Bruce (1991) describes this as ‘real data’.

Teachers’ perceptions of early writing

In our telephone interviews with teachers, one of the questions we asked was whether
teachers supported emergent writing. We believe that if teachers already have devel-
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oped their understanding and practice to support children’s own early writing, they
will more readily understand how to support children’s mathematical graphics.

It is important to point out here that these teachers had already expressed their
interest in children’s own written marks and in mathematical graphics. We invited
teachers to tell us a little ‘about what this means for the children’ in their setting or
class. Teachers’ responses show a wide range of understandings. Of those we inter-
viewed, almost 70 per cent appeared confused by the term ‘emergent writing’ and
what this meant in terms of practice. Explanations of their practice included:

¢ Children copy over or trace. We use ‘Jolly Phonics’.

¢ They need help with spelling and copying writing.

¢ Near the beginning of the reception class they do need to write over the teacher’s
writing.

e Their first job is writing over the teacher’s writing. I support this with dot-to-dot
and tracing. I think fine-motor control is really important.

The remaining 31 per cent of teachers responded with comments that suggest
they do have an understanding of emergent writing and are putting this into
practice:

¢ Right from the beginning letting them teach us what they can do - emergent
writing is the stage when the marks connect with meaning.

e Their own marks are very important — I respond to the content of what they have
written and give lots of positive praise.

¢ Emergent writing is about the children making marks - they start with a scribble
or a bit more and they read and tell you about what they’'ve written.

¢ We have a language-rich environment: children have their favourite letters. I write
a question on what they’ve written, responding to the content.

¢ Any marks they make on paper tell me something.

¢ (Emergent writing means) children’s pretend writing — any of their marks on
paper. Their scribbles and what they tell you about them, tell you a lot.

These findings illustrate the varied perceptions of what teachers understand about
emergent literacy. This confusion seems to be widespread, for example, whilst New
Zealand has embraced an emergent or ‘process’ approach to writing (McNaughton,
1995), elsewhere it appears that the extensive research and literature published in this
field has not always led to high-quality practice that reflects understanding of this.
Perhaps because young children’s writing does not ‘look like’ the standard writing and
spelling of older children, it has so often been misunderstood. This is also the case with
early mathematical graphics. One misunderstanding is that there is no teaching
involved but, as Smith and Elley point out, ‘it is not enough to provide the motivation
for the children to write and then to leave them to get on with it. We do not advocate
a laissez-faire attitude to writing instruction’ (Smith and Elley, 1997, p. 142). We are in
accord with this view in terms of supporting children’s mathematical graphics. We
argue that teaching in this way involves: ‘constantly assessing and providing suitably
challenging activities, demonstrating standard forms and “asking questions which
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may help the student to clarify, to predict, to develop further, to look for alternatives”’
(Stoessinger and Wilkinson, 1991, cited in Gifford, 1997, p. 78).

Conclusion

There are important links between children’s early literacy and their early mathe-
matical graphics: teachers who understand the theory and practice of emergent
writing can benefit because, like us, they can find an easier way into helping chil-
dren move from their informal mathematics to more standard forms. Thus they have
already gone part of the way because of their understanding of early writing. It is a
useful connection to make for this reason.

In early childhood mathematics we are currently in the position that emergent
writing appeared over 30 years ago. We have argued that supporting the develop-
ment of children’s early mathematical graphics is: ‘provocative maths, that is to say
it inspires, motivates and challenges children’s minds. It requires them to gradually
make existing perceptions explicit, to try out alternative ways of thinking, looking
and representing’ (Worthington and Carruthers, 1998, p. 15).

In Chapter 5 we consider the difficulties that children experience when they first
encounter the formal language of mathematics and its abstract symbolism. We show
that teachers often experience challenges in trying to help children make sense of
mathematics. We propose that encouraging and supporting the development of chil-
dren’s own mathematical marks and written methods helps children ‘bridge the gap’
between their informal ‘home’ mathematics and subsequent abstract mathematics.
We introduce the concept of ‘bi-numeracy’.
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Bridging the Gap
between Home and
School Mathematics

Edward is 5 years old and is at school. This morning he tries to do a complete page
of addition sums in his mathematics lesson: then it is assembly time. He sits for 30
minutes learning about how God made the world and everything in it. Edward, like
all children, tries to make sense of his experiences. As he walks out of the school with
his mother, he turns to her and says: “‘Why does God make us do sums?’ (Adapted
from David, 1999.)

Disconnections

Edward is in a state of disequilibrium, he cannot yet come to grips with the purpose
of school maths. ‘Sums’ for many young children just do not make sense even if, as
in Daniel’s example below, they can ‘do the sums’.

Daniel’s (4:6) experience of ‘doing’ sums

12 Jan. 1 Feb.

9+3=11 t u t u
6+8=41 2 5 3 5
7+4=11 6 0 4 2
8+9=17 8 5 7 7
2 Feb. 8 Feb.

h t u th h t u

3 2 1 1 3 2 4

2 5 4 0 5 1 3

5 7 5 1 8 3 7

69
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Daniel

| was teaching a class in their first term of school. All of the children were 4 but
would be 5 years old in that term. Daniel’s mother gave me his arithmetic book
from the pre-school he had been attending. Above are typed copies of the
calculations that Daniel did in his book. The teacher had written out the
calculation in this vertical format and Daniel had put in the answers. His mother
said he used some sort of apparatus to work out these sums.

From these examples | do not really know what Daniel knows about numbers. |
know he seems to know how to write numerals well, as his written numbers were
easy to read. He seems to have made remarkable progression in the space of two
months: he counted in ones through tens and hundreds and then into the thousands!

Daniel’s sums may be an extreme example of a child’s mathematical experience but
it does highlight some important points. If we take a closer look at the above
examples, we see that Daniel has no complex calculating to do. He does not need to
make any adjustments because the calculations could be done as single number
addition within ten. What [ really believe Daniel knows from these particular
examples is how to mechanically add, with the use of some counting bricks, two
numbers. He has performed a trick. Hughes’s (1986) study highlighted the fact that
school-age children as old as nine who used conventional signs every day in school,
were reluctant to represent addition and subtraction with the standard signs when
given a situation other than a page of sums. Their ability, it seems, to understand
these symbols and transfer and use them in different contexts was lacking. Given this
evidence, think how much more difficult it must have been for Daniel, aged 4, to
make sense of these sums he was asked to do. He may have desperately struggled to
put these into some context of what he knows about the real world. Children are
powerful meaning-makers (Wells, 1986). After some confusion Daniel may have fitted
the sums idea only into the context of that nursery. He may have thought, ‘these are
the tricks we perform at nursery’. This is not Daniel’s mathematics: this is adult’s
mathematics put on a child. If we give children, at an early age, the message that
mathematics is not connected to the real world, to any sort of context or to their
growing knowledge, then children’s understanding of conventional symbols and
mathematical algorithms will not go beyond the contexts in which they are taught.

There is much confusion about how to teach mathematics in nursery settings.
Munn, Gifford and Barber (1997) cite research that shows that in nurseries there is a
very poor diet of mathematical content. Teachers often provide activities in which
they say that children are learning mathematics but children seem more interested in
the social aspects of the play or the materials that are provided. Nursery teachers
appear less confident in their knowledge of mathematics learning than of literacy
learning. Many teachers often show less interest in developing numeracy than literacy
(Gifford, 1997; Munn and Schaffer, 1993). Studies of nursery staff indicate that
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although many claim that children do maths for 80 per cent of the day the reality is
that children are using numeracy skills for less than 2 per cent (Munn, 1994). The dif-
ficulties lie with the knowledge of the teacher and this is carried into school situations.

Scott’s use of symbols

Scott, 6:6, was new to the school. During this lesson it became clear that Scott
had not developed a personal understanding of abstract symbols; to Scott the
choice of which symbols to use appeared almost arbitrary (see Figure 5.1).

This was a lesson in which children were adding small amounts of grapes that |
had brought in. The children were working out their calculations on paper, using
their own chosen forms and approaches. Children used a range of responses —
writing, numerals, their own marks and pictures.

We can look at what Scott did in a positive way. He can represent small
amounts of things he counted: for example, he drew three circles followed by the
numeral ‘3’, four circles followed by ‘4’ and seven circles followed by ‘7’. His
problem began when he tried to use some abstract mathematical signs, for
example:'0 4 = 3,45 =6’,43 4,0 = 0 4 and ‘5 = 5’. Scott has understood that
written calculations require numerals and signs. However he was clearly confused
when representing these calculations.When | sat with Scott and gently asked him
to show me what he had done, he read his final ‘calculation’ aloud,‘l = 0’ (he
knew what the ‘=’ sign was called): he was unable to say what he meant by this.

Scott then took a grape from the plate and reached out for two more grapes: |
asked if he could think of another way he might show how many he had
altogether. His response was to draw round the first grape, followed by the ‘+’
symbol and then draw round the additional two grapes. Beneath this he wrote ‘3.
He was beginning to make some connections with his marks and the use of an
abstract symbol.

Scott’s family had moved into the area and he had had to change schools.
Approaches in his previous class had clearly differed from that of his new class.
Because he was experiencing difficulty in his new school he had been put in a class
with children a year younger than he was. Scott was apparently bewildered by the
abstract symbolism of both writing English and of mathematics. It seemed possible
that Scott had been introduced to formal calculations before he had had an oppor-
tunity to make sense of his own marks. Perhaps before he reached 6 years old, he had
been expected to write and to represent mathematics as an older child would, even
though he had not understood what he was doing. Like Daniel, Scott was also con-
fused by imperfectly memorised ‘tricks’ which he was then unable to apply in other
contexts. As John-Steiner emphasises, representation is one of the important ‘uses of
language ... [and] may not develop well when children find themselves under severe
pressure to acquire a second language’ (John-Steiner, 1985, p. 351).
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Figure 5.1 Scott’s addition

Understanding symbols

Semiotics

Any serious discussion concerning the development of symbols concerns semiotic
activity which, concerning children'’s representations, Oers defines as: ‘the activity of
relating a sign and its meaning, including use of signs, the activity of investigating the
relationship (changes of) signs and (changes of) meaning, as well as improving the
existing relationship between sign (or sign system) and meaning (and meaning
system)’ (Oers, 1997, p. 239). This is what White termed the symbolic initiative (1949).
Gardner views our complex use of symbols as ‘our final building block’. He argues that
‘the disciplines of our world, reconstructed on the basis of symbols; and our capacity
to master them, and to invent new systems, also presupposes the symbolic fluency that
is launched in the years after infancy’ (Gardner, 1997, p. 21).

From a Vygotskian perspective, symbols or graphic representations bridge the gap
between ‘enactive, perception-bound thinking and abstract, symbolical thinking’
(Oers, 1997, p. 237).

Understanding abstract mathematical symbols begins long before children enter
school, with a ‘pre-history’ that Vygotsky believed originates in both gesture and alter-
native meanings that children assign to objects within their play. An example of this is
Melanie’s ladybird (Figure 6.1) in Chapter 6. DeLoache observed that children as young
as 18 months old can pretend that ‘a block of wood is a car, or that a banana is a tele-
phone’: in doing this they demonstrate that they are able to represent something in two
different ways (DeLoache, 1991, p. 749). This flexibility of meaning and object allows
children later to understand that marks — or written symbols on a page — stand for
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something other than what they are. For example, in our culture a cross drawn on a
card or paper may first become associated with a kiss (on a birthday card or letter) but:

e within our written system it is the letter ‘x’ which occurs in words like box and
has a particular sound attached to it

¢ it can be found on a treasure map to mark where treasure is buried

e it is a warning symbol on a bottle of bleach.

At school teachers may use the symbol ‘x’:

¢ to denote a wrong answer
¢ as a multiplication sign in mathematics
¢ to signify an ‘as yet’ unknown number in algebra.

To confuse matters further, when a ‘+’ (the same form but rotated) is used, it carries
other meanings.

Outside education settings ‘+’ is used:

e on remote controls for video players
¢ as a symbol for a church on a map
¢ as the symbol for an ambulance or hospital.
See also Adrian’s explanations of his ‘+’ symbols, p. 130.

To bring the interpretation of this symbol up to date, when used in text messaging
‘+’ is used as an abbreviated form of ‘and’.

It is no wonder that young children find it difficult to navigate the various written
symbol systems. Moreover, whilst spoken language can be ambiguous — dependent
on whether it is used in a natural context or a specifically mathematical one - it
appears that written (or graphical) symbols may be even more so. Twenty-first
century culture draws heavily on the visual impact of advertising, logos, photo-
graphs, film, cartoons, packaging and other visual images, and there is every indica-
tion that this is a significant feature of young children’s culture. There is no doubt
that such graphics heavily influence young children. In one nursery that I visited,
children of 2%-3 years were ‘reading’ the names on various plastic bags from super-
markets with ease by recognising the store’s logo, in the context of their supermar-
ket role-play. As some parents will testify, their young children may also be
influenced by the brand names or logos on clothes, shoes and even wrapping on
food, where children’s television characters ‘sell’ items such as bananas and cheese.

Children’s difficulties with mathematical symbols

Our central argument is that children come to make their own sense of abstract
symbols through using their own marks and constructing their own meaning.
However, Deloache, Uttal and Pierroutsakes (1998, p. 325) point out that ‘no symbol
system is fully transparent’. Letters of the alphabet and numerals, for example, ‘have
no inherent content or meaning, but convey information when combined in sys-



74 Children’s Mathematics

tematic ways’. Therefore, young children not only have to make sense of individual
symbols but need to understand their role within a system, whether, for example,
these are letters within a written word, musical notation, or a mathematical sign or
numeral within a written calculation.

The many studies of young children’s early writing development suggest some
ways in which teachers support the growth of understanding (see Chapter 4). Gins-
burg lists three principles of written symbolism in mathematics:

e Children’s understanding of written symbolism generally lags behind their infor-
mal arithmetic.

e Children interpret written symbolism in terms of what they already know.

¢ Good teaching attempts to foster connections between the child’s informal knowl-
edge and the abstract and arbitrary system of symbolism (Ginsburg, 1977, pp.
119-20).

Determining ways to foster these connections has been a challenge for teachers but,
as Hughes (1986) and others have observed, a failure to do this is likely to be where
many of children’s difficulties with mathematics lie. Supporting children’s early
writing development is problematic for some teachers and it appears that introduc-
ing abstract symbolism of mathematics is more so. As Hiebert (1984, p. 501)
observes, ‘even though teachers illustrate the symbols and operations with pictures
and objects, many children still have trouble establishing important links’. Vygotsky
emphasised that — as the examples of Matt’s explorations with different marks
demonstrate (Figures 2.1 and 2.6) — there is a ‘critical moment in going from simple
mark-making on paper to the use of pencil-marks as signs that depict or mean some-
thing’ (Vygotsky, 1978, p. 286). For parents and teachers of young children, wit-
nessing such ‘critical moments’ is an enormous thrill and a privilege.

Gardner argues that ‘given a sufficiently rich environment, many a five year-old
is already sensitive to different genres within a symbol system’. Therefore, rather
than viewing young children’s early writing and their mathematical graphics from
a deficit perspective, appreciation of their understanding can be seen as a stunning
achievement. It is, Gardner observes: ‘hardly an exaggeration then, to say that the
five or six year-old is a fully symbolic creature — an individual who has the “first
draft mastery” of the major symbolic systems in her culture. The child can “read”
and “write” in these systems’ (Gardner, 1997 p. 22).

The way we set down mathematical symbols can cause confusion for young chil-
dren, for example the numerals 6 and 9 may appear the same to children since one
is the inverse of the other in appearance. Place value causes problems, for example
‘2’ is different from the two in ‘25’; they mean different things. The subtraction sign
and the equals sign are similar as are the multiplication and the addition signs. Some
letters and numbers such as ‘6’ and ‘b’ also look similar. To further complicate
matters, children are also learning about two symbol systems at the same time,
writing and mathematics (DeLoache, 1991). It could also be argued that the writing
system makes more sense to children. When given the choice some children prefer
to use writing instead of mathematical symbols (Pengelly, 1986).
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Problems with standard algorithms

As older children are introduced to standard algorithms as in long division, multipli-
cation and decomposition methods, more confusion can arise since they sometimes
forget the procedures and have no strategy to fall back on. Children often abandon
effective mental methods to do a calculation in the standard written way. The standard
algorithm has been under attack and is accused of making students dependent and
cognitively passive (Zarzycki, 2001). Zarzycki recommends that students create their
own algorithms and compare them to standard methods. He found that children do
not understand why the algorithms work and believes that the logic behind them
should be taught. Others would disagree. For example, Merttens and Brown (1997)
advocate that children should practise algorithms so that they become automatic: chil-
dren then do not have to think about what they are doing, or why. Askew (2001) still
has questions about the standard algorithm and invites other responses. The debate
continues but the important point is that the standard algorithm is in question: it is
not an absolute mathematical teaching method for solving equations. This then puts
in doubt other standard procedures and the rightness of imposing them on children.
We know that standard algorithms are a recognised written mathematical language
that children can work towards, but there is no need to hurry children into these pro-
cedures to the detriment of their own mathematics and understanding.

When do you teach sums?

Gifford (1997) raised the question of when to start teaching formal ‘sums’. Formal
approaches have from the early 1960s given way to a Piagetian perspective of delay-
ing any forms of teaching abstract mathematical concepts, until children are ‘ready’.
Practical mathematics became the main focus of many Early Years classes. There has
been and remains an abundance of commercially produced mathematical materials.
Sorting and sets and matching — in Piaget’s terms ‘logico-mathematics’ — created
classrooms full of plastic bits and structured apparatus. The use of what are known
in the USA as ‘manipulatives’ was an attempt to bridge the gap between children’s
informal knowledge and the formalism of standard calculation (see Barratta-Lorton,
1976). This practical approach is now questioned (see Chapter 7) and Hall’s review
emphasises that: ‘the cumulative evidence suggests that the value of manipulative
materials in mediating understanding is at best unclear and may indeed be adding
to the difficulties which children experience in making the transition from total
dependence on informal knowledge to the use of the formal notational system’
(Hall, 1998, cited in Maclellan, 2001, p. 75).

With the advent of the National Numeracy Strategy, teachers in England have now
moved away from concrete to mental mathematics in the Early Years, with less
emphasis on writing numerals or practical mathematics. The modelling of calcula-
tions by the teacher is encouraged. The teaching of mathematics in other countries
such as Hungary and Holland has heavily influenced this (see Chapter 1). The role
of ‘the sum’ and the question of when to introduce are still unclear, but encourag-
ing mental mathematics is a shift in the right direction, since we are helping chil-
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dren to move towards the abstract. There is also more of a link between children’s
mental methods and their own written methods.

The transition between mental methods and standard written algorithms is a dif-
ficult one because, it is argued, ‘the mental approach to mathematics is almost dia-
metrically opposed to the written conventions’ (Holloway, 1997, p. 27).
Unfortunately the videos and the materials produced for teachers of this phase by
the DfES (2002b) focus on the teaching of mathematics in the narrowest sense. Play
especially is misunderstood in these materials: for example, a teacher-directed
cooking activity is described as play. Children’s own methods are encouraged in the
National Numeracy Strategy (DfEE, 1999) but there is little guidance on how to
support children’s own marks. The focus of this book addresses this difficulty.

The tins game

It has been well documented that the key to children’s understanding of formal
mathematics is to support them so that they make the transition from their own
informal home mathematics to formally based school mathematics. As early as 1977
Ginsburg argued that the gulf between children’s invented strategies and school-
taught, formal written procedures was a very likely reason that children had diffi-
culty with school mathematics. Hiebert (1984) had a similar thrust, arguing that
making connections between the formal school mathematics and the children’s own
mathematics was imperative, if children were to become mathematical thinkers
rather than mindless followers of mechanical rituals.

In 1986, Hughes’s research heightened awareness of the gap between home and
school mathematics. The literature that followed this publication confirmed the
belief that the answer to children’s difficulties might lie in the role of children’s own
recording and mark-making (Williams, 1997).

Much of the literature has concentrated on explaining Hughes’s ‘tins game’
(Montague-Smith, 1997; Pound, 1999; Vandersteen, 2002). Some researchers have
duplicated the tins game to find out if it brings the same results in different
circumstances (for example, Munn, in Thompson, 1997). Yet this published
research and these texts have failed to show children’s own mathematical marks in
circumstances other than the tins game or variations of the game (see Gifford,
1990). Atkinson’s book included teachers’ stories of children’s own mathematics:
this was the only reference we found that rooted the practice of children’s own
mathematics in real classtoom situations with a variety of tasks which were
significantly different to the tins game (Atkinson, 1992). Most of the research in
this area has been of the clinical task type which claims a ‘human sense’ approach:
however, we argue that in order to understand children’s own marks then the
research must make ‘child sense’ (Carruthers, 1997a).

Our study is based on evidence from our own teaching. This enabled us to see a
wide variety of children’s mathematical graphics in a full range of mathematical con-
texts, with children throughout the 3-8 years age range. The variety of examples we
gathered during a number of years helped us to develop our teaching. As we did so
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we uncovered children’s meanings on paper and began to link theory and practice.

In this book we look closely at the development of children’s graphics and the
teaching to support the connections between informal and formal maths. We have
placed our research in real classrooms, in authentic teaching situations, over a period
of more than 12 years. In support of our premise that the translation between chil-
dren’s formal and informal maths is important, we now explore the way in which
second language learners make this transition.

Mathematics as a foreign language

Through our teaching during this period, our research interest as teachers moved from
a broad focus of different features which supported young children’s understanding in
mathematics to a focus on one aspect. During our discussion one day, the two of us
talked about the fact that there had been almost nothing written that linked theory and
practice about ways of ‘bridging the gap’ (Hughes, 1986). In our teaching we had expe-
rienced some wonderful insights from young children and had been thrilled by their
highly original responses through their mathematical graphics. But in what way did
their own marks support understanding of the abstract symbolism of mathematics? We
discussed this at length and the following is part of one discussion:

‘maybe it’s a bit like learning a second language — you build on what you know in
your first language to help understand a second language. It becomes possible to
move between two different languages — with increasing fluency in the second.’

‘And maths is a language — written as well as spoken — then the social aspect needs
greater emphasis too.’

‘Young children feel comfortable with their first mathematical language — the
informal spoken and written marks of home. If they can gradually make sense of
abstract symbols and written methods in their own ways, surely they would be devel-
oping fluency in both? They’d be able to move between the two languages with
understanding - like being bi-lingual.’

‘Bi-mathematicall’

‘What about bi-numeracy?’

Mathematics has often been referred to as a language (for example, Burton, 1994;
Cockcroft, 1982; Ginsburg, 1977). Pimm goes so far as entitling a chapter he wrote
on this subject: ‘Mathematics? I speak it fluently’ (Pimm, 1981).

The issue of language and mathematics is a complex one. We use everyday lan-
guage to talk about the mathematics we are doing, for example, ‘I'm counting how
many cups we need.” We use everyday words and phrases in one way at home, such
as the term ‘take away’ (of fast food such as an ‘Indian take-away’) and in another
way in school mathematics when working out subtraction. There are also very spe-
cific mathematical terms that are rarely used in everyday contexts, such as vertex
and angle. Children and teachers also may use language to discuss aspects of math-
ematics such as infinity.

From a different perspective, Oers argues that young children use language to help
make the meanings of their marks clear to others (Oers, 1997). In his book Children
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and Number Hughes pointed out that for many learners mathematics is ‘more like an
unfamiliar foreign language’ (Hughes, 1986, p. 42), an idea that he extends, propos-
ing that the difficulty is that children have to learn to translate between mathemat-
ical language and their everyday language.

But there is another highly significant aspect of language that has been largely
ignored in the debate about the difficulties children experience in translating from
home to school mathematics — the question of how children learn to write in a
second language — and it is this perspective that we believe can make a huge contri-
bution to the debate.

Halliday (1975) describes learning a first language as ‘learning how to mean’, a
phrase that sits well with our emphasis on children making meaning through their
mathematical graphics. John-Steiner reminds us that ‘the Vygotskian perspective ...
places the issues of bi-lingualism into the broader framework of the psychology of
language and thought’. Thus learners draw on their ‘internal meaning system while
comprehending or producing language’; they ‘are increasingly able to comprehend,
condense and store information, they start the process of weaving two meaning
systems together’ (John-Steiner, 1985, pp. 357, 364-5).

Multicompetencies

In a recent and thought-provoking study of second language learning or L2 learning,
Cook observes that the starting point for teachers of second languages is ‘the learn-
ers’ own language system’ (Cook, 2001, p. 16). The descriptions of second language
learners match accepted understanding of early writing development and the few
studies of children’s early (written) mathematical development; they also match our
own findings closely. Cook describes second language learners as inventing ‘a system
of their own ... curious rules and structures which they invent for themselves as they
go along’ (Cook, 2001, p. 16). These personal systems have been termed ‘interlan-
guage’ (Selinker, 1972). This interlanguage showed that learners were using their
‘temporary language systems’ (Cook, 2001, p. 15).

However, Cook has challenged this assumption — widely accepted now in the field
of second language learning — as not going far enough: ‘on the one hand we have
the user’s knowledge of their first language; on the other, their interlanguage in the
second language. But both these languages co-exist in the same mind; one person
knows both languages’ (Cook, 1992 p. 16). Cook proposes that learners’ first lan-
guage and their interlanguage be viewed together as ‘multicompetence’: this leads to
competence for learners in their second language.

It is not difficult to exchange the words ‘first language’ with the concept of chil-
dren’s early, informal mathematics and substitute the abstract symbolism of mathe-
matics for ‘second language’.

Sometimes children’s second language is written using an alphabetic or symbolic
system that contrasts to that of their first language (for example in the letters, char-
acters or orientation of writing) and in recent years research has illuminated young
children’s behaviours as they develop competency in writing their second language.
Evidence comes from research with children combining Chinese, Arabic or Spanish
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and English (Kenner, 2004a and b; Kenner and Kress, 2003); Hebrew or Arabic and
English (Mor-Sommerfield, 2002); and Pahari or Urdu and English (Drury, 2000) and
is described by Mor-Sommerfield as a language mosaic that ‘ultimately creates a
coherent (new) form’ (2002, p. 99). Such studies are revealing those ways in which
children combine aspects of both their first and second languages, allowing them to
engage in transformative thinking (Kenner, 2004a, p. 35) and to become bi-literate.

Research on bi-literacy is demonstrating that young children draw on what they
understand of their first written language as they develop understanding of a second
written language. In a similar way in emergent writing, children gradually combine their
own informal marks and understanding with standard symbols and spellings as they
develop content. Our evidence is that young children also draw on their informal math-
ematical marks as they develop understanding of the standard written language of math-
ematics. There has been no equivalent term in mathematics for combining informal and
standard written symbols as in bi-literacy, which is why we use the term bi-numeracy

Deepening our understanding of bilingualism is, John-Steiner asserts, ‘effective,
additive, joyful and competent use of two or more languages — [and] is increasingly
important today for growing numbers of children ... [who] find themselves in alien
lands with little knowledge of the languages spoken around them’ (John-Steiner,
1985, p. 369). For many children mathematics can be an alien land.

Becoming bi-numerate

Using the cultural (symbolic) tools of mathematical graphics (children’s own and
standard abstract symbols) allows what Rogoff (2003) ‘terms mutual bridging of
meaning’ that can only be acquired through interaction (see also pp. 22-3). In our
model (Figure 5.2) the gap that separates informal and formal mathematics is repre-
sented by the gulf between informal home and abstract school mathematics: this is
both wide and deep. This symbolises the extent of the difficulty that must exist for

ol

Home and Early childhood
community education setting

Figure 5.2 Bridging the gap
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young learners. In the literature children are seen as needing to translate between
the informal and formal mathematical languages, though in practical terms there
has been a dearth of guidance on how this might be achieved. However, recent lit-
erature has very much supported the idea of older children using their own written
methods mathematics. For example, Thompson (1997) uses the term ‘personal
written methods’ and Anghileri (2000) writes about ‘invented methods’. There has
been lack of evidence from published examples of younger children’s mathematical
graphics, yet this is where most of the difficulty begins: children’s confusion is
ingrained before they might be given the freedom to try their own written ways in
mathematics. We are arguing that teachers need to understand children’s mathe-
matical marks much earlier than current available literature suggests.

We know the pressures that teachers experience, including tests, inspections and
demands for ‘results’ and ‘standards’. Some of these pressures can be interpreted as
a need for children to achieve abstract symbolism rather than use informal mathe-
matical graphics in the short term. The pressure leads to children being hurried on by
recording in ‘acceptable’ (neat or standardised) forms such as worksheets. It can also
include teachers’ requests that children use a particular form of representation: this
might include standard calculations, or that all children in the class use tallies or a
pictographic form when working on a particular calculation.

In Figure 5.2 this shift is represented as a bridge, with children moving from their
informal mathematics to the standard and increasingly abstract forms of
representing mathematics in school. The implication in such a model is that the
desirable movement is generally of one-way traffic, therefore it will follow that the
most desirable position will be to move children on to abstract mathematics
without a transitional or multicompetent stage.

In Figure 5.3 we provide an alternative model. Using their own mathematical
graphics and constantly moving between their own informal understanding and
abstract mathematical symbolism in an infinite loop ensures cognitive feedback. In
the centre of the model the area represented by a dotted circle shows where
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Figure 5.3 Becoming bi-numerate
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children’s knowledge of informal, ‘home’ mathematical marks and formal, written
‘school’ mathematics combine. This is similar to the way in which young children
combine their knowledge of first and second languages (Cook, 1992, p. 16) and two
written languages. In their recent publication, Pahl and Rowsell identify a ‘third
space’ in which children explore drawing and writing ‘using home and school liter-
acy’ (2005, p. 66). Furthermore a similar model has also been identified by Anning
and Ring, where children ‘make sense of continuities and discontinuities’ between
home and school practices (2004, p. 7). These studies point to research findings in
areas as diverse as second language learning, bi-literacy and drawings and mathe-
matical graphics and highlight related procedures in their learning as children link
informal and formal and home and school understandings.

This allows concepts to metamorphose: informal marks are gradually transformed
into standard symbolism. Children become what we term ‘bi-numerate’ and like
bilinguals they will come to use these two languages of mathematics fluently. Their
understanding of the second language — the abstract mathematical language — will
develop at a deep level since they will have constructed their own understanding of
the role and function of the symbols themselves. John-Steiner observed that such
‘complex and opposing relationships’ were noted by Vygotsky, who suggested a two-
way interaction between a first and second language (John-Steiner, 1985, p. 368).

The strength of this model is that whilst the most significant development occurs for
children during the Early Years phase, older children can also benefit from using their
personal mathematical graphics — at any stage or for any calculation or problem. Chil-
dren’s own representations appear to help them reflect on problems ‘and in that think-
ing — and reflecting-process ... understanding becomes more complex’ (Brizuela, 2004,
p. 65). Mathematical graphics appear to allow children to bridge the ‘bi-cultural’ divide.

Cook outlines features of second language learning which we believe are the same
in early mathematical graphics, including approximation, invention, re-structuring
and falling back on the first language (Cook, 2001). Reflecting on the observation
that learning mathematics is ‘like an unfamiliar foreign language’ allows us to see
that children’s own mathematical graphics supports children in developing their
multicompetences and enable them to become bi-numerate.

Using blank paper

The findings of our questionnaire (Worthington and Carruthers, 2003a) (see Chapter
1), showed that whilst 79 per cent of the teachers of 3-8-year-old children who
responded used worksheets, 82 per cent of the same teachers also either allowed or
encouraged some use of blank paper for mathematics. At first glance these figures
appear encouraging. The teachers who said they use blank paper provided 476 exam-
ples of the sort of mathematical marks children might make on blank paper, yet of
these almost 85 per cent were either when the teacher told the children what to do
and how to record, or when the teacher produced what was, in effect, a copy of a
worksheet.

Nine per cent of examples referred to the use of blank paper within children’s role-
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play. This provides positive opportunities for children to use marks in the context of
their play. When we carried out this research, in England role-play was rarely found
in classrooms with children beyond the age of 5. This effectively ruled out the use
of blank paper within any play situations for children once they move into their
second year in school. However, this may now be changing since the introduction
of the materials in Continuing the Learning Journey (QCA, 2005) which supports a
play-based curriculum for children up to the age of seven years of age.

In only 6 per cent of examples of mathematics on blank paper did teachers refer to
children ‘making their own marks’; using ‘emergent writing’; using paper ‘in their own
way’ or making ‘jottings’. This paints a disappointing picture, especially since most of
these teachers used worksheets for a greater part of the time. Blank paper appeared
therefore to be viewed as an extra to the teachers’ usual activities or for occasional use.

We wondered what happened to the pieces of paper on which the children made
their own marks. In our own teaching we have found that these pieces provide
invaluable information that helps us assess, support and extend children’s learning
and build a constantly unfolding picture of their development. We explored addi-
tional questions through telephone interviews with a sample of the teachers in this
study. When asked, 77 per cent of the teachers said that the children took home
what they had done and several replied that they did not keep them. Of the 6 per
cent of teachers interviewed who did occasionally use blank paper, less than a
quarter kept examples with children’s marks: these were used for the school records
and only a sample of what the children had done was saved. Blank paper was more
likely to be used occasionally and therefore its use was of a different status to work-
sheets. The marks children made on paper during their play, for example, were gen-
erally not saved by teachers, suggesting that these marks were not seen as significant
in contributing to the children’s developing understanding. In mathematics it
appears that a widely held view is that children’s mathematics on paper is significant
only when it is the outcome of a teacher-directed activity.

These findings point to written mathematics that is largely on worksheets or fol-
lowing the direction of the teacher. Furthermore, we believe that it must be almost
impossible to trace children’s development unless a comprehensive, dated collection
of pieces is kept. It is possible to do this but clearly it is rarely done. In our work in
visiting many Early Years settings we also seldom see examples of children’s own
mathematical marks displayed.

Teachers’ difficulties

One of the problems teachers face is that young children’s own mathematical think-
ing on paper is not always easy to decipher. It is quite easy to disregard children’s
mathematics on paper as incomprehensible or poor (Litherand, 1997). Even when
children explain their thinking it still can present teachers with dilemmas because it
may look wrong, or appear untidy. They may have crossed out things or chosen not
to use the standard procedures. Teachers may feel that it takes too long to ask the
child about it since it takes time to tune into children’s thinking.
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In classrooms where children are not given the opportunity to put their thoughts
on papetr, it never happens anyway. In such classes children’s mathematical graphics
do not fit the norm, and for many pressurised teachers it is too much to cope with:
it disturbs the equilibrium. And teachers are often too busy to reflect on what the
marks might mean. Yet a decision to explore further the meanings of their marks
could render different perceptions. As Litherand contends:

for the teacher who views learning as a process of development and construction
rather than a process of association, knowledge could be seen as of personal and
social construction rather than fixed and immutable, as dynamic rather than static.
The impact of such differences upon the criteria by which teachers judge achieve-
ment is significant. (Litherand, 1997, p. 11)

Conclusion

Although the idea of bi-numeracy - the translation of informal (home) mathematics
to abstract (school) mathematics — is relatively clear, the difficulty lies in the solution.
‘Bi-directional translation’ was a key feature in Maclellan'’s study, where teachers in an
experimental group were constantly making connections in their teaching from infor-
mal mathematics to formal (Maclellan, 2001). This was a small study but it does add
weight to the fact that the key feature indicated success in helping to translate. She
emphasises: ‘informal knowledge serves as a powerful base on which to build more
formal knowledge; and secondly, that by linking informal and formal knowledge the
learner develops greater “power” to apply the formal knowledge’ (Maclellan, 2001, p.
76). And for teachers one of the strengths of encouraging children to use their own
mathematical graphics — their thinking — in their own ways, is that it gives adults a
‘window on to their thinking’ that may otherwise be inaccessible.

In Chapter 6 we show how young children use their own marks to develop their
understanding of mathematics. We introduce categories of forms of mathematical
graphics and explore some early beginnings of number that children represent on
paper, from numerals to representing quantities and counting.
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How curious it must seem to a child beginning school, if so many of her early experi-
ments with print are not recognised and understood by the adults in the class. Confu-
sion must surely occur if what was accepted as writing at home is not considered
writing at school. (National Writing Project, 1989, p. 18)

The evolution of children’s early marks

Introduction

In Chapter 5 we highlighted the difficulties young children experience when they
move from home to the increasingly abstract symbolism of school mathematics.
Aubrey comments about children’s early experiences of education when teachers
seem unaware of the ‘rich, informal knowledge brought into school’ (Aubrey, 1997b,
p- 138). Our evidence is that Early Years teachers often also fail to recognise the value
of children’s early informal marks, including those that may be mathematical. This
difficulty, highlighted in the responses from many teachers in our questionnaire,
indicates something of the extent of the problem (see Chapters 1 and 5). In this
chapter we focus on the development of children’s early mathematical marks.

Whilst early marks may sometimes be valued as the beginning of drawing and
writing, early mathematical graphics are rarely acknowledged (Matthews, 1999, p.
85). For teachers and educators this may be in part due to the fact that so little has
been researched or written about children’s early mathematical graphics. It is almost
as though young children never make mathematical marks: yet our evidence,
exemplified through the many examples of children’s marks in this book clearly
contradicts this.

Most studies have so far concentrated on the analysis of children’s number repre-
sentations in clinically set-up tasks (Hughes, 1986; Munn, 1994; Sinclair, 1988). Both
Gifford and Pengelly, in two separate investigations, set up single class studies. In
doing so they identified the richness of children’s own methods in real teaching
situations. However, both of these studies were of one task, in one class and, because
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they were short studies, the researchers were unable to analyse the development of
children’s mathematical graphics (Gifford, 1990; Pengelly, 1986).

Practical activities

From our questionnaire, teachers revealed that when they do give children oppor-
tunities to record mathematics most use worksheets (see Chapter 1). Many teachers
did make some use of blank paper, though most gave examples in which they told
the children how to record or provided outlines or directions for them to follow. The
exception to this is that some teachers did say that they made blank paper available,
only 16 per cent of teachers in our study referred to children making their own
marks, recording in their own way, choosing how to record or using their own jot-
tings (see Chapter 1). This figure includes those teachers who referred to children
making marks through their role-play. The picture is bleaker than these figures
appear to show, when we analysed the type of marks children made and what the
teachers did with the paper on which they were written (see Chapter 5).

Teachers tend to be over-reliant on practical activities and miss out giving children
opportunities to make their own mathematical marks. Many Early Years mathemat-
ical books written for teachers emphasise practical activities. For example, Lewis
emphasises practical recording with materials and mathematics equipment, and sug-
gests that children’s own recording should be accepted. However, she does not give
any examples or explain how teachers might support children in this way (Lewis,
1996). Threfall argues that ‘the complete absence of sums in the Early Years is the
only real alternative to concentrating on them. There is no viable middle way’, and
proposes practical alternatives (Threfall, 1992, p. 16). However, based on the evi-
dence we put forward in this book we propose that there is a strong alternative.

Practical activities are proposed as the solution that help children understand the
abstract nature of mathematics. However, whilst we believe that practical activities
are important, on their own they will not help the child come to use standard algo-
rithms with understanding. Neither will they help the child understand the nature
and role of abstract mathematical symbols.

As we have argued in Chapter 5, in order to help children translate from their
natural, informal (home) mathematics to the later abstract symbolism of standard
school mathematics, teachers need to support children’s own mathematical graph-
ics. Supporting their mathematical thinking by co-constructing and negotiating
meaning helps children make connections at a deep level. It is through their math-
ematical graphics that children become bi-numerate.

Mental methods

Askew discusses the fact that it is not helpful to ask when a mental calculation
becomes a paper and pencil method. He asserts ‘any method involves mental
activity’ (Askew, 2001, p. 13). In England the National Numeracy Strategy (NNS) has
stressed the importance of encouraging the teaching of mental methods (DfEE,
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1999b). Guidance for teachers in the NNS documents and on in-service courses
encourages teachers to discuss children’s own mental methods with the whole class
and support all the children. This has been one of the main changes in the teaching
of mathematics since the introduction of the National Numeracy Strategy.

The introduction of visual mental images to support children’s own mental facility
has been a vital part of the new approach to the teaching of mental mathematics in
England. Askew declares that while practical work with young children is useful, there
must be an element of ‘in the head’ mathematics: if this is lacking, children may oth-
erwise think that mathematics is always practical. Mental mathematics provides chil-
dren with images that they may explore on paper (Askew, 1998). As Harries and
Spooner suggest, these images link together mental work and work on paper:

it allows the children to operate between mental and written methods rather than
feel that they are progressing through mental methods to written methods. What
the images allow the children to do is to build up the bank of strategies from which
they can choose an appropriate one for the task. (Harries and Spooner, 2000, p. 51)

Not only is mental mathematics vital for children’s representations but the way in
which the mental mathematics is taught is similar to the teaching we advocate for
supporting children’s own mathematical graphics and written methods.

Evidence from our observations of children of 3 to 8 years of age, during a period
of over 12 years, shows that whilst the youngest children may not be as prolific at 4
at making mathematical number symbols, they do draw and represent things in a
variety of ways. As the examples in this book show, when adults really listen and
observe the marks children make, they will see beyond the ‘scribbles’ and under-
stand the child’s intended meaning.

We have analysed almost 700 samples of mathematical graphics. These cover the
entire 3-8-year-old age range of mathematical marks and representations in which they
used their own written methods. They cover all aspects of number and mathematics
from the wider mathematics curriculum. They range from child-initiated marks within
play to adult-directed sessions in which the children also chose what they wanted to
put down on paper. All the samples have come from our own classes or classes in which
we have been invited to teach. Based on this large sample of original children’s marks
from real teaching situations in real classes, our findings are therefore evidence based.
We have grouped examples to show where some clear patterns emerged.

Categories of children’s mathematical graphics

We have already shown how children select different forms of graphics to represent their
mathematical thinking, both at different ages and for different mathematical purposes
(see, for example, Chapters 2 and 3). In Chapter 4 we argued that there are some links
between children’s early (emergent) writing and their early mathematical graphics.

As members of the Emergent Mathematics Teachers’ group, one of the important
questions we endeavoured to answer was whether there was also a developmental
pathway in children’s mathematical marks and written methods. For many years the
answer was elusive.



Making sense of children’s mathematical graphics 87

Mathematical graphics are more diverse, not only because children are not
moving towards common forms of a written language such as English or Greek, but
because the different mathematical genres often suggest quite different graphical
approaches. In early written addition, for example, children usually begin with con-
tinuous counting before separating sets (see Chapter 7). In representing data, young
children may use pictures and ticks and gradually move towards increasingly stan-
dard layouts (see Chapter 8).

However, before we analysed children’s own written methods of calculations we
needed to focus on the range of different, graphical marks children choose, and the
evolution of these early marks: (for an overview of the development of children’s
mathematical graphics, see Figure 7.13 in Chapter 7).

Common forms of graphical marks

In analysing our examples of children’s marks and written methods we have identi-
fied five common forms of graphics, including three of Hughes’s categories:

¢ dynamic

¢ pictographic
® jconic

e written

e symbolic.

Dynamic

We use this term to describe marks that are lively and suggestive of action. Such graphics
are ‘characterised by change or activity (and) full of energy and new ideas’ (Pearsall, 1999).
We categorised Charlotte’s ‘hundred and pounds’ (Figure 6.7) and Amelie’s dice game
(Figure 10.3 in Chapter 10) in this way. Both pieces have a freshness and spontaneity.

Pictographic

We have used Hughes’s definition, ‘that the children should be trying to represent
something of the appearance of what was in front of them’ (Hughes, 1986, p. 57).
For example, in Figure 6.9 Karl was representing the tables that he had just counted
in the classroom. In another example, Britney drew the strawberries that were on a
plate in front of her, and which she subsequently ate (see Figure 7.6).

Iconic

These marks are based on one mark for one item when counting. Children whose
marks are iconic use ‘discrete marks of their own devising’ (Hughes, 1986, p. 58). This
can often be reflected in the popular use of vertical strokes as tallies that is taught in
many schools, although to tally is to keep a score of something and need not dictate
only one way. However, when children choose ‘marks of their own devising’ we find
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that such tallies are only one of many iconic forms. Scarlett used circles to represent
one group of teddies and squares to represent another (Figure 10.8). Jennifer used stars
to stand for individual beans in a set in her subtraction sum (see Figure 7.5).

When playing a game with two dice, Chloé drew stars, triangles and little lorries
in place of the dots (not illustrated) and Kamrin drew some highly imaginative
“Tweedle birds’ to represent the individual numbers in his division calculation (see
Chapter 9, Figure 9.5). Since none of the iconic symbols that the children chose were
suggested by us, it is difficult to know what their origin was. Scarlett may have used
circles and squares since they were quicker to draw than separate teddies. These
shapes then possibly suggested something else to her: by adding a few details she
turned the circles into balls and the squares into presents. To adults, drawing balls
and presents, stars, triangles, little lorries or “Tweedle birds’ in place of the items or
numerals that were part of their calculations may appear curious. But the type of
iconic marks children choose to make is not important, provided they follow the
one-to-one principle (Gelman and Gallistel, 1978).

Tallies may be one of the earliest forms of written counting with its origins in prac-
tical contexts stemming from holding up fingers as a temporary record of items.
They may have links with traditional oral counting documented by Opie and Opie
(1969). Tallies pre-date the earliest forms of writing in the world (Hughes, 1986).

If they choose to use iconic marks, it is important to encourage children to move
towards choosing increasingly efficient forms for their counting rather than focus-
ing on beautifully embellished drawings.

Written

Using words or letter-like marks which are read as words and sentences is common in
our examples and found elsewhere (for example, Hughes, 1986; Pengelly, 1986). In our
culture written communication is evident everywhere and children come to see this as
a meaningful response on paper. As the examples from Matt in Chapter 2 showed, chil-
dren may begin to differentiate marks that carry meaning as words, from those that
represent numerals or are drawings, before they are 4 years old. We collected many
examples of children writing explanations and written methods entirely in words, as
Figure 7.8 shows. In this example John wrote ‘2 grapes, there is (are) two. 4 grapes,
there is (are) four. 6.” His addition calculation is a form of narrative, relating a sequence
of events or numbers. We explore ‘narratives’ in greater detail in Chapter 7.

Symbolic

Children using symbolic forms use standard forms of numerals (for example ‘2’, ‘7,
‘15’) and gradually begin to incorporate standard (abstract) symbols such as ‘+’
appropriately. In the examples from a group of children who were subtracting beans
(Chapter 7, Figure 7.5), Eleanor decided to use standard numerals, the ‘-’ operant
and the symbol for ‘equals’. Other children in the group chose graphical forms that
were appropriate for them at the time. In the same chapter, Anna (Figure 7.10) used
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standard symbols (numerals and ‘+’) for adding together the dots on the two dice she
was throwing. This example contrasts with that of Amelie, almost a year younger,
who represented the amount on each dice without adding, in a highly dynamic and
personal way (Figure 10.3).

As we discuss in Chapter 7, before children reach the stage of using plus, minus
and equals symbols, they often make their own sense of such abstract symbols in a
variety of intuitive and individual ways.

Forms and structures

There appears to be a strong relationship between these forms of mathematical graph-
ics and the structures of marks which Matthews has identified in children’s early draw-
ings (Matthews, 1999). Matthews’ work is a departure from previous studies of
children’s visual representations in his attention to detail when exploring and
analysing children’s actions and marks from their beginnings in infants’ gestures.
Matthews strongly supports the premise that children’s marks are not haphazard scrib-
bles but are products of a systematic investigation. He observes children’s actions and
mark-making through what he terms first, second and third generation structures and
shows how these structures are found in subsequent drawings and symbols.

Matthews'’s first generation structures refer to horizontal and vertical arcs and marks
made by push and pull movements, generally using large arm actions. Matthews
describes his own children from six months to two years using these structures.
Examples of these include Matt’s marks (see Figures 2.1; 2.6a and 2.6b).

The second generation structures are continuous rotation, demarcated line-endings, travel-
ling zigzags, continuous lines and seriated displacements in time and space. Molly (Figure
6.3a) used second generation structures such as demarcated line endings, seriated dis-
placements, and travelling zigzags that bear a similarity to the physical action of writing.

In third generational structures, the child organises and transforms first and second
generational structures. Third generation structures are closure, inside/outside relations,
core and radial, parallelism, collinearity (lying in the same straight line), angular attach-
ments, right-angular structures, and U shapes on baseline. These structures support all
visual representations. These three ‘generations’ of structures support all the common
forms of graphical marks that we have identified. The combination of third generational
structures is increasingly evident in children’s more complex representations (see for
example Figure 6.3b) where Alex has used third generation structures of closure, angular
attachments, core and radial, outside/inside and U shapes on a baseline. He has a sense of
the code of written numbers and his own representations help him explore the way in
which this ‘works’. In Figure 9.5a Kamrin'’s “Tweedle birds’ combine core and radial and
closure structures, U shapes on a baseline and angular attachments. Alison’s use of closure
(Figure 9.11) to manage space on her paper is interesting. Alex and Alison’s numerals
are a synthesis of all the generational structures that they have mastered and show that
the complexity of producing standard written letters and numerals is a considerable
achievement for young children, (see also pp. 61-2, for the relationship between chil-
dren’s written letters and numerals and Matthews'’s generational structures).
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We have also explored the relationship between art and mathematical graphics
and argue that children’s mathematical graphics appear to support deep levels of
thinking in ways that are similar to the role of drawing for adult artists and mathe-
maticians (Worthington and Carruthers, 2005c¢).

Idiosyncratic or meaningful?

We have found the categories that Hughes developed to be a helpful starting point.
Hughes’s study helped many teachers recognise that children could use their own
marks to represent numerals that they could then read. For teachers who
understand and support early ‘emergent’ writing, this has resonance. However, after
careful consideration, we decided not to use Hughes’s ‘idiosyncratic’ category.

The term idiosyncratic was used by Hughes when the researchers ‘were unable to
discover in the children’s representations any regularities which we could relate to
the number of objects present’. Many of the idiosyncratic marks in Hughes’s study,
in which the children’s response was to ‘cover the paper with scribble’, could
perhaps have related directly to the number of bricks the children counted (see
Hughes, 1986, p. 57). However, it appears that the children had not been asked to
explain their marks. In the clinical method of interviewing young children there is
a flaw, in that young children may not wish to respond to a stranger. They might
have responded more openly to a teacher or some other key adult in their life.

We argue that these idiosyncratic responses are significant and need to be under-
stood by Early Years teachers in order that they can support children’s written math-
ematical communication. It is easy to disregard scribbles and what appears to be
idiosyncratic responses, if we are unable to readily understand their meaning. As
experienced Early Years teachers we expect children’s early marks and symbols to
carry meaning for the child. Whilst we can only conjecture about the possible mean-
ings of some marks, we do believe that young children’s marks carry meaning.

Ewers-Rogers studied children’s early forms of representation (for example, in
party invitations and notes for the milkman). The most noteworthy finding from
her study was that a highly significant proportion of graphical responses were those
she also termed ‘idiosyncratic’ (Ewers-Rogers and Cowan, 1996). Like Saint-Exupéry
as a child in Le Petit Prince, the marks the children make often fail to be understood
by adults (Saint-Exupéry, 1958).

The five graphical forms discussed in this section (listed on pp. 87-8), encompass the
tull range of marks we found. Whilst this is not a rigidly hierarchical list, children do
appear to move from their earlier forms of dynamic marks and scribbles towards later stan-
dard symbolic forms of calculations with small numbers. These five categories refer
directly to the type of marks that children choose to make. But whilst they are significant,
the forms alone do not represent the development of children’s own written methods.

We have often found that children use a combination of two forms of graphical
marks, for example iconic and symbolic, when they are in a transitional period. It
appears that when they do this they are moving from their familiar marks towards
new ones although they are not yet ready to dispense with non-essential elements.
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As their thinking develops, children appear to progressively filter out everything but
what is necessary to them at the time.

Early development of mathematical meaning

In analysing almost 700 examples it became evident that, as they make marks on
paper, the children’s mathematical thinking and understanding supports their
meaning. In turn, as their marks and representations are co-constructed and negoti-
ated with others, this extends their ideas — not only about the form of their marks
but also about the mathematics. As we analysed the children’s mathematical marks,
we could see a development of both the children’s marks and of their meanings.

The development of children’s mathematical graphics

From their early play and marks, through counting and their own written methods
that children choose to use, we have identified five dimensions of the development
of mathematical graphics. These dimensions span the period from 3 year olds in the
home and nursery, through to children of 7 and 8 years old in school.

¢ multi-modal explorations and exploration with marks

e carly written numerals

e numerals as labels

e representation of quantities and counting

e carly operations: development of children’s own written methods.

For a taxonomy of children’s development, see p.131.

It is important to emphasise that this taxonomy is not strictly hierarchical and
therefore the various dimensions should not be seen as ‘stages’ through which all
children pass, nor should they be directly taught. However, there are several features
which are significant for teachers:

¢ all infants move from gesture, movement and speech to make their own early explo-
rations with marks

e children will all need to be freely representing quantities that are counted before
moving on to early operations in which they count continuously.

Multi-modality

Making marks on a surface, for example with fingers or a pen, has a history. These
arise from the infant’s gestures that both precede and accompany a child’s first marks
(Trevarthen, cited in Matthews, 1999; Vygotsky, 1983). Children may be using ‘their
own body actions and actions performed upon visual media to express emotion’
(Matthews, 1999, p. 20). And, as Kress has documented, there are multi-modal ways
of making meaning ‘before writing’ (Kress, 1997). Children’s mathematical marks are
only one of the ways they use marks to communicate and carry meaning.

In Chapter 3, the observations of Aaron’s pattern of schemas indicate the rich and
diverse ways in which he made meaning. As Athey revealed in her important study
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of schemas, action, thought and marks are interrelated (Athey, 1990). It is only later
that children differentiate their marks in terms of a school’s conventions and its
subject boundaries.

Melanie’s ladybird

Melanie, 4:9, was exploring different layers of meaning through her marks and
through cutting out (see Figure 6.1).

Having made various marks on her paper Melanie used some scissors to make
cuts from the bottom of the paper and then removed a portion of it. She lifted
the paper and moved it across the table top calling happily to other children
‘she’s dancing!” She added some more marks, telling the children nearby ‘she’s got
a pretty dress’ and then repeated her movements to make her paper ‘dance’.
Melanie explained that this was a ‘lady dancing’.

At this point I was needed elsewhere to work with some other children. When I later
asked the nursery teacher if I could talk to Melanie about her ‘dancing lady’, I discov-
ered she had already left to go home. I was fortunate in that Melanie’s mother had kept
what her daughter had made and the following day she returned with it. By now
Melanie had again altered what she had done. She had cut across it in several places
and her mother had ‘mended’ it. Melanie told her teacher ‘it’s a ladybird and it dances
— (singing) la, la, 1a, la, la ...". Her teacher observed that she thought it was ‘significant
that Melanie’s representations can change. At first the split in the lower half of the
paper had been reminiscent of legs, so it was a lady. The second time around possibly
the “lady” bit got transferred (word association) to a ladybird’ (Fiona, nursery teacher).

Kress points out that there is a strong ‘dynamic inter-relation between available
resources’ (Kress, 1997, p. 22) — in this case the paper, crayons and scissors — and the
‘maker’s shifting interest ... while it is on the page I can do “mental things” with it

.. when it is off the page I can do physical things with it’ (Kress, 1997, p. 27).
Melanie had transformed marks on paper (suggesting a pattern on a lady’s dress) to
a lady and subsequently a ‘lady-bird” who danced. As Pahl (1999a, p. 23) argues,
such objects have a ‘fluid quality: they appeared to be finished and then the chil-
dren would revise them’. In her study of making meaning in the nursery, Pahl pro-
poses that such ‘transitions from one kind of realism to another are particularly
interesting when we look at the work of young children’ (Pahl, 1999a, p. 27).

Melanie’s ladybird is one of many ‘modes’ of representation. We include it here to
indicate the significance of early, multi-modal ways in which children explore
symbols, messages and meanings. What was Melanie’s ladybird? Was it creative art
or technology? Perhaps it might be described as small world play or a play with
puppets? What are the links with early drawing, writing or mathematics?

One of the problems that teachers face, particularly once children move into
school, is the apparent constraints of subject-led curricula which can require us to
label learning neatly and put it in boxes. But young children do not make meaning
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Figure 6.1 Melanie’s ladybird

in neat little parcels in such a way. Young children also make meaning through
actions, thought, role-play, dens, cut-outs, models, marks, bricks and blocks (Athey,
1990; Gura, 1992; Kress ,1997; Pahl, 1999a).

Early explorations with marks

Putting things in a bag

I was working in the nursery with a group of children and set out a selection of baskets
with corks, shells, conkers, coins and fir cones. Nearby I put small bags, different sized
paper bags and a variety of small boxes. The following example is a transitional piece,
linking play with objects and some marks made by one child about some of the
objects. The child then used his paper with marks as an object in its own right.

As the children filled and emptied containers they used mathematical language
that | supported — ‘inside; full; empty; enough; more’ and number words. There
were paper and pens nearby and of the ten children in the group, Cody, 3:5, and
one other child decided to make some marks.

Cody picked up several items and drew round them (Figure 6.2). As | watched,
he then carefully screwed up his paper. Next he put the paper inside one of the
paper bags which already held several bottle tops and a fir cone.
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Figure 6.2 In a bag — Cody

Cody was making meaning about putting things inside: in the language of schemas
we might say he was exploring containing and enclosure. First, he had drawn round
some objects, directly ‘re-presenting’ them on his paper. Then he put the paper with
the marks of the objects that were in the bag, inside the bag. The marks on paper
had been transformed into objects themselves and given new meaning. Kress advises
that such ‘successive transformations from one mode of representation to another
... need to be encouraged to do as an entirely ordinary and necessary part of human
development’ (Kress, 1997, p. 29).

We contend that teachers need to focus on all aspects of children’s meaning (here,
in terms of their mathematical meaning), through their ‘plethora of ways’ (Kress,
1997). And early mark-making needs to be viewed as just one facet of this profusion.
In her study of children’s meaning making in the home and nursery, Anning found
that ‘children could move fluidly from drawing to modelling to small figure play at
their own pace’. She writes ‘in nursery classes adults are less concerned with the
adult-led agenda (and) pre-determined outcomes’ (Anning, 2000, p. 12). Such pre-
determined objectives and outcomes in schools often militate against such fluidity
and multi-modal symbol-making in a variety of semiotic modes. As we have already
argued, early mathematical mark-making on paper is just one of the ‘hundred lan-
guages’ of young children (Malaguzzi, 1996).
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‘The beginning is everything’ — (Plato)
Early marks

Young children’s first marks — sometimes referred to as scribbles — are a major devel-
opment in a child’s step towards multi-dimensional representations of her world.
Malchiodi recognises that a child’s first scribbles symbolise a ‘developmental land-
mark’, since they now can make connections with their actions on paper to the
world around them (Malchiodi, 1998). Gardner (1980) found that the naming of
scribbles occurs often in some children and not at all in other children. In the
samples we analysed of children in this graphic stage, we found that many of them
had actually attributed numbers to their marks (see, for example, Figure 2.1, ‘Matt’s
numbers’; Figure 6.3a, ‘Molly’s numbers’; and Figure 9.2, ‘the number line’, Jessie).
We believe that when children do this, they have understood that numbers can be
written down and communicated to another person.

Malchiodi suggests that if children are giving meaning to their scribbles then they
may be moving forward in their development of representational images. Before the
advent of speech many infants ‘form in visual media a powerful expressive and com-
municative language’ which is not recognised by many as being significant
(Matthews, 1999, p. 29). Indeed, many of the studies on early drawings refer to scrib-
bles in an almost scientific way (for example, Burt, cited in Selleck, 1997; Kellog,
1969). They address the scribbles as something that is useful for later drawing. Fein
(1997) elaborated what she calls the ‘visual vocabulary’ to describe children’s early
marks, whilst Engel (1995) focuses on descriptions that stress meaning.

In his seminal study of the development of children’s art, Matthews observes that in
almost all studies of children’s drawings, a wide range of different marks is labelled
‘scribbling’. These ‘scribbles’ are, he proposes, ‘products of a systematic investigation,
rather than haphazard actions, of the expressive and representational potential of
visual media’ (Matthews, 1999, p. 19). Scribbles are not careless accidents without
worth but have significance for the child. ‘At every phase in the development of the
symbolic systems used by the child are legitimate, powerful systems capable of cap-
turing the kinds of information the child feels is essential’ (Matthews, 1999, p. 32).

After visiting the nurseries of Emilia Reggio, Selleck argued that ‘scribbles’ is a
derogatory term for young children’s art (Selleck, 1997). Children’s first marks on
paper therefore cannot be dismissed as a generic ‘scribbles’ stage, because children
are expressing in form and content the identities, structures, symbols, events, objects
and meanings of their worlds.

Studies of mathematical marks

In Chapter 5 we referred to Hughes’s categories of young children’s early writing of
numbers. In their separate studies Munn and Sinclair also identified and categorised a
small range of marks (Munn, 1994; Sinclair, 1988). Atkinson, whilst not directly
addressing the development of children’s mathematical graphics, provides a range of
teachers’ accounts from classes of children from 3 to 11 years (Atkinson, 1992). None
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of these studies explored the relationship with children’s early mathematical marks
and other, multi-modal, ways of representing meaning, or with children’s schemas.

In our own study the stunning range of children’s mathematical graphics and
their ability to make meaning constantly surprises and delights us. Pound empha-
sises ‘children’s truly amazing efforts to make sense of difficult symbolic languages’
and observes that these are ‘intelligent responses which reflect their incomplete
knowledge’ (Pound, 1999, p. 54). Nevertheless, in the nurseries and schools in which
we have taught, we have found that these particular forms of mathematical graph-
ics go largely unnoticed by others. In our interviews (see Chapter 5), less than 24 per
cent of those teachers asked said that they kept some examples of children marks
and used them for children’s records.

Our conclusion is that children’s marks do hold significance for them. Some marks
will be very mathematical but, as Athey observes, ‘without talking with children,
there is little information on whether children are investing their marks with
meaning’ (Athey, 1990, p. 82).

Early written numerals

Children refer to their marks as numbers and begin to explore ways of writing numer-
als. Some children use personal symbols that may relate to standard written numerals.
Children’s perception of numerals and letters is of symbols that mean something, first
differentiated in a general sense: ‘this is my writing’, ‘this is a number’.

Young children’s marks gradually develop into something more specific when they
name certain marks as numerals. At this stage their marks are not recognisable as
numerals but may have number-like qualities. This development is similar to the
beginning of young children’s early writing (Clay, 1975). Children also mix letters and
numerals when they are writing. They appear to see all their marks as symbols for com-
munication and at this early stage their marks for letters may be undifferentiated from
their marks for numerals.

Molly, 3:1| (Figure 6.3a) has made separate marks which are a development from
Matt’s linear scribbles which he named as a string of numbers (see Figure 2.1 in
Chapter 2). Molly’s marks are what Clay identified as letter-like and written from
left to right (Clay, 1975).We would add that they are also number-like. Molly
referred to her marks as numbers ‘seven, six and number eight’.

Often teachers refer to a young child as ‘not knowing his numbers’. Alex, 4:1 |, has
written his own symbols for numerals (see Figure 6.3b). This was self-initiated and
did not appear to relate to any items that he counted: he used elements of
standard letters (for example his ‘2°,‘5’,°6’ and ‘7°) and numerals (his ‘3’ and ‘4’) that
he knew. He was consistent when repeating ‘5’. It is clear from this that Alex does
know his numbers — it is adults’ numbers that he does not yet know.
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Jay, 3:8, (Figure 6.4a) was drawing and appeared to be interested in horizontal and
vertical grids. As | watched, she added some letters though did not explain their
meaning. Slowly she drew a curved shape which she joined. She paused, admiring
what she’d done, and said in a surprised voice ‘eight!’, then turned to me adding
‘my brother’s eight!” She again drew an eight, apparently enjoying the flowing
movement and the resulting numeral. In beginning her final figure eight she took
the pen in a different direction and abandoned her marks.

Visiting another class of 6-year-olds, | invited the children to hunt for numbers in
their classroom. Before the children began we discussed the places where
numbers are sometimes found and some of the specific reasons that they were
used.The children made a number of suggestions including numbers on a
radiator thermostat to control the temperature and on a clock. Michelle, 6.4b,
went off with her clipboard and was very involved in what she wrote.When the
children gathered together to discuss their findings, it was apparent that Michelle
was unclear about the difference between written numbers and letters. She had
copied the numerals on the clock (in the circle on the right), but had otherwise
recorded letters and words from environmental print in the room (Figure 6.4b).
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Figure 6.4a Jay’s eight Figure 6.4b Michelle’s number hunt

Michelle’s number hunt alerts us to the difficulty of differentiating between stan-
dard written letters, numerals and abstract symbols such as ‘+’ and ‘~’. This difficulty
may persist for some older children and is something one of us experienced when
attempting to learn some basic Tamil in both spoken and written forms.

All forms of children’s early written numerals have clear links to their early
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drawing and writing. They are personal responses and communicate meaning (Clay,
1975). For example the children know that:

e numbers can be written down
¢ they can represent numbers in different ways
¢ they can communicate with numbers.

Children use their current knowledge to make numerical marks and the following
features are common:

* Young children make their marks first and then appear to think of the numerals
that they want to tell you about.

¢ Through their mark-making children may discover the shapes of numerals they
recognise.

¢ Sometimes they have their own written number systems.

¢ They use marks and number- and letter-like shapes to represent the numbers they
want to make.

e They very often use a left to right orientation as in early writing.

e Children will incorporate their current schemas in respect of their marks. They
also use the numbers that particularly attract their attention (Athey, 1990; see also
Chapter 4).

It seems clear to us that the development of young children’s mathematical marks
relates to the generational structures (Matthews, 1999) that they develop in their
drawing (see p. 89). And, as we emphasised in Chapter 4, there are clear links
between the development of early writing and of written numerals.

Numerals as labels

Young children are immersed in print as symbols and labels in their environment in
the home, on television and from their community. Children often attend to these
labels and are interested in how they are used: they can write in contexts which
make sense to them (Ewers-Rogers and Cowan, 1996). Children look at the function
of written numerals in a social sense. By the time children have entered formal
schooling they have also sorted out the different meanings of numbers (Sophian,
1995). Their personal numbers can still remain at the forefront of their minds and
in some cases this can lead to confusion. For example, in teaching children that have
just entered school, we sometimes initiate counting round the class. Often we do not
get beyond ‘four’ as children say ‘but I'm four, that’s my number’! They are some-
times puzzled because they interpret the number ‘four’ in the count as a description
of themselves rather than part of the set.

In our samples of children’s written numerals we have evidence of their use of
numbers in the environment as symbols or labels. This is significant because they have
chosen to use numerals in different contexts: they know about these contexts and how
to use the numerals within them. This shows the breadth of their understanding of the
function of numbers and their confidence in committing this to paper. Knowing and
talking about these numbers is different from actually writing them. When children
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choose to write these contextual numbers, they have converted what they have read
and understood into a standard symbolic language. For example, Matthew, 3:9, drew
one of his favourite storybook engines, ‘James the Red Engine’ and ‘5’ which was the
number of the engine (Figure 6.5). Matthew was very interested in numbers, not only
on trains but also on buses and as regards their destination.
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Figure 6.5 Matthew —‘James the Red Engine’

Representation of quantities and counting

Representing quantities that are not counted

Celebrating what he refers to as young children’s ‘unschooled minds’ Gardner com-
ments: ‘the five-year-old is in many ways an energetic, imaginative and integrating
kind of learner; education should exploit the cognitive and affective powers of the
five-year-old mind and attempt to keep it alive in all of us’ (Gardner, 1993, p. 250).
The marks an un-schooled child makes can be unique, dynamic, energetic and
exciting because they have many unrestricting influences. It is this dynamic form
that teachers may see in children’s mathematical marks when they enter school, for
example Charlotte’s ‘hundreds and pounds’ (Figure 2.2) or Joe’s spider (Figure 2.3)
where he represented something of his sense of its many legs. We also categorise
Figure 10.3 as dynamic: as she played her dice game, Amelie’s graphics show some-
thing of her excitement, enthusiasm and her mental energy. We are in agreement
with Gardner who emphasises that keeping the spirit alive and thinking is crucial
‘to educate students for understanding’, in this case for mathematics (Gardner,
1993, p. 250).
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Figure 6.6 Tommy and the elephant

Tommy, 4:10, planned to copy numbers from a hundred square on the door of the
classroom (Figure 6.6). He was very involved and carefully wrote numbers to 60. He
then drew a hamster by the numeral ‘I’ and drew himself above the numeral ‘4.
Finally he drew an elephant next to the number ‘60’. The previous day Tommy had
been with his class for a visit to the zoo.When he showed me what he had done he
explained that hamsters do not live very long and that he was 4 years old. He then
drew on some new knowledge — ‘elephants live a long time’ (as much as 60 years).

Tommy had made a significant step in labelling, relating his knowledge about ages
and the life expectancy of two animals to the numbers he had written. He had
combined his knowledge with his recent experience at the zoo and devised his
own system of labelling.

These young children either attend to the link between their early marks and
meaning as a quantity in a general sense, or use the paper to arrange items and
numerals in a random manner. Large numbers are not, however, undifferentiated by
young children, since they clearly have the sense that there is a difference between
larger numbers and smaller numbers. This was noted in Gelman and Tucker’s (1975)
study when they looked at the range of numerical estimates children gave for sets.
They found out that even 3-year-olds showed a differentiated use of numbers from
four into the twenties.
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Figure 6.7 Charlotte’s ‘hundreds and pounds’

In representing objects on paper to count and to calculate, we will also show the
way in which children’s layout of items and operations is a combination of maturity
and a learnt skill (see Chapters 7 and 10).

Representing quantities that are counted

During the same period that children represent un-counted quantities, they may also
begin to count the marks or items they have represented and represent items they have
counted. Whilst Matt, Charlotte and Joe represented their sense of quantities through
the marks they made (Figures 2.1, 2.2 and 2.3), Amelie counted the dots she made on
her paper each time (Figure 10.3). Although it is difficult for an adult to identify each
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separate instance of dots on the dice Amelie drew, she counted them out loud. Four-
year-olds do not only represent things they physically count, but also can often repre-
sent and count some things that they cannot see, such as Jenna'’s raindrops (Figure 6.8).
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Figure 6.8 Jenna’s raindrops

Horizontal and vertical arrangements

Next, children appear to represent items or numerals in a line, usually horizontally —
as in his drawing of books that William counted (Figure 7.3). Occasionally the items
they draw are set out vertically, as in Jenna's raindrops (Figure 6.8).

Several researchers have demonstrated the vital importance of counting in the
initial calculation strategies young children use (Carpenter and Moser, 1984;
Fuson and Hall, 1983; Gelman and Gallistel, 1978). Gelman and Gallistel identified
five basic principles that are guided by young children’s implicit understanding. It
is interesting to note that in their graphic representations, children’s strategies do
indeed appear to be governed by the principle of one-to-one counting: they
invariably arrange items or numerals to be counted in a line, and then begin
counting with the first item they had represented (Gelman and Gallistel, 1978).

Jenna, 3:9, began writing her name in the top right-hand corner. After writing ‘J’,
she was obliged to continue from right to left to complete her name. She also
drew and counted the raindrops from top right, counting each vertical column
before proceeding to the next, in the same direction that she had written her
name. Perhaps the coloured pens she’s used reminded her of a rainbow and this
suggested ‘raindrops’.
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Figure 6.9 Karl’s tables

| had asked the children to help make an inventory of furniture and resources in
the classroom to help the head teacher who was doing an audit. Karl, 4.9, decided
to count the tables. He used a linear arrangement although the width of the
paper meant that he had to continue his drawings of tables below the first ones
he had drawn. Like Joe’s spider (Figure 2.3), Karl has shown something of the
appearance of ‘lots of legs’ which may have included the legs of chairs beneath
the tables.

When he'd finished, Karl counted the tables and then re-counted, putting a
mark on each table he’'d drawn, with his pen.At the top he wrote his
approximation of ‘10’ and | wrote what he said beneath it (Figure 6.9).
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The development of early written number, quantities
and counting

In the numerous examples we analysed, we found that these dimensions of early
written numerals are not completely hierarchical: children will revisit earlier dimen-
sions depending on what they are representing and their current concerns.

These four dimensions of early mathematical graphics provide children with rich
foundations from which to develop early written calculations. At this point children
can represent numerals, understand some of the contexts in which they are found
and use them appropriately. They recognise a range of purposes of counting, and
count real objects and objects that they have represented on paper. Now they are
able to make use of these skills and understanding to explore early written calcula-
tions in ways that are meaningful to them.

In Chapter 7 we continue to explore the development of children’s mathematical
graphics. We focus on children’s own written calculations, their growing under-
standing and use of operators and the development of their own written methods.
In Chapter 7 we turn to the ‘fifth dimension’ - early operations: the development of
children’s own written methods.
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On the fourth planet a businessman was engrossed in counting:

‘Three and two make five. Five and seven make twelve. Twelve and three make
fifteen. Good morning. Fifteen and seven make twenty-two. Twenty-two and six
make twenty-eight ... Twenty-six and five make thirty-one. Phew! Then that makes
five-hundred-and-one-million, six-hundred-twenty-two-thousand, seven-hundred-
thirty-one.’

‘Five hundred million what?’ asked the little prince. (Saint-Exupéry, 1958, p. 41)

There is one essential reason for teachers to encourage children to represent their
mathematical understanding on paper that we explored in Chapter 5.

It is through exploring mathematical graphics on their own terms that young
children come to understand the abstract symbolism of mathematics. Using their
own marks and making their own meaning - shared, discussed and negotiated
within a community of learners — enables children to become bi-numerate. This
allows children to translate from their informal, home mathematics to the abstract
mathematics of school; to ‘bridge the gap’. Being bi-numerate means that children
can exploit their own intuitive marks and come to use and understand standard
symbols in appropriate and meaningful ways: developing their own written methods
for calculations is an integral part of this.

Practical mathematics

There is a view that ‘practical mathematics’ with the use of resources supports early
mathematical understanding, for example Thompson argues that ‘all calculations in
the first few years of schooling should be done mentally, using whatever aids they
need — counters, bricks, fingers etc’ (Thompson, 1997, p. 98).

However, a study in 1989 confirmed that ‘the link between practical work and the
move to formal symbolic representation is often tenuous’ (Johnson, cited in Askew
and Wiliam, 1995, p. 10). Askew and Wiliam advise that results from this and other

106
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studies (for example, Hughes, 1986; Walkerdine, 1988) show that ‘while practical
work and “real” contexts need to be chosen carefully ... pupils’ success on a concrete
task should not be taken as an indication of understanding the abstract’ (Askew and
Wiliam, 1995, p. 11). Hall emphasises that the use of concrete materials has not nec-
essarily made the links children need between procedural and conceptual knowledge
(Hall, cited in Maclellan, 2001).

Thrumpston contends that ‘children need help to form links between formal and
concrete understanding, building on their informal methods of calculations and their
invented symbolism in order to develop, understand and use more formal modes of
representation’ (Thrumpston, 1994, p. 114). These ‘powerful modes’ are, Pound
explains, second-order symbols such as writing and numbers which ‘must be based on
a firm foundation of children’s own invented symbols’ (Pound, 1999, p. 27).

The range of children’s informal methods and symbolism which we document
in this chapter, is supported by the Curriculum Guidance for the Foundation Stage, (QCA,
2000) and The National Numeracy Strategy (DfEE, 1999a). Sharpe argues that this is one
of the strengths of the National Numeracy Strategy (Sharpe, 2000b, p. 108).

Thompson comments that ‘calculation takes place in the mind’ (Thompson, 1997,
p- 98). This is not precisely the same as mental calculations, but whether children (or
adults) use paper for their calculations, thinking takes place. The type of thinking will
not be identical for mental calculations as for those on paper but both will take place
in the mind. Thompson proposes that calculations are only written down:

¢ as a record of mental activity involved
¢ as a means of support for the individual doing the mathematical thinking
¢ as a means of communication to others.

These are all valid reasons and ones that we support. However, we return to our
central argument, outlined at the beginning of this chapter and more fully explored
in Chapter 3.

Thompson contends that in England ‘we appear to be obsessed with written work
in mathematics. It is as if no work has been done unless there is a written record to
verify it’ (Thompson, 1997, p. 78). This is not what we propose: what we recommend
includes the type of examples within the pages of this book. But they will not be the
same, for other teachers work in different contexts and children are all different.
Neither do we believe that children should be using paper to explore their mathe-
matical thinking every day — but when it may be appropriate, for the mathematics
and for the child, and within a play-based approach.

When we first started to give children opportunities to explore their own paper
and pencil methods we found it was difficult to make an informed assessment of
their mathematical recordings. Hughes had put his findings in neat categories which
was helpful but we found many other variations (Hughes, 1986). Gifford gave 6-year-
olds a calculation task and asked them to record in their own way. She also found it
was difficult to interpret children’s own mathematical thinking on paper (Gifford,
1990). The confusion over what these marks mean may lead to some teachers aban-
doning the idea of giving children opportunities to make their own mathematical
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representations. In this chapter we are therefore continuing to look carefully at chil-
dren’s marks and their meanings.

The fifth dimension: written calculations

For an overview of the development of children’s mathematical graphics, see Figure
7.13. (p. 131).

In analysing examples of children’s calculations a pattern of development
appeared which we have grouped into categories:

¢ Counting continuously.

¢ Separating sets.

¢ Exploring symbols.

¢ Standard symbolic calculations with small numbers.

¢ Calculating with larger numbers supported by jottings.

Before they are ready to understand calculations, children represent quantities that are
counted. In their own written methods of calculations, there is great diversity in their
chosen approaches before they begin to explore standard calculations with small numbers.
Some children also re-visit a more familiar way of working, for example Harriet’s
drawings of people in Figure 9.13 and Alison’s use of iconic marks in Figure 9.11. By
the time they are calculating with larger numbers supported by jottings, children will have
developed a deep understanding of the abstract symbols and written methods and
can apply them in a wide range of novel contexts such as problem solving.

Representations of early operations

Beginning with counting

Before they begin formal schooling, research has shown that young children ‘have
some understanding of addition and subtraction with small numbers’ (Baroody, 1987,
p- 144). Carpenter and Moser (1984) found that young children first use counting
strategies to solve simple (oral and practical) word problems involving addition and
subtraction. They identified the following levels of strategies: counting all; counting
on from the first numbers; counting on from the larger number; using known facts
such as number bonds they know by heart and using derived number facts such as
doubles to calculate what they do not know (Thompson, 1995). Orton argues that
whilst schools focus on combining and separating sets as an introduction to addition
and subtraction, children’s preference for counting persists (Orton, 1992, p. 145).
Studies of 5-year olds’ calculation strategies have highlighted the range of proce-
dures the children used that they had not previously been taught (Carpenter and
Moser, 1984; Groen and Resnick, 1985). Such studies indicate that children ‘tend to
work towards more efficient strategies when given the opportunity to solve a variety
of problems’ (Nunes and Bryant, 1996, p. 60). Children do explore and use an ever-
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increasing range of graphics to represent number operations and some may be gen-
erated by individuals. It is important to encourage children to see the connections
between the ways in which they represent their own ideas and the ways in which
other people choose to do so. Egan writes that ‘while we are encouraging children to
be makers and shapers of sounds and meanings we will also give them many exam-
ples of other people’s shapes’ (Egan, 1988, p. 12).

The variety of graphical responses that children choose also reflects their personal
mental methods and intuitive strategies developed from counting all. We explore
this in the following section on the development of children’s early calculations on

paper.

Counting continuously

In our study of young children’s early calculations on paper we collected many
examples of children’s calculations through counting. Here we explore the extent to
which the verbal and practical strategies for counting we have discussed are evident
within children’s early mathematical graphics (addition and subtraction).

We use the term ‘counting continuously’ to describe this stage of children’s early rep-
resentations of calculation (addition and subtraction) strategies. Several studies have
shown that young children can carry out simple additions and subtractions (with
objects and verbally) and that they do this by using counting strategies: the most
common strategy is to ‘count all’ or to count the final number of items (Carpenter
and Moser, 1984; Fuson and Hall, 1983). Since the ‘counting-all’ strategy is not one
that children are taught, Hughes suggests that we can infer that this is a self-taught
strategy (Hughes, 1986, p. 35).

When young children are given a worksheet with two sets of items to add, they
count the first set and then continue to count the second set. This is misleading for
teachers because although such a page will be termed ‘addition’: children use it to
count. As we show, counting is a valid and important stage in developing under-
standing of addition, but is not itself addition. However if the child chooses to repre-
sent addition like this (see Figure 7.1) then they have begun to understand the
separation of the two quantities and are developing a sense of addition by combining
the two sets. This is an important distinction and also a good reason to give children
opportunities to use their own methods of recording. The teacher can then under-
stand where the children are in terms of addition as opposed to the worksheet model.

One of the features of the early development concepts that Fuson detailed is when
children use their counting to answer the question ‘How many?’: by doing this they
have begun to integrate counting and cardinality (Fuson, 1988). In addition to
counting items (pictures or icons) continuously, in our study we found children
often represented the objects to be counted as numerals, whereby each number in
the sequence represented one object. In using numbers themselves as countable
objects, this gives children a ‘flexible means of solving addition and subtraction’
(Fuson, 1988, cited in Munn, 1997, p. 11).
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Comparison of strategies to add and subtract when counting

continuously

Addition

Subtraction

Children can represent and count
things they choose but cannot see, and
also some things they physically count
and then represent.

Features of counting continuously to add
may include:

e The pictures, icons or numerals
representing the two sets are often
arranged in a horizontal linear
arrangement, or occasionally in a
vertical arrangement (see for example,
Figure 7.1. The points in the remainder of
this column also apply to Figure 7.1)

e Where numerals are used, the two
sets to be added are represented as one,
the numbers continuing in sequence for
the whole amount

¢ To add the totals of two sets, children
count the items or numerals
continuously, starting at one (or the
first item they have shown)

e They count one-to-one

e Children understand the need to
count everything to arrive at a total

They can represent and count things
they choose but cannot see, and also
some things they physically count and
then represent.

Features of counting continuously, then
removing some to subtract may include:

¢ Horizontal or vertical layout as in
addition, to show the total of the first
amounts (before ‘taking away’) (see for
example Figure 7.3a and b. The points in
the remainder of this column also apply to
this figure)

e Where numerals are used, the first
amount is shown in sequence beginning
with 1, then children count back the
amount that is to be taken away

e To subtract, children count the first
amount and then use some means to
show how they removed the second
amount (see below)

e They count one-to-one

e Children understand the need to
count everything to arrive at a total,
then count those that remain after they
have removed some

Additional features when representing subtraction

Children show that they have taken away some items by:

e rubbing out items or numerals they have represented (see for example Figure 7.2b,

Louisa)

e crossing out items or numerals (see for example Alice’s flowers, Figure 7.2a)

e circling items or numerals to be ‘taken away’

¢ using arrows — either to show which ones have been removed, or to show the
direction of ‘taking away’ (see examples in Figures 7.4 and 7.5 ‘subtracting beans’).

An extension of this is when:

e some children begin to show the action of ‘taking away’, often showing the hand
removing or holding some items or numerals (see for example Figures 7.4 and 7.5)
¢ some children begin to put the total that remains after subtraction.
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Figure 7.1 Alison — counting continuously

In Figure 7.1, Alison, 5:1 was counting the children in her group and each child’s
toys, to work out the total for who would be eating at the class’s ‘breakfast café’.
She counted both children and toys, representing these as a string of numerals.
When self-checking she found that she had written too many numerals and put
brackets round those she did not need. The final number in her count
represented the total. The hand she drew may denote addition, though we cannot
be sure in this instance.

As Figure 7.2a shows, subtraction requires more steps than addition. However,
we have never found that this inhibited children in representing what they had
done. If anything, the physical action of ‘taking away’ seems to be quite
straightforward in terms of representation, and children use a variety of creative
means to do so.

Alice, 4:11, has drawn the total number of flowers in the two sets as a continuous
count and then crossed out those she was subtracting. Louisa, 5:4, chose to use
the computer to draw six grapes and then used the computer ‘rubber’ to remove
three (see Figure 7.2b).




112 Children’s Mathematics

Figure 7.2a Alice

Figure 7.2b Louisa

John'’s strategy (Figure 7.3a) is similar to Alice’s. John, 5:4, represented the total
number of grapes with numerals and in addition to crossing out those he wanted
to subtract, he had drawn arrows pointing to the two he was physically taking
away. We discuss this ‘narrative action’ and ‘narrative operations’ below.

William, 5:7, drew the total amount of books in two piles that he wanted to add
and then drew his hand linked to the one book he wanted to keep to read
(Figure 7.3b). The remaining grapes and books that these children had drawn
could then be counted to arrive at the answer.

Narrative actions

At this point, children often represent their graphic calculations as narratives. There
is a sense that the children are recounting a story, providing a strong sense of intro-
duction, sequenced narrative and conclusion. The operants ‘+’ and ‘-’ could be said
to act as ‘verbs’ and the numerals or objects as ‘nouns’. But this is not a ‘number
story’ in the traditional sense, as for example when teachers ask children to make up
a ‘story’ for the calculation 3 + 8.
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These narratives appear similar to drawings described by Oers - either
representing imaginary or real situations — or, in a mathematical context, abstract
or concrete ‘they are symbolically representing a narrative’ (Oers, 1997, p. 244). To
make sure that all the features of the narrative are understood children use talk (or
sometimes add writing) to qualify their representations. In his research of the way
in which children use speech as an ‘explanatory function’ to help adults
understand the meanings of their drawings, Oers argues that most of the children’s
explanations ‘refer to the dynamic aspects of the situation (what really happens),
which they apparently feel is not clearly indicated by the drawing alone’ (Oers,
1997, pp. 242 and 244). These findings are relevant to young children’s written
calculations: in addition to verbally explaining, children often use symbols of their
own devising to indicate their action — usually something they have done in a
concrete situation. These symbols include drawings of hands holding an item or
numeral (implying adding or ‘taking away’), and arrows pointing away from the
calculation to signify removal or subtraction: we term this ‘narrative action’ (see,
for example, Figure 7.3).
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Figure 7.3a John Figure 7.3b William

The ‘melting pot’

At this stage we can see a wide variety of different representations of operations
which we refer to as a ‘melting pot’. Carpenter and Moser studied the range of strate-
gies children use to add and subtract and found that a variety of informal counting
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strategies persists through the primary years. Children’s choices of ways to represent
operations do not remain static since discussion, modelling and conferencing alter
individuals’ perspectives and continuously introduce them to further possibilities.
Negotiation and co-construction of meaning are taking place. The ‘melting pot’
period therefore covers a huge range of representations through an extended period
of time. Some children in this period may choose different ways of representing their
calculations as they refine their ways and ideas of representing addition and
subtraction.

Subtracting beans

The following account is included to show something of the range of strategies chil-
dren in one class chose, and their use of narrative action, when representing their
subtraction calculations.

Supporting children’s own mathematical marks

It is important to emphasise that as teachers we constantly assist and guide children
as they move towards increasingly efficient processes and standard use of symbols.
Supporting and extending children’s mathematical understanding through their
graphical marks can sometimes cause misunderstanding amongst teachers. When
teaching in classes where children are not used to representing their ideas in

Working with my class of 5 and 6-year olds, | decided to use some surplus beans and
flowerpots left over from science, for subtraction. Although we had explored
subtraction in practical contexts, this was the first time that the children had
represented what they were doing on paper.

Early in the session the children spent time playing with the beans, adding and
removing small amounts of beans from their pot. | introduced a game to play with a
partner. First one child in each pair counted (out loud) a small number of beans which
she put in a pot. The other child then removed one or more beans and her partner
worked out how many remained in the pot. Finally, they both counted the beans that
remained in the pot, in order to check.

After a while | put some paper and pens near the children and suggested they put
something down on paper to help their thinking. Barney (Figure 7.4) began writing
‘10 take | is 9’, then changed his mind after he had written 2 take | is |’. Next he
drew the flowerpots and beans, using arrows drawn in an arc above the one bean he
removed. The arrows point to the second pot in which he has shown the total
remaining. This narrative action is a very powerful way of representing what he has
done. Using successive shorthand he next simplified this written method by reducing




Understanding children’s developing calculations 115

pictures of beans in pots to numerals and using the word ‘is’ to stand for the equals
sign. This example shows that Barney had a very good understanding of the
operation and that he is beginning to explore the use of abstract signs. It may be
logical to use the word ‘is’ in a narrative.

In the same session he explored further written methods (see Figure 7.5). Next
he again used numerals but this time experimented by drawing a hand instead of
arrows, to show his own action of taking away one bean.

The other children in the group used a range of strategies. Alex also drew hands
to show the operation (action) of taking away but Emma used drawings of hands to
different effect. In her first example she has represented ‘5 —| = 4’ (she forgot to
represent the one bean removed) using arrows pointing to the final amount after she
had removed one. In her second example Emma included the bean that she
removed. Kristian used arrows in a similar way to Barney, but used tallies to
represent the beans. Like Barney he is beginning to explore the use of the equals
sign in his own way.

Matthew used a simple means of showing the amount subtracted that is similar to
Louisa’s (Figure 7.2b). Jennifer has combined iconic and symbolic representation and
used the standard subtraction sign, whilst Francesca used iconic symbols combined
with both the standard plus and equals signs. Finally, Eleanor chose to represent her
calculations in a standard symbolic form, apart from the final calculation. The beans
were all in use so she used some counters, writing ‘4 counters take | = 3’.This
variety of written methods was found within one class when children have been used
to choosing how they will represent their mathematical thinking on paper and have
seen a variety of mathematical graphics modelled (see Chapter 10).

mathematics in their own ways, we have found that during our visit some children
will spend time on elaborate drawings and colouring-in, viewing the task as a
drawing exercise. This view may originate from classes where children have been
used to using worksheets or adding a picture to their work after they have
completed a piece of writing. In mathematics lessons it is children’s mathematical
understanding and written methods that are important. Whilst some children may
use a pictographic form of representation, teachers need to help children
understand that their thinking (of mathematics) is of far greater importance in this
context than pretty pictures.

Another problem we have met is of children being expected to represent some
mathematics which is insufficiently challenging, for example asking 6-year-olds to
draw a story representing an addition for the number seven. There is a danger that
children’s own recording is only of teacher-suggested number stories. There is an
abundance of literature supporting this kind of ‘story’ calculation, including Whitin,
Mills and O’Keefe (1990) and Hopkins, Gifford and Pepperell (1999). We believe that
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these kinds of stories can be useful for mental mathematics because they help chil-
dren quickly visualise a calculation in their heads. However, they are of limited value
in terms of children’s own representation since they tend to spend more time
drawing pictures than focusing on the mathematics.

Ginsberg argues that ‘young children are engaged in the spontaneous learning
of economical strategies for counting. As children develop, many of their
activities tend towards economy and efficiency’ (Ginsberg, 1989, p. 20). These are
termed by Court as ‘stages of abstraction’ (Court, 1925, cited in Hebbeler, 1981, p.
153). Our study has shown that this tendency is evident in young children’s early
graphical mathematics: children move through different forms of recording, using
a variety of strategies to help them calculate and discarding the forms and strategies
they had previously used. However, when they move on to a more demanding level
of calculations they often return to earlier strategies for reassurance. The strategies
that children choose to use cluster into some common processes although there are
numerous variations and often unexpected and highly individual responses, some
of which are invented strategies for solving problems (Groen and Resnick, 1977;
Leder, 1989). Significantly, Askew and Wiliam argue that whilst studies such as
Aubrey’s (1994a) and Munn’s (1994) concentrated on mathematical content
knowledge, they paid ‘little attention to children’s ability to solve problems
through choosing and using appropriate mathematics. Competence involves
not just the knowing of content, but also its application’ (Askew and Wiliam,
1995, p. 7).

Separating sets

Children use a range of strategies to show that the two amounts are distinctly sepa-
rate. They do this in a variety of ways including:

e grouping the two sets of items to be added either on opposite sides (to the left and
right) of their paper, or by leaving a space between them

¢ separating the sets with words

e putting a vertical line between sets

e putting an arrow or a personal symbol between the sets.

Britney, 6:0, has drawn three distinct bowls of strawberries with different
amounts of strawberries in each to be added (see Figure 7.6). She appears to
have combined counting continuously and addition (of items in three sets) when at
the foot of the page she wrote:

I+l +1+1+1+1+1+1+]1+]+

[+ 1+l +1+1+1+1+1+1+]+

Once again it appears that when children use these strategies they are using skills
with which they are already familiar as they move into new ways of working. We do



118 Children’s Mathematics

Separating sets

Addition Subtraction

Features may include: Features may include:

¢ Children represent items to be added, ¢ Children show two separate sets or

in separate sets

Use of word ‘and’ to represent ‘+’ (for
example see Louisa and Scarlett, Figure
7.7a and b)

Use of words to represent the total, for
example ‘6 all together’ or ‘there are 7
now’ (see for example Figure 7.7a and b)

Use of a hand to show how many
have been added to the first set: we
come across examples of this less
often in addition than in subtraction
(for example see Fred, Figure 7.8a)

Some use of invented signs, for
example a single line for ‘=": (see for

example Jack, Figure 7.7¢)

The calculation written as a narrative,
in words (for example see John, Figure

numbers and a third set or number
for the answer

e Use of words ‘take away’ to stand for
‘~" . We have seldom found this: at
this point children seem more likely
to use some of the strategies shown
in Figures 7.4 and 7.5

e Use of words to represent the total

e Use of a hand to show how many
have been taken away from the first
set. The hand is now drawn in the
centre of the calculation, so that it
can be ‘read’ in a standard way (for
example see Figure 7.5)

e Some use of invented signs, for
example arrows in place of ‘-’ (as in
Figure 7.5)

e The calculation written as a narrative,
in words

7.8b)

not know if children are counting or adding when they do this, but if they write ‘1
+1+ 1+ 1, then we suggest that they are beginning to use the addition sign to good
effect. Repeated addition is a strategy that they will later be able to use in the early
stages to work out multiplication problems. Furthermore, it appears that as children
move through increasingly efficient and economical strategies, they revisit their
already familiar strategies in which they already feel secure.

Exploring symbols

As we have shown in some of the examples above, children explore both the role
and the appearance of symbols. Some children who have begun to make explicit use
of symbols may move on to increasingly choose to use standard symbols.
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Louisa, 5:1, like Britney, was adding strawberries (Figure 7.7a). She has combined
pictorial and written graphical forms with symbolic (the numeral ‘6’). There is
another narrative that reads ‘2 and four more all together 6’. She uses words as
she experiments with the role and function of symbols. Scarlett, 5:6, (Figure 7.7b)
and Jack, 5:3, (Figure 7.7c) were adding grapes. Scarlett’s calculation is similar to
Louisa’s although she has added a numeral next to each group of grapes she has
drawn. She concluded ‘and there’s 7 now’.

Jack is exploring abstract symbols in a different way. He has drawn two separate
sets of grapes, leaving a gap that allows this to be read as ‘4 and 3’. Gifford (1990)
provides a similar example. Following this he confirmed the amounts to be added
by writing the numerals and then drew a line between these and the final ‘7’ (his
answer). The line functions as an equals sign for Jack (see ‘Exploring symbols’,
below).

Implicit symbols

Other children show that they have an understanding of ‘+’ or ‘=’, but have not rep-
resented the symbols: the marks they make, or the arrangement of their calculation,
show that the symbol is implied and that they understand the calculation in their
head. At this stage children may ‘read’ their calculation as though to include
written features that are absent: speech is therefore used ‘as a means to make
explicit the implicit dynamic aspects of the children’s intended meaning’ (Oers,
1997, p. 244). We believe that this represents a highly significant point in children’s
developing understanding. Examples of implicit symbols include Figure 7.7c and all
on p. 124.

Code switching

This term is used in second-language learning and originated from teaching method-
ologists (Cook, 2001). In terms of spoken language, code switching occurs when a
speaker switches from one language to another in mid-sentence (for example, from
her native language of English, to French as in the spoken statement: ‘J’ai mangé du
fish and chips aujourd’hui’.). This has been observed in studies of the speech of bi-
lingual children (for example, Drury, 2000 and Murshad, 2002). Significantly exam-
ples of code-switching within the writing of young bi-lingual children have also
been found (Mor-Sommerfield, 2002). Our research findings in children’s own
written mathematics therefore are supported by published research of both adults’
and children’s learning of a second (spoken) language and children learning to write
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in a second language. These research findings support what we have found when
children learn their second (abstract) mathematical language. For the speaker, a
condition of code switching is that both speakers know the two languages used
(Cook, 2001). In children’s developing understanding of abstract mathematical
symbols, we repeatedly see examples of code switching as children switch between
different forms of mathematical graphics. The most significant switches occur when

they use either:

implicit symbols
their own symbols

or when they begin to experiment with

¢ standard symbols within their own mathematical graphics.

Exploring the role and appearance of symbols

Addition

Subtraction

Features of this stage may include:

The use of ‘+' but ‘=’ is implied rather
than written. Children who do this
appear to introduce the standard ‘=’
symbol at a later stage

Children choose a combination of
icons and numerals (see for example
Fred, Figure 7.8a)

The use of personal symbols, to
represent ‘+’ or ‘=" (see for example
Jack, Figure 7.7¢)

Interestingly, whilst children at this
stage often use icons to represent the
amounts to be added, they generally
use a numeral for their total (see for
example Jack, Figure 7.7c)

The use of implicit symbols (see for
example Mary, Figure 7.9d)

Some children have begun to show
the operation in three steps (the two
amounts to be added and the total
(see, for example, Peter, Figure 7.9b)

A ‘box’ or circle drawn around the
calculation: children who do this
appear to understand that each calcu-
lation is separate and complete in
itself (see for example William, Figure
7.9c)

Features at this stage may include:
e The use of either ‘-’ or ‘=" are implied

rather than written as the abstract
symbol (see for example some children’s
methods in Figure 7.5)

Children choose a combination of
icons and numerals

The use of personal symbols to
represent ‘-’

Again, whilst children often use icons
to represent the first two sets in the
calculation, they use a numeral for the
total (see for example Francesca and
Jennifer, Figure 7.5)

¢ The use of implicit symbols

Most children show the operation in
three steps

Children may draw a box or circle
around their calculation
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In different ways, the children’s examples on these pages all include the use of
implicit symbols.

Fred, 5:8 and John, 5:5, were also adding grapes (Figures 7.8a and 7.8b,
respectively). Fred has separated the two sets with a line (drawn above one finger
of the hand).The plus and equals signs are implied since the whole can be read as
‘5 plus | equals 6’. Fred wrote the numerals ‘5’ and ‘I’ on the left and, finally,
wrote the total of ‘6’ below.

John chose to use a written response, writing 2 grapes there is two, 4 grapes
there is four’. It is interesting to note that John wrote both the numerals and
words for both amounts. Finally John also wrote the total ‘6’ (to the left). We have
often found that children choose to use a written response (see Chapter 6 and
Pengelly, 1986).

In Figure 7.9a, Jax, 5:2, also implies symbols using dots (an iconic form) and
numerals (symbolic). This can be read as ‘6 and 4 = ten’: Jax wrote the initial ‘t’ of
the word ‘ten’. Mary, 5:4, (Figure 7.9d) has also used a combination of iconic and
symbolic responses, with the minus and equals signs implied. William, 5:7, (Figure
7.9¢) moved from working out some calculations with small nhumbers to trying
(for the first time) two with larger numbers: he also implied the plus and equals
signs. Peter, 5:9, (Figure 7.9b) has used his own shorthand which, provided we
know the context, can be read as ‘4 —3 = |’: from this it is clear that Peter could
work this calculation out mentally.

In his study of 6-year-old children’s addition based on the ‘box task’, commenting
on the findings Hughes noted that the most common response was when children
wrote the total, rather than their written method and answer. Observing that the
findings were ‘quite striking’, he suggested that the pictographic or iconic strategies
children used in the ‘tins game’ would have been far more useful (Hughes, 1986).
Hughes concluded that the most obvious explanation was that the children ‘were
actually asked to make written representations whilst working on a mathematical
problem, and so were presumably set towards adopting the inappropriate strategy of
using numerals’ (Hughes, 1986, p. 130). Yet our evidence, illustrated by some of the
examples in this section, is that when young children represent only the total with
numerals, this is in fact an intelligent response since these children were clearly able
to do the calculation mentally. Furthermore, whilst asking children to make ‘written’
representations is something we would avoid, we often find that some children
choose to write (in words). The point we wish to make here is that the children’s
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5

Figure 7.8a Fred

Figure 7.8b John

methods in such instances may have been implied. The children in Hughes's research
project may have used strategies that were appropriate to them, though it is difficult
to ascertain this when children are unused to representing mathematics in their own
ways. As we show here, when children put down part of a calculation — the numer-
als without the signs or only the answer — what they have omitted may be implicit.

In the story of The Little Prince, the pilot was asked to draw a sheep. Finding this
difficult to do he finally drew a box explaining, ‘this is only the box. The sheep you
asked for is inside’. The little prince understood the drawing and bending over the
drawing observed, ‘Look! He’s gone to sleep’ (Saint-Exupéry, 1958, pp. 10-11). It is
possible to see in children’s mathematical graphics, the meaning children have
implied but not shown, like Saint-Exupéry’s sheep in a box.

Standard symbolic calculations with small numbers

This stage arises directly out of the preceding ones. All their previous knowledge
combines to support simple calculations with small numbers. Calculating with larger
numbers is challenging. There can be a problem here since children:
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William, 6:2 (above), has shown his confidence in these addition calculations by
challenging himself with larger numbers (Figure 7.9). He used a combination of
known facts (number bonds for numbers to ten) and counting continuously,
although he was confused with adding larger numbers of ‘8 + 22’ and then ‘I | +
8’. Once again the operator ‘+’ and the equals sign are implied. William was
obviously very interested and wanted to know how to calculate larger numbers,
so this was a real chance for me to explore these calculations with the whole
class.

¢ may not know how to use their previous strategies
e are unable to make approximations (do not have a feel for larger numbers)
e cannot manipulate several steps.

Children should be continuously handling larger numbers that they may not be
confident in but find challenging. This is the reason they need to write down their
calculation, since it is too large to deal with mentally.

In the concluding chapter of his book, Hughes suggests that ‘work could be done
with children’s own representations of addition and subtraction before introducing
them to the conventional plus and minus signs’ (Hughes, 1986, p. 177). This could
be misleading, like suggesting that in supporting children’s early writing teachers
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withhold standard letters, printed texts and punctuation. What is important is that
we provide children with the whole picture — and for addition and subtraction this
will include the standard symbols (see Chapter 10 on ‘modelling’ mathematics). It is
clear that teaching early writing and early mathematics can pose difficulties for
teachers, and that misconceptions are often perpetuated (see Chapter 4 on early
writing and Chapter 5 on the difficulties teachers face).

Hughes’s final comment on the findings of his studies shows that they differ from
ours. He observes that they showed ‘a striking reluctance on the part of school-age
children to use the conventional operator signs of arithmetic’ (Hughes, 1986, p. 78).
We do have examples of some children from 5 years of age choosing to use standard
symbols, although we do not suggest that doing so should be a goal for all young
children. The examples in this chapter show that whilst children often use other
marks, words or strategies in place of symbols, some may also use implicit symbols
and others may use the standard symbols by choice. As we argue throughout this
book, children should be able to choose the graphical form and written method and
be supported in their developing understanding.

Standard symbol use when adding small numbers:

Addition Subtraction
e The use of standard numerals and e The use of standard numerals and
symbols in a horizontal layout symbols in a horizontal layout

(see, for example, Anna, Figure 7.10

— and for the features below)
¢ The operation is shown in three steps e The operation is shown in three steps
e Often calculations are separated from

each other by a line, circle or box

Anna, 6:3, chose to represent her calculations in a standard symbolic form (see
Figure 7:10). The context of this was of the ‘dice game’ that Amelie (Figure 10.3)
also played. These children were in a class of 4- to 6-year olds and Anna was a
little over a year older than Amelie. As we showed in Figure 7.5, there can be a
wide variety of graphical responses from children in one class. Whilst Amelie
represented the dots on individual dice in a dynamic and highly personal way,
Anna used the opportunity to add the amounts on the two dice thrown each
time, shown in Figure 7.10, and represented what she had done in a standard
form. She also chose to draw a ‘box’ or circle around each calculation, a feature
that she had copied from her peers though this had not been teacher-modelled
or taught. This separation shows her clear understanding that each calculation
was a separate entity.
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Calculations with larger numbers supported by jottings

In a study of children’s arithmetic Steffe (1983) found that children who ‘derived
or deduced solutions rather than trying to recall taught procedures were more able
to adapt their methods to cope with new problems and anticipate solution
strategies. It seems that pupils with access to both recalled and deduced number
facts, make more progress because each approach supports the other’ (Askew and
Wiliam, 1995, p. 8).

At this stage children still use a variety of ways of representing their mathematical
thinking. The mental methods that children use tend to cluster together and often
reflect approaches that have been introduced by their teacher. Children can thus use
these mental methods to help them visualise and work out the calculations, and at
other times children put down some of the stages of these ‘mental methods’ on
paper, to support their thinking.

Features for subtraction are very similar to addition on all points. Many of the
features listed below can be seen in the examples in Figures 7.11 and 7.12.

Addition features may include:

¢ using known number facts
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¢ counting on from the larger of the two numbers

¢ using a number line with points marked on it

e using an ‘empty number line’

e partitioning numbers

e exploring alternative ways of working or checking a calculation

¢ the use of derived number facts

¢ some understanding of commutativity (see Figure 10.6 ‘super-zero’).

In Figure 7.1 la, Darryl, 7:3, decided to work out this addition calculation by
partitioning the numbers before adding (partitioning numbers is a taught
strategy). He noticed that he had made an error to begin with and reworked
what he had done, lower down.Working in this way allowed him to go beyond
the hundred boundary. Although at first Stefan, 7:7, had added 8 and the 4 rather
than 80 and 40, he was soon able to see that this did not make sense and
reworked this part of his calculation (Figure 7.1 Ib). Stefan used his jottings to
help him arrive at an answer which he finally resolved mentally.

Examples of subtraction with larger numbers using mental methods
or jottings

The empty number line is also a taught strategy introduced in England by the
National Numeracy Strategy (DfEE, 1999a). It is also used extensively in Holland (see
Chapter 1). In England this is one of several forms of notation that are termed ‘jot-
tings’, although these are not intuitive methods. This term ‘jotting’ is ambiguous.

Jotting down is something most adults would be familiar doing when, for
example, estimating rolls of wallpaper for a room - our jottings aid quick calcula-
tions. Sean, 7:6, (Figure 7.12a) also partitioned 86 and 47 in order to combine them,
then checked this by re-working the calculation in a different order beneath what
he’d first written. At the foot of his page he used a drawing of a number track to
check part of his calculation.

There is potential for children to adapt this number line model in flexible ways
depending on their need, as Miles, 7:5, did (Figure 7.12b). Miles’s class were about to
leave for a residential trip; we used a pack containing three nectarines to calculate
how many packs would be needed for the whole class (see Chapter 9). Using a piece
of A4 paper Miles began by drawing a horizontal line across the width of the page.
Because the way in which he had chosen to orientate his paper restricted the number
of jumps he could make Miles adapted his method of subtraction, changing from
jumps of 3 to jumps of 6 several times. Reading from right to left, he wrote beneath
the jumps the cumulative number of packs of nectarines that he was calculating for
26 children to have one nectarine each, to arrive at his answer. This signifies that
Miles has discovered a more efficient method.
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Increasingly children self-correct part way through a calculation, for example as
with Darryl in Figure 7.11 and Miles in Figure 7.12.When children do this it
shows that they are considering their strategies and what they have written and
self-chosen points to increasing maturity.

Figure 7.12a Sean
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Figure 7.12b Miles

Dialogue

In all the examples in our book, the sort of dialogue that allows for meaning to be
explained, negotiated and co-constructed was an important feature. It is language
(discussion) that Oers asserts ‘gradually moves the child into more abstract forms of
semiotic activity ... This might be a very important stage in the process towards
more abstract thinking especially in the domains of literacy and numeracy’ (Oers,
1997, p. 244).

It is interesting to note that researchers found in Japanese classrooms ‘emphasis
placed on communication between pupils ... [which] meant that Japanese children
were having to explain their thinking — and in some cases, other children’s thinking
—on a daily basis’ (Hughes, Desforges and Mitchell, 2000, p. 113). As a teacher of six-
year-olds remarked to one of us at the conclusion of a demonstration numeracy
lesson, ‘I had never thought of asking a young child to explain (i.e. to read and inter-
pret) what another child had done’. Doing this allows other children to interpret
another’s written methods and the child to whom they belong is able to see if what
they have done makes sense to someone else. In data collection an additional
strength is that this is an early form of analysis, allowing others to interpret data in
order to draw conclusions from what has been written.

There is another sort of dialogue that accompanies children’s marks as they ‘make
sure the observer sees the meaning of the drawing as it is meant’ (Oers, 1997, p. 242).
Oers comments that their findings indicated ‘that not just things are represented in
children’s drawings, but meanings ... so speech has an explanatory function with
respect to drawings’ (ibid., p. 242). We had come across such explanations many
times but were excited when, a few days before we were due to send in the manu-
script of this book, one of us observed Adrian, 6:2, do just this in our classroom.

Within the space of a few minutes Adrian had explored three possible interpreta-
tions of the symbol ‘+’ that he had written — ‘no’, kisses and ‘plusses’. He was explor-
ing these multiple meanings of one ambiguous symbol in ways that he could
understand and wanted to make sure that I understood his meaning ‘as it is meant’
(Oers, 1997). That this example occurred at this moment was even more surprising,
when we reflected on what we had just written about the ambiguity of such symbols
as ‘+’ and ‘x’ (see Chapter 5, p. 73).

As our examples of young children’s calculations in this chapter show, their under-
standing and their written methods develop over time. Children should not be
hurried into written calculations with standard symbols before their intuitive under-
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Adrian was sitting in the writing area. He took an envelope and attached six
‘Post-it’ notes to the outside of the envelope. On the first four he wrote a ‘+’ and
on the fifth he wrote a ‘y’ saying ‘yes’. Finally, on the sixth piece of paper he wrote
another ‘+’.When he had completed his marks he touched each one saying ‘No,
no, no, no, yes, no’. A few minutes later Adrian gave the envelope to me, telling me
‘it’s for you’.

He watched carefully as | removed the brass fastener he had used to secure it
and as | was about to remove the little notes from the envelope he said ‘they’re
not kisses’. | laid them out on the envelope as he explained ‘they’re plusses’.

standing has developed through their own mathematical marks and written
methods. Building secure foundations in this way, children’s understanding will
develop at a deep rather than at a superficial level. Education needs to appreciate
that, as Vergnaud noted, ‘conceptual fields’ such as addition ‘develop slowly from 3
to 14 years and beyond’ (cited in Aubrey, 1997b, p. 150).

As Thrumpston stresses, ‘schools can train children to become skilful operators, to
perform well in the short term but this does not develop the network of connections,
symbolic representations and meanings which extends the power of thinking and
hypothesising’ (Thrumpston, 1994, p. 12).

The development of children’s mathematical graphics:
becoming bi-numerate

Figure 7.13 represents the whole of children’s development of mathematical graph-
ics, from birth to 8 years. It shows how children build on their earliest explorations
with marks through written number and representations of quantities (see Chapter
6), to explore their own written methods of calculations.

Note that the taxonomy is not strictly hierarchical (see page 131):

¢ children all need to be freely representing quantities that are counted before moving
on to early operations in which they count continuously

¢ children need extended periods of time in which to explore symbols in their own
ways, before they are ready to use standard symbolic operations with small numbers,
with understanding

¢ additional growth in understanding is often indicated when their representations
show that they are combining aspects of two dimensions, for example Figure 7.7c
(p- 120) where Jack combined separating sets with both implicit symbols and also
exploring symbols

¢ older children may return to explore some of the earlier forms or dimensions (e.g.
using an iconic form as Alison did in Figure 9.12: p. 187), for security and fitness
of purpose in a particular context.
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Conclusion

We have tried to show something of the level of challenge and thinking that chil-
dren experience when working in more open ways and when selecting their own
written methods. This is, we have argued, ‘provocative maths, that is to say it
inspires, motivates and challenges children’s minds’ (Worthington and Carruthers,
1998, p. 15).

In this chapter we have concentrated on children’s methods of representing addi-
tion and subtraction. We have also found that young children do represent division
and multiplication in their own ways (see Chapter 9). We believe that the links
between the operations can be seen in children’s own thinking through their
representations. Further studies of young children’s own representations of division
and multiplication are needed to inform us how to continue supporting children’s
mathematics.

Development

As children develop mathematically beyond what we have described here, continu-
ing support for their own methods is vital, otherwise their confidence and cognitive
integrity are sacrificed. This ‘focus on the pupil’s own thinking has the benefit of
encouraging autonomy in tackling problems but if personal confidence is to be
maintained, there needs to be a progressive process of negotiation as more formal
calculations methods are introduced’ (Anghileri, 2001, p. 18). There is no point
where there is a definite separation of intuitive and standard methods. Children will
adapt from the models they have been given and use what makes sense to them, if
they are encouraged to do so. Anghileri (2000) and Thompson (1997) both give
examples of older children’s own methods of calculation. In many ways they have
had some similar insights into how children use their own methods and how this is
helpful to their understanding of mathematics.

Children’s understanding of the abstract symbols of mathematics and their role in
algorithms is not immediate. Claxton has identified time as a vital element in
problem solving. He suggests that it is not really a question of quantities of time, but
rather of taking one’s time. He writes:

the slow ways of knowing will not deliver their delicate produce when the mind is
in a hurry. In a state of continual urgency and harassment the brain-mind’s activity
is condemned to follow its familiar channels. Only when it is meandering can it
spread and puddle, gently finding out such fissures and runnels as may exist.
(Claxton, cited in Pound, 1999, p. 49)

In the following chapter we focus on practical aspects that teachers may wish to con-
sider developing in their Early Years settings, in order to support young children’s
mathematical literacy.



Understanding children’s developing calculations 133

Further Reading

Calculations
e Anghileri, ]J. (2000) Teaching Number Sense. London: Continuum.
e Thompson, 1. (ed) (1997) Teaching and Learning Early Number. Buckingham: Open

University Press.



Enuironments that
support Children's
Mathematical Graphics

Rich mathematical environments for learning

Inside one classroom

Karen teaches 4- and 5-year-olds: her classroom is at the heart of a very large
Victorian building in a London school. As | walked in | could feel the positive and
calm nature of the setting. The room was well ordered: children could see what
there was to do and all was easily accessible. However, the room was not
clinically tidy. There was a sense of industry: the classroom was alive.

Children were actively engaged and involved in all kinds of play inside and
outside the classroom. Harriet and Muna selected large pieces of paper to draw
on and to think together about on the carpet. Children’s own drawings and
writings covered every space on the walls from top to bottom.All about the
classroom the displays beckoned children to respond. Children had made their
own signs, for example, ‘Don’t splash me it’s not nice’. Kirsty and Leojon picked
up the teacher’s counting stick and started counting. The teacher asked them if
they wanted to put numbers on it and they agreed. The teacher gave them an
unopened pack of bright orange ‘Post-it’ notes. Kirsty opened them and gave
Leojon some and they both wrote numbers and put them on the stick.

Above all, | noted that there was a sense of respect shown to the children:
they were listened to seriously and their ideas and contributions were
acknowledged. It is in such an enabling environment that children’s own
mathematics can thrive.

134
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The open classroom

Central to classrooms that support children’s own mathematical marks on paper, are
the conditions that foster this; the atmosphere that gives opportunities for children
to feel that they can put their own thinking on paper. The psychological environ-
ment is equally as important as the physical environment. What the child initiates
and makes sense of on her own or with other children is equally as valued as the
adult-directed or adult-led sessions. In an open classroom adults will encourage the
children’s initiatives. This encouragement is important for the child to feel strong
enough in herself to take further risks and opportunities.

Visual representations

There may be particular benefits from children’s deep involvement in drawing and
painting that they have chosen to do. Research conducted in Oxford and published
in 1980 (Sylva et al.) identified ‘high levels of cognitive challenge’ when the child’s
observed activity was: ‘novel, creative, imaginative, productive, cognitively
complex, involving the combination of several elements ... is deeply engrossed’
(Sylva et al.). We believe that it is significant that art (visual representation) was
found to have almost the highest level of cognitive challenge. Using the same rating
system in a class with 4-6 year olds, I found art achieved the highest level of cogni-
tive challenge of all activities in which children were engaged (Worthington, 1996b).
Being deeply engrossed or involved was also identified as important in studies by
Laevers (1993), (subsequently developed by Pascal and Bertram as the Effective Early
Learning project (EEL) in England, 1997), and linked to high levels of cognitive chal-
lenge and quality learning outcomes.

Multi-modality

Clearly children explore many ways to make meaning, through diverse contexts and
media. Multi-modal learning includes speech, gestures, dens, piles of things, cut-outs,
junk models, drawings, languages, symbols and texts: meaning is created out of ‘lots
of different stuft’, (Kress, 1997). Learning environments that support children’s
meaning making need to include plenty of ‘stuff’; spaces and time in which to
explore and adults who value what the children do. Visiting Wingate Nursery in
County Durham, the artist Antony Gormley commented that it offered a ‘laboratory
of possibilities’ (personal conversation). The best settings for young children are not
like pristine art galleries but a combination of working studios or ‘laboratories of pos-
sibilities’ where children are in the process of exploring, investigating and creating
‘stuff’. In his publication Before Writing (1997), Kress outlines a social semiotic theory
of representation and communication in which he highlights a range of experiences
through which young children should be able to engage daily. Early Years settings
need to allow children free access to open-ended role play; to materials for creating
camps and dens; to lots of junk modelling and resources and tools to work with; art
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materials — and the sort of adults who are interested, willing to listen and to share in
the magic of children’s worlds and meanings. And out of these possibilities, these
experiences and this ‘stuff’, children will create mathematical meanings.

The balance between adult-led and child-initiated
learning

In the open classroom culture there will be a balance between adult-directed activi-
ties and child-initiated activities. Both will be valued and, at times, will come
together to provide a strong connection to support the child in her learning. There
is a state of energy balance within this understanding. Energy is known by the
Chinese as “Tao’. Chiazzari (1998) observes that Tao is manifest in all things through
the dynamic interaction of the two polar energy forces, yin and yang. When these
are in perfect balance then total harmony exists. The balance is not necessarily equal
but one that promotes the health and well-being of the whole child. This is rooted
in the theory that one supports the other. For example, an imbalance of a very
formal academic curriculum does not necessarily ensure that children will gain aca-
demic excellence. The balance for young children in Early Years settings is better
weighted in favour of child-initiated learning. The careful planning and considera-
tion of this need to be thought through.

In adult-led learning contexts, the adult knows what she is moving towards in
terms of what she wants the child to learn. The adult usually has a specific aim in
mind, perhaps even a written objective. The task does not necessarily need to be
closed and the children can be given a good deal of autonomy within the prescribed
task. Below is an example of an adult-led session.

Adult-led learning: nursery class — ages 3 and 4 years

The adult has invited four children to bath dolls. Each child chooses a doll and a
bath.The baths and dolls are different sizes so the children think carefully about
which bath and doll they would like. The children watch the teacher fill up her
bath with water. She asks the children if they think there is enough water to bath
the doll. The teacher carefully tests the water with her elbow to see if it is too
hot. One child shouts out ‘that’s what my mummy does when she baths my Ben’.
The children then fill their baths up with water and test to see if it is too hot.
The teacher continues to talk and listen to the children as they bath the dolls.
She asks them questions and their opinion about bathing babies. The adult has an
aim in mind to give the children scientific and mathematical experiences, though
in a child-friendly way. The adult leads the discussion but encourages children to
take over and talk about their meanings and interests in bathing dollies. Paper,
writing and drawing implements are available should the children choose to put
their experience on paper.
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In child-initiated experiences the child directs and leads the activity. It belongs to
the child. The child chooses the equipment, the length of time, the space and the
outcome. Child-initiated learning is usually a part of what Bruce (1997) describes as
‘free flow’ play.

An example of child-initiated learning

Jason, 3:11, has chosen to play outside with the large blocks. He places two
blocks on the ground, a distance apart. He then places a plank across so that he
has made a kind of platform. He adjusts the blocks so that they fit better. He
tests his structure by walking and jumping lightly on it. He smiles and seems
pleased with his efforts. Carly, 4:1 joins him and walks on the platform. She then
uses another block and plank to add to the existing structure. They both select
other blocks and planks and make networks of platforms in the outside play
area. Other children join and play with them, testing the platforms that they
have made.

In this learning experience we can also see the mathematical and scientific learn-
ing that might take place but there are no planned adult outcomes: the plans are in
the children’s heads and unfold as the activity takes place. The adult’s role is crucial
in this experience. The adult has provided the materials, the time and the space. The
adult has carefully observed the child’s play and made notes of this session. She has
asked the children if she may try out their platforms. She asks them if they will
remember what they have done and suggests they sketch their network. She helps
one of the children to take a photograph. Two children decide to sketch the network.
The adult takes notes of this session back to the planning meeting for the next week.
The staff in the setting discuss ways they can extend the children’s building interests
and ideas about platforms and supporting structures.

It is important to understand the distinction between adult-led and child-initiated
learning, otherwise the teacher might plan what she believes is a play session when
it is really adult-directed. The children might in such circumstances end up with an
imbalance in their learning opportunities where there is no free-flow play. The
reverse of this can also happen. When there is no adult-directed input in children’s
learning, children then do not have the opportunity to see adults modelling math-
ematics and the learning might not be sufficiently scaffolded (Bruner, 1971). In such
situations the children do not have the full benefit of the teacher as the ‘knowl-
edgeable other’ (Vygotsky, 1978). In Early Years settings where there is an open
culture an atmosphere of enquiry and discussion exists.

Figure 8.1 illustrates the features of both adult-led and child-initiated learning.
Fisher sees this in three ways; teacher-initiated, teacher-intensive and child-initiated
(Fisher, 1996). The teacher-initiated learning arises from the teacher’s planning, but
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is very open so it could be something the teacher started and the children could
carry on in their own way. Plans for adult-led sessions may also begin with an obser-
vation of children as the starting point.

FEATURES OF ADULT-LED AND CHILD-INITIATED LEARNING

YIN YANG
Adult-led Child-initiated
e The adult has the agenda The child has her own agenda

The adult chooses what the children do

The child chooses

The adult asks most of the questions
These can be open questions

The child has her own questions to
ask

Experiences can be in small or large
group times

These points (above) are usually a
feature of free-flow play, when
children are independent

Adults motivate children to ensure that
they are involved

The child is usually deeply involved in
what she has chosen

Adult’s assessment is based on the
adult’s criteria

Assessment is based on observations
of the child’s actions, representations
and thinking (including talk)

Figure 8.1 Features of adult-led and child-initiated play

The teacher-intensive session is a focused group, where the teacher stays with the chil-
dren and has objectives to teach. Both teacher-initiated and teacher-intense learning
are adult-led and neither is play. Fisher (1996, p. 105) reminds us ‘that the minute an
adult has a predetermined task or goal in mind, then the activity cannot be play’. In
the adult-directed learning spectrum there are different levels of adult involvement:

e where children lead after the adult has made an initial input

e where the adult provides open problem-solving questions but guides and supports
the responses

¢ where the whole class is teacher-directed; this is usually seen in older age groups
and is not a sufficiently good model for younger children.
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The significant feature is to be clear what play and child-initiated learning are, com-
pared to adult-directed and adult-led learning. Studies have documented the differ-
ence between teachers’ espoused theory of play and what actually happens in their
classroom (Bennett, Wood and Rogers, 1997; Pascal, 1990). Some teachers’ rhetoric
about play can suggest that their practice matches what they say. The reality is often
very different. For example, whilst one teacher firmly stated that choice was impor-
tant in play, in her classroom practice choice was very limited. The children had a
choice in what they did in the play area but had no choice of which play area or with
whom they were playing with in that area. In an even narrower understanding of
play, the well-intentioned teacher had turned the role-play into the ‘Three Bears’
Cottage’ and then proceeded to tell the children what they would play. In terms of
children’s mathematical marks the role-play area can offer rich learning environ-
ments but it must be in a sense of free-flow play or the opportunity to make marks
through their own thinking is lost.

Role-play and mark-making

In their role-play children are making sense of characters, relationships,
behaviours and responsibilities. When they use writing for their own purposes in
play this can demonstrate their knowledge of what writing can do (Hall and
Robinson, 1995). Provided that the culture of the setting supports mathematical
marks within their play, we have often found that in the same manner children will
integrate their mathematical purposes in an authentic way. This is demonstrated by
the examples of children using mathematical meaning, marks and writing in this
chapter, in their ‘library van’ play (in Chapter 9) and in the ‘garden centre’ and
‘Omar’s dog’ (Figures 8.5 and 8.6). Atkinson also makes reference to opportunities
for writing mathematics in role-play ‘at the hairdresser’s’ and in ‘the baby shop’
(Atkinson, 1992).

In England by the time children are 6 years old they have fewer opportunties for
play in school, whereas in Denmark there appears to be a better understanding of
children’s play and it is common to observe several groups of children playing in
classes of 6-year-olds (Brostrom, 1997). However, it is interesting to note that until
recently literacy materials have been deliberately excluded from play in Danish
schools since it was generally thought that children would get confused if literacy
materials were combined with play. This, teachers thought, would impede children’s
development. Recent research findings advocate that the opposite is true - connect-
ing literacy to play will support rather than hinder children’s literacy development.
Nevertheless, it is crucial to reflect that pressurising children into producing some-
thing based on the teacher’s expectations will stifle the imaginative and creative
aspect of play. Elkonin cautions against an educational use of play (didactic play), for
example by playing ‘grocer’s shop’, in order to try to teach children to give correct
change (Bostrom, 1997, p. 20).
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Office box

Following a visit to the school office one day we discussed the secretary’s work and
the resources we’d seen her use. It seemed natural to add a few additional resources
for role-play and the children had lots of ideas: the box in which they were stored
was soon named ‘the office box’ by the children and included the resources as
shown in Figure 8.2.

OFFICE BOX IDEAS

to support children’s own recording in role play
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Figure 8.2 Office box

The children incorporated these resources into their play in ways that were mean-
ingful within the contexts of roles they assumed (see ‘Marina and the library van’ in
Chapter 9).

Other resources

Blank paper offers the best background for children’s marks in mathematics, writing
and drawing. However, occasional use of computer-generated forms based on chil-
dren’s own ideas arising from their play can provide additional resources in a similar
way that a few officially printed forms do. The examples in Figures 8.5 and 8.6 are
from two different classes of 4- and 5-year-olds.

The physical environment

There are many practical opportunities for writing and making mathematical marks
that can be accessed in an Farly Years setting. It is helpful if writing and drawing
implements and paper are freely available at all times in different areas of the class-
room and outside. Different sizes, colours and shapes of paper add to the scope of
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the mark-making. There needs to be places to draw, sketch, write and make all sorts
of mathematical marks. Large paper with space to make marks, perhaps on big car-
peted areas, provides the children with freedom to explore large movements on
paper together with different scales and sizes of paper and drawings. Clipboards are
useful for travelling to different areas in the school and for outside work — and young
children love the feeling of importance when they collect information with the help
of a clipboard.

BED NUMBER PATIENT'S NAME

Bed 1:

Bed 2:

Bed 3:

Bed 4:

Bed 5:

Bed 6:

Side room:

Waiting for a bed:

Figure 8.3 List of patients

The garden centre

The way in which the environment is shaped is also significant. For example, whilst
we advocate that children have opportunities to mark-make, we are also saying that
there needs to be freedom of movement within this. We are not saying that children
should be sitting down holding a pencil at a table for most of their day. A classroom
full of tables and chairs would not be conducive to young children’s own
mathematics.

The setting must also be accessible to the children. It is hard for children to take
notice of labels and displays if they are near the ceiling and adult orientated. Dis-
plays and signs are better placed at children’s height starting from the floor up and
not the ceiling down. A useful thing to do is to get down on your knees and look at
the classroom from a child’s eye view.
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Patient's name: Number of spoons of Time to give
medicine: medicine:

Figure 8.4 List of medicines

When environments are mathematical, mathematics happens

Hall (1987, p. 19) states that:

children should never need to ask if they can engage in purposeful literacy acts. If a
classroom provides an environment where the state of literacy is high, where there
are powerful demonstrations of literacy and where children freely engage in literacy,
then children will take every opportunity to use their knowledge and abilities to act

in a literate way.

A purposeful literacy act:

Kate, 4:9, and Naomi, 4:11, had decided to paint a picture in the art area.When
they had finished Kate decided she would give her painting to her aunt. She went
to the writing area and wrote a letter saying to her aunt:‘this is for you. Love
from Kate’.

If we substitute the word ‘literacy’ with ‘mathematics’, then we can see that Hall’s
statement can also be true for mathematics. The mathematical environment is
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important because of the value placed on child-initiated learning. The actual physi-
cal environment is less important in a purely direct instruction model of learning:
in this the teacher with the knowledge is ‘telling’ it to the child. The environment
is vital in a balanced learning setting because the emphasis has moved away from
the teacher as sole giver of knowledge. The child has time within this environment
to choose and notice the mathematics around her and uses that mathematics to
make meaning in ‘child sense’ ways.

Telephone messages .
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Figure 8.5 The garden centre — telephone message and orders for seeds
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The pet shop

Omar, 4:6, used the form to reflect on the pet he'd like (Figure 8.6). At the top he
wrote ‘£100 for a dog, £10 for a hamster’. Then he read ‘I haven’t got a dog and
my mum might be thinking about it’, adding ‘dogs cost a lot of money’. At 4 years
of age Omar understood the difference between £10 and £100 shown by his
estimate of the cost of the two animals. He also understood the financial
implications of keeping a dog.Without ‘tuning in to’ what children say, such
knowledge would be easily missed.

PETS FOR SALE THIS WEEK
Pet: P 100 Cost:
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Figure 8.6 Omar’s dog
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A purposeful mathematical act:

Josh, Josephine and Ellie (3:1 to 3:7) are playing in the home corner.They decide
that Ellie is going to a wedding and she needs a dress. Josephine is going to
make the dress with Josh and he goes to the writing area where he borrows a
tape measure. Josephine puts the tape measure around Ellie’s waist and shouts
‘twelve’. They choose material from the scrap area. They have a discussion about
how long this needs to be for Ellie. They choose some length of pink netting and
Josh says that Ellie could be the bride. Josephine agrees and they return to the
home corner very excited.

Hall et al. wrote about a conventional nursery class where there seemed to be no evi-
dence of children’s writing and it would be easy to assume from this that children
were not interested in writing (1986, cited in Hall, 1987). However, the authors of
this study changed a non-literate home corner in to a ‘literate’ home corner. When
they added writing materials and utensils in everyday writing contexts (e.g. a
notepad was placed beside the telephone in the role play area), the children became
prolific writers and engaged in a lot of reading behaviours. This we believe can also
be true for mathematics. In another study one of us added additional resources that
offered potential for encouraging writing, mark-making and talk that were related to
mathematics. The outcome was dramatic: whereas no reference or use of mathe-
matical symbols had previously been observed, children now self-initiated mathe-
matical behaviours - including talk and writing — within their play. My observations
showed behaviours such as leaving notes for the milkman, reading the time from a
clock or using a tape measure and writing down a child’s height. If children are used
to writing mathematics, for many different purposes, they will become increasingly
fluent at exploring their mathematical thinking on paper.

Practical steps

Morning books

Parents and carers accompanying their children to school every day can provide the
perfect opportunity to share mark-making and writing opportunities. Some settings
welcome parents into the classroom as soon as they arrive in the morning, with a
question posed on a board for parents and carers to respond to with their children.
This provides an opportunity for a discussion and a talking point, and gives the
parent a chance to join part of the school day with their child. Involving families
offers the child different styles of mathematical writing. It also offers the parent and
teacher time to talk, to share cultural perspectives and to get to know each other. It
gives the child the chance to share school mathematics with their parents. It gives
the teacher a chance to listen to what might be happening in the home. When done
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sensitively and in an open way, families really appreciate this start to the day and
often younger siblings will join in with the mathematics. A good way to welcome
younger siblings is to have a basket of toddler toys available for them to play with.
There are many ways to share the start of the day with parents.

e Morning books — a question or statement is written on the board for parents and
children to answer together in any way. This is an open question to stimulate dis-
cussion, for example:

Look around the room, estimate what objects are about five centimetres
long. Write down your thinking.

What do you know about money?

‘Morning books’ can of course have any title; one teacher I worked with changed
the name to ‘sunshine books’ because she had an afternoon group.

e ‘All aboard’ - on a large writing board, questions can be posed for children, parents
and carers to respond to on the same board. For example, in a nursery class of 3-
and 4-year-olds I wrote:

We are collecting birthday dates. Please write
your name and your birthday date below.

This was very popular and the parents compared and discussed the dates with each
other. For example one parent told another, ‘my brother’s birthday is one day after
your birthday on the eighth of June: it’s the ninth of June’. The children of course
were listening to this conversation and watching as the parents wrote their dates.
Real conversations have a meaningful power to children.

When we have provided a model such as the morning books for the children we
have found that they are very keen to write their own questions for other
children to answer. Parents often provide interesting questions and are keen to
share ideas, and this often develops into an enjoyable time where questions are
puzzled over and laughed about. The fear of mathematics goes, as a safe
environment develops. The families take the questions back to the home to discuss
with other family members.
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During a discussion about shapes with 4 and 5-year-olds, two of the children
had suggested that irregular shapes were not ‘real’ or ‘proper’ shapes. Another
child suggested that they could ‘make up’ shapes that no one had previously
drawn. Later she wrote a question in our large morning book: ‘Can you make up
a shape?’

At first children and their families drew irregular ‘blobs’ and some regular
shapes combined. In their descriptions some children used mathematical terms:
some of their labels were often more precise descriptions, e.g. ‘roundy-tri’ for
the circle with a triangle attached. In contrast, labelling an invented shape ‘a
thingy’ did not tell us about its properties. After discussion the children added
the request that everyone should give their shape a mathematical name.

A wealth of invented shapes filled our morning book and each day we
discussed the names they had assigned to their shapes.The children became
rigorous in their evaluation of terms. Increasingly, they extended their
vocabulary so that it became more precise: ‘corners’ sometimes became ‘right-
angles’, ‘straight-sides’ included reference to ‘parallel’ and words such as
pentagon and hexagon were used in context.

It was interesting to note that in a class with 4 and 5-year-olds, at first
children related their invented shapes to something familiar such as a sun (a
curved shape) or a rocket (for a shape with a definite point).As their language
developed during the year, children were increasingly likely to use mathematical
descriptions.When exploring invented shapes later with children a year older,
most of the children described and named their shapes using specific
mathematical language.

Displays

Displays can provide children with models for written mathematics. It is important
to put up the children’s own representations because this provides positive messages
showing that you value the child’s ideas. Displays in which children become
involved are the most useful, for example where they can respond to a question, a
drawing or an idea. This can be a risky business because in some settings the rule is
tidiness. Children’s work does not always appear to be tidy to a visiting adult. This
is where the teacher’s knowledge in explaining the graphics and the educational
soundness of the children’s mathematics is necessary.

This giant is 2.5 metres tall. What age do you think he is? Write your answer below.

Alex’s rule is that all the numbers that end with 2,4, 6 and 8 can be shared equally.
Is this always true! Add your comments below.
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Lakshmi says that her Dad said that one million has six zeroes in it. Do you think
that is right? Try writing one million in numerals below. Try to discuss with a
partner if you think one million has six zeroes.What other numbers do you
know that end in zero?

Displays can be time-consuming so they need to be of value to the children. They
can also be put up with the children’s help and input in a single day. These can be
quick response displays. For example, you can ask the children to pin up all their
ideas about shapes that have more than three sides. Displays that show ‘work in
progress’ are a useful point of discussion with children: for example, a chart or a list
to which children are going to add information.

Noticeboards

Shearer (1989) talks about noticeboards outside of educational settings being
dynamic and meaningful. They often are haphazard and display a range of items.
The items grow and grow until out-of-date things are removed, to be replaced by
more urgent notices. Noticeboards at home reflect the lives of the people in that
house. There can be dates of notable happenings, reminders of events, photographs,
receipts, bills to pay, dental and doctor’s appointments, shopping lists, school letters
and children’s drawings. Noticeboards provide a communication vehicle that is pur-
poseful and interests everybody in the household in some way. Providing a notice-
board for children in the classroom gives them a further means of accessing literacy
opportunities but it can also provide a way of promoting mathematical communi-
cation.

Noticeboards are usually best if they are put up at a focal point in the classroom.
It is vital that they are at children’s height so the children can easily display any-
thing they wish to communicate with others. Explaining the function and model-
ling how the noticeboard works are essential to get the ideas started: for example,
the teacher may start to put up notices and explain them to the children.

JACK HAS A DENTAL APPOINTMENT AT 2.00 ON FRIDAY

SPECIAL ASSEMBLY THIS WEEK ON MONDAY AT 10 AM

REMEMBER 50P MILK MONEY, TOMORROW
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Once the children find ownership of the board then they will post a variety of pieces
from pictures to brochures. They will remind the teacher to put up current events
and they will remember to look at it every day.

Because it was part of the classroom culture, children often used the noticeboard
for their own purposes. Matthew, 5:8, decided to try to teach some of his friends
to play chess and to help them he made his own book of rules of how to play
this game, although other children found it difficult. Soon Matthew had the idea of
starting a ‘maths games club’. He wrote a message about this and pinned it on the
noticeboard, inviting children to sign their names if they wanted to join. For most
of the summer term the club flourished, with other children introducing their
favourite games and several children inventing games of their own.

Graphics areas

Graphics areas provide a range of resources for a variety of literacy purposes. For
many teachers the objectives for the graphics area are usually literacy based and so
you may see a predominance of literacy-related resources. By adding mathematical
equipment one can give the graphics area a different focus.

Additional mathematical equipment could include:

e rulers

e calculator

e calendar

* measuring tape
e number lines (different lengths)
e stamps

¢ shapes

e tickets

¢ cheque book

e cut out numbers
e clock.

The size of this area is important. In ideal conditions when space is no object it is
worth providing sufficient room so that at least six children are able to use it. If the
area becomes popular, make it larger. This is recognising the flow of children’s play.

A board is essential for children who wish to put up their pieces. Once I saw a
whole length of wall devoted to the children’s own writing including their mathe-
matical writing. If there is very little space for a graphics area you could think about
supplementing this with an ‘office box” which takes up very little space and can be
used anywhere (see Figure 8.2). This area will be used if the teacher highlights the
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purpose and shows the equipment to the children. Sometimes a graphics area
becomes outdated and needs revival: then a theme may restore some interest. Here
we suggest some themes that give a mathematical focus:

calendars

cheque books
birthday cards
petty cash receipts
raffle tickets

® recipes.

Observations of this area are important to see what the children write and how they
are using the area and these can be added to their records and also used for planning.
Do children use mathematics in their own self-initiated learning? This is a useful
assessment point. If children freely put their mathematics on paper then they are
beginning to make connections between practical and more abstract forms of math-
ematical thinking: this will help them move into standard forms of maths.

Max and Alex, aged 7, in the graphics area - self-initiated maths
activity

Max and Alex invented what was later termed ‘a multiplication roll’. Max cut out
a long strip of paper. He wrote ‘3’ at one end and rolled it up so the 3 was
hidden and then he wrote another ‘3’ and rolled it up and repeated this until he
had run out of paper and he had made a complete roll. He undid the roll and
rolled it backwards adding the 3s in his head and he ended with 27’ which he
put on the other side of the paper. He then ‘tested’ Alex by giving him the rolled
up paper and explaining you have got to add the next number ‘and you keep
going until you get to the end’. Alex tried and retried; eventually they did it
together. Alex then made one for Max to try. He chose the numeral ‘I’ to use in
the multiplication roll. Max laughed and suggested that they could make that
really long and so they taped several strips of paper together and wrote

I+ 1+ 1+ 1+ 1 andso on.They tested the strip on Nicholas who found it
fascinating. At the review session they shared what they had been doing with the
rest of the class.

This started a craze in the graphics area of making multiplication rolls in all lengths
and with a variety of numbers. I used this opportunity to discuss repeated addition
and the connection to multiplication: this reinforced work on multiplication the
children had been engaged in previously in the term. It also presented an excellent
link to the repeat function on the calculator.
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Creating opportunities in Early Years settings

Munn (1997) in her study of nursery classes found that the adults provided many lit-
eracy experiences but few numeracy experiences for children. The teachers seemed
not to be as aware of the mathematical possibilities as they were of other subject-
based opportunities. On finding the provision of mathematical writing materials in
her nursery was not sufficiently stimulating, Mills (2002) supported the children’s
interest in mathematical marks and set out to provide more mathematical experi-
ences for the children:

Over the remainder of the autumn term I gradually introduced resources into the
setting. Number lines were placed in the graphics area along with diaries, lottery
slips, raffle tickets or any ‘numbered’ pieces of paper. A small play table in addition
to the graphics area had a calculator with large number keys and a large LCD display.
A note pad was placed beside a telephone. A large dice was provided and a set of lam-
inated number cards which children could handle, write on and play with. Numbers
were displayed at eye level including a number line up to 30 and a number square
up to 25. At every opportunity numbers were counted up and down the number
line. Certain play situations were set up to encourage the use of number in their play.
(Mills, 2002 p. 26)

In her observations of the children she found that they were using more mathemat-
ical language and engaging in mark-making with a mathematical intention. Chil-
dren played ‘taking registers’, made up number games, jotted down ‘numbers’ as
they spoke on the telephone and ‘practised’ writing numbers through self-initiation.
Below are some of her observations of children in the graphics area.

Bradley, 3:5, had been playing with the calculator for about |5 minutes at the
writing table, writing as he looked at the keys. He said ‘my dad’s got one of these’.
Sam, 3:6, was watching as Bradley used the calculator. He also made marks on
paper (see Figure 8.7a).

Sophie, 4:2, played with the telephone at the writing table. She said ‘I know
Jade’s telephone number’ and wrote it down (see Figure 8.7b). Sophie was very
interested in numbers and was very confident in writing numerals. Alex listened
to Sophie and started copying what she was writing.

In both of these play situations the children were interested in each other’s mark-
making and what each other had to say. This social exchange will help them develop
confidence in their ability as mathematical writers. The adults in this situation were
keen to understand the children’s graphics and how they could support them. Not
only did they provide the materials but they listened to what the children said about
their marks and noted this down for future planning and for the children’s records.
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Figure 8.7a Sam’s marks
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Figure 8.7b Sophie’s marks

In order to create rich mathematical environments we need to put on our ‘math-
ematical glasses’ to see the possibilities. Young children need environments that
encourage the use of mathematics in purposeful contexts and ways that have
meaning to them. By providing mathematical experiences these nursery teachers
supported and developed children’s natural mathematical interest.

In another class of 4- and S-year-olds one of us had observed the use children
made of the graphics area and the range and purposes of their marks. Part way into
the term [ offered to add some mathematical resources and this triggered a wider
range of marks. Of the marks the children made during one session, over a quarter
were mathematical.

Form-filling is always popular in writing areas — children of 3 often make marks
over pictures, symbols and writing on forms whilst 4- and S-year-olds fill in the
boxes with their own writing and with numerals.

On one form James, 5:7, wrote his name in one box followed by a reversed ‘N’,‘9’
and ‘I’ in the next, which he referred to as ‘humber’. Below this he wrote that his
favourite object was a train and drew a train in the ‘comment box’ at the bottom
of the sheet.
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This passion for form-filling extends to form-making, relating to children’s grid
schemas (see Chapter 3).

Kacie, 4:9, drew a grid with ten boxes which she filled with writing-like marks
which she called a ‘holiday list’. It was a checklist with features that were
important to her and could be ticked off. They included ‘packed lunch, look for
seaweed, toy boat, climb on rocks’ and ‘starfish (blue)’. Madison, 4:10, covered a
sheet of paper with a grid which she filled with a variety of numbers that
included a series from | to |1,222 and 1010. Sometimes children made registers,
which they completed with their own or copied symbols. Other popular activities
in classes with children from 4 to 6 years are filling envelopes and making books
— both relating to containing, enveloping and connecting schemas (Chapter 3). Raj,
4:5, drew many little grids on small pieces of paper that he had cut out and then
attached them to pages with sticky tape throughout a book he’d made.

Some graphics can be seen to relate to the current class culture. A ‘garden
centre’ role-play area made Emily, 5:2, draw a vase with three flowers in and
beneath it she drew four coins — the price of the flowers for sale. Emily drew this
the day after I'd added a box of real coins to the graphics area.

Many homes and early years settings have wall clocks and children often draw
clocks in the graphics area. Jessica, 4:6, (see Figure 8.8) selected a piece of paper
at the graphics area and she drew a clock, attempting to fit all 12 numerals
around it. In her first and second attempts Jessica could not fit the 12 numerals in
but in her third drawing she had managed nearly all 12. She was pleased with her
drawings and told the adult that ‘it is nearly milk time’.

Jessica knew that there are 12 numerals on a clock. She was persistent with
her learning and challenged herself: getting the feel for layout, space and shape.
On this occasion she was playing with a piece of knowledge and connecting it to
a real context, i.e. milk time at the nursery. Jessica carried around her sign to
show the other children in the nursery.Woods (1988) talks about children being
the ‘architects of their own learning’.

Other clocks go through a period of transformation when children add moveable
hands and cut their clocks out. Louisa, 4:9, took this a stage further by creating a dial
for the children to select play activities in their class (Figure 8.9).
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Figure 8.8 Jessica’s sign

Both Louisa and Scarlett had moved from purely representing their objects to cutting
them out so that they became objects with which to play. In Pahl’s words they were
making them ‘more real’ (1999a, p. 35). Kress highlights the significance of cutting
out: ‘there is then a continuum for the child, between things on the page — one kind
of distanced, intangible reality; and things here and now, another kind of reality, not
distanced but tangible. The two kinds of realism are linked through the actions of
the child’ (Kress, 1997, p. 27).

When children wrote lists, made books and filled in forms they had no need to
cut them out since these things were already objects which were symbols in their
own right.

In the graphics area, Louisa, 4:9, made what appeared at first glance to be a clock
face, but which she intended to use for a different purpose (see Figure 8.9,
overleaf). In this class the children in each group had certain options for play from
which they could choose each day.When she explained how to use her dial, she
assigned an activity to the numerals |1-5: bricks, puzzles, role-play, reading and
painting. She paused with her finger on ‘6’, unable to think of other possibilities:
then smiling, explained ‘then you have a sleep’. As she moved the hand of the dial
she stopped at the letters fo’ (off) and pointed out that this was ‘where you turn
it off’. Louisa had related what she knew about analogue clocks to that of her
classroom culture: perhaps she was making links with her home culture too,
where after finishing playing at the end of each day, she goes to sleep.
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Scarlett, 5:0, drew a shop till (Figure 8.10) which may have also been influenced by
the class ‘garden centre’. She wrote and cut out numbers for the different
amounts which she attached to the till. At the top of her till she had drawn an

LCD screen with more numerals explaining ‘that’s what you have to pay’. Finally
she cut out her till so that it became an object she could use in her play.

Figure 8.9 Louisa’s dial
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Figure 8.10 Scarlett’s till
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Rose, 5:4, and Stephen, 5:1, were interested in the numbers of shoe sizes: their
interest had arisen from one of the children proudly showing his new shoes.
Stephen explained that numbers ‘go on forever’ and that there were just ‘too
many things to count in the world’ but they decided to see how far they could
count. They chose some strips of paper in the graphics area and each began to
write on a separate piece of paper, eventually agreeing that each strip should have
no more than the 20 numerals.When they had a total of five strips covered with
numbers they were unsure how to arrive at a total.

Rose’s response (Figure 8.11) shows how she was able to link her previous
knowledge of counting in tens to this new problem, by grouping pairs of tens. She
read the numbers as ‘10, 20, 30, 40, 50, 60, 70, 80, 90, 100’. She explained that the
numbers between each line represented the numbers (20) on each of the five
strips of paper

Building on their knowledge of counting in tens, together the children were
able to count in twenties. The following day Stephen added two further strips of
1-20 and confidently wrote ‘10040’ (140) for the total number of their seven
strips (see also Alison, pp. 186 and 187).
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Figure 8.11 Rose’s counting in twenties

The maths explored here included estimation and adaptation of known rules. Build-
ing on their partial understanding they used repeated addition and were able to
arrive at a total. Young children have a fascination with larger numbers and, pro-
vided they can see a purpose, will grapple with complex and challenging ideas.
Allowing children to explore and practise skills in ways they have chosen permits
them to enter a task at their own level: it also allows learning to be differentiated to
learners’ needs (Worthington, 1998a).
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One day Natasha, 4:6, brought a piece of paper and a pen when | did the dinner
register and this led many other children to choose to make their own during the
term. Gemma, 4:4, (Figure 8.12a) used marks with some approximations of
symbols (‘0’ and ‘+’) whilst Natasha (Figure 8.12b) focused on the concept of a
list including some ticks and circles. Alice, 5:3, used only two symbols (one for
each type of lunch) and refined her layout (Figure 8.12c).

These examples show a progression in the way in which the children have chosen
to represent data and in their layout. Other children drew lunch-boxes, plates, and
children’s faces or wrote names. Afterwards they ‘read’ their registers, allowing them
to see the different ways others had represented data. These frequent opportunities
provided the children with useful models of data representation from their peers and
they were often able to suggest ways in which they could add information to help
someone else to read what they had written.

In one setting of 3- and 4-year-olds, children were responsible for collecting the
choices for mid-morning staff drinks. The children took a clipboard to collect the
drink choices of the staff. They then read their information to the member of
staff who made the drinks.

There are many other regular opportunities for collecting and representing data in
Early Years settings including session registers and lists for different purposes. The
key significance of such events is that they provide opportunities for representing,
reading and discussing meaning in authentic contexts. Such examples provide
powerful foundations for later formal data handling in mathematics.

Graphs

A graph or chart is an easy and potentially purposeful mathematical representation. It
is useful to provide a range of graphs that children can read. These can be commer-
cially produced graphs and also those that have been drawn up by the teacher about
the children. These are then displayed on the walls for children to read. It is important
to note that the graphs displayed reflect a range of layouts and that they do not always
need to be done by the children. Graphs and tables provide models for discussion and,
if purposeful, children then can see the application of data handling.

Number lines

There are many different kinds of number lines that can be displayed in the class-
room. They are used for different purposes: as a reference for the children to use if
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CHART OF RACES CHOSEN FOR SPORTS DAY

EGG/SPOON | CLOTHES | HOPPING BACKWARD | BALLOON
Kenny Lilly Famidah Nick Stuart
Nick Glynis Kenny Lilly Zak
Ben Max Oliyemi Zak Alex
Rose Famidah Shabana Joseph
Shabana Ginny Max Sanjay
Famidah Susie Susie Alice
Alexis Ginny

Jason

Figure 8.13 Chart of races chosen for sports days

they need to; as a teaching tool; for the children to construct their own number line
(Carruthers, 1997a). Number lines are an essential part of helping children develop
visual mental images of numbers. If we want to help children with their under-
standing of the position of numbers then the importance of number lines cannot be
underestimated, and it is vital to have effective number lines. Through the year a
change and a growth of numbers on the line help the children focus on them. To
help children see the pattern of numbers it is vital to have number lines beyond 30.
When we look at numbers in the outside world they are not always horizontal: it
adds another dimension if you suddenly add a vertical number line, especially when
you are talking about scales.

As the year progresses, put up an empty number line where children can add their
own numbers (for example, see Chapter 9, pp. 164-6). Sometimes start with other
numbers such as 30 or 100. Children find it interesting to work out what comes next
and add it to the line. Negative numbers are also a source of interest and a challenge
for young children and may arise through an interest in the weather and tempera-
tures. To encourage the children to write their own number lines put strips of paper
in a pocket beside the number line. Once you have modelled the use of the number
line then the children can challenge other children by starting at different numbers
they have chosen. Children as they progress through their understanding will
choose to use the empty number line as a method of calculation.
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Outside

The outside environment in a setting can promote children’s marks just as much as
inside. Here they can have the space and freedom to make large marks with an exciting
variety of tools. Large paintbrushes with water buckets provide a stimulating invitation
to paint on walls or large rolls of paper. Here children like to experiment with large
shapes and it is especially liberating for children who find finer pencil control difficult.

Teachers can set up a large chalking area either on the ground or on walls. One
nursery I worked in had a large piece of ground painted in black. They had also put
a border around the black square. It became one of the most popular outdoor activ-
ities. Easels with the usual painting tools are an ideal way to use outdoors and the
space to create. Children also like to use clipboards outside and the ‘office box’ can
also prove a useful addition to the outside area.

Labels and signs

If we think of the mathematical environment that is outside the setting in the real world,
then what we are trying to do is to bring that kind of mathematics into our setting.
Think of the labels that we see that are communicating mathematics, for example:

e 30 MPH
e OPEN AT 5 0'CLOCK
e BACK IN 5 MINUTES.

In the setting we want to reflect this variety of number signs: for example, ‘tidy up
time’ provides a good opportunity to use a sign.

5 MINUTES FOR TIDY UP TIME

A child can carry this sign around and depending on how much time you have,
you can alter the times. Often children will start making their own signs and a
culture of sign-making will follow.

Figure 8.14 Mark-making outside
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Conclusion

We have shown the importance of giving children daily opportunities for child-ini-
tiated play and learning. Well planned and valued by the teacher, this time can
provide a basis for children to explore aspects of learning that are of significance to
them personally and rich opportunities for observations. Provided the choices are
wide and the environment offers mathematical possibilities, children will often
choose to explore aspects of mathematics. The examples in this chapter show some
of the ways teachers can provide opportunities for mathematical choices. We have
also discussed features of an open classroom where in adult-led situations the chil-
dren can also explore their own mathematical representations.

Implications for teaching

e It is useful to take an audit of your environment; how mathematical is it?

¢ Identify an area that you might develop.

e It is better to start with just one thing you would like to change and observe this
for future development.

In Chapter 9 we include case studies of both child-initiated play and mathematics
lessons which provided opportunities for children to use mathematical graphics in
their own ways. The children are aged from 3 to 8 years.
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Childhood Settings

University lecturers, researchers, advisers and even head teachers can forget all too
easily what it is like to be a classroom teacher. Nothing that any of these people say
or do is profitable unless it can be used by teachers in their classrooms. (Davis and
Pettitt, 1994, p. 157)

The following case studies are of authentic classroom practice. This is a small sample
to represent the age range from 3 years to 8 years. We begin with observations of
children initiating their own learning through play and then go on to describe a
project focusing on a group of Children’s Centres. We have also selected a mixture
of teacher-directed small groups and whole-class teaching. There is no set way to
support children’s learning in mathematics or in any subject. We offer these exam-
ples for your reflection and as a discussion point with others. Sharing what we do as
educators may give us a stepping stone to refine or rethink our own practice.

The birthday cards
THE MATHEMATICS  number knowledge as a function in society

AGE 3- and 4-year-olds

CONTEXT free representation in the writing area - individual
responses

FEATURES providing opportunities for mathematical representations

within a nursery setting

Birthdays are something young children identify with and that excite them. The
changing of their age is very important to them. To enhance our graphics area for a
birthday focus we asked the children to bring in old birthday cards from their family.
We discussed with each child the card they had brought in and then they put it up
on the writing area display board. As well as providing a discussion tool the birth-
day cards gave the children models to create their own birthday cards for other

162
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people. We added plastic, cut out cardboard and shiny paper numerals to the writing
area, as well as decorations for the birthday cards. The children made lots of cards
for themselves and other people. Children chose to come to this area if they wanted
to. There was sometimes an adult there to discuss with the children anything they
wanted to do. We carefully observed this area and noted down our findings. The
children showed ownership of their cards: Stacey, 4:2, showed the birthday cards she
had made for her sisters to her granny; Thomas, 3:9, showed his to his sister; Daniel,
4:5, showed his to his mum. There was always somebody at this area and all the chil-
dren were able to discuss for whom they were making the birthday card. Some chil-
dren just felt the numerals and others glued as many numerals as they could on a
piece of paper. A parent helper aided the children’s experimentation with rulers and
folding the paper and card to make the birthday cards. The children chose the paper
carefully, selecting the colour and size that would suit them.
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Figure 9.1 Nikita’s birthday card

Nikita, 3:4, made a birthday card for herself (Figure 9.1). She looked through the dif-
ferent colours of paper and finally decided on pink. She looked through the box of
cardboard numbers and selected the numeral three, which was her age. She glued
the numeral on to the paper and wrote in black pen. She was very quiet and whis-
pered to me that the card was for her — ‘I am three’ she said. Nikita showed her
understanding of birthday cards. She knew her own age and was able to select the
appropriate numeral to put on her card. Her marks look very much like writing and
the crosses might be kisses, although she never gave me this information.
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Evaluation

The birthday card area showed children at different stages of their knowledge of
birthday cards. Some of the children had a strong idea about birthday cards — they
made them for other people or for themselves. Some of the children liked to touch
the numbers: they either did not want to make a card or did not understand. The
action of putting numbers on the cards was the focus for some children. They may
have been in a connecting schema (see Chapter 3). Some children knew that birth-
day cards had one number on them and you gave them to other people. Birthdays
for some were more personal: Daniel put number four on his birthday card and gave
it to his mum. This was his own personal age number and it was special enough for
his mum. It was also the numeral he recognised and was familiar with. The birthday
writing area facilitated acceptance and understanding of each child’s growth and
concept development of birthday cards. It is important to give children
opportunities to explore different mathematical genres.

A number line

The following extract is adapted from Carruthers (1997a) ‘A number line in the
nursery classroom: a vehicle for understanding children’s number knowledge’, Early
Years, Vol. 18, No. 1, Autumn.

THE MATHEMATICS  number recognition and order, social and personal
numbers, problem-solving and self-initiated mathematics

AGE 3- and 4-year-olds

CONTEXT interacting individually and with others in constructing a
number line

FEATURES understanding children’s number knowledge

In setting up an environment that encourages and supports children’s math-
ematics in my nursery setting of 3- and 4-year-olds, I decided to put up a number
line with the children’s help. This number line was planned to grow in accordance
with the children’s interests. The number line was going to be a ‘touch and feel’
number line and the numerals would probably be approximately half the height of
a 4-year-old. The number line was based on discussions with children who
volunteered to take part. I explained what a number line was and asked the children
what number they would like to start to make. They decided to begin with number
three. They probably knew more about three than any other number: some of them
were three, some of them had been three, so we started with a very personal
number. It took two months to accumulate numbers to ten and beyond. Eventually
the number line went as far as 22. At one point zero was put up because there was
a space next to the one and that prompted discussion. Each time a group chose a
number they had to estimate where it would go in relation to other numbers. We
had to leave spaces for numbers not yet done. Personal numbers were first chosen;
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for example, after three, four was chosen because some of the children were four.
Toby, 3:9, chose number eight because that was his brother’s age. Toby loved to feel
that number and showed it to his mother. Amy, 4:6, initiated a circus game using
the number line.

I decided that because the children were so interested in this number line I would
invite them to make their own number lines. I provided long strips of paper and
pens beside the number line. The children then could freely use these if they wanted.
Several children took the opportunity to do their own number line.

Jessie, 4:3, is centring on her ‘J’. This is the most important letter to her at the
moment and she uses it for number symbols as well as writing symbols (see Figure
9.2, top). In her teaching of reading, Ashton-Warner reasons that the letters in a
child’s name are personal to them (Ashton-Warner, 1965). Jessie’s dots may be rep-
resentations of other numerals and ‘line’ may be a literal translation of line because
she often heard us refer to the number ‘line’.

Donna, 3:6, talked about the numbers as she did them. She moved from left to
right as she wrote. She has one number very firmly at the beginning of her line (see
Figure 9.2, centre).

Daniel, 4:8, has mixed letters and numerals. Again, like Jessie, he is using letter
symbols for numbers (see Figure 9.2, bottom). In her observations of children
writing, Clay (1975) also noted that this two way use of symbols happened. Daniel
has used four as his first number on his line because it is his age number and it
means something to him.

— ™ g Jessie
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Figure 9.2 Number Lines
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Evaluation

Usually number lines are hardly noticed by children but I believe this one was
popular because the children had ownership of it. It was not a piece of wallpaper but
a ‘living’ number line that they could engage in if they wanted to. Children made
their own meanings from their experiences because they were empowered to guide
the learning and receive appropriate teacher responses at relevant times. The
number line was an excellent evaluation tool and informed me what the children
knew. The children learned from each other as they listened to discussions about the
numbers. The language used and received was important for their growing under-
standing of number lines and number sense.

‘No entry!’

This section was contributed by Louise Glovers, nursery teacher at the Robert Owen
Children’s Centre, (see cover photo).

THE MATHEMATICS  exploring a standard abstract symbol to convey a message to

others
AGE 4 to 8 years
CONTEXT garage role-play area outside
FEATURES symbol making and use within the context of free role-play

mark-making outside

The children in the nursery had been showing a great interest in our garage role-play
area outside, which was next to the graphics area. We had included an office with
clipboards and invoice books for them to write in and encouraged the children to
write down details about the cars that they were repairing and the cost of repairs.
This was proving especially popular with the boys who were enjoying mark-making
in this environment, and writing on clip boards.

Mark had been one of the children who enjoyed playing in the garage and had
extended the play away from the role-play area. We had made large chalks available
and encouraged them to make their own marks on the playground. Some of the chil-
dren were playing on bikes and other wheeled toys and Mark chose a corner of the
playground that led down a narrow passage-way to a locked gate, where he could
make marks without interruptions. At the top of this passage-way he began to draw
yellow crosses all around himself. When I asked about his marks, he explained that
this was a ‘no entry area for the cars’!

Evaluation

Mark appeared to have noted similar symbols on road signs and transferred and
developed this knowledge within his play. He decided that there had to be many of
these symbols spread across a wide area for his message to be clear to other children.
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He has begun to recognise the power of abstract symbols in conveying meaning in
a concise, visual (abstract) form. Mark does not often choose to mark-make and we
were very encouraged by his choice of this activity. Providing both open-ended and
focused opportunities for mark-making outside showed us the potential and as this
example demonstrates, can also encourage boys to participate in meaningful ways.

Carl’s garage

THE MATHEMATICS  counting
using numerals in play
the use of numerals for real purposes in society

AGE 3- and 4-year-olds
Carl, 4:5 years
CONTEXT in the nursery
child-initiated play
FEATURES opportunities to make mathematical marks in play

adult interaction in play
informal observation of one child

Role-play and small world play

I was spending an afternoon in a local nursery school and this provided an
opportunity to observe some 3- and 4-year-olds at play. Carl had decided to use the
big wooden blocks and began constructing a house with Danny’s help. Part way
through their play I joined in, making pens and paper available: this encouraged
Carl to use a great deal of mathematical mark-making. I picked up an imaginary
telephone:

Teacher Ring, ring. Ring, ring.

Carl looks surprised and turns to look around the room. I hold out my imaginary phone.

Teacher Phone call for the builders.

Carl Oh - yeah, right. Hello?

Teacher This is the builders’ yard. I've got some cement to deliver — do you
want anything else?

Carl Blocks — three blocks.

Teacher Right — I'll bring them round on my lorry.

I arrive with imaginary delivery.
Teacher You'll have to sign for them. Three blocks and one bag of cement.

Carl, Danny and Sam make some marks on the paper.
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Figure 9.3 Carl’s delivery note and parking tickets

Mathematical mark-making through play

Carl ‘read’ what he had written on the delivery note (Figure 9.3) saying, ‘if it breaks,
fix it’. Daniel read ‘three blocks’ and Sam said nothing when he made his marks. The
construction continued for a few minutes until the roof was complete. Next Carl
decided to build a ‘car park’ for the house which he soon developed into a public car
park, repair garage and car sales.

Using small wooden blocks Carl began to arrange cars in rows on the floor and put
two long blocks at right angles to form a boundary for the parking. He talked about
where the cars should park, commenting ‘You have to have a ticket or you get done!’

I noticed that there were no mark-making materials in the block play area so I put
paper and pens near Carl. I was sensitive to the fact that this was his play and I did
not expect him to use them unless he decided to do so. After adding a few more cars
Carl started to make some marks, then fetched scissors and cut out tiny pieces of
paper for ‘parking tickets’. He ‘read’ each ticket as he placed them in turn on top of
a car ‘40p, 40p, 40p, S50p, 70p, 80p, 90p’ (see Figure 9.3).

Having paper and pens to hand triggered many more ideas. The ideas flowed from
Carl and none had been suggested by me. Next Carl wrote a sign — which he referred
to as a ‘label’ - saying ‘no parking’. Then he made a ‘£50’ sign on a car for sale and
a ‘closed’ sign to go on the brick which he’d used as a gate to close the car park.

The children talked about ‘broken’ cars and said they would ‘fix ‘em’: Carl referred
to several cars as ‘G-reg’. After a while he looked across to me and asked if I wanted
to buy a car, offering one he said was £40.

Teacher No thanks - that’s too much money.
Car This one’s £50.
Teacher Oh dear - that’s too expensive — [ haven’t got enough.
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Sam Here’s some more money from the bank!
Sam gave me a handful of coins.
Carl This one’s £10.

I agreed to buy this cheaper car and counted out ten coins. Carl dipped his hands into a box
of toy cars and handed me a yellow bulldozer.

Teacher Oh dear! I can’t have this — it’s a bulldozer! I can’t take my children
to school in a bulldozer.

Cerrie-Ann Here's one for £30. You can take your children to school in it and it’s
got petrol and it doesn’t need fixing — it's G-reg.

Teacher That sounds good. But it needs a registration number plate!

Carl OK. 0665 G-reg.

Evaluation

Carl referred to his dad’s lorry several times and appeared to have a great deal of
knowledge about cars which he explored through talk and the marks he made.
Making paper and pens available widened the opportunities for him to include
mark-making if it arose within the context of his imaginary play.

Through closely observing Carl’s play it was clear that he had a well-developed
understanding of the use of numbers — for the price of a car, number plates and the
cost of parking tickets. For most of the parking tickets Carl used the first letter of his
name to stand for the number, but for ‘70p’ he wrote ‘17’ and wrote ‘8’ for ‘80p’. At
first when I explained that I thought £40 was too expensive for a car, he offered an
alternative but dearer one for £50: later he adjusted this and found one for £10.
Drawing on his knowledge of cars and lorries from his home experience, he was also
able to use a string of numbers for the car registration plate and knew the special
term used to describe the registration by a letter for the year it was first sold.

Additionally the observation illuminated other children’s understanding. Cerri-
Ann especially had listened to the features of cars that we discussed and integrated
them in her sales pitch for a car, offering one cheaper than Carl’s original offer and
incorporating several features I'd wanted. To make the deal attractive she confirmed
that it had a full tank of petrol and that it ‘doesn’t need fixing’ — a point Carl had
repeatedly made. Finally, she added Carl’s boast that her car too was a ‘G-reg’.

Children’s Centres:The Cambridge Learning Network
project

Focus:The Learning Environment

The Children’s Centres in England are based on the Every Child Matters agenda (DfES,
2004a), where the five outcomes of ‘Health, Safety, Enjoying and Achieving, Making



170 Children’s Mathematics

a Positive Contribution and Achieving Economic Well-being’ are the goal for every
child. In these centres nursery education is provided and in many centres research is
promoted. The Cambridge Learning Network is a unique two year research project
in that it is the only group of Children’s Centres to be given a Learning Network
research grant for mathematics (DfES, 2004d). There are six centres involved in this
network in the Cambridge area. The brief of the project is to focus on children’s
mathematical mark-making and the main objective is to ‘raise the quality of the
teaching and learning within the area of children’s development that leads to
written calculations’.

At the time of writing the project has only been running for six months and the
tull impact and research outcomes are not yet finalised. To lay the foundations of
this project the Centres looked at what mathematics was already happening within
the environment and how this could be enhanced.

The environment

An outcome of the project in these early stages is that it has heightened awareness
of the mathematics already happening in the centres. The preliminary findings of
the EEL project (Pascal and Bertram, 1997) also found that practitioners sometimes
were not aware of the mathematics within settings. Knowing about the
mathematics that is already evident in the setting is essential in order to be able to
develop provision. If practitioners are not aware of the mathematics then they are
not aware of the opportunities to support and develop children’s mathematical
learning. To extend these mathematical experiences the Cambridge project looked
at the environment and how to further develop opportunities. ‘What else can we
do?’ was a key question.
These are some ideas they tried:

e numbers on trikes and bikes with numbers on corresponding parking bays

¢ adding different cardboard cylinders to the sand pit resources

e number lines more prominent and visible on tables and outside

¢ children’s pictures with the date of their birthday on display on the setting walls

e numbers on toilet doors

e clocks at children’s heights and in the play areas

e cards with pictures of different flavoured ice cream and their prices in the sand
with an ice cream scoop

¢ shaped paper in the painting area

¢ selecting mathematical software games for the interactive whiteboard

¢ a mathematical box with different mathematical equipment in it for children to
use — ‘a mathematical tool kit’

¢ 3D opportunities inside and outside, for example tunnels and cardboard boxes for
children to play with.

The practitioners wanted to give more opportunities generally for mark-making
within the environment. and to support mathematical mark-making they added:
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¢ mark-making implements beside a long shallow sand tray for the children to
experiment with mark-making

¢ clipboards and pencils throughout the play areas for children to use

e mathematical equipment in the graphics area, for example, rulers, calculators,
number lines and calendars

¢ outside equipment — chalkboard areas, scoring boards, water sprays, chalking on
the ground, sticks in the soil and mud and writing implements in the sand.

Whilst it is important that the resources and equipment are available, the pedagogy
that supports this is vital and this is what the Cambridge Centres looked at next.
‘How do you support the children’s mathematical graphics, within the everyday,
play-based environment?’ ‘What is the adult role?’ At this stage within the project
the practitioners looked at the adult role within the environment as opposed to
adult directed activities in large or small groups.

It is important that the adult models different ways to represent the mathematics
within spontaneous or pre-planned — but flexible — teaching contexts as this gives
children the opportunity to select ways they understand when they choose to put
their mathematics on paper. Here are two contexts for this approach:

¢ Pre-planned modelling within the environment means that one might write down
in some way how many children want to go outside and how many want to stay
in. This would take no longer than three minutes and it could be written on a
chalkboard at the door.

e Spontaneous situations that arise can support the children’s own mathematical
thinking on paper (see the case study, below).

The practitioners within the study found that modelling different ways to represent
the mathematics was not as easy as just providing mathematical resources; for
example one needed to have some ideas of the different ways available to represent
mathematics. Being spontaneous and working from the children is more difficult
than pre-planning.

To model the forms and mathematics in a flexible ‘child involved’ way promotes the
children’s ideas, but also gives them models from which they can choose at a different
time. The essential part here is that this is not a ‘copy model’ of teaching children i.e.
where the teacher writes on the board and the children copy it. In Chapter 10 we have
described some research within the context of two direct modelling contexts, one a
comparative study with groups of 4- and 5-year-olds and another with 6-year-olds
during one whole term. This highlighted the need to give children a variety of mental
models so that they can choose the one that they understand the best, thus helping
their thinking. Using indirect modelling within the environment of the nursery
setting with 3- and 4-year-olds was the way forward (see p. 215).

Generally within the environment it is important to consider the following:

¢ Do the staff know the mathematical forms: this will provide a springboard to ways
of representing. An understanding of the ways children represent mathematics is
vital.
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¢ Be aware that the dynamic form cannot be modelled as this is the child’s own and
very spontaneous.

e Children represent their thinking in many ways, for example the iconic form is
not just tallied lines. Children often represent their counting by using images
(such as hearts, circles and people) and much else besides can represent items
counted.

¢ Children will give ideas for the teacher to model that may be very different from
the ways the teacher might choose to model.

e For the 3- and 4-year-olds in pre-school it is important for them to explore their
own marks and they will have abundant ways of representing.

Although we recommend that adults indirectly model different ways of mathemati-
cal thinking within play, we do not want to inhibit children’s free expression and
this can be a very fine line. We are saying that when children come to put their
mathematical thinking on paper they will bring to the situation all their experiences
and they will select the ‘tools’ that help make meaning for them. The adults will
have encouraged their free exploration and also will have helped support new ideas
and thinking which the children may choose to use or reject.

The spontaneous dice game

This was a case study within the Cambridge Children’s Centres at The Colleges
Nursery, Cambridge (Lead Practitioner, Rosie Lesik).

THE MATHEMATICS  counting

AGE 3- and 4-year-olds
spontaneous group

CONTEXT child-initiated play

FEATURES modelling mathematics
adult role in play
inclusion

Three children in the nursery had self-chosen to play with the large sponge dice and
were particularly interested in throwing it up in the air and watching it fall on the
floor. Some children were fixed on how many dots were showing when it landed.
One child took the clipboard and paper that were always available in most of the
areas and using the grid paper started to record the dots seen. The practitioner
encouraged this mark-making by joining in, taking a piece of paper and making dots
on it as the dice landed: in this case it was dots represented by dots. In each section
of the paper the child recorded what he had seen. Meanwhile other children joined
in and were enjoying throwing the dice and seeing where it landed and how many
dots there were. The attraction of the game was throwing the dice as high as it could
go. Children who were in a trajectory schema were also interested in the
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movement through the air from one point to the other. One child who had up until
then shown reluctance in taking part in group activities came to join in and was
participating well. He threw the dice up and shouted with glee as it landed. Another
child, Alistair, sat on a chair and decided he would not throw the dice but just
record the number of dots on the dice each time it landed (see Figure 9.4).
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Figure 9.4 Alistair

Evaluation

The practitioner was particularly skilful in her use of language and supporting all the
children. The play was completely spontaneous and came from them. The practi-
tioner kept the action lively and did not spoil the children’s flow of action by giving
them too much and the children used their own ways to represent the dots. At
review time some children chose to discuss the dice game and showed their paper.
This can be taken forward at other times when the practitioner might use other ways
of representing the dots on the dice. All these situations where children are engaged
with mathematics allowing possibilities of mark-making in an enjoyable and spon-
taneous way will help build up their ‘mental tool box’ which they can use at any
time (see p. 213). This was a particularly good example of including all the children
because this spontaneous activity was open-ended and one that all the children
could join in with.
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Young children think division

THE MATHEMATICS  problem-solving
division by sharing

AGE 4 and 5 years
CONTEXT whole class and groups
FEATURES the variety of responses

The main part of this session was a whole-class introduction to the concept of divi-
sion through sharing. I wanted to provide the children with several models of this
while emphasising that they could choose their own model to write down their find-
ings. I demonstrated models throughout the session so that children could take
those aspects with which they currently identified and then make them their own.
As this was only a single session consisting of one visit I was unable to model a
variety of possible ways of recording over a period of time (see Chapter 10).

I introduced division through sharing by telling a story which I had invented.
Stories are a wonderful way of bringing some sense to difficult concepts in maths. In
brief the story is about twins who like everything the same. ‘If Rosy has two sweets
then Kathy also has two sweets. Rosy and Kathy like numbers that share equally.
What numbers are sharing numbers?’ The children and I discussed how we might
find this out. I asked one child to choose a number out of a bag. ‘How could we tell
if you can share that exactly?’

Most children of this age that I have taught understand the ‘one to you, one to
me’ way of sharing and when asked how to share quantities, one child did suggest
this. I had some cubes and a child demonstrated this and we agreed that five cubes
shared between two children left one cube over, so five was not a sharing number.
The importance of vocabulary and ‘one left over’ are crucial to develop understand-
ing of remainders. At this point, therefore, I had presented two ways of working out
the ‘sharing’ numbers. I then went on to discuss images in their heads. Could we
work out if it was a sharing number without actually using cubes? This helps the
mental process in mathematics: if children can do it in their heads, they should do
so. Some children were able to have visual mental recall with small quantities but
this seemed generally more difficult to them.

The children went to tables to choose numbers for themselves to work out. I had
put a tin of numbers on the tables from which they could select. I encouraged them
to put their findings on paper ‘so you can remember’. Blank pieces of paper and
pencils were available on the tables. Some children chose to work on the carpet. On
this occasion there were three adults available as some children needed more
discussion and encouragement of their own ideas. Although I suggested that they
work in pairs, most children worked on their own. This class had an open culture
where children were not apprehensive to try things out (see p. 134). The teacher
had moved away from the premise that mathematics is either right or wrong: she
was much more interested in their thinking and how to support and encourage
them. I was impressed by their independent thinking: no two children produced
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the same response on paper. Every child was willing to discuss their ideas.

A variety of responses

Harry, 5:4, remembered the twins story and used that to represent his findings. He
used cubes to divide the amounts out. On his paper he had drawn two very large
figures with their arms extended and he had written the numeral nine between
them. He explained ‘nine is not a sharing number. It makes one of the twins get
more, so that is not fair’. He said ‘two is a sharing number’: he worked this out
mentally. Harry had understood the concept of sharing and was able to represent
that on paper. He was able to express his opinion about the situation and had
worked out that one of the twins would get more. He also understood that two
could be shared. Harry had a good knowledge of numbers to build his ideas of
division on. He was concerned with the inequality of the situation, which I helped
the children explore at the end of the lesson. Although he did not talk about ‘one
left over’, in future sessions he may have been interested in discussing this. This
would help him form ideas of remainders which, in turn, will ease his way into
more difficult division concepts.
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Figure 9.5a and b Young children’s division — Elliot and Charlene

Elliot, 4:11, took three cubes and shared them between three people. He drew the
number three and made some other marks beside it (see Figure 9.5a). Elliot did not
wish to tell his teacher about it. He had taken the task and made his own meaning
from it. It seemed that Elliot was focused on the quantity and attaching a numeral
to it. He made sense of the task by sharing the cubes, one to each person. In future
sessions Elliot’s interest in quantities and counting will become the focus and this
was be extended in everyday sessions and in the play areas.
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Charlene, 4:10, made sense of this task by focusing on the writing and naming of
numerals (see Figure 9.5b). She chose to write lots of numbers and in discussion with
an adult named the numerals she had written. She was not yet quite clear about the
names of some numerals and this is why she focused on them. She is experimenting
with the shapes of numerals. For example, she could not name the eight she had
written but she said ‘this is a round one’ and ‘this is another round one’. She also
said she was trying to find the same numbers. Charlene needed more opportunities
to write numerals as this is where her interest lies. Extending the writing area to
include numerals and more mark-making equipment including numeral stamps
would interest Charlene. She was also interested in such self-initiated opportunities
as writing down phone numbers in a play situation.

avey

Figure 9.6a and b Kamrin’s division

Kamrin, 5:7, invented his own system of checking. He worked through three
examples consistently using his checking method (see Figure 9.6a and b for two of
these). He depicted different stories. On his first paper he made up the ‘Tweedle’
birds and each bird has four eggs. He then wrote the numeral eight and a question
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mark. He put a tick to show that eight could be shared. On the second paper he drew
two faces depicting two people at a bowling alley. He drew the skittles and linked
arrows and the symbols ‘1, 2, 3’ to the faces. In this example he also put a tick and
said ‘a tick shows us that six is a sharing number’. In a third example Kamrin moved
away from pictorial narrative graphics and used iconic/symbolic forms. This was
much more efficient for him as he understood the symbols he was using. He wrote
nine, a question mark and a cross sign to show us nine is not a sharing number. His
own symbols meant something to him and he understood the sharing concept
through them. In this one session it was significant that Kamrin realised that there
were quicker ways to represent his mathematical thinking and was able to use them.

Elizabeth, 4:9, chose the numerals four and eleven and used cubes. She said
‘four is a sharing number but not eleven’. She put a heart beside the four to show
us it is a sharing number and a sad face beside eleven, to show that this was not a
sharing number.

Evaluation

The examples of the children’s representations on paper show a wide range of
responses. All the children’s marks were respected and accepted because the adults
viewed them as intelligent responses. Many of the tasks that teachers set children
are not always fully understood by the child but they make their own sense of
them. In this session, because the children’s choice of marks was accepted and
analysed carefully, the teacher understood more about the children and their
thinking.

In the last part of this session children shared their marks with each other. I wrote
on the board the numerals zero to fifteen. I asked them to tell me what they had dis-
covered about each one. I put a line beside the numerals that the children indicated
shared equally and a cross beside the numbers that did not share. We also discussed
other symbols that could be used instead of ticks and crosses, for example, Eliza-
beth’s hearts and sad faces. They could see a pattern and some children were able to
predict the numbers that shared. I introduced the class to the words ‘odd’ and ‘even’.
Their teacher asked them if their age was odd or even. This prompted a very lively
and interesting discussion.

A zoo visit
THE MATHEMATICS  data handling

AGE 4-year-olds
CONTEXT adult-led group
FEATURES range of strategies chosen

A class of 4- and S-year-olds had just returned from a visit to a local zoo. Bursting
with excited talk about their favourite animals I used this opportunity for some data
handling. Each child chose their own way to put down three or four of their personal
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favourites and, armed with clipboards, they circulated among their friends checking
one another’s preference.

In the two examples below, their layout shows different understanding and each
is appropriate for the individual. The children were free to use any means to record
children’s choices of animal: some chose to write individual names, some wrote
crosses and others used personal marks or tallies.

Bianca, 4:5, was interested in her personal favourites (Figure 9.7a). She wrote her
name in the lower right-hand corner to show that she likes lions best and wrote two
other children’s names nearby, using the only available blank space. For someone
else reading what she’d done, other children’s choices are not clear but Bianca could
recall what they had said.

Tommy, (4:7): Tommy’s layout allows easier reading of the number of responses
for each animal since he decided to leave spaces between each animal and put a cross
representing an individual child’s response, immediately beneath the chosen
animal, (see Figure 9.7b).

Evaluation

At the end of the session we read and discussed the outcome of the information the
children had collected. Because they had chosen their own means of recording their
data, what they had done made good sense to the children. They had used different
ways of representing information, of recording their friends’ choices and of present-
ing layout. Our discussion provided valuable opportunities for constructive criticism
and peer modelling that would provide support for future data handling.

Mathematics and literacy in role-play: the library van

THE MATHEMATICS  counting
exploring letter and number symbols and amounts to pay

AGE 4- and 5-year-olds in school

CONTEXT child-initiated role-play

FEATURES play grounded within real experiences
schemas

mathematics, reading and writing within role-play
exploring the way in which adults use writing and mathe-
matical graphics in society

Our class of 4- and 5-year-old children visited one of the city libraries during a school
‘Book Week’. Two weeks later we visited the mobile library van that came to the village,
to change a box of books. The outcome of the second visit was totally unexpected. The
space inside the van was very restricted and made a huge impression on the children:
as they squeezed past each other and reached over to lift books from the shelves, they
were exploring enveloping and enclosing schemas (see Chapter 3). This first-hand expe-
rience of a narrow confined space provided a stimulus for some rich play.



9.7a Bianca

9.7b Tommy

Figure 9.7 The zoo — data handling
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Child-initiated role-play

On their return to school, a group of eight children led by Marina (whose fifth birth-
day it was on that day) set about creating their own ‘library van’ (Figure 9.8). They
used the big wooden blocks to create a narrow, enclosed space and Marina was their
self-appointed ‘chief librarian’.

Figure 9.8 Marina and the library van

Exploring mathematics and literacy through role play

During their play, the children arranged the books we had borrowed and pretended
to stamp the date on them.

Marina and Frances were especially concerned about library fines and wrote a
number of letters demanding huge amounts for overdue books, using paper,
envelopes and stamps from the office box. They used calculators to work out fines
due on several books and real money to give change. Their calculations may not
have been ‘correct’ but the children were using tools and resources in appropriate
contexts and for purposes that made sense to them. They remonstrated with readers
who argued about the amount of fines and Marina spent a long time on the phone
complaining to borrowers about overdue books: clearly this aspect of libraries had
left an impression.

Marie-Anne made a road safety poster which she attached to the front of the
‘counter’: in the city library she’d seen a road safety poster in the same position. The
children filled in forms with titles of books and recommended particular books to
‘parents’, drawing on their own experiences. They counted how many books each
borrower took. One of the children instructed a ‘new’ borrower to fill in a form with
her name and age in order to join the library.

Evaluation: using mathematical language

Observing this rich episode of role-play it was clear that the children had integrated
their experiences and understanding from their visits to both libraries. The mathe-
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matics they used allowed them to explore language related to time: ‘today’, ‘tomor-
row’, ‘mext week’. They referred to the duration of time books could be borrowed,
advising ‘bring it back soon’ and ‘not too long’. They were able to relate ‘too long’
to the penalty of having to pay a fine and to use the language of money, including
‘pounds’, ‘not enough’ and ‘change’ when handling it. They counted and re-counted
piles of books involving numbers up to fifty.

This play was grounded within the children’s first-hand experiences. I had arranged
the visits and the resources were always available, but the play itself was entirely the
children’s. Having the ‘office box’ (see Chapter 8) contributed to the development of
the mathematics language and graphics and to writing: this allowed them to write
within their play and to link their play directly to the two library visits.

Aaron and the train

The following case study is based on an article by Worthington (1998a) ‘Solving
problems together: emerging understanding’, Mathematical Teaching, Vol. 162,
March.

THE MATHEMATICS  problem-solving
using repeated addition as a basis for multiplication

AGE 4- to 6-year-olds in school
CONTEXT teacher-led group
FEATURES children’s own line of enquiry

differentiated learning

A school trip

One autumn term we took two classes by train to visit a covered market in a country
town some distance away. Our focus was the stalls and the goods sold in the market:
our aim was to use the visit as a stimulus for creating an ‘autumn market’ for our
Harvest Festival in school. In the market I saw the potential for mathematics such as
measuring ingredients to make biscuits, weighing bird seed into small bags, count-
ing equal numbers of bulbs into flower pots and paying and giving change. However,
on our return it was clear that something unexpected had excited Aaron: it was the
crowded train on which we’d travelled on our return journey that had really
impressed him.

Aaron’s question

When we sat down to chat about our visit the following day Aaron remarked ‘I bet
there’s a million seats in the train!” We discussed how we might find out the number
of seats and the children offered several suggestions — the library, computer, head-
teacher — and then one child suggested we ‘phone the train people’. Once I had
helped Aaron dial the correct number for the local railway station he was able to ask
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for the information he wanted. Returning to the classroom, Aaron proudly
announced that there were 75 seats in one carriage and seven carriages on the train
on which we had travelled home. A group of ten children subsequently explored this
question in a variety of ways that were appropriate to them.

Differentiated responses

Several of the youngest children drew random shapes, some drew squiggles and
one child drew a person: all were able to talk about Aaron’s question and con-
tribute ideas.

Some children used iconic responses based on one-to-one correspondence. They
drew circles or squares, sometimes checking their count by making a mark inside
the shapes they had first drawn. One child used tallies and another used dots —
also icons — to represent the seats.

Several children drew either seats in a carriage or people on the seats — picto-
graphic responses — including Aaron (Figure 9.9). He drew some seats with a thick
pen and then counted them: finding he had only drawn 22 seats, he added more
with a thinner pen in the remaining spaces, only stopping when there was no
more space on his paper. He then counted the total number of seats and beneath
his drawing he wrote ‘32 seats in the carriage’ and then said ‘it’s full’.
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Figure 9.9 Aaron’s train
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e Marina and Rachel chose ten scallop shells and into each they put two wooden
beads (see Figure 9.10). By choosing their own ways of representing the problem
and selecting their resources and their method, they explored repeated addition
(early multiplication). The children connected their first-hand experience of the
rail journey and simplified the question by reducing the number in each carriage.
In this way the question was essentially the same (multiplication), but was
matched to a level appropriate to them. They were then able to work out an
answer for ‘two people in each carriage and ten carriages’ in a way that made real
sense to them.

Figure 9.10 Marina and Rachel’s scallop-shell train

e Frances used a range of responses and was the only child to use standard (sym-
bolic) number symbols as a part of her working out. She began with a drawing of
a carriage with seats. At the top she wrote ‘75 seats’ although she only had room
to draw seven seats in her carriage.

Next Frances wrote ‘75’, seven times (Figure 9.11a). In the lower half of the page
she wrote ‘There’s five in the carriage. There’s seven carriages’. Frances then col-
lected a tray of plastic bricks and put five in each of seven trays and counted them.
Returning to her paper she drew five people and wrote ‘35’ beneath them: Frances
had calculated ‘seven lots of five’. By doing this she appeared to have been calcu-
lating (by repeated addition) with the ‘7’ and the ‘S’ of ‘75’. She may also have
worked with the smaller numbers to help her understand how to then work on
the problem using the larger numbers.

Next Frances drew squares to represent the seats within the carriage (see Figure
9.11b). On re-counting she found that she had drawn 76 rather than 75 and
crossed one out.
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Figure 9.11 aand b Frances and the train

Insightful mathematics

I was impressed by Frances's ability to represent and check the 75 seats. Although I
did not expect her to multiply 75 x 7,  wondered if she saw any possible next steps
to solving this problem. Smiling, I remarked ‘but there were seven carriages’. Frances
looked puzzled: after pausing, she burst out excitedly ‘the photocopier!” She
explained that she’d need ‘six more’. When the six additional copies were laid out
across the floor with her original drawing, the children were very excited to see the
complete ‘train’ with equal numbers of seats in each carriage.
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This had been a tremendous insight for Frances and was also a very powerful rep-
resentation for the other children. Several of them then offered to count all of the
seats but they found this difficult: none was yet at a point where they could add or
multiply seven lots of 75 as a calculation — something I was certainly not expecting
them to do. Later that day I displayed all the children’s written methods with
Aaron’s original question and during the following weeks children were often seen
counting the different representations of seats or people and carriages displayed and
talking about Frances’s seven carriages with 75 seats in each.

Evaluation: developing personal skills

In this setting children had access to an extensive range of resources including the
photocopier and telephone. Within a genuine context Aaron’s question had pro-
vided many possible ways of exploring a challenging mathematical question that
encouraged talk and the use of a range of practical and graphical responses. It also
encouraged the children to meet challenges, to take risks and to be adaptive.

I think that we all know that those features of adult planned trips we intend chil-
dren to focus on are often not those which are the most significant to them. In this
instance, interest in the train journey and the crowded carriage superseded our
planned objective of the goods for sale in the market. It can often be more worth-
while to extend children’s own lines of enquiry rather than exclusively following
pre-planned, adult mathematical activities.

Multiplying larger numbers

THE MATHEMATICS  multiplying larger numbers
problem-solving
working from known facts

AGE 7-year-olds
CONTEXT whole class and small group
FEATURES children need number fluency to tackle problems

For the main teaching part of this session there was a discussion on multiplication.
The children had already been thinking of this in terms of an array. The children
knew the two and ten times tables. They displayed ways of showing two times three
on the board. Jane made a set circle and put three dots on one side and three dots
on the other side. James wrote the numerals two, four and six , counting up in twos
from two.

Ayesha wrote 2 + 2 + 2 thus using a repeated addition model. I emphasised that
there are also other ways of tackling multiplication, especially with larger numbers.
‘Obviously with two times three we can do it in our head, we know it, but what if
we did not know it? Can you do the nine times table?” Two children said ‘yes’. ‘Can
you do the 99 times table?” Everybody laughed and said ‘no’. We had previously
reviewed the ten times table and the 100 times table. The class agreed that the 100
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times and the ten times table were easier than the two times table. I said that ten and
100 are ‘friendly’ numbers because they are easy to work with. I then said I thought
99 was a friendly number: there was puzzlement about this. Then Sophie asked ‘is it
because it is near a friendly number?’ but she did not explain further. I wrote 99
times three on the board. ‘How would we work out this? Could we use our knowl-
edge of the 100 times table?’ Thomas said that three times 100 is 300, then you take
one away — which is 299. We considered that answer and I wrote it on the board.
Tom had carefully thought this through but he needed to reflect further. The chil-
dren did not respond but there appeared to be a lot of thinking. I asked them to con-
sider the repeated addition model.

Dervla wrote ‘99 + 99 + 99’ on the board and stopped. I wrote ‘100 + 100 + 100’
and asked the children what the difference was between 99 and 100. We established
that instead of taking just one away from 300 we needed to take three away. I then
asked them what knowledge they would use to work out the nine times table.

The children worked alone or in pairs on multiplication calculations with larger
numbers. Blank pieces of paper and pens were on the table so that if they needed to
they could work out their ideas on paper.

Alison first chose two times 99 and then wrote, after much crossing out, ‘99 + 99
= 20098’ (Figure 9.12). This is a logical way to write 298: children often write the
hundreds like this. It shows that they are really being resourceful because they have
never written numbers beyond 100. Alison then went on to choose 99 x 5. At first
she used an iconic method of writing a stroke 99 times in a set ring and then she
proceeded to carry on with this method for the other four lots of 99s. Alison found
this method difficult with such large numbers because she often lost count.

In discussion with Alison I asked her if there was anything else she could put
down to show 99. She seemed to be perplexed, so I said, ‘think about repeated addi-
tion’. This seemed to be a ‘eureka’ moment for Alison because she had made the con-
nection between counting out 99 five times and substituting that method for the
symbol. Alison had moved through the iconic to the symbolic response which was
much more efficient and less error prone. She used repeated addition for 99 and for
100 and was able to subtract the amount needed to come to her final answer.

Ben, 7:4, first chose to use repeated addition to work out nine times seven (see
Figure 9.13). He later abandoned that idea and used his mental skills because he did
not need to see the numbers repeated. He easily moved on to the 99 times table.

Evaluation of the session

Although I felt the session had not gone too well perhaps because it appeared to chal-
lenge some of the children beyond their limits, they were very enthusiastic and
shouted out how great they thought it was. I felt that a lot of the children did not
apply their knowledge of multiplication, for example of repeated addition. Generally
the children found working with multiples of 99, a difficult concept to grasp. Some of
the children seemed to struggle to get a sense of larger numbers because they were only
used to working with numbers up to a hundred. Counting back from larger numbers
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and knowing how to write the number were not easy tasks for some of the children.
The children’s teacher found it a great assessment tool and remarked that the children
concentrated very well on what they were doing. Many were working in the zone of
proximal development (Vygotsky, 1978): this means they were thinking just beyond
what they could do to form new thinking. Discussing their graphical responses on
paper helped the children to think again and change some of their representations.

I felt most of the children could work out the nine times table using what they
already knew. The next steps that I would take are within the environment of the
classroom. I would display larger numbers in context and put up a number line to
1,000. I would also introduce a variety of counting strategies within 1,000 and
beyond. Working within hundred squares beyond 100, for example 500 to 600,
would extend the children’s knowledge of numbers beyond 100. The children also
need more opportunities to write larger numbers within lessons and independent
learning opportunities, for example through role play.
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Figure 9.12 Multiplying larger numbers — Alison

Nectarines for a picnic

THE MATHEMATICS  problem-solving
using division and multiplication
AGE 7 and 8 years
CONTEXT whole class with teacher
FEATURES supporting taught strategies or ‘jottings’
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Figure 9.13 Multiplying larger numbers — Ben (see p. 186)

Real problems

The children in this class were about to go on a residential trip and were planning
to stop on the way for a picnic. I used this as an opportunity to solve a problem relat-
ing to the fruit they would take.

Twenty six children are going to Salcombe. Mrs Hammond has brought some nec-
tarines. There are three nectarines in each pack. How could you work out how
many packs will be needed so that 26 children can have one nectarine each?

The younger children used a variety of written methods that included drawing
squares with three dots in each, then crossing out one dot in the final pack (this was
‘one left over’): this was an iconic way of representing repeated addition.

Lewis wrote ‘nine packs are needed for 26 children so 3 x 9 = 27 and one nectarine
is going to be left over’. He had recognised the link between his repeated addition
and multiplication, and used both the ‘+’ and the ‘x’ symbols. Liza concluded by
writing ‘you have to have nine packs of three because you can’t get packs of two'.

Grace and Chang counted in threes. Grace (Figure 9.14a) first considered dividing
and then multiplying by three but appeared unsure of this. She then counted in
threes and then put numbers from one to nine alongside. She worked out that there
was one left over by counting back from her total of 27 nectarines to 26 (the number
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of children). This left her with ‘R1’. Several other children wrote out a string of mul-
tiples of threes as in Chang’s example (Figure 9.14b).

Finally, several children drew ‘stick people’ in threes as in Harriet’s example (Figure
9.14c¢). Several children used a way of showing that only two of the figures in the last
group would be counted, as Harriet did by crossing one out.
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Figure 9.14a,b and c Nectarines for a picnic

Ann used various methods to self-check (Figure 9.15). To begin with she wrote ‘3 x 26’
but was clearly puzzled by this. She then wrote multiples of three followed by icons of
boxes with three dots in each apart from the final box. Finally, she used an empty
number line on which she counted in jumps of three to 27 and then back one to 26.
See also Miles, Figure 7.12b, p. 129.

Evaluation

These children incorporated methods they had learnt in the classroom and were able
to select from a range those that made sense to them. Counting in multiples of three

and using an empty number line had helped them to work on this problem in ways
that made sense to them.
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Figure 9.15 Nectarines for a picnic:Ann

Conclusion

In their play the availability of resources for making marks and sensitive support,
resulted in some rich and very relevant mathematical graphics. The teacher-led
models were planned to be sufficiently open to allow children to decide how they
would respond and, if they chose to use graphics, which written method would be
the most appropriate (see ‘modelling mathematics’ pp. 205-12).

These case studies show the range of marks — both informal and some more stan-
dard symbols - that they chose to use. They also show that these children were never
afraid to use their ideas and to change direction if what they had started was not
useful to them. Because each child had chosen their own graphics and ways of
working they understood what they had done. The important point is that in sup-
porting children’s own marks, they will develop independent techniques to not only
use standard methods of calculation but to understand the methods. As the range
(children from 3 to 8 years) in this chapter also demonstrates, their early informal
marks do develop over time in to standard ‘school’ mathematics.

In Chapter 10 we look at ways in which teachers may support children’s under-
standing through effective assessment and modelling of written forms including the
use of abstract symbols.

In this chapter we have focused largely on creating environments in which chil-
dren can freely explore their mathematical thinking on paper: however, it is impor-
tant to emphasise the need to make provision for children to make and explore
personal meanings in many contexts and in multi-modal ways (see pp. 91-2, 135).
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The teachers in our study of perceptions of creativity and mathematics had a point
when emphasising resources (see p. 34), but resources alone will not lead to creative
mathematical thinking or support meaning making. Well resourced learning areas
are important and it is vital that children have open access and extended periods of
time to explore and make personal meanings. Greater prominence needs to be given
to the importance of both visual representations and multi-modality in the play-
based Foundation Stage curriculum. A well resourced learning environment with
open-ended opportunities for activities that include role play, junk modelling,
drawing and painting can support all of children’s meaning making, including their
early writing and mathematical graphics. Moyles describes how, using adult-directed
and child-initiated learning, the adult’s role can enhance and enrich children’s free
play through a ‘play spiral’ (Moyles, 1989, p. 15). This access to rich learning envi-
ronments allows ‘play to be “potentially an excellent learning medium”’, (Moyles,
1989, p. 17).

Further Reading

Case studies
e Atkinson, S. (1992) Maths with Reason. London: Hodder and Stoughton.



Deueloping
Children’s Written
Methods

The process of assessing children’s learning by looking closely at it and striving to
understand it, is the only certain safeguard against children’s failure, the only certain
guarantee of children’s progress and development. (Drummond, 1993, p. 10)

The assessment of children’s mathematical
representations on paper

Introduction

The assessment of children’s mathematical marks on paper is as complex as the
assessment of any part of children’s learning. It is complex because we are actually
trying to tune into children’s thinking. Carr (2001) gives the analogy of an iceberg.
Imagine an iceberg; what we can see of it is the same as what we see of children’s
minds and what we do not see of the iceberg and of children’s minds is the far
greater part.

Assessment is also difficult because we cannot be totally objective. In her observa-
tions of the children in her class, Paley had to rethink her original assumptions time
and time again (Paley, 1981). However, as she scrutinised her transcripts she learned
so much about the children and their thinking. She also said she was learning from
the children.

Looking beyond the superficial helped us assess almost 700 samples of children’s
own mathematical marks that we had collected over a period of twelve years. If we
look closely at children’s own marks we uncover much more about their learning
and how we might help them develop both their understanding and our under-
standing. As Drummond states ‘a desire to understand can enrich our powers of
seeing’ (1993) and as we looked over the variety and diversity of our samples we were
intent and inspired. As a result of this we became more insightful, not only because
we reflected, revisited and revised, but because we were driven by a deep motivation

192
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to understand. We saw new meanings in these marks that children make and we
knew that this was the key to children’s understanding of their mathematics. This
will help them make the connections into more abstract forms of mathematics. If
they are allowed this empowerment they will be active in their thinking of mathe-
matics. The teacher’s role in this assessment is crucial because this is what will
inform her knowledge of where children might be in their thinking and how she can
support and extend this.

Torrance (2001) identifies two kinds of assessment. In ‘convergent assessment’ the
major emphasis is to work out if the learner can do a task that has been previously
set, the features of which are detailed planning with no flexibility and that the ques-
tions and tasks are closed and restricted. This kind of assessment is teacher and cur-
riculum dominated and the child’s meaning is not taken into consideration. The
other type of assessment highlighted by Torrance was ‘divergent assessment’ which
focuses on the child’s thinking rather than the teacher’s agenda. It is about not a
testing mode but a way of finding out and uncovering what the children know, so
that the teacher can work from there. Torrance’s study made the distinction between
‘help’ questions and ‘testing’ questions. In testing questions the children gave the
answer that they thought the teacher wanted to hear. Some classrooms are domi-
nated by testing questions. This makes it difficult for children to reveal what they
know and work out their own meaning because they are too busy trying to work out
what the teacher means. Testing questions do not help the process of learning.
Testing questions look for right and wrong answers, they are intent on the product
not the process.

If we only look at children’s written mathematics in terms of right and wrong
answers then it will tell us nothing to support the child in her understanding or aid
the teacher in her teaching. If we believe that mathematics is not just a set of rules
to remember then we must also respond to children’s mathematical representations
in a more flexible way. Divergent assessment is a more suitable tool to analyse chil-
dren’s mathematical marks than convergent assessment. It is, therefore, this kind of
assessment that we are proposing to analyse children’s mathematical graphics and
written methods.

Divergent assessment (adapted from Torrance, 2001)

Assessment aims to discover what the learner knows, understands and can do. This
is characterised by:

Practical implications

1 Flexible or complex planning which incorporates alternatives.

2 Open forms of recording i.e. children’s own ways of representationing their
thinking.
An analysis of the learner and the curriculum from a learner-centred perspective.
Open questioning, open tasks and following children’s self-initiated enquiries.
5 Focus on aspects of the learners’ work which will yield insights into their current

B w
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understanding and help them think about their learning.

6 Descriptive rather than negative judgements.

7 Involvement of the pupil.

Theoretical implications

8 A socio-cultural view of learning (see Chapter 2).

9 An intention to teach in the zone of proximal development (Vygotsky, 1986).
This acknowledges children’s partial knowledge (Athey, 1990).

10 A view of assessment as accomplished jointly by teacher, child and family.

The problem with worksheets

Mathematics worksheets have dominated and still do dominate many classrooms
from pre-school upwards. They come in all shapes and forms from being teacher-
made to workbook pages in published schemes. They are popular in nearly every
country that can afford paper. The USA uses the words ‘ditto sheet’ and there they
have special shops called ‘Parent Teacher Stores’ that are abundantly stocked with
copy masters. Worksheets are seldom used in some European countries. Selinger
argues that schemes have controlling material that decides what should happen next
and what pathways of learning should be encouraged (Selinger, 1994). They gener-
alise for all children and they provide a dependent culture for the teacher as well as
the child. Anghileri is concerned that schemes often introduce set procedures and
formats (Anghileri, 2000). The children see calculations as ‘rituals’ which leads to
little understanding of the signs and symbols used.

In our large-scale study of teachers’ beliefs and practice concerning children’s ‘written’
mathematics, we investigated how Early Years settings (3-8 years) supported children'’s
mathematical representations. We found that, of the sample of 273 responses, work-
sheets were used by 77 per cent of teachers. It is alarming to note that of these, 72 per
cent of teachers with 3-5-year-olds used worksheets. Once children reach 6-years-old,
100 per cent of teachers in this study were using worksheets (see Chapter 1).

Pound discusses the prolific use of worksheets in Early Years settings. She puts the
view that ‘worksheets are seen by many Early Years workers and parents as being an
indication of a formal and somehow more productive educational process going on’
(Pound, 1998, p. 13). She says that the suppliers suggest that, amongst other things,
the sheets may be used to introduce the child to recording. Pound strongly refutes this
idea by saying that the restricted format of the worksheet does not encourage the chil-
dren’s own meaning but sets a ‘straitjacket’ which hampers their own drawing and
writing (Pound, 1998). Fisher agrees with this: ‘worksheets restrict what a young child
can tell you about what they know and understand. If children devise their own ways
of recording knowledge and understanding, then they will select ways which make
sense to them and give all the information they want to share’ (Fisher, 1996. p. 59).

Our questionnaire study of the way teachers supported early written mathematics
and children’s written methods revealed that the reason some teachers used work-
sheets was for assessment purposes. We would question the value of worksheets as
an assessment tool because:
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¢ the children have no ownership of the content of the worksheet

¢ they are also confined by layout; the child has to fit into the worksheet organisa-
tion and way of doing mathematics

¢ most worksheets have closed questions and only one answer; this may make the
situation a testing one for young children

e worksheets do not tell what a child knows about mathematics and the way they
are thinking

e worksheets do not reveal what the child can do but often what they cannot do

¢ young children can often get bewildered in finding the sense in a worksheet

e the match of worksheet to child is difficult and children can work below their
actual ability

e worksheets that claim to be ‘teaching’ mathematics have sometimes very little
mathematics in them to assess; for example, the typical worksheet with the
numeral two in dots for the children to go over, accompanied by two large bal-
loons to colour in. The child might respond to the teacher’s question, how many
balloons? This takes three seconds and the child traces around the numeral and
colours the balloons. The colouring-in takes 20 minutes or more. The exercise is
really colouring-in and not mathematics!

Importantly, both published and teacher-made worksheets prevent children from
making meaning through their own early marks and written methods. They also
deny them opportunities to translate from their early informal marks to later
abstract symbols. As we have argued in Chapter 5, developing their own early marks
and written methods is the way in which children become bi-numerate.

An example of a worksheet

Figure 10.1 is an example of a worksheet done by Susie, a 4-year-old in a reception class
(Carruthers, 1997). This was Susie’s second week in school. What can we assess about
Susie’s knowledge of mathematics from this worksheet? This worksheet was given to a
group of children as a ‘holding task’ while the teacher worked with another small
group of children. The teacher shared his concern with us, over the child’s response to
this task. We might ask ourselves if the child understood the task? If we presume that
she did understand, then we could say she got it wrong. If you look, Susie coloured in
all the Kkites. She started colouring in neatly but by the end we could deduce she got
bored. The task’s main objective was counting to five but the child did more colouring
than counting. If we take Susie’s mathematics from the evidence of the worksheet,
then our assessment would be that she could not count quantities to five.

What did the child say about the mathematics she did in the worksheet? As she
rushed out of school, into the back seat of the car, her mother enquired about this work-
sheet that Susie clutched. Susie said with a frown on her face ‘I got it wrong’. Her first
taste of written school mathematics was negative. When Susie was at home, before she
started school, she travelled along the highway of curiosity where there were no right
or wrong answers: she was accepted into the mathematics world of home. She used
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numerals daily in meaningful contexts. She counted with her mum, dad and sister. She
knew the function of numbers in many contexts, e.g. time, measurement and money.
She liked to count out apples into a bag when she went shopping with her mum. She
also enjoyed sharing things, like sweets between people. She has a sense of fairness. If
there were any left over she suggested that everybody have a half each. She was there-
fore coming to understand fractions through natural problem-solving. She liked to play
a game with ages: for example, she said ‘when I am seven Daddy will be forty-three’.
She enjoyed finding out about larger numbers and counting up to 100 and beyond.
Her mother told me that one of their last conversations together before Susie started
school was about infinity. Susie had posed the question, ‘What is the last number?’

LOOK AT EACH NUMBER

COLOUR THE RIGHT AMOUNT OF KITES

O N O N —

Figure 10.1 Susie’s worksheet

Susie’s home mathematics is in sharp contrast to the worksheet she had to complete
at school. The worksheet told us little about Susie’s number knowledge. Perhaps the
teacher could have asked Susie’s group an open question for initial assessment. We
argue that if Susie had been given the opportunity to make her own marks she would
have made more sense of them. It is vital to ask parents and carers about the math-
ematics children do at home. There is an increasing number of studies that shows
there is great discrepancy between the mathematics of school and home. Many
young children come to school with a sense of mathematics which is never truly
uncovered by their first teacher (Aubrey, 1994b; MacNamara, 1992).

In our study of teachers’ beliefs and practice, some teachers responded with state-
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ments that they do not use worksheets but they wrote on blank pages in the chil-
dren’s mathematics books for them to fill in. This, they said, was very time-con-
suming but suited their purpose more than worksheets. Using blank paper in this
way has the same pitfalls as worksheets but may be more personal to the class and
the curriculum objectives. This kind of recording lies in the same category as
teacher-made worksheets. We would argue that this again does not give a true
account of where the children are in their understanding of written mathematics.

From our own experience of teaching every age group in the Farly Years from three
to eight years, children are pleased and eager to share their own mathematics. This is
partly because we are interested in what they have to say. It is difficult to get excited
about a worksheet! It does not belong to the child, there is only one way to do it: the
worksheet way. We would like also to state that just as it is difficult to get away from
using worksheets when using them is part of the school’s culture, we also have used
worksheets in the past because at that time we knew of no better alternative.

From our survey, the use of worksheets in mathematics appears prolific. Yet there
are many who question their quality in supporting the young learner including
Fisher (1996), Pound (1999), Anghileri (2000) and Selinger (1994). We will never see
the demise of worksheets in mathematics teaching if practitioners do not support
children’s own ways of putting their mathematics on paper.

Assessing samples of children’s own mathematics

What assessment of children’s own written mathematics needs to
recognise

The context

It is important to know how a piece of writing evolved since this gives us a clearer
understanding of the focus the child might be having when making the marks. This
might tell us how the child acts in certain contexts. A sample of mathematical
graphics from a free-flow play situation may appear very different to a teacher-
directed task or a teacher-led task. For example, does the child choose to use math-
ematical marks if not directed or supported in some way by the teacher? When
children are 3-years-old or younger they may seldom choose to write or draw any-
thing mathematical. When they do, we might be able to see some connections they
are making. For a child of three, the significance may be that they now choose to
represent their mathematics on paper and this may mean that they understand
mathematics can be written down. They can translate what they think on paper: this
development cannot be underestimated. It is like their first step or spoken word and,
although it is not as noticeable, it represents a huge sign that they are aware of this
written form of mathematical communication.

What the child said

Listening to what children say about their marks is important because what we think
they are writing is not always what they mean. Sometimes children talk to them-
selves or others as they write and you may be fortunate enough to catch these
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moments. At other times it is useful to say ‘can you tell me about this?’ This helps
to get an accurate connection between their thinking and their graphics. It is better
to ask the child as soon as possible after they have finished their representation. At
other times children change the meaning of their marks completely. Sometimes they
forget some of the details if there is too long a time between representing and
explaining what they have done. Some children choose not to say anything about
their mathematics on paper and this should be respected. This usually happens with
younger children and less confident older children. When they do feel confident
and choose to speak then it is an important growth point. It shows they are begin-
ning to explain their thinking and this reinforces their own ideas. Building up this
relationship with the child leads to extended dialogues. Children appreciate this
one-to-one attention in an atmosphere that is non-threatening.

What the child did

Looking at children’s actions tells us their intentions through certain kinds of graph-
ics, usually in schemas, dynamic and action representations. We have found chil-
dren who use any of these three are at a highly experimental stage and when they
visit new concepts they revisit these features.

The mathematics
In what mathematics is the child engaged? This could be any aspect of number or
calculations, measurement, space and shape, problem-solving or data handling.

Parents’ and carers’ comments

Parents play a vital part in this assessment. They will be interested in their own chil-
dren’s representations and may be able to add comments about what they do at
home. Samples of children’s home maths add to the profile and gives us a more
holistic view of the child’s understanding.

Assessment
We recommend a positive model of assessment. Every child’s mathematical marks
are treated as ‘intelligent responses’ (Pound, 1999). Good-quality assessment takes
time to work out and quality assessment of children’s learning goes beyond the
superficial: it probes further.

All of the above help to build up a picture to make a real and useful assessment of
children’s mathematical thinking through their own representations.

The next step
The next question is how might we develop and support the children’s own mathe-
matics. By working through the above points closely, we have now gathered useful
information to support and develop the child’s understanding. At this stage we need
to consider carefully what the child needs, to continue their development so we can
plan accordingly. Figure 10.2 is a model to show the cycle of assessment, planning
and teaching.

Figure 10.2 illustrates the way in which observations can be used to inform teach-
ing that supports deep levels of learning (Worthington and Murchison, 1997).
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Figure 10.2 Observation, assessment and planning cycle

Assessment needs to be manageable

Teachers cannot do this kind of assessment for every piece of written mathematics
all the time, however, it may be possible to assess all pieces of graphics from children
of 3 and 4, as they seem not to be so prolific in their mark-making. Young children
may be representing mathematics in multi-modal forms, for example through
schemas, art forms, construction and technology (see Chapter 6). They also produce
less at one time but their marks may be more complex and for some teachers less
easy to decipher. The explanations in Chapters 2, 3, and 6 may have helped explain
some of these very early mathematical marks and representations.

Looking at and assessing children’s graphical representations with another adult
gives a more objective assessment of the marks. We also appreciate how another
person views the children’s graphics and thus learn together: our understanding
expands upwards and outwards. Often another adult aids and challenges our think-
ing and the more we do this, the more proficient we become. We find ourselves
assessing more and more samples quite naturally. Some you will select for in-depth
analysis, others you might put in a file for children to look back at. Children may
want to take them home and, of course, photocopying is useful. We have found it
particularly helpful to look at what appears to be ‘growth points’ for the child: this
may be something that they have not done previously. In other examples you may
find the child has focused on more complex thinking than before.

Examples of assessment of children’s mathematics

We have selected three example of children’s mathematics to discuss. The samples
are from school settings and, like all the samples we have collected, they differ from
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each other. No two pieces of children’s thinking on paper are the same because no
two children’s minds are the same: we all have different experiences to form our
thinking. Think of snowflakes — each has a different pattern, and all are exquisitely
beautiful. It is the same with children’s own mathematics on paper: as the children
get older they slowly refine their skills to include more efficient strategies and inte-
grate the standard forms of symbols on paper with understanding.

The first sample (Figure 10.3) is provided together with an example of an assess-
ment form with all the relevant sections we have discussed previously (Figure 10.4).

Figure 10.3 Amelie’s dice game

Whole-class assessment

A very open question is useful for whole-class assessment purposes. An open question
is much more personal and infinite compared to an ‘open-ended’ question which
seems in some respects to indeed have an end. Take the question ‘how many ways can
you make 20?’ This may show us how many ways a child can make 20 but it does not
show us what else a child knows. The question itself is a very useful investigation-type
question and can show us many aspects of a child’s thinking, but we limit knowing
what the child wants to tell us she knows about mathematics. Open questions are
useful to use when you actually do not know what the children know. This might
happen at the beginning of a new school year or when you start a new mathematics
topic. The following assessment on a child’s mathematical marks came from a class
who had been asked by the teacher in the second week of school ‘What do you know
about numbers?’ She wanted to know what they knew about numbers before she
planned her teaching sessions and her learning environment. The teacher encouraged
children to choose what they needed. In this example Jason had chosen to use a com-
bination of materials (see Figure 10.5). As well as writing materials, he had chosen cir-
cular stickers to represent a quantity and cut out paper numerals for the number 37.
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Figure 10.4 Assessment form,Amelie (see figure 10.3)

Name: Jason Green  Date: September 15 Age: 4 years 11 months.

Context: Whole-class assessment; ‘put down anything you know about numbers’.
What the child said: Jason was eager to tell me his telephone number; his brother’s
age; his house number and his address. He was also interested in the features of some
numerals, ‘Nine is round and down’, ‘Eleven has two ones’ (this has also connec-
tions to his current schema, looking at parallel vertical lines).

What the child did: Jason selected materials he wanted to use. He stuck on 17 stick-
ers, counted them and wrote ‘17’ beside the 17 stickers. He used the cut-out numer-
als to make his door number, 37. The two parallel vertical lines seemed to fascinate
him and he repeated these over and over again.
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Figure 10.5 Jason’s numbers

We would like to thank Petrie Murchison of Redhills School, Exeter for this example

The mathematics: Counting beyond ten; representing numbers using standard
symbols; linking quantity to a numeral accurately.

Parent/carer’s comment: At home Jason’s mum says he likes to draw and he is very
interested in numbers. He likes to play number games like ‘Snakes and Ladders’.
Assessment: Jason already knows that numbers can be represented in a variety of ways
and that they have a purpose. He knows his personal numbers — his brother’s age, and
his own door number, address and telephone number. He can count beyond ten and
represent this both pictorially and using standard symbols. He visually recognises
numbers beyond 20 and can represent his door number. Jason has shown confidence
and a willingness to communicate orally his representations of numerals on paper.
The next step: Jason may be willing to use operations on numbers and this will be
presented to him in small group sessions. He is willing to use all sorts of materials
and the writing and technology areas will interest him. Discussions focusing on
using larger numbers will invite his interest. I will add some art straws in the



Developing children’s written methods 203

25+ 4= LS |

as5=

18+

18- 155) g3

IR —g3=0

Figure 10.6 Super-zero

construction area to support his interest in parallel vertical lines. I must look out a
story about ladders, maybe one about fire engines.

Name: Joel Nash Date: 17 June Age: 7 years 2 months (see figure 10.6 above)
Context: whole class — mixed ages of 7 and 8 years. Joel has only been in our school
for a few weeks and is very anxious about having his representations of any sort,
including mathematics, judged as ‘wrong’. However, today he tackled the first
question and putting some of his working out on paper encouraged him to
experiment.

What the child said: After he had worked out the answer to the first addition
question he reversed the calculation and compared the answers from both. When
he showed me he explained that he liked ‘doing sums both ways’ and that he was
going to do the same thing with a subtraction question. After working out ‘98 -15
= ‘ he wrote ‘15 -98 = ‘ and paused, looking puzzled. I asked him how he would
work this out. He looked around and, pointing to the number line on the table, said
that he would use this. Joel began by counting down from fifteen and then stopped
at nought. Moving his finger beyond the zero he said excitedly, ‘Super-zero! Zero,
zero, zero!’

What the child did: Joel tried to reverse the subtraction calculation in the same way
that he had done with the addition sum. His idea of using the number line to count
down led him into the area of negative numbers.
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The mathematics: addition and subtraction; commutativity; negative numbers.
Parent/carer’s comment: Joel’s dad said that his son often gives the family calcula-
tions to work out during supper and shows his own mental calculation skills through
doing this. Number bonds are his current favourite. He also spends a lot of his spare
time with a puzzle book he was given for his birthday, which includes many number
puzzles. Joel’s family recognises that he had been anxious in his previous school
where the emphasis had been on correct spelling and right answers rather than his
thinking. They are pleased that he has begun to explore mathematical ideas in his
new class — he appears to feel happier at school now.

Assessment: trying to reverse the subtraction calculation led to the area of negative
numbers and his description of ‘super-zero’ was quite an insight of the move below
zero. Joel has not worked with negative numbers. We discussed what he had done at
the end of the lesson and many of the children were so intrigued by his term for
moving into negative numbers that they burst into applause.

The next step: put up both a vertical and horizontal number line with negative
numbers - this will provide a useful resource for Joel to explore some more subtrac-
tion sums in reverse. I will also borrow a fridge thermometer when we make some
ice in the fridge in science next week and make sure Joel’s group do this.

Having a dialogue with a child is not always easy, yet it is crucial in helping children
discuss their mathematics. To find out about children’s representations one needs to
ask them about it. If the atmosphere and culture of both the classroom and the
school are of listening, children will get more articulate about their mathematics.
The importance of thinking and language is well documented (Brissenden, 1988;
Durkin and Shire, 1991).

The pedagogy of children’s mathematical graphics

There are clearly some specific aspects of our pedagogy that support the range of
children’s own mathematical graphics, although it is not easy to be entirely objec-
tive about the practice we have developed. We are aware that we acknowledge and
respond to all children’s meaning-making and representations as though they make
sense. We negotiate meanings to encourage deeper levels of thinking and to make an
ever-widening range of representations available to the peer group for discussion and
for further negotiation, appropriation and adaptation. We give representation a high
profile within children’s play and through our observations of children’s play are
able to identify mathematics that offers potential for representation. In conven-
tional, didactic teaching the pedagogy is a clear-cut transmission model where it is
easy to identify the teaching method. Our approach to teaching is much more of a
two-way communication, where the children can also lead and the teacher uncov-
ers their thinking in order to support and develop their learning. A significant
feature of our teaching is the very specific way in which we interpret and use mod-
elling to support children’s mathematical development.
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‘Modelling’ mathematics

One of the problems is that the language used in official documents is not explicit about
the difference between the terms ‘modelling’ and ‘examples’. In discussion with teach-
ers we have found that modelling is usually interpreted as ‘giving direct examples’.
Teachers certainly need to introduce a variety of symbols and ways of recording as chil-
dren grow and develop their understanding, but our evidence is that young children
treat examples as something that we expect them to use. Lee proposes that examples
‘show learners a way ... that frequently would be referred to as the way’ (Lee, 2000. p. 28).

An example of ‘an example’
In the nursery, a teacher provided paper for the children to represent the
number of (sweet) eggs they had each put on the cakes they’d made.The children
were hesitant and the teacher drew her own example of a bird’s nest (cake) on a
sheet of paper. She then counted four eggs on one of the cakes on the plate and
drew four ovals in her drawing of a nest.

Following her example, every child in the group drew a nest, counted the eggs
on their cake and drew some eggs on their drawing of a nest.

The children had all represented the number of eggs in exactly the same way in
which the teacher had done. Clearly the teacher intended to support the children by
providing an example of recording. However, as Lee (2000) has argued, examples are
also ‘restrictive’. The message that the children took from the teacher’s example was
that this was the way they should represent the number of eggs on their cake. Alter-
native ways they might have chosen (dots, other marks, numerals or their own
approximations of numerals) were not used.

This had been our experience in our own classrooms and was a difficulty we recog-
nised. We knew that we needed gradually to introduce children to standard symbols
and various layouts but when we provided an example at the beginning of a lesson —
intending to offer one possible way — the children copied exactly what we had done
with limited understanding. It could be argued that this is a positive outcome since the
children incorporated standard symbols and ways of working into what they did.
However, rather than helping them, we were repeatedly confronted with children who
were confused and could not apply what they had been introduced to in other contexts.

Examples or modelling?

To illustrate the ways in which children use teachers’ examples and learn from
teacher-modelling, one of us explored this question in a class we were visiting. The
children were 5-years-old and in their second term at school.

I divided the class into two, splitting each of the four ability groups so that the two
halves of the class were balanced:
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e Group 1: teacher providing explicit examples of ways of calculating on white-
board. I then asked the children to ‘put down on paper’ what they had found out.
e Group 2: discussion of possible ways of representing calculation; children offering
their own suggestions, some based on previous teacher-modelling and some chil-
dren’s original ideas. The children’s different suggestions were valued and they
were asked to ‘put something down on paper’ to show what they had found out.

For the purpose of this research, I taught each group in turn in a shared area outside
the classroom, whilst the other group was engaged in choices of their own in the
class writing area. The numbers I used were identical for both groups and I explained
what I was doing using identical language. Whilst the first group watched as I drew
teddies and wrote a standard horizontal calculation, I made sure that none of the
children in the second group heard what we discussed or saw what I put on the
whiteboard. The main part of the lesson focused on adding small quantities.

Group | - teacher example

Taking three teddies from the bag I put them beneath the whiteboard in a row and
subsequently took two more teddies from the bag. We talked about what I had done
and then I drew three teddies on the flip chart followed by the word ‘and’, then drew
two more teddies. I used the words ‘three bears and two more bears’ and ‘how many
bears are there altogether?’ I asked several children how we might find out and all
chose to count the bears in the two sets continuously, counting five in response to
my question.

Beneath my drawing of the bears I wrote the standard ‘3 + 2 = 5’ calculation and
explained this was another way of putting down ‘three bears and two bears’ and
showing ‘how many altogether’. I then asked two of the children to choose a small
number of toys. Taking the four bears chosen by one child and the two chosen by
the other, I asked them to ‘find out how many bears there are altogether and put
something down on paper’ to show what they’d found out.

Outcome of Group |

The children all drew bears and wrote a standard calculation beneath their drawing.
Of the nine children I'd worked with, two had represented the question in the same
way I had and arrived at the correct answer. James was the only child who had not
copied my example. He had been more independent and had combined drawings of
bears, words and the addition sign: he clearly understood what he had done and had
arrived at a total of six bears.

The remaining six children experienced a range of difficulties — with their inter-
pretation of the symbols, with what they were doing or why they had written certain
numbers. Three children who had written the ‘right’ answer of ‘6’ were confused by
their use of standard symbols.
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Leo read‘4 + 2 = 6’ as “4 plus 2 is 6": he was unable to explain what ‘plus’ meant
and said that that the ‘=" symbol meant ‘equals — or plus — | think’.

Marie explained that to arrive at her answer she ‘guessed’. She said that the ‘=’
sigh meant ‘adds’ but then looking at where she’'d written 2 + 4 = 6’ she said ‘Oh!
But 4 plus 6 doesn’t add!” Seeing another abstract sign (=) she guessed that this
also meant add. Marie knew that ‘+’ could mean add, explaining ‘plusses — it’s
another of bears, more bears’.

Although the four bears and two bears were sitting in front of the children, Peter
had drawn only four bears. Beneath his drawing he had written ‘3 + 2 = 5’
(copied from my example on the flip chart). | asked ‘Can you tell me what you
found out?’ but he looked very puzzled. Although he read ‘3 + 2 is 5’ he was
unable to say what the ‘=" sigh might mean and could not relate his drawings to
his standard calculation or to the six toys sitting in front of him. Clearly, using my
example had really confused Peter.

The graphics in Figure 10.7 show Louisa, John and Emily’s confusion:

POepum | vy

g o
1072 > +6%@6 lo.7b[ =ty

10.7¢ 3 ,\_’L:S'

Figure 10.7a,b and c Louisa, John and Emily (following example provided by the teacher)
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Louisa started as | had done in my example, by drawing the bears. She had
written ‘5 + 6 = 10" and when | asked her to tell me what she had found out, she
quickly crossed out the ‘= 10’ and wrote ‘7’ by the 6’ then looking at the bears
she’d drawn, she counted them all and wrote ‘6’ at the end. Her written
calculation had not matched her drawing so she altered the total to match the
drawing that she trusted (Figure 10.7a).

John read ‘one and’ and then turned to me, looking confused. We counted the
two bears and the four bears in front of him together but he was unable to
relate what he had done to the bears he saw (Figure 10.7b).

Emily had drawn the correct number of bears but had also copied my example of
‘3 + 2 =5’ (Figure 10.7c). She was not able to explain the calculation and did not
know what they symbols ‘+’ and ‘=" meant, explaining ‘l saw them on the board’.
She read the string of numbers but had no idea what they related to other than
saying ‘you have to count’.

These problems illustrate some of the difficulties children experience when they use
examples — including standard symbols — shown by their teacher and which they do
not understand. They want to comply and interpret the request to ‘put something
down to show’ as meaning ‘do what I have just shown you’. This leads to compli-
ance and conformity without understanding.

It is clear that following the teacher’s example without understanding leads to
confusion: if children continue in this way, even when they sometimes get ‘right’
answers, their difficulties are compounded. They also learn that they should not
attempt to work things out in ways which might make sense to them since the
teacher is looking for them to all use the same written method. If they use the
teacher’s method, formula or layout without understanding, many children come to
learn that mathematics often does not make sense. A chasm has then been created
between their informal mathematical understanding and standard ‘school’ mathe-
matics that will be very difficult to bridge.

Group 2 - children’s ideas following direct teacher modelling

I asked if any of the children had an idea of how they might ‘put their ideas down on
paper’. Responses included suggestions of ‘drawing how many bears’, ‘putting tallies’,
‘numbers’, ‘shapes’, ‘letters’ (words) and ‘numbers’. The child who suggested ‘shapes’
explained she might put a square for each bear (iconic representation). Many of the
suggestions they made drew on features I had previously directly modelled.
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All of the eight children in this group understood what they had done, could
explain their marks and all had the correct answer. Because they had chosen their
own written method, what they had done made sense to them. Only one child had
made use of the standard ‘+’ symbol but he was able to explain ‘and you count them
all together’, which as a method of addition is common at this stage. No child had
used the standard equals sign.

Darrel used tallies to represent the bears, writing ‘Il Il and tez zixs all to gev’(‘ 2
3 and there’s six all together’).

William had worked it out mentally, writing 2 add 4 is 6.

Connor and Jake had drawn the bears. Connor used the word ‘and’ between the
two sets then wrote ‘6 all together’ beneath his drawing. Jake used the ‘+’ symbol
between the two sets of bears and then wrote the numbers ‘2’ and ‘4’ beneath
each set, finally writing ‘6’ beneath his drawing.

Catherine had referred to ‘shapes’ when we'd discussed what might be helpful.
She drew six squares and separated them with a vertical line into two sets of two
and four to represent the bears she was adding.
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Figure 10.8a, b and c¢ Brendon, Scarlett and Alice (following direct teacher-modelling)
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Brendon was clear that he needed to count all the bears in front of him.
Beginning in the centre of the paper and moving to the left, he wrote a number
for each bear as he counted. Although not yet very secure in his knowledge of
standard written numerals, he was able to self-correct and read what he had
done as ‘1, 2, 3,4, 5, 6 bears’ (Figure 10.8a).

Scarlett also used shapes to represent the bears, but to indicate the two different
sets she drew two circles and four squares (Figure 10.8b). Counting continuously,
she then wrote the total of ‘6’ beneath and finally she added to her circles and

squares, turning them into balls and presents (using icons to stand for the bears).

Alice drew the six bears and then counted them, adding a numeral to each in
turn to arrive at her total (Figure 10.8c).

Outcome of Group 2

Looking at the written methods these eight children chose and talking to them, it is
clear how much they understood about what they were doing and that this early
addition made personal sense. The methods chosen by the children in the second
group contrast sharply with those from the group who copied my example.

These findings point to the value of teacher-modelling in real contexts through-
out the week rather than at the beginning of a mathematics lesson or group session,
and discussion with the children to help elicit their ideas. When we directly model
written mathematics we try to ensure that the mathematics we use is for real pur-
poses and real people — because someone needs to know the outcome. In the models
we provide, we focus on aspects we want to introduce to the children such as use of
a particular symbol or a clear way of setting out some data. The children have access
to a growing bank of possible written methods, ways of representing, layout and
meaning of symbols and can select those that are most appropriate for their current
stage of development. In this way, we are adding to children’s personal mental ‘tool
boxes’ by using additional symbolic (cultural) tools (see pp. 213-14).

In the following section we explore our research into the effects of teacher-mod-
elling in a class of 5- and 6-year-olds that one of us visited on several occasions.

Modelling: children develop their mathematical representations

In a second study of the impact of direct teacher modelling, I focused on direct mod-
elling of different aspects of data handling during short fortnightly visits to the school.
I modelled a number of aspects including layout and analysing data, based on what [
had seen in the children’s graphics on my first visit. Following my final visit we com-
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pared the children’s first pieces of data handling with their final efforts to assess any
gains. Of the 12 children who were present for both lessons, ten showed that they had
used aspects that I had modelled with them. During the final lesson I had not referred
to any of the features I had modelled in the previous two months. When comparing
the two samples, 25 per cent of the children had included all three significant aspects
I had modelled in their own data handling; a further 25 per cent had improved on two
aspects and the remaining children had included one aspect. The two samples below
from Ashley illustrate this development (Figure 10.9a and b).

In the first, Ashley collected responses from his friends and used tallies to mark
their choices: the writing in this example is an account of three things he likes to do.
In the second example Ashley’s work shows that he incorporated some features that
I had directly modelled during the term.

Lee (2000, p. 29) suggests that ‘one feature of the modelling process is that it is
intended to give an idea of the quality of a way of working, rather than a royal road
to follow’ (emphasis added). Modelling can be summarised using the following key
points (based on Lee, 2000):

e When an adult models a way of representing some mathematics on paper, she can
also model her thinking processes.

¢ The quality or way of representing the mathematics needs to be one that the chil-
dren themselves can use if they choose.

¢ A model need not necessarily be finished or ‘perfect’. This will allow children to
reflect on difficult aspects.

¢ It must be able to be changed by learners to suit their own purposes.

Using models in the way we suggest therefore allows children to take ownership of their
mathematics whilst still offering them support. It is a way of introducing specific use of
symbols within contexts that are real to children that they may use if they understand
them. It permits children to choose ways of representing that match their current ways
of thinking and development, and their visual imagery. As Wray, Bloom and Hall
suggest, children need to see others using literacies to ‘demonstrate when it is used, how
it is used, where it is used and what it is’ (Wray, Bloom and Hall, 1989, p. 66).

Modelling in literacy — and mathematics

Modelling allows children to move from what they can achieve alone to what they
can achieve with a more ‘knowledgeable other’ as Vygotsky identified in his ‘zone of
proximal development’ (Vygotsky, 1978).

Barratt-Pugh and Rohl also emphasise the way in which modelling allows adults a
means of introducing a variety of genres (Barratt-Pugh and Rohl, 2000). Different
genres of mathematics in the Early Years can include lists, representing data, recipes
(quantities and measures) or a means of totalling money spent for a picnic (addi-
tion). Modelling these can extend children’s repertoire and support their under-
standing since what they choose to do is something they understand. Discussing
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children’s different mathematical graphics at the end of either a group or class lesson
means that peer-modelling extends what the teacher modelled: for the children it
may also help to reinforce the fact that there are many ways of representing mathe-
matics. Significantly, it will also confirm that the teacher really does value the per-
sonal sense individuals make through their chosen ways of mathematical graphics.
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Figure 10.9a and b Integrating teacher’s visual models

Modelling mathematical symbols and signs

Graves argues that modelling opportunities ‘are infinite’ and that within the
teacher’s modelling concepts are built (Graves, 1983). In mathematics modelling
ways of recording will include specific symbols used in context and will allow for dis-
cussion about alternative ways of representing the same meaning. We have shown
how modelling mathematics allows children to choose from a variety of ways of rep-
resenting meaning: these may include standard, abstract symbols when appropriate.
By doing this the teacher can help children make links between their own (non-
standard) marks and symbols (their first mathematical language) and standard math-
ematics (their second language).

The samples of childen’s representations of subtracting beans in Chapter 6 show
the range of representation within a group of children and the different levels of
symbol use that the children appropriated: they had incorporated aspects of mathe-
matics previously modelled, (direct, indirect and peer-modelling), such as hands and
standard symbols, and some had taken Barney’s new use of arrows and built this into
their representation of subtracting beans. As we have seen, a positive classroom
culture can encourage them to draw on a range of models for their own purposes so
that children will do this with confidence. Heuvel-Panhuizen proposes that to help
children move between their informal and formal levels, ‘models have to shift from
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a “model of” a particular situation to a “model for” all kinds of other, but equiva-
lent situations’ (Heuvel-Panhuizen, 2001, p. 52).

In terms of writing stories, Graves argues that modelling is especially useful to
explore what you have chosen to do and why (Graves, 1983). When a teacher
models the use of the standard sign for ‘take away’ or subtraction, it is helpful if the
children can see not only what is being written as in the example (‘-’), but also why.
Provided the classroom culture supports co-construction of meaning, those who are
ready to relate the abstract symbol to their own ways of representing ‘take away’
will be moving towards the use of more standard forms.

Modelling has a role in what is termed ‘progressive mathematization’ which dis-
tinguishes the Dutch ‘Realistic Mathematics’ or REM approach. This, Beishuizen
argues, is important ‘in the development of abstract thinking on different levels’
(Beishuizen, 2001, p. 130). Whilst we do not claim to be using the REM approach,
supporting children’s mathematics through their early marks and own written
methods may share some similarities in its process with Freudenthal’s principles.
We argue that co-constructing and negotiating meaning together are supported by
a range of increasingly abstract models. These provide children with ‘guided’ oppor-
tunities ‘to “reinvent” mathematics by doing it within a process of “progressive
mathematization”’ (Anghileri, 2001a, p. 34).

Modelling: symbolic tools for children’s ‘mental tool-boxes’

We have shown how from their earliest marks (and other multi-modal representa-
tions) children gradually develop a range of ways of representing their thinking. They
become increasingly selective and begin to make conscious decisions about the type
and layout of these marks and in mathematical graphics we have termed these forms
(see Chapter 6). The forms do not need to be directly taught since they arise from the
range of marks children intuitively make but some will be used within the teacher’s
models. However, as they mature it is clearly the teacher’s responsibility to also model
standard symbols and possible ways of representing, as children gradually move
towards the standard, abstract, written language of mathematics and calculations.
The way in which we use direct models is not to directly teach children how they
should represent their mathematics, but to explore possible ways of representing
mathematical thinking (e.g. drawings, symbols, iconic representations, various forms
of representing data) and written methods of mathematics; to provide what
Streefland also refers to as ‘models of mathematics so that children can use them in
the future as a ‘model for’ their mathematics (Streefland, 1993). Heuvel-Panhuizen
emphasises that models of mathematics within meaningful contexts ‘can fulfil a
bridging function between the informal and formal level’ to a model for a particular
piece of mathematics in which the child is engaged (Heuvel-Panhuizen, 2003, p. 14).
Using an indirect form of modelling mathematics within play (see Figure 10.10
below) appears similar in some respects to modelling within the Dutch Developmental
Education curriculum (for example, see Oers, 2003; Oers and Warkdekker 1999),
although we go further with modelling written methods for calculation and features
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of data handling. Our modelling is of a very different nature to the way in which the
term ‘modelling’ is currently used by teachers in England. In the Netherlands, Grave-
meijer (1994) recognised this particular interpretation of models ‘that causes the
formal level of mathematics to become linked to informal strategies’ — as connecting
with the re-invention of RME’ (Heuvel-Panhuizen, 2003, p. 15). Linking the formal to
children’s informal mathematics is at the heart of children’s mathematical graphics.

Direct modelling

With opportunities for discussions about their mathematical graphics, children
can become aware of their own and others’ use of different marks on paper and
their potential for representing mathematical meaning. However, to extend
children’s mathematical thinking as they move gradually towards using abstract
symbols and explore written methods for calculations, teachers need to directly
model different ways of representing quantities and of calculations. This direct
modelling is of greatest value in order to:

» extend the children’s repertoire by adding to the children’s ‘mental tool-box’,
in order to extend the possible ways in which they may represent their
mathematical thinking

* support children in moving towards increasingly efficient ways of using symbols
and calculations

* be selective when they approach new mathematical situations or solve
problems.

When to use direct modelling?

Like a real tool-box (full of spanners, chisels and screwdrivers to which new tools are
added from time to time), children will then have an expanding mental resource of
symbols and written methods (symbolic tools) on which to draw and which take
them beyond what they can do now, as in Vygotsky’s ‘zone of proximal develop-
ment’.

We have shown that modelling mathematics at the beginning of a lesson does not
work: in effect, it has not become transferred to their ‘mental toolbox’ of symbolic
tools. In this context you will be providing an example that may be useful on occa-
sions — but which will lead to all the children doing what you have shown. If your
concern is to encourage children to think and to use their own ideas in mathemat-
ics, you will need to provide direct models outside of mathematics lessons. This will
allow children to add what you have shown to them to their existing mental models,
to help them make their own decisions and choices about the way in which they
represent their thinking. Our research has shown that it is important that direct mod-
elling takes place throughout the week and ideally within the context of an authen-
tic purpose (sometimes also for a real person). The distinctions between direct or
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indirect peer modelling and other socio-cultural contexts are shown below and draw
on the ‘knowledgeable other’; adults, other children, family and community (socio-
cultural) contexts.

Direct adult modelling e Adult provides direct models (not copying) that offer new,
and alternative ways of representing mathematics, with
either a small group or class

Indirect adult modelling ¢ Adults may sometimes participate in children’s play
and represent mathematical thinking appropriate
within that particular play context

¢ Writing or displaying mathematical print and notices

Peer modelling: focus on ¢ Displays of children’s own mathematical graphics

children’s own graphics e Discussing children’s mathematical graphics —

as models focus on strengths, meanings, symbols, ways of
representing, ideas and the mathematics

Family and community e Children see adults representing mathematics in real
(socio-cultural) modelling contexts
* Representations of symbols and mathematics in the
environment and through media and technology

Figure 10.10 Modelling within mathematical graphics

Note that these definitions of ‘modelling’ within children’s mathematical graphics go beyond what is gener-
ally understood by this term in England, in which ‘modelling some mathematics’ almost always results in
children directly copying what the teacher has done.

In the next chapter we consider a variety of ways in which teachers can involve
parents and families in their young children’s developing mathematics and share
their children’s excitement about learning.
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Fam lies

Children’s first and continuing educators

Take an inquisitive three year old who needs to help you with everything you do. He
enjoys emptying your cupboards and likes to stack pots and pans. He lines up the
cutlery as you lay the table and when out shopping he likes to put items in the trolley
and then takes them out again. When hanging out washing he insists that he is in
charge of the pegs and only gives them to you one at a time.

At four years he is in charge of the balance scales when you are trying to weigh
out ingredients to bake a cake. He has to dial the numbers for all your phone calls
and takes full responsibility for sharing out the sweets. And he counts everything
from the cars in the street to the peas on his plate.

These everyday experiences are the foundation stones of children’s early numeracy
and as parents we are our children’s first and continuing educators. (Mills, 2002, p. 1)

Introduction

During our long careers as teachers we have worked alongside parents as much as the
constraints of external factors beyond our control would permit. As teachers we
value true collaboration with parents. Throughout this book we refer to parents,
carers and families: the relevance of the home and the family is richly and finely
woven throughout. As Mills reminds us, no one knows the child like his or her
family (Mills, 2002). We, therefore, do not see this chapter as a discrete section but
as building on what we have already written.
In this chapter we draw on four studies we have made:

1 ‘The Sovay study’: a case study of a child’s number development from 22 to 42
months. (Carruthers, 1996)

2 A study of ‘mathematics at home’ based on questionnaires and diaries over seven
days, completed by 31 mothers and fathers of children aged 4-6 years in one class.

216



Involving parents and families 217

3 A collaborative ‘parents’ mathematics group’ during which we explored mathe-
matical schemas together. Some parents in this group kept diaries of their 4-6-
year-old children’s mathematical schemas.

4 A ‘holiday study’ that involved parents of a class of 7-8-year-olds keeping diaries
of their children’s mathematical interests outside school.

These four pieces of research provided evidence of children’s mathematical interests,
family mathematical ‘events’ and parents’ perceptions about children’s mathematics
(Barton, 1994).

The home as a rich learning environment

Before the child enters her first Early Years setting, her home has provided a mean-
ingful environment where mathematics is used in real contexts. Children have seen
the purpose of mathematics bound up with the day’s events. They know the impor-
tance adults attach to mathematical areas such as time. ‘I am going to be late, it is
nearly seven o’clock and I am not ready yet.” In each home there may be different
cultural considerations about the areas of mathematics that are used. In Chapter 2
we discussed some examples of these cultural differences. Children will see mathe-
matics written down for different purposes. This written mathematics is not usually
the formal abstract symbolism of traditional school approaches but there will be ele-
ments of this. Resnick states that ‘school cultivates symbolic thinking whereas
mental activity outside school engages directly with objects and situations’ (Resnick,
1987, p. 16). For example, symbols will be used in shopping lists, for example ‘2
cartons of juice’ and on addresses such as ‘105, Brewland Street’.

One of the central themes of this book is that there is a gap between home infor-
mal mathematics that children bring to school and the school mathematics that
seems detached from the outside world. The most difficult concepts children face are
when they have to read or write the formal standard symbolisation of mathematics
at school. We argue that the gap can be bridged by encouraging children to continue
the informal home mathematics that they understand, as they gradually assimilate
the standard symbolisation of mathematics into their own methods. In Chapters 6
and 7 we have shown how children’s early numbers and calculations develop from
their informal marks.

Tizard and Hughes in their study concluded that the home provides a ‘very pow-
erful learning environment’ (Tizard and Hughes, 1984, p. 249). Their research
included families from varied socio-economic backgrounds. It revealed that there
were no vast differences in learning opportunities whatever the background of the
child. The differences appeared in content and values: all mothers in the study were
keen to give their children literacy and numeracy experiences. ‘But the most fre-
quent learning context was that of everyday living. Simply by being around their
mothers, talking, arguing and endlessly asking questions, the children were being
provided with large amounts of information relevant to growing up in our culture’
(Tizard and Hughes, 1984, p. 249).
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The home provides a real and purposeful learning situation with an immense
range of events that occur as a result of everyday living. The situations that children
are exposed to are with people who know them, who share their backgrounds and
common experiences. This is important when the adults in the home are interacting
with the children since it is easier to understand what the children are saying and to
help them in their learning.

Nurseries and school settings cannot match the home as a learning environment.
The Tizard and Hughes study in England also highlighted the differences between
nursery settings and home and found that the latter, in many ways, provided a more
enabling learning environment.

Since the home is such a strong learning environment then Early Years settings
need to continue to make connections with families to support and understand the
child’s home experience: in this way they will help children make the connections
necessary to understand their school mathematics. Through two case studies, one of
a child at home (Carruthers, 1997c¢) and the other of a group of parents of a 4-6-year-
old class, we are going to analyse the following questions.

¢ What mathematics do young children do at home?

e What is their knowledge of mathematics?

e What is the role of parents in their children’s mathematics?

e How do we work together with parents to support children’s mathematics?

¢ Does the home continue to be supportive of children’s mathematics?

¢ What mathematics do parents notice at home?

¢ What mathematical writing do young children see their parents and older siblings
engaged in?

e What mathematical writing (marks) do parents observe their young children do?

What mathematics do young children do at home?

In a study of my own child I followed her own self-initiated, numeracy-related actions
in the world from when she was 22 months until she was 42 months old (Carruthers,
1997c¢). Most of my findings on her development came from her number language.
From this I observed that she developed an understanding of numbers and how they
worked in a variety of meaningful, mathematical contexts. Before Sovay entered
nursery school at 3 years 6 months she had, through her own chosen actions in the
world, used mathematics in nearly every area of the subject. She had also tuned in to
mathematics and had, in similar terms to Holdaway’s literacy set, a mathematical set:
the ability to tune in with appropriate action (Holdaway, 1979). Children who have
developed a mathematical set (Carruthers, 1996) have the following abilities: they

e are aware that numbers have meaning in all mathematical areas and engage with
numbers in a meaningful way

e use numbers to talk in the context of their own lives

e know that numbers can be written down and in some cases use their own written
symbols
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¢ play with numbers, sometimes making up their own idiosyncratic games

¢ know that numbers have written symbols but may not know what they are

e recognise that numbers can be used in different ways, e.g. when counting you use
a string of numbers and when you talk about time you use one single number

e have started to develop their own number system with notable conventions of
number, e.g. some children count ‘1, 2, 6, 7, 8, 9, 11’. They have used the numbers
and they know some conventional strings.

I think it is important to note here that this knowledge can come before the child is
observed counting with one-to-one correspondence, as was the case in Sovay’s study.
This also dispels the myth of the concept of ‘pre-number’ or ‘readiness’ activities.
Children are always ready for numbers. The Durham Project (Davis and Pettitt, 1994)
also questioned this concept because, from the evidence of their research, children
learn about number by counting objects in a variety of ways and not by traditional
pre-number activities such as sorting and matching. Children also learn about
numbers beyond counting in real life and purposeful contexts, as Sovay did.

As we have already emphasised, young children develop understandings about
mathematics long before they enter school. Often when they start school their abil-
ities are not always recognised by their teachers who pitch activities at a much lower
level than that at which the children are functioning. Aubrey’s (1994b) study high-
lighted this mismatch between teachers’ expectations and the children’s actual
ability in mathematics. Wells (1986) found in his study of home and school that the
home provides a rich learning environment where children ask questions, reflect,
argue and therefore construct knowledge. Sovay in her mathematical development
was observed reasoning, hypothesising and synthesising information. The following
example of her engagement with number language emphasises the kind of learning
and conversation that goes on at home. This conversation between Sovay and her
mother happened the day before Sovay’s third birthday. There had been much dis-
cussion about both her party and her age.

Mum How old will you be tomorrow?
Sovay One.

Mum No.
Sovay One.
Mum No.
Sovay Two.
Mum No.
Sovay Four.
Mum No.

Sovay Yes, you said four.
Mum Ididn't.

Sovay Eighteen.

Mum No.

Sovay What?

Mum Three.
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Sovay Thirteen.
Mum No, three.
Sovay Fourteen.

Parents do ask questions of a testing type as well as teachers. This nearly 3-year-old
did not give the adult the required response. If you study this closely you can see
that Sovay did indeed know that she was going to be three. The wrong answer to
Sovay appeared more stimulating than the right answer. She likes to play tricks. She
probably knew that I would find her answers funny as I caught on to her joke, but
at least at the beginning of the conversation I wanted to achieve my goal. I gave up
in the end and I played along with her joke. Dunn (1988) studied children’s humour
and found that 2-year-olds explore and exploit the possible distortions of what is
accepted in different ways with their siblings and their mothers. They are frequently
amused by the violation of rules.

Sovay gave me a richer indication of what she knew than if she had played along
with my expectations and given the standard answer of ‘three’. The evidence indi-
cates that Sovay was playing with numbers in a most sophisticated way.

¢ She jumped around the number three, moving from two to four. This may have
indicated that she was aware of the numbers before and after three.

¢ She used higher numbers, e.g. eighteen.

e She indicated an awareness of the relationship between three and thirteen. She
made out she had heard me say ‘thirteen’ instead of ‘three’ perhaps because it
sounds similar but she knows there is a difference.

¢ Following thirteen she said ‘fourteen’. Again she may be indicating that she knows
the relationship between thirteen and fourteen as next to each other in the count-
ing sequence.

e She used all these numbers with ease and confidence and was bold enough to use
them to tease an adult.

Sovay constructed her mathematical knowledge with her family. The influence of
her elder sister whom she loved to copy was valuable in aiding her growth. They
went about their childhood world comparing, examining and playing. A favourite
game was hide and seek and, even though Sovay could not count well enough in the
conventional manner to be a true ‘seeker’, she was permitted to do so by her sister
and her friends. The democratic atmosphere of the home allowed her to experiment
and become a mathematician.

Sovay also started to take an interest in writing down mathematics. I noted when she
was 3 years old that she wrote a dinner money envelope for her sister: she talked about
money and wrote her own symbols down (see p. 25). She also wrote her own symbols
at 4 years 3 months, explicitly naming numerals. However, these were the only inci-
dents in a two year span where I noted Sovay engaging with this kind of mathematical
mark-making. Her number talk and social interaction were much more dominant.

We believe that children are learning complex meanings and understandings of
their world at home and we argue throughout this book that they can construct their
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own meanings of mathematics on paper at home and continue to build on this, pro-
vided it is recognised in school. Children have been observed to struggle with a for-
mally presented mathematical concept at school, yet have worked out their own way
of solving the calculations, outside school (Carraher, Carraher and Schleimann,
1985; Nunes and Bryant, 1996).

What mathematics do parents notice at home?

As part of our research into young children’s mathematical understanding and
marks, we wanted to explore the home’s socio-cultural influence on children in
school. One of us made this study whilst teaching a class of 4-6-year-olds. This
builds on the study of Sovay in the home (Carruthers, 1997¢). Clearly such work
with a group of parents has the potential to provide a variety of information: this
can help teachers build on children’s understanding.

The most positive outcome was the rich information it provided from the chil-
dren’s families, in terms of their mathematics experiences at home and their parents’
perspectives. The children attended a small village school with about 70 pupils from
4 to 8 years who came from all social backgrounds, with a mix of children who were
living in the village and others from the nearby city. Fathers and mothers were
invited to participate and 31 separate questionnaires were returned completed. Some
of the data collected is explored below.

Awareness of early understanding of mathematics

At what age do parents believe that children begin to learn mathematics? This ques-
tionnaire revealed that a common perspective was that counting and numbers — the
visible evidence of mathematical knowledge — were signs that children had begun to
show an awareness or knowledge of mathematics. For example, one parent com-
mented that her child’s early number development began when she did ‘basic count-
ing such as counting stairs and fingers and knowing how many sweets she had’.

Above all, counting and numbers were identified as evidence of early mathemati-
cal development. Whilst a few parents believed that children started to learn math-
ematics from birth — a fact supported by research (e.g. Karmiloff-Smith, 1994) — the
majority had identified signs of early mathematical development as beginning
between the ages of 2-3 years: this is a time when children are very vocal and phys-
ically active. A few parents suggested that mathematical understanding began as late
as 4 years. The audible language of counting as children climbed stairs or the visible
actions of sharing combined with ‘one for you, one for me’ talk appeared to confirm
that their child was developing mathematical understanding. An example of this is
given on p. 219 when Sovay was discussing with her mother about her age.

Mathematics events within one family

What is viewed as mathematics in early childhood behaviour and activities at home?
I invited parents to make a note of the children’s involvement in anything that
involved mathematics, or anything mathematical their child saw or heard other family
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members do, during one week. Some parents noticed a great deal of mathematics in
everyday experiences such as birthdays, sharing food and counting pocket money.

Talking mathematics

High levels of talk about numbers in the home through everyday language has been
documented by Durkin and Shire (1991). Adults also help children focus on specific
numerical goals and these will aid them in understanding basic quantitative tasks
(Saxe, Guberman and Gearhart, 1987). The data collected in Sovay’s mathematical
development were largely through her talking (Carruthers, 1997c¢).

In this study with parents, most of the mathematical events that Rose and Ben'’s
father noted included adults talking. This has the effect of alerting the children to
the mathematics in what they are doing and also scaffolds their learning (Bruner,
1971). In many of the families in this study, talk was a significant feature:

¢ Jack is always asking “how many minutes before we get there?” when we're in the car.’
¢ 'Talked about changing the clocks.’
¢ 'We discussed the price of a scooter as Daniel would like one.’

In some families parents also capitalised on incidental opportunities to help their
children explore mathematics at a deeper level, within contexts that were meaning-
ful to their child. ‘James said he could “eat a hundred roast dinners in a week” and
we talked about how long between meals he would need and how long it would take
to eat one hundred dinners.’

In the ‘mathematics at home’ study a great deal of informal mathematics talk
occurred in families. Most parents also played mathematics games and sang number
songs and rhymes. Television programmes with a mathematical focus and, for a few
children, mathematical computer software provided additional opportunities for
mathematical talk. Only three parents referred to any direct teaching: ‘I'm trying to
teach Jack how to tell the time on his watch’, ‘we’re learning the numbers on the
new music organ’, ‘adding numbers together; 2 + 2 etc.”. These can sometimes be
valid activities on which to focus, but lack the real contexts and purpose for mathe-
matical understanding.

Shopping, cooking and household tasks

Family activities provided many opportunities for mathematics: I noted, for
example, that parents listed 17 responses referring to these types of activities. These
included ‘using a tape measure to check length of knitting’ and ‘discussing the
choice of sandwich - 4 squares = 1 round of bread. Adam spread two squares with
“Marmite” and two with jam.’

The examples noted by the parents in this study indicate the rich socio-cultural
themes that influence and guide young schoolchildren’s understanding and knowl-
edge of mathematics within their families. Similar rich themes are highlighted in the
study of Sovay long before she started school. When adult family members and older
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siblings use mathematics for real purposes such as ‘measuring a curtain rail and esti-
mating how many hooks to buy for curtains’ they are helping children make the links
between their own talk and play about mathematics. Ben also did this when he
decided to measure the bathroom and hall with toilet paper. Our two studies point to
the continuities of socio-cultural themes that begin in infancy and continue to provide
rich contexts for learning through meaningful interactions (Carruthers, 1997¢).

The children experienced a full range of mathematics including a variety of cal-
culations, all aspects of measurements, probability and money. Sometimes they used
specific resources such as a measuring jug for milk or a foot gauge in a shoe shop,
and money counted was always real. These incidents occurred either because:

¢ they were necessary

¢ they were initiated by the child

¢ they were fun

¢ they were part of the normal family routine.

Child-initiated play

In this study parents seldom noted children’s self-initiated play as mathematical and
there were only five recorded incidents of their play. As experienced Early Years edu-
cators and parents we might find this surprising. The growing body of research on
the early development of the brain (Carnegie Corporation of New York, 1994; Green-
field, 1997; Nash, 1997), schemas (Athey, 1990) and infants’ understanding of math-
ematics (e.g. Karmiloff-Smith, 1994) points to rapid development of mathematical
understanding from birth. Recent research also suggests links between early marks
and emerging literacies. Sheridan proposes that children’s early scribbling:

.. serves four critical purposes: to train the brain to pay attention and to sustain
attention; to stimulate individual cells and clusters of cells in the visual cortex for
line and shape; to practise and organise the shapes and pattern of thought; and
through an increasing affinity for marks, to prepare the human mind for its deter-
mining behaviour: literacy. This literacy is multiple: visual and verbal, artistic and
scientific, mathematical, musical and literary. (Sheridan, 2003, p. 2)

Yet these research findings are in contrast to the outcome of our ‘Mathematics at
Home’ study in which parents appeared unaware of the mathematics within their
children’s play, unless it was a specific game such as playing shops. This suggests
then that adults generally have difficulty recognising mathematics within play
unless it is couched in specific mathematical language — usually of counting — or uses
specific mathematical resources such as money.

Becoming alert to written mathematics

As their child’s first and continuing educators, it is clear that parents are very keen
to support and extend their child’s understanding (Athey, 1990; Hannon, 1995).
However, very few of the children in this study saw their parents write mathematics
for their own interests or work, activities that help establish the socio-cultural con-
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texts of mathematics and the variety of marks and written methods. The few com-
ments noted by parents during the seven days included:

¢ studying the football league tables and cricket score cards

e converting rent paid per calendar month to a weekly amount and vice versa —
using a ready reckoner, calculator and mental arithmetic

¢ Amy asked me what I was writing on my timesheet for work. I explained that I was
writing the number of hours I worked each day and that this would be used to cal-
culate how much money I earned.

Whilst some of their parents’ work may have seemed a little remote, other children
were regularly involved in what their parents did. Rose attended the After-School
Club that her mother ran. Her mother commented that ‘at home, Rose looked on as
I wrote out the bills for After-School Club.’

It is significant that no parents mentioned any marks their children made (print,
symbols, drawing, numbers) on paper. This suggests that it is likely that such chil-
dren’s behaviours were not seen as ‘mathematics’. In Sovay’s study it was found that
she did not use a prolific amount of mathematical representation: most of her rep-
resentations after the age of 4 years were connected with her current schema. As
Bottle has observed, ‘parents may not always be aware of, or be able to identify their
own contribution to the development of their child’ (Bottle, 1999, p. 56). Yet it is the
very fact that they have learnt mathematics at home in real contexts that provides
young children with the rich, informal knowledge that they bring to school.

When teachers and parents are able to share their knowledge, then parents’ aware-
ness of play and mark-making can increase — and so, of course, can teachers’. For
example, in a study of parents’ observations of their 7-year-olds’ mathematical
schemas, one of us had shared her knowledge of schemas with the parents. The
parents could then easily identify their children’s interests in this area when they
realised the possibilities.

The literacy events into which children are socialised also help them ‘to survive, to
consume, to act in the world’ (Barton, quoted in Barratt-Pugh and Rohl, 2000, p. 32).
Barton arranged family literacy events into categories. We have developed this theme
below for written mathematics based on responses from our questionnaires in this study.

Mathematical literacy events within families

The comments below are taken directly from the parents’ questionnaires.

There were what Barton terms ‘private events’ which, in my study of ‘Mathemat-
ics at Home’, included comments such as ‘read a book about planets — counted and
compared sizes and distances’ and ‘learning the numbers on the new music organ.’
Other events involved instructions and consumable goods, for example ‘we meas-
ured washing powder (how many scoops?).” Most parents recognised the mathe-
matics of television and videos and some helped their children understand when
they ‘talked about the way the hands go round the clock’ or ‘checked on Teletext.’
Numbers occurred in different contexts when the family were organising their lives,
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including ‘paying money in to bank’ or ‘filling the petrol tank of the car.” A high pro-
portion of comments related to social and community activities such as ‘adding
snooker scores’ and ‘changing the hymn numbers at church.’ Finally, from their
replies it was clear that some children saw their parents engaged in mathematics
related to their work, including ‘doing the accounts’ and ‘writing number of hours I
worked each day, on timesheet.’

This shows something of the considerable range of mathematical literacy events in
children’s homes which includes written aspects of mathematics and which may often
not be recognised by parents. Hill et al. argue that in fact there is a considerable range
of literacy learning in children’s homes before they enter Early Years settings and that
early childhood professionals need to understand and build on this (Hill et al., 1998).

Parents observe a wealth of mathematics

In two shorter studies we explored children’s mathematical interests with parents.
The first was with a group of parents of the class of 4-6-year-olds and the second
with a class of 7- and 8-year-olds: we were both their class teachers at the time. Both
studies followed meetings in which we had shared information about their chil-
dren’s schemas. One parent of a 5-year-old chose to keep a diary and noted:

Sam has been interested in shapes that are produced when shadows are cast. He is
becoming aware of when you place one shape together or beside another shape,
how this produces yet another shape. He also can often name the shape created.

In my class of 7- and 8-year-olds, I asked the parents to keep a diary of their chil-
dren’s interests over the summer holidays. On several occasions I had discussed
schemas and the link to mathematics with the parents. The parents’ notes reflected
the breadth of the mathematics in which the children were engaged and that they
were able to identify. We were also able to celebrate the children’s focus and reflect
on how we could all support the children’s interests.

Parent’s diary, 25 July — Julian age 7 years:

Drew maps with contour lines, mountains, ship-wrecks, compass points, roads,
bridges and rivers. Made ‘collections’ of stones, foreign money, stamps and buttons.

Helping parents recognise children’s mathematical marks

McNaughton argues that ‘there is a need for educators to be clearer about
supporting complementary activities at home ... (and) develop shared goals and
activities with parents’ in order that practice is shared across the home and
education setting (McNaughton, 1995, p. 192). Open communication and collabor-
ation between early years settings and families appear to be the key to developing
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shared practice and understandings about the children’s mathematical development.

When teachers and parents do share their understandings such as the parents
exploring their children’s schemas and mathematical interests, teachers, children
and families gain in understanding. ‘Parents can be effective only if professionals
take notice of what they say and how they express their needs and treat their con-
tributions as intrinsically important’ (Warnock Report, 1978, cited in Whalley, 1994,
p. 64). This, we believe, is true for the parents of all children.

Many schools send home reading books, but there is scant evidence of a collabo-
ration between parents and Early Years settings in terms of children’s early writing,
drawing or mathematical marks. We are certainly not arguing for an early emphasis
on formal drawing, reading, writing and mathematics. However, we do believe that
there is enormous potential in teachers and parents communicating about young
children’s early mark-making, meaning and development.

As Pahl suggests, ‘perhaps the current enthusiasm for reading to five year olds for
twenty minutes a night should be extended to encouraging twenty minutes of
making a den or biscuits or mud pies’ (Pahl, 1999a, p. 106). It is in such multi-modal
forms of representing meaning that the seeds of mathematics grow.

Parents’ questions about children’s mathematical graphics

When do they start doing sums?

A: Although your child might not be writing sums in the traditional way, she is often
engaged in a variety of addition and subtraction problems. Much of the mathematics
we directly teach to 4- and 5-year-olds is through talking, games and problem-
solving. She is also given opportunities to write down her mathematics. Look in her
folder and you will see her mathematics. We are giving her opportunities to explore
her own ways of writing down her addition and subtraction, as well as showing her
the standard models and signs. Would you like me to talk through some of the math-
ematics she has done on paper?

In my day we had to use squared paper - that really helped us get
it neat — why do you use blank paper?

A: Good question. We use blank paper so that children can make their own decisions
about layout. Sometimes children want to draw pictures, arrows or numbers. We
discuss with the children what they have written or drawn. Later we will introduce
a variety of jottings to help the children work out calculations with larger numbers.

My son keeps on getting his numbers the wrong way round. We’ve
shown him the right way but he can’t remember — can you tell him?

A: We do talk about writing numerals and we practise this in a variety of ways. For
example the children draw numerals on the carpet with their fingers. They also use
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the chalk board when they’re thinking about the numbers that are really difficult for
them, such as ‘S’, ‘2’ and ‘8’. Many children reverse numerals. This is common until
the children are about 7 years of age. Your child is very good at mental mathemat-
ics and solving problems, and his handwriting skills will develop to match his
mental ability as he sometimes works out his ideas about mathematics, on paper.

When do they get on to real maths?

A: I noticed when your child came to school, she was already very interested in
mathematics. She has really developed this and now her interest is in money. She is
also very interested in capacity which she often explores outside through filling con-
tainers and climbing inside large cardboard boxes. In our mathematics lessons I
focus on specific mathematical topics; this week we are exploring space and shape,
and the children are inventing their own three-dimensional shapes with the blocks.

This is all real mathematics and links with what they will be learning in the next
class. We are having a parents’ discussion about the children’s mathematics next
week. Would you like to come? It will be a small, informal group.

I know they like play but my child is ready for proper maths

A: Play is part of the children’s learning and their mathematics. Your child
particularly likes the office play area and last week she used the calculator to exper-
iment with ‘99 + 6’ and ‘99 + 7’. She predicted the answer each time and then
checked it on the calculator. The other children were very interested and copied her,
testing out their own calculations. Of course, as her teacher I teach the class specific
aspects of mathematics every day. We also make frequent observations of the chil-
dren’s play and plan ways of supporting individuals. We keep records of their math-
ematical progress throughout the year.

I don’t understand all those scribbles in their maths folders — it
doesn’t look like maths

A: Yes. It can be difficult for adults to understand but there is a lot of meaning in
your child’s marks. I have written what your child said about her marks in pencil at
the bottom of each page. We are having an exhibition of children’s mathematics,
from nursery through to 8-year-olds. If you are free to come you will see what it is
all about. Children’s written mathematics is also only a part of their mathematics
but it does help their thinking and mental methods.

Conclusion

Developing a genuine partnership with parents and carers can enrich all our lives.
When teachers and parents share their knowledge about what they have seen and
heard children do and say, they gain more than new knowledge: together they share
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a little of the child’s inner world of meanings and possibilities.

Further Reading

Parents and families

e Whalley, M. (1994) Learning to Be Strong. London: Paul Chapman.

e Whalley, M. (2001) Involving Parents in their Children’s Learning, London: Paul
Chapman.



Children,
Teachers and
Possibilities

Grown-ups love figures. When you tell them that you have made a new friend, they
never ask you any questions about essential matters. They never say to you, ‘What
does his voice sound like? What games does he love best? Does he collect butterflies?’
Instead they demand: ‘How old is he? How many brothers has he? How much does
he weigh? How much money does his father make?’ Only from these figures do they
think they have learned anything about him. (Saint-Exupéry, 1958, p. 15)

Inclusion

We wrote this book in the understanding that we have written for all children.
Throughout the book the examples we have used cross a range of children; some of
them have been categorised as children with special needs. We prefer not to label
these children since it seems neither relevant nor important to do so. All the chil-
dren with whom we have worked have been able to express their mathematics on
paper. The diversity of the responses confirmed our own past experiences that chil-
dren think in a diversity of ways. We have discussed the children’s marks and written
methods with them and ‘labelling’ the children did not cross our minds. We both
believe that it has essentially freed the children who have been labelled as having
‘special needs’, to have opportunities to put their own mathematical marks on
paper. Robins states that ‘the mathematical experiences of many children with learn-
ing difficulties have centred around worksheets’ and continues by proposing that
such materials may be overused (Robbins, 2002, p. 133). In Chapter 10 we outlined
the disadvantage of using worksheets. For children who may have a particular
special need, using their own thinking about layout and making other decisions for
themselves have helped them towards independence. There has been much stress on
understanding in mathematics and a move away from hurrying children through
standardised procedures. When children use their own ways of representing it is
easier to assess what they understand and the nature of any difficulties. Anghileri
supports this view, reasoning that ‘errors and misconceptions may be identified
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more readily through informal and idiosyncratic working' (Anghileri, 2001b, p. 18).

Newman argues that ‘activities that involve fragments of language, that discour-
age children taking chances, that don’t permit the exchanging of ideas, can only
serve to make reading and writing more difficult’ (Newman, 1984, p. 72). This is true
for all young children learning mathematics but, we argue, it is even more so for
children who may have learning difficulties.

The need to work from where the child is can help us know where to start supporting
children’s own methods. Their own ways make sense to them. In discussing children’s
own mathematics with them we can quite often be excitedly surprised by what they do
know. Children’s own mathematics provides adults with a ‘discussion paper’: for many
children with special needs worksheets are a recipe for failure. They perpetuate a
right/wrong culture. Cockburn believes that when children enter school they often learn
to ‘play the (mathematics) game’ where the emphasis is on finding the right answer —
which is always the teacher’s answer (Cockburn, 1999, p. 9). Additionally, when children
represent in their own way, because they have to think carefully about what they do and
consider a range of possibilities, they will learn more about the mathematics. It is
because of this struggle that occurs within their minds that ‘they will do better than
their perceived best’ (Brighouse and Woods, 1999, cited in Robbins, 2002, p. 5).

Children’s questions

Listening to children, not only to what they have to say about their marks but what
they have to say in general, can instigate a change in your teaching. I remember when
I asked the children in my class what questions they had when we were discussing
Holland. One child asked, ‘How many cows are there in Holland?’ I was not expecting
that kind of question although it is an interesting one and I believe only a child would
ask it. The questions below are from children in our own classes and from other classes
in which we have taught. We have included questions and comments from children
in classes where teachers had just started to support the children’s own mathematical
graphics.

Lia, 7:0 Are you allowed to show your working?

Response: If writing down your mathematics helps your thinking, then of
course. Sometimes just putting something down helps your
memory when you have a lot of calculations to do — otherwise you
may forget. However, if you can do the mathematics in your head,
well, just write the answer down.

Jason, 8:2 Can I use a rubber?

Response: It is better not to use rubbers, because you may want to look back at
the strategies you have used. I like to see what you have written as
it shows all your thinking. All good mathematicians keep all of their
written work, even if it did not work out: they can go over it again
and see where they might have worked in a different way. They
don’t use rubbers — every mark is important.
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Sophie, 5:5 Can I colour it in?
I would like to listen to what you have to say about these interest-
ing marks you have made, then we can discuss whether you still
want to colour it in and if it will help your thinking.

Neil, 7:3 My mum does it a different way.
We have looked at several different ways to do subtraction. Come
and show us what your mum does and perhaps some of us would
like to try that way.

Stella, 5:1 He's doing it wrong, miss!
There is no one, right way to work this calculation out. When he’s
finished, Larry might like to explain what he did and you can show
him your way.

Ralph, 6:9 But I know the answer already!
That'’s great Ralph! Put your answer down and we can discuss ways
that you could check it.

Genevieve, 6:6 Do I have to do it?
Can you think of another way you could show your thinking?
Perhaps there is something else in the room you would like to use
rather than paper and pencil?

Charlotte, 6:0 But I have only just started and it’s dinner time.
Yes Charlotte, you have been thinking very carefully - try to make quick
notes of your thinking up until now and you can continue after lunch.
You have some good ideas and I'd like to know more about them.

Silence as a question: occasionally teachers are met with silence when they have invited
children to ‘put something down on paper’ to show their thinking. This may be because
they have been worksheet dependent and are new to the idea of making their own
marks or choosing their own written methods. We find it is helpful to suggest that
they work from what they know, perhaps visualising aspects of the problem or calcu-
lation in their heads. They might also find it helpful to discuss ideas with a partner
and just jot down a few ideas that they can then discuss together with their teacher.

Teachers’ questions

But surely nursery children shouldn’t be doing written maths?

Writing, numbers, symbols and pictures are everywhere around us — outside and in
children’s homes. Providing opportunities to make marks helps young children
understand that their marks can carry meaning: this helps them relate their marks
to what they see in the world. Some of their early marks will carry mathematical
meaning. When young children have an opportunity to do this, it helps them
develop their understanding, provided their teacher understands how she might
support and extend that understanding. In the nursery children may choose to use
their own personal marks, scribbles, numbers and drawings (see nursery examples in
Chapters 2, 6, 8 and 9). Writing sums is not appropriate for nursery children.
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Would you expect to see written mathematics develop in the same
way as their writing?

We can see many similarities in children’s development of their marks for writing
and for mathematics. Children’s earliest mathematical graphics develop from early
marks which they do not talk about, through to standard numerals that they use in
appropriate contexts (see Chapter 6). In all their graphical languages (drawing,
writing and mathematics) whilst developmental pathways have been identified this
does not mean that all children move through all the stages, or do so in the same
order. Understanding the development of children’s writing and of their math-
ematical graphics is very helpful for teachers. It means that teachers can then under-
stand how to support children, based on what they have observed them do.

What | don’t understand is, when you stop doing emergent writing
and start doing real writing

The terms ‘emergent (or early) writing’ and ‘mathematical graphics’ refer to children’s
development of writing and ‘written’ mathematics. They are very real to the children
at the moment they make their marks. It is essential that children’s growing under-
standing is supported by teachers, since without our support they will be unable to
make essential links with their standard written language (such as English or Greek)
or the standard symbolism of mathematics. The ‘journey’ from their earliest marks
to standard forms needs to be a smooth transition, therefore we never ‘stop’ sup-
porting their early marks and ‘start’ expecting only standard letters and symbols.

It doesn’t look like the mathematics they usually do — what do |
say to my headteacher?

Begin in a small way, perhaps with a few children. Keep, date and annotate what they
do, writing down what each child says about her marks. In this way you will be able
to build up a profile of the children’s mathematical graphics in your class. Doing this
will help you to assess what the children really know and can do. This way of working
is recommended (in England) in both the Curriculum Guidance for the Foundation Stage
and the National Numeracy Strategy. Your headteacher is likely to be supportive when
she understands that you are planning your teaching and support based on what you
know about the children. The examples in this book do not look like mathematical
worksheets or standard sums because they are the children’s own, rather than an
adult’s. They make very real sense to the children and help their understanding.

I do support children’s own methods but when the children move
on to another class, this doesn’t continue

We think it is really important that children continue using their own methods through-
out the school. In many schools staff have developed a policy on written methods that



Children, teachers and possibilities 233

supports a whole-school approach. Such a document provides examples of children’s
written mathematics from nursery through to 11 years of age. It is the product of a
series of meetings in which the staff agree teaching approaches and how to respond
to children’s marks. A good way to start is to look at your policy on supporting chil-
dren’s writing and see if your setting is giving the same messages in mathematics.

What do I say to the parents?

We found several positive ways of communicating what we were doing, with
parents. We have used pieces of children’s mathematical graphics in displays and
supported this by including our written comments, pointing out what the children
had shown that they understood. Some parents will need reassurance that a 4-year-
old’s scribbles will develop into standard numerals and sums. When we had a lot of
examples we put on a small exhibition in the hall and this allowed us to show the
development of their mathematics on paper, during the year.

We also invited parents to meet together to discuss ways of supporting their chil-
dren’s mathematics and the subject of their written mathematics arose at this time.
It may reassure parents to know that (in England) this forms what is regarded as rec-
ommended practice in the National Numeracy Strategy and the Curriculum Guidance
for the Foundation Stage.

How can | tell if they’re making progress?

We find that making informal observations (formative assessment) really tells us a great
deal about what children can do. Observing and really listening to what children say
about what they are doing, are very positive ways of assessing children’s understanding.
In order to know if children are progressing from what you observe them do today, you
will need to date and keep their mathematical graphics, and occasionally annotate
them when time allows. In this way you will have first-hand evidence of each child’s
development during the course of the year. It may be possible for this to be continued
for several years, to build up a profile during their time in the nursery or infant school.

How can we keep track of all the bits of paper?

Some teachers find a cardboard ‘envelope’ folder for each child is an easy way to
store all they do. Just make sure each piece is dated, if you are able. Children may
want to take some pieces home or you may use them in a display - then the photo-
copier will allow you to keep a copy for the child’s folder too.

How do I convince teachers of older pupils — they have been rather
sceptical in my school?

Make changes slowly. If you are keeping children’s mathematical graphics you will
be able to show their development over time. Using children’s own marks (rather
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than copied numbers or sums) is an invaluable means of assessment. Change can be
threatening for us all but it will reassure colleagues to know that (in England) this is
what is recommended, and that research shows that this really does help children
understand standard written mathematics at a deep level. The children who are now
in your class and making their own early marks will have moved on to many of the
standard forms with understanding, when they are older.

I put columns and boxes in the children’s work books because they
don’t know how to organise their own work

There is evidence to show that children need to experiment with ways of setting out
a page and make their own decisions about whether to put a box around some
figures, or how to organise data they have collected. At first it will not look like the
standard forms of layout, but doing this will help them understand why some
layouts work better than others for particular aspect of mathematics.

We don’t keep any of the children’s own mathematical marks from
their play — we like to let them take it home

Young children especially like to take things home. However, it is important that you
build up a profile of their understanding through their mathematical graphics and
photocopies will do just as well.

Where do | start?

You have already begun by reading some of this book. You may like to reflect on
what you have deliberately done that has already helped children’s early writing
development. Perhaps adding writing tools and paper to the role play area generated
marks within the context of children’s play roles. It may be that creating a graphics
area or putting up a noticeboard generated different writing ‘genres’. These may be
useful places to begin (see Chapter 8). You will also benefit if you are able to discuss
what is happening in your nursery or class with an interested colleague.

It’s all very well — but what about test scores?

When children try to show their own methods on paper in national tests for mathe-
matics, it helps them think through the question and often leads to a correct answer.
For example, in the Key Stage 1 SATS in England, some children tackled the more dif-
ficult problem-solving questions by using their own methods. One question in recent
years asked children to work out how many packs - of four cartons of juice in each
pack — would be needed for a party which 26 children would attend (Figure 12.1).
Jenny, 7:3, thought this through by counting in multiples of four - ‘4, 8, 12'.
When she had exhausted her knowledge of that she reverted to tallies (or an iconic
method of representation). Perhaps if she had not been used to employing her own
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Sadi needs 26 cartons of juice for her party.

There are four cartons in a pack.

How many packs does she need to buy? 7 packs

Lo 1=

Wy

Figure 12.1 Using own written methods

methods she would not have answered this question.

Out of three schools we surveyed we found that in their SATS, children who had
used their own written methods to solve the problems were successful in achieving
the correct answers for those questions. Price also reported that, when using a devel-
opmental approach to mathematics and allowing children to record in their own
way, their SATS scores increased (Price, 1994). We therefore believe that supporting
children’s own methods and chosen ways of representing their mathematical think-
ing will help children’s performance in national tests.

Further Reading

Inclusion
¢ Nutbrown, C. and Clough, P. (2006) Inclusion in the Early Years. London: Paul Chapman.



Reflections

Throughout time and now throughout a greater part of the world, print — and other
marks that humans make in order to reflect on and communicate their ideas — have
been a significant and powerful feature of our development. In many countries still,
literacy has the capacity to lift people out of poverty. The potency of the written
word which is, in essence, the power of peoples’ thoughts, has at different times in
our history been seen both as a threat and as a strength. Written words and other
graphical languages hold significance in the lives of millions of people today more
than at any time in our history.

Perhaps it is now right to recognise the huge potential of children’s early mathe-
matical marks in helping them understand the abstract symbolism of mathematics.

As we have argued throughout this book, children need to become bi-numerate to
understand the abstract symbolism of mathematics. Leone Burton stresses that the
individual strengths, interests and cultures of the children provide them with a
familiar basis from which the mathematics can emerge; this ‘encourages curiosity
and excitement because the learner begins with a feeling of comfort’ (Burton, 1992,
p- 19).

We have based this book on our mathematical research in the home and class-
room. Combining the two has been essential to find the translation pathways that
loop between informal and abstract mathematics. As a parent, Heidi Mills (19995)
reflects that the process that has remained a consistent feature and driving force in
her children’s growth is the constant search for connections between higher experi-
ences and their current ones.

Teachers have a vital role in the process of bi-numeracy since it is they who can
help children make connections. The flame of mathematical intuition is within chil-
dren but teachers need to be aware of the interactive networks within children’s
brains, to keep the flame burning. Wilkinson emphasises the importance of teach-
ers’ views of the nature of mathematics and of knowledge, society and the future.
She argues that ‘officially and effectively, teachers are the formers of the nation’s
mind’ and ‘if teachers are too narrow, too limited in their view of themselves as edu-

236



Reflections 237

cators, too confined in their views of mathematics then we shall produce a genera-
tion of adders and dividers rather than pupils who are seekers and solvers of prob-
lems and makers of new mathematical meanings’ (Wilkinson, 1998, p. 23).

It is not easy to teach mathematics well and some teachers liken it to a minefield
(Desforges and Cockburn, 1987). For many the struggle is like understanding the
picture of the boa constrictor at the beginning of this book. Some may choose to
ignore children’s own mathematics; others will find it hard to accept that children’s
own mathematical marks are the foundations of their learning the abstract symbol-
ism of mathematics and written methods. Supporting deep levels of learning is not
always straightforward but in the chapters of this book we hope you will have found
some pointers to support your pedagogy, and can hear the children’s mathematical
voices shining through:

and he laughed again. ‘You are not fair, little prince,’ I said. ‘I don’t know how to
draw anything except boa constrictors from the outside and boa constrictors from
the inside.’

‘Oh, that will be alright,” he said, ‘children understand.’ (Saint-Exupéry, 1958, pp.
77-8)

Further Reading

e Saint-Exupéry, A. de (1958) Le Petit Prince. London: Heinemann.
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Our Research

We have drawn on 14 separate pieces of our own research for this book.

Research with children

MEd dissertation: The ‘Sovay study’. This is a parent—child study of a young child’s
developing mathematical understanding between the ages of 22 and 42 months
(see Chapters 2, 3 and 11) (Carruthers)

MEd dissertation: A study of levels of cognitive challenge in a class of 4-6-year-olds (see
Chapters 3 and 4) (Worthington)

Observational study of children’s schemas, observed in a class of 4-6-year-olds during
one school year: this led to the mapping of children’s schemas over time (see
Chapters 3 and 4)

Study to compare outcomes of teacher-modelling and teacher-given examples, children 5
years of age (see Chapter 10)

Assessing the contribution of teacher-modelling on children’s own written methods (chil-
dren 6 years of age) — during the course of one term (see Chapter 10)
Observations of children’s self-initiated mark-making within role play (writing and math-
ematical graphics) in a class of 4- and 5-year-olds, (see Chapter 8)

Analysis of mathematical graphics

Analysis of 700 examples of mathematical graphics collected from children 3-8 years:
these examples were analysed to determine both the forms of graphical marks and
their dimensions (Chapters 6 and 7) that form the taxonomy (p. 131), (Carruthers
and Worthington, 2005a)

Analysis of children’s mathematical graphics from an art perspective (see Chapter 6):
(Worthington and Carruthers, 2005c¢)
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Research with parents and their children

Parents’ schema diaries, children 4-6 years: records of their children’s schema inter-
ests, observed at home (see Chapters 3 and 11)

Group parents’ study (children aged 4-6 years): 31 mothers and fathers completed
questionnaires of their children’s mathematics observed at home and their own,
recalling experiences of learning mathematics (see Chapter 11)

Holiday mathematical interest diaries, children 7-8 years: diaries kept during one
summer vacation by parents of their children at home (see Chapter 11)

Research with teachers and practitioners

Teaching young children written mathematics: 273 teachers of children aged 3-8 years
completed questionnaires about the ‘written’ mathematics they provided for the
children they taught. Telephone interviews were conducted with a sample of these
teachers (see Chapters 1 and 5)

Teachers share children’s mathematics online (2003): an action-research project with
teachers from Early Excellence Centres throughout England. Research supported
by Mirandanet, and the Institute of Education, University of London and funded
by the General Teaching Council and the DfES (Worthington, 2005b)

Creativity and mathematics: study of teachers’ perceptions and practices relating to
creativity in mathematics, through questionnaires and interviews (see Chapter 2),
(Carruthers and Worthington, 2005b; Worthington, 2005a; Worthington, 2006)

Other research

Nursery study India: teaching and learning in nursery schools in rural southern
India (see Chapter 1)

Study of mathematics SATSs papers in four schools, focusing on the extent to which
children used their own written methods (see Chapter 12)

Current research

Cambridge Project (2005-2007): National Learning Network (DfES): ‘Raising the
quality of the teaching and learning within the area of children’s development that leads
to written calculations’ (nursery and reception)

Doctoral study (in progress): multi-modality within children’s mathematical
graphics (Worthington)

Doctoral study (in progress) on pedagogical approaches to support children’s
mathematical graphics (Carruthers)



flossary

Below we provide definitions for some of the important terms which we use in this
book: these definitions refer to their use within the context of this study.

algorithm

bi-numerate

code switching
dimensions of
mathematical
graphics
dynamic

example

forms

A step-by-step procedure that produces an answer to a particular
problem (a standard algorithm is a set procedure for a problem
which has been generally recognised as the most efficient way to
solve an addition, subtraction, division or multiplication
problem). Standard algorithms are part of the established arith-
metic culture in many countries.

Through using their own mathematical graphics children trans-
late between their own informal understanding and abstract
mathematical symbolism, in an infinite feedback loop. We origi-
nated the term ‘bi-numerate’ to describe the translation between
these two systems. This allows children to exploit their own
informal marks and use this knowledge to gradually construct
deep personal meaning of standard mathematical symbols and
subsequent standard written calculations.

Switching from informal representation to include some standard
symbols within a piece of mathematical graphics or calculation.
These represent the development of children’s mathematical
graphics (see Chapters 6 and 7).

Marks that are lively and suggestive of action — full of energy and
new ideas.

When a teacher provides a direct example and then children
follow the teacher’s example when representing their mathemat-
ics: this usually results in all children copying what the teacher
has done.

The five graphical forms identified in our research refer to the
range of mathematical marks that children choose to make (see
pp- 87-90). However, the forms alone do not represent the devel-
opment of children’s mathematical understanding of written
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iconic

implicit symbols

jottings

marks

mark-making

mathematical
graphics
modelling

multi-modal

narrative

narrative action

number

numeral

operation

number, quantities and their own written methods

Marks based on one-to-one counting. These may include tallies or
other marks and symbols of the children’s own devising (Hughes,
1986).

Symbols that are implied within the child’s marks or layout, but
are not represented: this is a significant stage in children’s devel-
oping understanding of the abstract symbols of mathematics.
Informal, quick marks that are made to aid memory when working
out mental calculations. In England the term ‘jottings’ is used to
refer to some taught methods (e.g. the empty number line).

In the context of this study, we use this term to refer generally to
children’s marks on paper: children also make graphical marks
on other surfaces such as sand, paths and windows.

Children’s own, self-initiated marks which may be explored
through their actions or forms of symbolic languages such as
drawing, writing or mathematics.

Children’s own choice of marks that may include scribbles,
drawing, writing, tallies, invented and standard symbols.
Teachers (or children) using chosen ways to represent some
mathematics, usually for a real need and which they show to
other children. Modelling is not followed by children copying
what has been shown, but over time provides a ‘tool box’ of ideas
and possible marks, symbols, ways of representing and layout.
Simply — many modes or forms; many different ways of repre-
senting meaning through a variety of media including speech,
gestures, dens, piles of things, cut-outs, junk models, drawings,
languages, symbols and texts. Meaning is created out of ‘lots of
different stuff’ (Kress, 1997).

When children represent their calculations as narratives with a
sense of relating a story: e.g. ‘first I did this, then I added two
more, then I had 5 altogether’.

Children include some means of showing the action of (often)
addition or subtraction by, for example, drawing a hand remov-
ing some items or arrows pointing to some numerals — more
often found in representations of subtraction.

Numbers are ways of expressing and recording quantities and
measurements.

A numeral is a digit, which is a single symbol: for example, 45
is a number but within that number there are two numerals, 4
and 5.

An operation is a rule that is used to process one or more
numbers, e.g. subtraction, addition, multiplication or division.
Algebraic forms of mathematics use more complex operations.
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operator

pictographic

recording

representation

schemas

socio-culturalism

symbolic

symbolic
languages

symbols

transitional forms
written (form)
written methods

visual
representation

This is a sign to show which operation is to be used, i.e. +, -,
X, +.

A drawing giving something of the appearance of what was in
front of the child; actually representing something the child was
looking at (Hughes, 1986).

When children use practical equipment and then record what
they have done.

This refers to children’s own mathematical thinking on paper. It
may also be used to refer to children’s interest in representing their
ideas through, for example, using blocks, paper cut-outs, play or
construction.

Patterns of children’s own repeated behaviour that give us a
window on their thinking (cognition) (Athey, 1990).

Children learn about the world and construct mathematical
understanding through the sociocultural practices in which chil-
dren and adults are involved (see Barratt-Pugh and Rohl, 2000).
This stage arises out of all previous stages. ‘Standard symbolic’
refers to the use of standard forms of numerals and some stan-
dard signs such as + and = (Hughes, 1986).

‘Written’ languages represent ideas and meanings in ways that
are culturally and contextually specific, such as English, Man-
darin or Tamil; written mathematics; musical notation; chemical
formulae, maps or scientific equations.

Mathematical symbols such as = and +. Children may also use
their own intuitive or invented symbols as they move towards
understanding the standard forms.

When children move between one graphical form and another,
for example, from pictographic to iconic.

Using words or letter-like marks in a calculation, which are read
as words and sentences.

These are forms of mathematics that children write down to
answer a problem, i.e. their own written calculations.

‘Visual representation’ (Matthews, 1999): not as a record of actions
or things seen, but a representation of thinking and of emergent
understanding. We use the term to encompass all aspects of
drawings, marks, writing and mathematical graphics.
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234, 241
Counting continuously, 108, 109-112,
117, 124, 131, 210
creativity, 34, 35, 191, 239
cultural-historical approach/theory, 5
cultural tools, see symbolic tools
see also socio-culturalism
cultural transmission of mathematics, 5
Curriculum Guidance for the Foundation
Stage, xvii, 7, 107, 232, 233
see also Early Years Foundation stage

data (handling), 25, 87, 157, 177-179,
198, 210, 211, 214
see also graphs
Denmark, 139
‘Developmental Education’, 5, 12, 213
Dimensions of mathematical graphics, 91,
105, 130, 131, 238, 240
direct modelling-see modelling
display, 24, 82, 134, 141, 147-149, 151,
157,162, 170, 185, 187, 215, 233
see also notice-boards
division, 60, 75, 88, 132, 174-177, 240,
241
dynamic form of graphics, 87, 89, 90, 101

Early explorations with marks, 93-96,131

early operations, 91, 105, 108-132

Early written numerals, 91, 96-99, 105,
131

Early Years Foundation Stage, xviii

see also Curriculum Guidance for the

Foundation Stage

Education Reform Act (ERA), 37

Effective Early Learning (EEL) project, 46,
135

Effective Provision of Pre-school Education
(EPPE) Project — see sustained shared
thinking

emergent writing/early writing 2, 12, 13,
21, 33, 57-62, 63, 66, 67, 68, 74, 78,
79, 82, 86, 90, 95, 96, 99, 124, 125,
191 232, 234

emergent mathematics, 9, 12, 14, 34,

Emergent Mathematics Teachers, 2, 10,
11, 58, 86

environment, 22, 28, 30, 35, 40, 41, 43,
44, 57, 61, 64, 67, 74, 98, 99,
134-161, 166, 169-172, 187, 190,
200, 215, 217-218, 219

estimation, 53, 101, 144, 146, 164

Every Child Matters, xviii, 169

examples, 205-211, 238
see also modelling
Excellence and Enjoyment, xvii
Exploring symbols, 108, 118-119, 130, 131

family/ families, 15, 14, 21, 24, 25, 26, 27,
29, 30, 31, 32, 44, 60, 65, 71, 145,
146, 147, 215, 216-228

see also parents/carers,

foreign language/ foreign language

learning (L2), 77 -79, 81
see also second language learning

Forms, 87, 88, 89, 90, 117, 119, 121, 130,
171,172, 177, 190, 213, 238, 240

see also transitional forms

Foundation stage, xvii, xviii, 6, 7, 9, 34,
107, 191, 232, 233

fractions, 19 -20 196

free-flow play, 137,139, 197

see also child-initiated play

graphics area, 149-151, 153, 154, 156,
162, 166, 171, 234
see also writing area, writing table

graphs/charts, 18, 25, 157, 159

see also data handling, tables

generational marks/structures, 62, 89,
99

genre, 74, 87, 164, 211, 234

holistic approach, 198
Holland, 75, 127
see also the Netherlands
home corner, 145
see also role play, symbolic play
home mathematics, 2, 64, 68, 76, 83, 85,
106, 196, 217
Hundred Languages, 14, 32, 33, 94
see also Reggio Emilia,

iconic form of marks, 108, 115, 122, 130,
172,177, 182, 186, 188, 208, 213,
214, 141, 242

see also tallies

idiosyncratic, 90-91, 230

Implicit/implied symbols, 119, 121, 122,
123, 130, 135, 241

see also Exploting symbols

inclusion, 172, 229-230, 235, 239

Integrated Children’s Centre, see
Children’s Centres

inter-language, 78

intuitive/invented methods, 41, 89, 109,
127

involvement (child), 21, 23, 45, 46, 55,
62, 135, 194, 221

adult, 138
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jottings, 82, 85, 108, 126, 127-129, 131,
187, 226, 241

language, (dialogue/discussion/talk), 119,
121, 129, 135, 166, 173, 181, 204,
221, 222, 231, 242

larger numbers, 101, 108, 122, 123, 124,
126, 127, 202, 203

Learning Networks (national), 170, 239

see also Cambridge Learning Network
length, see measures

Listening to Young Children

logico-mathematics, 37, 75

manipulatives, 75
see also practical mathematics
mark-making, 2, 3, 4, 7, 13, 31, 34, 41, 42,
43, 44, 54, 55, 59, 61, 74, 76, 89, 94,
99, 139, 141, 145, 151, 160, 176, 199,
220, 224, 226, 238, 241
outside, 160, 166, 167
Early explorations with marks, emergent
writing, visual representation,
Mathematical Activities for the Foundation
Stage, 6
mathematical literacy, 9-11, 14, 24, 26, 35
mathematical set, 218
mathematicians, 10, 33, 37, 40, 58, 90
mathematization, horizontal and vertical,
4, 213
measures/measurement, 19, 211, 145, 196,
198, 211, 223, 224, 241
time, 100, 145, 153, 160, 181, 196, 217,
219, 222, 224, 225
length, 45, 46, 48, 52, 53, 61, 62, 77,
137, 145, 146, 149, 150, 222
weight/weighing, 18, 43
Melting pot, 113, 114, 131
mental/oral, 75, 76, 85-86, 92, 101, 108,
227
‘mental tool-box’, 173, 210, 213, 214, 241
modelling, 114, 125, 137, 148, 171, 172,
190, 204, 205, - 215, 241
see also examples
money, 25, 26, 56, 63, 144, 146, 168, 169,
196, 211, 220, 222, 223, 224, 225,
227, 229
multi-competencies, multi-competent,
78-79, 80
multiplication, 73, 75, 118, 132, 150,
181-185, 185-190, 240, 241
see also repeated addition
multi-modal/multi-modality, ix, x, 11, 21,
62, 91-94, 105, 131, 135-136, 190,
191, 199, 213, 226, 239, 241
Narrative, 88, 112, 113, 115, 118, 119,
177, 241

Narrative action, 112-114, 241
National Curriculum, 6
National Numeracy Strategy, 4, 6, 7, 75, 76,
85, 86, 107, 127, 232, 233
National Writing Project, 84
negative numbers, 159, 203, 204
Netherlands, 4, 5, 10, 12, 214
see also Holland,
New Zealand, 12, 36, 57, 63, 67
notations, 10, 14, 83
notice boards, 148-149, 215, 234
see also display
number line, 95, 127, 149, 151, 157, 158,
159, 164-166, 170, 171, 187, 189,
203, 204
empty, 4, 127, 159, 189, 241
Standard symbolic operations with small
numbers, sums
Numerals as labels, 91, 99-100, 131

observations, xvii, 11, 16, 38, 41, 44, 45,
46, 47, 52, 53, 54, 57, 61, 62, 64, 86,
91, 145, 150, 151, 161, 162, 165, 192,
198, 204, 224, 227, 233, 238

of schemas, see schemas

odd/even, 177

Office box, 140, 144, 149, 160, 181

operant/operator — see also signs, symbols,
88, 105, 112, 125, 242,

outside play/outdoors, 4, 39, 43, 44, 47,
50, 53, 73, 134, 137, 141, 160, 166,
167, 170, 171, 227

parents and carers, 21, 30, 31, 38, 39, 44,
73, 74, 145, 146, 180, 196m 198,
215, 216-228, 233, 239

see also families

partial knowledge, 33, 194

patterns, 62, 92

perimeter, 41, 46, 55

Pictographic form of graphics, 11, 66, 80,
87,115, 122, 182, 242

place value, 74

play areas, 43, 170, 171, 175

small world 92, 94, 167-169

symbolic, 18,

see also block play, child-initiated play,
child-initiated learning, free-flow

play, role play, symbolic play

child-initiated/self-initiated play, 20, 34,
37, 45, 48, 45, 62, 138, 161, 167-223

play-based curriculum, 5, 57, 82, 87

play spiral, 191

practical activities/mathematics 11, 75,
85-86, 106-108, 109, 114, 185, 242

see also manipulatives

pre-reading/writing/number, 21, 33, 38,
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62, 65, 219
pre-school, 7, 8, 31, 32, 43, 44, 63, 70,
172, 194
see also Foundation stage
probability, 223
problem/problem-solving/problem-solving
approach, 5, 6, 9, 23, 108, 132, 138,
164, 174, 181, 185, 187, 196, 198, 234
process approach to writing, 67
see also emergent writing
progressive mathematisation, 4, 213
see also Realistic Mathematics Education
(REM), provocative mathematics, 68,
132

quantity, 16, 17, 101, 175, 200, 202

questionnaires (teachers’ and
practitioners’, parents’), 7, 8, 81, 84,
194, 216, 221, 224, 239

Realistic Mathematics Education (REM), 4-6,
12
see also progressive mathematisation
Reggio Emilia. 95
see also Hundred Languages
repeated addition, 118, 150, 156,
181-185, 187, 188
see also multiplication,
Representation of quantities that are
counted, 100-101, 131
Representations of quantities that are not
counted, 91, 102-103, 130, 131
see also taxonomy
resources, 3, 11, 34, 43, 45, 47, 49, 54, 92,
104, 106, 135, 140, 145, 149, 151,
152, 170, 171, 180, 181, 183, 185,
190, 191, 223
right angles, 52, 147, 168
Robert Owen Children’s Centre, xii,
166-167
role play, 17-19, 34, 73, 82, 23, 135, 139,
154, 166, 167-169, 178, 180-181,
187, 191,
area, 18, 40, 139, 145, 153, 234
and mark-making/writing, 139-140,
145, 178-181
see also home corner, symbolic play
Russia, 3, 4

SATS (Standard Attainment Tasks), 234,
235, 239

scaffold/scaffolding, 11, 64, 137, 222

schemas, 10, 13, 21, 36-55, 59, 61, 91, 92,
94, 96, 99, 153, 178, 198, 199, 217,
223, 224, 225, 226, 238, 242

in school, 44-54, 153, 178, 180-181,

217, 224, 225, 226, 238

observation of schemas,10, 44-49, 55,
57, 180
pattern of schemas, 51-54, 55, 58, 91,
242
supporting, 43-44
schematising/schematisation, 10
scribbles, 26, 58, 67, 86, 89, 90-91, 96,
227, 231, 241
second language learning (L2), 71, 77-79,
81, 119, 121, 212,
see also foreign language/foreign
language learning
semiotics, 72-73
Separating sets, 87, 108, 117-118, 130,
131
shape, 32, 34, 41, 48, 49, 55, 58, 60, 63,
88, 208, 209, 223, 225
space and shape, 153, 198, 227
shorthand, successive shorthand, 114, 122
Singapore, 14,
signs (abstract, conventional, formal,
mathematical), 10, 70, 71, 72, 115,
118, 123, 194, 212, 226, 242
addition, 74
children’s own, 134, 160
equals, 115, 122
invented,
minus, 124
operator, 125,
signs (labels, notices), 24, 141, 160, 166
situated learning, 5
Social constructivism, 11, 21, 22-33
Socio-culturalism/socio-cultural theory,
contexts, practices, 20, 21, 23-24,
31-32 33, 35, 242
social interaction, 11, 22, 23, 34, 220
social semiotic theory, 135
sorting, sets, matching and one-to-one
correspondence, 22, 37, 38, 65, 75,
219
standard abstract language, algorithms,
calculations, layout, methods, written
forms, written calculations, 4, 6, 41, 67,
75,76, 79, 80, 82, 85, 89, 100
standard symbols, forms, letters,
numerals, 21, 24, 32, 33, 58, 67, 68,
70,79, 80, 88, 89, 96, 98
see also standard calculations,
Standard symbolic operations with small
numbers, 123-125, 130, 131
structures (see generational structures)
subtraction, take away, 6, 9, 20, 70, 74,
77, 88, 108-110, 111, 112, 114, 115,
118, 121, 124, 125, 126, 127, 132,
203, 204, 213, 226, 231, 240, 241
sums,12, 69, 70, 75-76, 85, 203, 204, 226,
231, 232, 233, 234
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see also algorithms, calculations,
Calculating with larger numbers
supported by jottings, Counting
continuously, number operations,
Standard symbolic operations with
small numbers, written methods,
sustained shared thinking, 7
symbolic form of graphics, 88-89, 90, 177
symbolic languages, 23, 33, 62, 96, 241
symbolic play, 18,
see also home corner, role play
symbols/symbolism, 4, 10, 14, 18, 21, 24,
25, 31, 32, 33, 58, 60, 61, 62, 70, 81,
90, 92, 96, 99
abstract, conventional, formal,
standard, 21, 32, 70, 71, 77, 79, 88,
89, 90
children’s own, 63, 96
iconic, 88
mathematical, number, 6, 20, 33, 45,
81, 85, 86, 89
understanding, 72-74
symbolic tools, 21, 23-24, 79, 213, 214

tables, see graphs
tables, see graphics area, writing table
see also times tables
take-away, see subtraction
tallies, 6, 80, 87, 115, 178, 182, 208, 209,
211, 234, 241
see also iconic forms
taxonomy, 131
see also Categories of children’s
mathematical graphics
teachers’ beliefs, 12, 32-32, 194, 196
teachers’ difficulties, 82-83
‘third space’, 81
time-see measures

times tables, tables, 185-187

transitional forms, 80, 90, 93, 242

transformative thinking, 79

translate, translation, 2, 33, 38, 77-83, 85,
165, 195, 197, 236, 240

USA, 3, 4, 57,75, 194
‘Using and Applying’ mathematics, 6-7

visits, home/school
enriching schemas, 44, 50-51, 180, 181,
210

weight, weighing, see measures
well-being, 136, 170
Wingate Nursery, 135
workbooks, worksheets, 2, 3, 4, 8-9, 31,
80, 81-82, 85, 115, 194-197, 229,
232
writing second language, 78, 119
see also bi-literacy
see also emergent writing
writing area, table, 130-140, 145, 151,
152, 162-, 164, 202, 206
see also graphics area
written form of graphics, 88, 89, 122
written calculations, 5, 71, 105, 108, 113,
129, 170, 239, 240, 241
methods,6, 7, 24, 64, 68, 76, 77, 80,86,
87,88, 90, 91, 105, 106, 107, 108,
115, 129, 130, 132, 185, 188, 193,
194, 195, 197, 199, 203, 205, 209,
210, 211, 213, 214, 215, 224, 231,
235, 237, 238, 239, 241, 242
see also algorithms, calculations,
number operations, written methods,
sums
zero, 127, 148, 164, 177, 203-204
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